JP3428516B2 - Aperture device - Google Patents

Aperture device

Info

Publication number
JP3428516B2
JP3428516B2 JP23133199A JP23133199A JP3428516B2 JP 3428516 B2 JP3428516 B2 JP 3428516B2 JP 23133199 A JP23133199 A JP 23133199A JP 23133199 A JP23133199 A JP 23133199A JP 3428516 B2 JP3428516 B2 JP 3428516B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
main valve
flow
indoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23133199A
Other languages
Japanese (ja)
Other versions
JP2000346495A (en
Inventor
嘉裕 隅田
悟 平國
雅弘 中山
茂樹 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27736320&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3428516(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP11153446A external-priority patent/JP2000346493A/en
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23133199A priority Critical patent/JP3428516B2/en
Publication of JP2000346495A publication Critical patent/JP2000346495A/en
Application granted granted Critical
Publication of JP3428516B2 publication Critical patent/JP3428516B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒流動音を低減
し、騒音に対する快適性を向上させた絞り装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a throttle device which reduces refrigerant flow noise and improves comfort against noise.

【0002】[0002]

【従来の技術】従来の空気調和装置では、空調負荷の変
動に対応するためにインバータなどの容量可変型圧縮機
が用いられ、空調負荷の大小に応じて圧縮機の回転周波
数が制御されている。ところが冷房運転時に圧縮機回転
が小さくなると蒸発温度も上昇し、蒸発器での除湿能力
が低下したり、あるいは蒸発温度が部屋内の露点温度以
上に上昇し、除湿できなくなったりする問題点があっ
た。
2. Description of the Related Art In a conventional air conditioner, a variable capacity compressor such as an inverter is used to cope with a change in air conditioning load, and the rotation frequency of the compressor is controlled according to the size of the air conditioning load. . However, when the rotation of the compressor is reduced during cooling operation, the evaporation temperature also rises and the dehumidifying capacity of the evaporator decreases, or the evaporation temperature rises above the dew point temperature in the room, making dehumidification impossible. It was

【0003】この冷房低容量運転時の除湿能力を向上さ
せる手段としては次のような空気調和装置が考案されて
いる。図21は例えば特公昭61‐43631号公報に
示された従来の空気調和装置の冷媒回路構成を示す。図
において1は圧縮機、3は室外熱交換器、4は第1流量
制御弁、5は第1室内熱交換器、6は第2流量制御弁、
7は第2室内熱交換器であり、これらは配管で順次接続
され、冷凍サイクルを構成している。次に従来の空気調
和装置の動作について説明する。まず通常の冷房運転で
は、圧縮機1を出た冷媒は室外熱交換器3で凝縮液化
し、第1流量制御弁4で減圧され、第2室内熱交換器
5、第2流量制御弁6および第2室内熱交換器7を通っ
て圧縮機1に戻る。この時の第2流量制御弁は全開状態
であり、第1室内熱交換器5と第2室内熱交換器7は蒸
発器として動作して冷房運転が行なわれる。
The following air conditioner has been devised as a means for improving the dehumidifying ability during the cooling low capacity operation. FIG. 21 shows a refrigerant circuit configuration of a conventional air conditioner disclosed in, for example, Japanese Patent Publication No. Sho 61-43631. In the figure, 1 is a compressor, 3 is an outdoor heat exchanger, 4 is a first flow rate control valve, 5 is a first indoor heat exchanger, 6 is a second flow rate control valve,
Reference numeral 7 denotes a second indoor heat exchanger, which are sequentially connected by pipes to form a refrigeration cycle. Next, the operation of the conventional air conditioner will be described. First, in a normal cooling operation, the refrigerant exiting the compressor 1 is condensed and liquefied by the outdoor heat exchanger 3, decompressed by the first flow control valve 4, and the second indoor heat exchanger 5, the second flow control valve 6 and Return to the compressor 1 through the second indoor heat exchanger 7. At this time, the second flow rate control valve is fully open, and the first indoor heat exchanger 5 and the second indoor heat exchanger 7 operate as evaporators to perform cooling operation.

【0004】一方、除湿運転時には、第1流量制御弁4
を全開状態とし、第2流量制御弁6で冷媒流量を制御す
ることにより、第1室内熱交換器5が凝縮器すなわち再
熱器、第2室内熱交換器7が蒸発器として動作し、室内
空気は第1室内熱交換器5で加熱されるため、室温の低
下が小さい除湿運転が可能となる。
On the other hand, during the dehumidifying operation, the first flow control valve 4
Is fully opened and the flow rate of the refrigerant is controlled by the second flow rate control valve 6, whereby the first indoor heat exchanger 5 operates as a condenser, that is, a reheater, and the second indoor heat exchanger 7 operates as an evaporator. Since the air is heated by the first indoor heat exchanger 5, it is possible to perform the dehumidifying operation in which the decrease in room temperature is small.

【0005】[0005]

【発明が解決しようとする課題】上記のような従来の空
気調和装置では、室内ユニット内に設置する第2流量制
御弁として、通常、オリフィスを有する流量制御弁を用
いているため、このオリフィスを冷媒が通過する時に発
生する冷媒流動音が大きく、室内環境を悪化させる要因
となっていた。特に除湿運転時には第2流量制御弁の入
口冷媒が気液二相状態になり、冷媒流動音が大きくなる
という問題があった。
In the conventional air conditioner as described above, since a flow rate control valve having an orifice is usually used as the second flow rate control valve installed in the indoor unit, this orifice is used. The refrigerant flow noise generated when the refrigerant passed through was a factor that deteriorated the indoor environment. In particular, during the dehumidifying operation, the inlet refrigerant of the second flow control valve is in a gas-liquid two-phase state, and there is a problem that the refrigerant flow noise becomes loud.

【0006】この除湿運転時の第2流量制御弁の冷媒流
動音低減対策としては、特開平7−91778号に示さ
れた流量制御弁内の主弁体に小孔を設けたものや、特開
平10−89803号に示された流量制御弁の下流に螺
旋状流路部分を設けたものなどがある。ところがこれら
の冷媒流動音低減対策はいずれも絞り部が小孔やオリフ
ィスで構成されているため、螺旋状流路を追加しても効
果的ではなく、特に流量制御弁入口冷媒が気液二相状態
の場合には、冷媒流動音が大きくなるという問題点があ
った。またこの冷媒流動音を低減するために、流量制御
弁本体に、遮音材や制振材を設けるなどの追加の対策を
必要としていたが、この追加対策によりコストが増加し
たり、設置スペースが大きくなるため室内ユニットが大
型化したり、製品回収時のリサイクル性が悪化するとい
う問題があった。
As a measure for reducing the refrigerant flow noise of the second flow rate control valve during the dehumidifying operation, there is provided a small valve hole in the main valve body in the flow rate control valve disclosed in Japanese Patent Laid-Open No. 7-91778, and a special feature. For example, a flow path control valve shown in Kaihei 10-89803 is provided with a spiral flow path portion downstream thereof. However, since all of these measures to reduce the flow noise of the refrigerant are composed of small holes and orifices in the throttle, adding a spiral flow path is not effective. In the case of the state, there is a problem that the refrigerant flow noise becomes loud. In addition, in order to reduce this refrigerant flow noise, additional measures such as providing sound insulating materials and damping materials were required in the flow control valve body, but these additional measures increase cost and increase installation space. Therefore, there is a problem that the indoor unit becomes large and the recyclability at the time of product recovery deteriorates.

【0007】さらに、除湿運転時の圧縮機の運転容量を
小さく制御し、冷媒流量を小さくして、この冷媒流動音
を低減させることも可能であるが、結果として除湿運転
時の冷媒流量が制約されてしまうため、除湿能力を自由
に制御することができず、部屋の温度、湿度を一定に保
つことができないという問題があった。
Further, it is possible to control the operating capacity of the compressor during the dehumidifying operation to a small amount and reduce the refrigerant flow rate to reduce the refrigerant flow noise, but as a result, the refrigerant flow rate during the dehumidifying operation is restricted. Therefore, there is a problem that the dehumidifying ability cannot be freely controlled, and the temperature and humidity of the room cannot be kept constant.

【0008】この発明は、上記のような問題を解決され
るためになされたもので、冷媒流動音を大幅に低減でき
る絞り装置を得ることを目的とする。
The present invention has been made in order to solve the above problems, and an object of the present invention is to obtain a throttling device capable of significantly reducing refrigerant flowing noise.

【0009】[0009]

【課題を解決するための手段】この発明に係る絞り装置
は、絞り部を冷媒流れ方向に連通する多孔質透過材で構
成し、前記多孔質透過材の透過面積を調節する調節手段
を備えたものである。
A throttling device according to the present invention comprises a squeezing portion made of a porous permeable material which communicates in the direction of refrigerant flow, and is provided with adjusting means for adjusting the permeation area of the porous permeable material. It is a thing.

【0010】また、電磁開閉弁が設けられた第1の流路
と、この第1の流路と並列に設けられた第2の流路と、
この第2の流路中に設けられ冷媒流れ方向に連通する多
孔質透過材で構成した絞り部と、前記多孔質透過材の透
過面積を調節する調節手段とを備えたものである。
A first flow path provided with an electromagnetic opening / closing valve, and a second flow path provided in parallel with the first flow path,
The throttle unit is provided in the second flow path, and is provided with a throttle unit made of a porous permeable material that communicates in the refrigerant flow direction, and an adjusting unit that adjusts the permeation area of the porous permeable material.

【0011】また、前記多孔質透過材で冷媒流路を覆う
ものである。
Further, the refrigerant passage is covered with the porous permeable material.

【0012】また、 弁室側壁に第1流路が開口する弁
本体と、弁室底面に第2流路が開口する主弁座と、弁室
内に前記主弁座を閉止できる主弁体を有し、前記主弁体
に冷媒流れ方向に連通する多孔質透過材を用いて絞り部
を構成したものである。
Further, there are provided a valve body having a first flow passage opening on a side wall of the valve chamber, a main valve seat having a second flow passage opening on a bottom surface of the valve chamber, and a main valve body capable of closing the main valve seat in the valve chamber. A narrowed portion is formed by using a porous permeable material that has the main valve element and communicates with the main valve element in the refrigerant flow direction.

【0013】また、前記多孔質透過材は一端が開放した
柱状を成し、前記主弁座閉止時に前記柱状の周面側と底
面側とが流路入口側と出口側とに分離されるものであ
る。
Further, the porous permeable material has a columnar shape with one end open, and when the main valve seat is closed, the peripheral surface side and the bottom surface side of the columnar shape are separated into a flow channel inlet side and an outlet side. Is.

【0014】また、弁室側壁に第1流路が開口する弁本
体と、弁室底面に第2流路が開口する主弁座と、弁室内
に前記主弁座を閉止できる主弁体を有し、前記主弁座に
冷媒流れ方向に連通する多孔質透過材を用いて流量制御
弁を構成したものである。
Further, a valve main body having a first flow passage opening on a side wall of the valve chamber, a main valve seat having a second flow passage opening on a bottom surface of the valve chamber, and a main valve body capable of closing the main valve seat in the valve chamber are provided. A flow rate control valve is configured by using a porous permeable material that has the main valve seat and communicates with the main valve seat in the refrigerant flow direction.

【0015】また、周面が主弁座の側面と当接し、前記
周面と側面との当接面積を開閉方向への移動によって可
変する主弁体と、前記主弁体の開閉方向への移動を制御
する制御手段とを備え、前記主弁体、主弁座および制御
手段で多孔質透過材の透過面積を調節する調節手段を構
成したものである。
Further, the main surface of the main valve body is in contact with the side surface of the main valve seat, and the contact area between the peripheral surface and the side surface is changed by movement in the opening / closing direction. A control means for controlling the movement, and the main valve body, the main valve seat and the control means constitute an adjusting means for adjusting the permeation area of the porous permeable material.

【0016】また、多孔質透過材の通気孔を200から
0.5マイクロメートルの範囲としたものである。
The ventilation holes of the porous permeable material are in the range of 200 to 0.5 μm.

【0017】また、前記多孔質透過材を焼結金属とした
ものである。
The porous permeable material is a sintered metal.

【0018】[0018]

【発明の実施の形態】実施の形態1. 図1はこの発明の実施の形態の一例を示す空気調和装置
の冷媒回路図で、従来装置と同様の部分は同一符号で示
している。図において、1は圧縮機、2は冷房運転およ
び暖房運転の冷媒の流れを切換える流路切換手段で例え
ば四方弁、3は室外熱交換器、4は第1流量制御弁であ
る電気式膨張弁、5は第1室内熱交換器、7は第2室内
熱交換器であり、この第1室内熱交換器5と第2室内熱
交換器7の間には、第2流量制御弁6が設けられてお
り、これらは配管によって順次接続され、冷凍サイクル
を構成している。また圧縮機1、四方弁2、室外熱交換
器3および第1流量制御弁4で室外ユニット11を構成
し、第1室内熱交換器5、第2室内熱交換器7および第
2流量制御弁6で室内ユニット12を構成している。こ
の冷凍サイクルの冷媒には、R32とR125の混合冷
媒であるR410Aが用いられている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. FIG. 1 is a refrigerant circuit diagram of an air conditioner showing an example of an embodiment of the present invention, and the same parts as those of a conventional device are designated by the same reference numerals. In the figure, 1 is a compressor, 2 is a flow path switching means for switching the flow of refrigerant in cooling operation and heating operation, for example, a four-way valve, 3 is an outdoor heat exchanger, and 4 is an electric expansion valve that is a first flow control valve. 5 is a first indoor heat exchanger, 7 is a second indoor heat exchanger, and a second flow rate control valve 6 is provided between the first indoor heat exchanger 5 and the second indoor heat exchanger 7. These are sequentially connected by piping to form a refrigeration cycle. Further, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3 and the first flow rate control valve 4 constitute the outdoor unit 11, and the first indoor heat exchanger 5, the second indoor heat exchanger 7 and the second flow rate control valve. The indoor unit 12 is constituted by 6. R410A, which is a mixed refrigerant of R32 and R125, is used as the refrigerant of this refrigeration cycle.

【0019】図2は図1に示した空気調和機の第2流量
制御弁6の構造を示す図であり、21が第1流路であ
り、第1室内熱交換器5が接続され、22が第2流路で
あり、第2室内熱交換器7が接続されている。23は第
2流路が開口する主弁座であり、この図では弁本体と一
体に形成されている。24は第2流路制御弁6本体の内
面に沿って上下に摺動する主弁体で、これら主弁座23
と主弁体24とで絞り部を構成している。25は主弁体
24を駆動する電磁コイルで、図示しない制御部からの
指令に基づいて電磁コイル25を通断電し、主弁体24
を開閉する。主弁体24は多孔質透過材により成形さ
れ、具体的には通気孔(流体が透過することのできる多
孔質体内部の気孔)が10マイクロメートルの焼結金属
(金属粉末あるいは合金粉末を型に入れて加圧成形し、
次いで溶融点以下の温度で焼結を行なって製造されたも
の)で構成されている。さらにこの第2流量制御弁6
は、電磁コイル25に非通電することにより、主弁体2
4を上部に引き上げ、主弁体24を主弁座23から引き
離すことによって、第1流路21と第2流路22がほと
んど圧力損失なしにつながる(図2(a))。また電磁
コイル25に通電することにより、主弁体24が下部に
下がり、主弁体24を主弁座23に密着させることによ
って、弁本体の通気孔を介して第1流路21と第2流路
22がつながる(図2(b))。
FIG. 2 is a view showing the structure of the second flow rate control valve 6 of the air conditioner shown in FIG. 1, in which 21 is the first flow path, the first indoor heat exchanger 5 is connected, and 22 Is a second flow path, to which the second indoor heat exchanger 7 is connected. Reference numeral 23 is a main valve seat in which the second flow path is open, and is formed integrally with the valve body in this figure. Reference numeral 24 is a main valve body that slides up and down along the inner surface of the main body of the second flow path control valve 6.
And the main valve body 24 constitute a throttle portion. Reference numeral 25 is an electromagnetic coil for driving the main valve body 24. The electromagnetic coil 25 is electrically disconnected and turned on the basis of a command from a control unit (not shown),
Open and close. The main valve body 24 is formed of a porous permeable material, and specifically, a sintered metal (metal powder or alloy powder is used as a mold) having a ventilation hole (a pore inside the porous body through which a fluid can permeate) of 10 micrometers. And press molding,
Next, it is manufactured by performing sintering at a temperature below the melting point). Further, this second flow control valve 6
Deenergizes the electromagnetic coil 25, so that the main valve body 2
4 is pulled up and the main valve body 24 is separated from the main valve seat 23, so that the first flow passage 21 and the second flow passage 22 are connected with almost no pressure loss (FIG. 2 (a)). Further, by energizing the electromagnetic coil 25, the main valve body 24 is lowered to the lower side, and the main valve body 24 is brought into close contact with the main valve seat 23, so that the first flow path 21 and the second flow path 21 The flow path 22 is connected (FIG. 2 (b)).

【0020】次に本実施の形態による空気調和装置の冷
房時の動作について説明する。図1では冷房時の冷媒の
流れを実線矢印で示している。冷房運転は、起動時や夏
季時など部屋の空調顕熱負荷と潜熱負荷がともに大きい
場合に対応する通常冷房運転と、中間期や梅雨時期のよ
うに空調潜熱負荷は小さいが、顕熱負荷が大きな場合に
対応する除湿運転に分けられる。通常冷房運転は、第2
流量制御弁6の電磁コイル25を非通電状態とする。こ
のとき圧縮機1を出た高温高圧の冷媒蒸気は、四方弁2
を通って室外熱交換器3に流入し、外気と熱交換して凝
縮、液化する。この高圧の液冷媒は、第1流量制御弁4
で低圧に減圧され、気液二相冷媒となって第1室内熱交
換器5および第2室内熱交換器7で室内空気の顕熱およ
び潜熱を奪って蒸発する。第2流量制御弁6では、図2
(a)に示すように第1流路21と第2流路が大きな開
口面積で接続されているので、この弁を通過する際の冷
媒圧力損失はほとんどなく、圧力損失による冷房能力や
効率面での低下もない。第2室内熱交換器7を出た低圧
の蒸気冷媒は、四方弁2を通って再び圧縮機1に戻る。
この通常冷房運転時の第1流量制御弁4の開度は、例え
ば第2室内熱交換器の出口冷媒の過熱度が5℃となるよ
うに制御されている。
Next, the operation of the air conditioner according to this embodiment during cooling will be described. In FIG. 1, the flow of the refrigerant during cooling is indicated by a solid arrow. Cooling operation corresponds to normal cooling operation when the air conditioning sensible heat load and latent heat load of the room are both large at start-up or summer, and the air conditioning latent heat load is small, such as in the intermediate period and the rainy season, but the sensible heat load is It can be divided into dehumidification operation corresponding to a large case. Normal cooling operation is the second
The electromagnetic coil 25 of the flow control valve 6 is turned off. At this time, the high-temperature and high-pressure refrigerant vapor leaving the compressor 1 is transferred to the four-way valve 2
To flow into the outdoor heat exchanger 3 to exchange heat with the outside air, condense and liquefy. This high-pressure liquid refrigerant is supplied to the first flow control valve 4
Is decompressed to a low pressure by becoming a gas-liquid two-phase refrigerant, and the sensible heat and latent heat of the indoor air are taken by the first indoor heat exchanger 5 and the second indoor heat exchanger 7 to be evaporated. In the second flow control valve 6, as shown in FIG.
As shown in (a), since the first flow path 21 and the second flow path are connected with a large opening area, there is almost no refrigerant pressure loss when passing through this valve, and the cooling capacity and efficiency in terms of efficiency due to the pressure loss. There is no decline in. The low-pressure vapor refrigerant that has left the second indoor heat exchanger 7 passes through the four-way valve 2 and returns to the compressor 1 again.
The opening degree of the first flow rate control valve 4 during the normal cooling operation is controlled so that the superheat degree of the outlet refrigerant of the second indoor heat exchanger is 5 ° C., for example.

【0021】次に除湿運転時の動作について、図3に示
す圧力―エンタルピー線図を用いて説明する。なお、図
3に示した英文字は、図1に示した英文字と対応してい
る。この除湿運転時は、第2流量制御弁の電磁コイル2
5に通電し、図2(b)に示すように主弁体24を主弁
座23に密着させ、主弁体24の通気孔を介して第1流
路21である第1室内熱交換器5の出口と第2流路22
である第2室内熱交換器7の入口を接続する。この時、
圧縮機1を出た高温高圧の冷媒蒸気(A点)は、四方弁
2を通って室外熱交換器3に流入し、外気と熱交換して
凝縮する(B点)。この高圧の液冷媒あるいは気液二相
冷媒は、第1流量制御弁4で若干減圧され(C点)、中
間圧の気液二相冷媒となって第1室内熱交換器5に流入
する。この第1室内熱交換器5に流入した冷媒は、室内
空気と熱交換してさらに凝縮する(D点)。第1室内熱
交換器5を出た中間圧の液冷媒あるいは気液二相冷媒
は、第2流量制御弁6に流入する。第2流量制御弁6で
は、図2(b)に示すように主弁体24が主弁座23に
密着しているため、この弁に流入した冷媒は、焼結金属
で構成されている主弁体24内の通気孔を通って第2室
内熱交換器7に流入する。この主弁体24の通気孔は1
0マイクロメートル程度であり、この通気孔を通る冷媒
は減圧されて、低圧の気液二相冷媒となって、第2室内
熱交換器7に流入する(E点)。この第2室内熱交換器
7に流入した冷媒は、室内空気の顕熱および潜熱を奪っ
て蒸発する。第2室内熱交換器7を出た低圧の蒸気冷媒
は、四方弁2を通って再び圧縮機1に戻る。室内空気
は、第1室内熱交換器5で加熱され、第2室内熱交換器
7で冷却除湿されるため、部屋の室温低下を防ぎながら
除湿を行うことができる。
Next, the operation during the dehumidifying operation will be described with reference to the pressure-enthalpy diagram shown in FIG. The English characters shown in FIG. 3 correspond to the English characters shown in FIG. During this dehumidifying operation, the electromagnetic coil 2 of the second flow control valve
5 is energized, the main valve body 24 is brought into close contact with the main valve seat 23 as shown in FIG. 2 (b), and the first flow path 21 is the first indoor heat exchanger through the vent hole of the main valve body 24. 5 outlet and second flow path 22
Is connected to the inlet of the second indoor heat exchanger 7. At this time,
The high-temperature high-pressure refrigerant vapor (point A) exiting the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2, exchanges heat with the outside air, and condenses (point B). This high-pressure liquid refrigerant or gas-liquid two-phase refrigerant is slightly decompressed by the first flow rate control valve 4 (point C) and becomes intermediate-pressure gas-liquid two-phase refrigerant and flows into the first indoor heat exchanger 5. The refrigerant flowing into the first indoor heat exchanger 5 exchanges heat with the indoor air and is further condensed (point D). The intermediate-pressure liquid refrigerant or gas-liquid two-phase refrigerant that has left the first indoor heat exchanger 5 flows into the second flow control valve 6. In the second flow rate control valve 6, the main valve body 24 is in close contact with the main valve seat 23 as shown in FIG. 2B, so that the refrigerant flowing into this valve is mainly composed of sintered metal. It flows into the second indoor heat exchanger 7 through the vent hole in the valve body 24. The ventilation hole of this main valve body 24 is 1
The refrigerant passing through the vent hole is decompressed, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the second indoor heat exchanger 7 (point E). The refrigerant flowing into the second indoor heat exchanger 7 deprives the sensible heat and latent heat of the indoor air and evaporates. The low-pressure vapor refrigerant that has left the second indoor heat exchanger 7 passes through the four-way valve 2 and returns to the compressor 1 again. Since the indoor air is heated by the first indoor heat exchanger 5 and cooled and dehumidified by the second indoor heat exchanger 7, it is possible to perform dehumidification while preventing the room temperature from decreasing in the room.

【0022】なお、この除湿運転では、圧縮機1の回転
周波数や室外熱交換器3のファン回転数を調整して、室
外熱交換器3の熱交換量を制御し、第1室内熱交換器5
による室内空気の加熱量を制御して吹出し温度を広範囲
に制御できる。また第1流量制御弁7の開度や室内ファ
ン回転数を調整して、第1室内熱交換器5の凝縮温度を
制御し、第1室内熱交換器5による室内空気の加熱量を
制御することもできる。また第2流量制御弁4の開度
は、例えば第2室内熱交換器の出口冷媒の過熱度が5℃
となるように制御されている。
In this dehumidifying operation, the rotation frequency of the compressor 1 and the fan rotation speed of the outdoor heat exchanger 3 are adjusted to control the heat exchange amount of the outdoor heat exchanger 3 to control the first indoor heat exchanger. 5
The blowout temperature can be controlled in a wide range by controlling the amount of heating of the indoor air by. Further, the opening degree of the first flow rate control valve 7 and the indoor fan rotation speed are adjusted to control the condensation temperature of the first indoor heat exchanger 5, and the heating amount of the indoor air by the first indoor heat exchanger 5 is controlled. You can also The opening degree of the second flow rate control valve 4 is set such that the superheat degree of the outlet refrigerant of the second indoor heat exchanger is 5 ° C., for example.
Is controlled so that

【0023】この実施の形態では、焼結金属を主弁体2
4に用いた第2流量制御弁6を第1室内熱交換器5と第
2室内熱交換器7の間に配置し、冷房除湿運転時の絞り
装置として用いているので、第2流量制御弁6を液冷媒
あるいは気液二相冷媒が通過する際の冷媒流動音を大幅
に低減することができる。通常のオリフィスタイプの絞
り装置に気液二相冷媒が通過する際には、大きな冷媒流
動音が発生する。特に気液二相冷媒の流動様式がスラグ
流となる場合に、大きな冷媒流動音が発生することが知
られている。この冷媒流動音の発生要因としては、絞り
装置内のオリフィス部など小孔をスラグ流が通過する際
に、小孔よりも大きな冷媒蒸気スラグあるいは冷媒気泡
が破壊し、この冷媒蒸気スラグあるいは冷媒気泡の崩壊
により振動が発生することや、小孔を蒸気冷媒と液冷媒
が交互に通過するため、この小孔を冷媒が通過する際に
発生する圧力損失が大きく変動することが考えられる。
図2に示した第2流量制御弁では、冷房除湿運転時に第
1室内熱交換器5を出た気液二相冷媒あるいは液冷媒
は、焼結金属で構成されている主弁体24内の微細な通
気孔を通り、この際に減圧されて第2室内熱交換器7に
流入するため、冷媒蒸気スラグや冷媒気泡の崩壊が発生
せず、また蒸気冷媒と液冷媒は同時に主弁体24の通気
孔内を通過するため、圧力損失の大きな変動も生じな
い。このため従来装置で必要であった遮音材や制振材を
弁の外周に巻きつけるなどの低騒音化手段が不要とな
り、コストの低減ができ、さらに空気調和機器のリサイ
クル性も向上する。尚、上述した気液二相冷媒に起因す
る冷媒流動音の課題に関しては、空気調和装置に限定さ
れることなく、冷蔵庫等の冷凍サイクル一般についての
課題であり、本実施の形態の絞り装置はこのような冷凍
サイクル一般に広く適用することで、同様の作用効果が
得られる。
In this embodiment, the main valve body 2 is made of sintered metal.
The second flow rate control valve 6 used in No. 4 is disposed between the first indoor heat exchanger 5 and the second indoor heat exchanger 7 and is used as a throttle device during the cooling / dehumidifying operation. The refrigerant flowing noise when the liquid refrigerant or the gas-liquid two-phase refrigerant passes through 6 can be significantly reduced. When the gas-liquid two-phase refrigerant passes through the ordinary orifice type expansion device, a large refrigerant flow noise is generated. It is known that a large refrigerant flow noise is generated particularly when the gas-liquid two-phase refrigerant flow mode is a slag flow. The cause of this refrigerant flow noise is that when a slag flow passes through a small hole such as an orifice in the expansion device, a refrigerant vapor slag or refrigerant bubble larger than the small hole is destroyed, and this refrigerant vapor slag or refrigerant bubble It is conceivable that vibration may occur due to the collapse of the refrigerant, and that the vapor refrigerant and the liquid refrigerant alternately pass through the small holes, so that the pressure loss generated when the refrigerant passes through the small holes may fluctuate significantly.
In the second flow rate control valve shown in FIG. 2, the gas-liquid two-phase refrigerant or the liquid refrigerant that has exited the first indoor heat exchanger 5 during the cooling / dehumidifying operation is stored in the main valve body 24 made of sintered metal. Since it passes through the fine ventilation holes and is depressurized at this time and flows into the second indoor heat exchanger 7, collapse of the refrigerant vapor slag and refrigerant bubbles does not occur, and the vapor refrigerant and the liquid refrigerant are simultaneously discharged into the main valve body 24. Since it passes through the ventilation holes of, no large fluctuation in pressure loss occurs. For this reason, noise reduction means such as wrapping around the outer periphery of the valve with a sound insulating material and a vibration damping material, which are required in the conventional device, is not required, the cost can be reduced, and the recyclability of the air conditioner is improved. Incidentally, with respect to the problem of the refrigerant flow noise caused by the gas-liquid two-phase refrigerant described above, the problem is not limited to the air conditioner, it is a problem for refrigeration cycles in general such as a refrigerator, the throttling device of the present embodiment, By widely applying it to such a refrigeration cycle in general, the same effect can be obtained.

【0024】冷房除湿運転時の第2流量制御弁6の流量
特性(冷媒流量と圧力損失の関係)は、主弁体24に用
いる焼結金属の通気孔の径や冷媒が通過する流路長さを
調整することによって調整することができる。すなわち
ある冷媒流量を小さな圧力損失で流す場合には、焼結金
属の通気孔を大きくしたり、弁本体の径を大きくすれば
良い。また図4に示すように、弁本体の内部に空洞部2
6を設け、焼結金属を通過する流路長さを小さくしても
良い。また逆に、ある冷媒流量を大きな圧力損失で流す
場合には、焼結金属の通気孔を小さくしたり、弁本体の
径を小さくすれば良い。このような主弁体24に用いる
焼結金属の通気孔の径や弁本体の形状は、機器設計時に
最適に設計される。尚、主弁体24先端が開放した空洞
部26に代えて、周囲が焼結金属で囲まれた中空部とし
てもよい。さらに主弁体24閉止時に柱状の主弁体24
の周面側と底面側とが流路入口側と出口側とに分断され
る構造であれば、周面側と底面側とで圧力損失等の調整
が独立して行なえる。この焼結金属の通気孔の径として
は、200から0.5マイクロメートルであれば充分な
冷媒流動音低原稿化低減効果が得られることを実験によ
り確認した。好適な例としては、冷媒がR410Aで、
焼結金属前後の圧力差が1MPa(メガパスカル)程度の
場合に上記通気孔径が10マイクロメートル程度とする
と良い。圧力差が大きい場合には通気孔径をより小さ
く、圧力差が小さい場合には通気孔径をより大きく設計
することで対応させられる。この焼結金属の通気孔は、
径が小さいほど焼結金属が小形となり、結果として第2
流量制御弁6もコンパクトになる。なお通気孔の小さな
焼結金属を弁本体に用いた際に、冷凍サイクル内の異物
やスラッジによる通気孔の詰まりを防止するために、第
2流量制御弁6の上流側に、金属メッシュなどのフィル
ターを設置しても良い。
The flow rate characteristics (relationship between the refrigerant flow rate and the pressure loss) of the second flow rate control valve 6 during the cooling and dehumidifying operation are as follows: It can be adjusted by adjusting the height. That is, when a certain flow rate of the refrigerant is caused to flow with a small pressure loss, the vent holes of the sintered metal may be enlarged or the diameter of the valve body may be increased. In addition, as shown in FIG. 4, a cavity 2 is provided inside the valve body.
6 may be provided to reduce the length of the flow path through the sintered metal. On the contrary, when a certain flow rate of the refrigerant is caused to flow with a large pressure loss, the ventilation holes of the sintered metal may be made smaller or the diameter of the valve body may be made smaller. The diameter of the vent hole of the sintered metal used for the main valve body 24 and the shape of the valve body are optimally designed when the device is designed. Instead of the hollow portion 26 having an open end of the main valve body 24, a hollow portion surrounded by a sintered metal may be used. Further, when the main valve body 24 is closed, the columnar main valve body 24 is closed.
If the peripheral surface side and the bottom surface side are divided into the flow path inlet side and the outlet side, the pressure loss and the like can be adjusted independently on the peripheral surface side and the bottom surface side. It was confirmed by experiments that the diameter of the vent holes of the sintered metal is 200 to 0.5 μm, and a sufficient effect of reducing the flow noise of the refrigerant and reducing the manuscript can be obtained. As a suitable example, the refrigerant is R410A,
When the pressure difference before and after the sintered metal is about 1 MPa (megapascal), the diameter of the vent hole is preferably about 10 μm. If the pressure difference is large, the vent hole diameter is made smaller, and if the pressure difference is small, the vent hole diameter is made larger to cope with the problem. The sintered metal vents are
The smaller the diameter, the smaller the sintered metal, resulting in a second
The flow control valve 6 also becomes compact. In addition, when a sintered metal having a small vent hole is used for the valve body, in order to prevent clogging of the vent hole by foreign matter and sludge in the refrigeration cycle, a metal mesh or the like is provided on the upstream side of the second flow control valve 6. You may install a filter.

【0025】また本実施の形態では、第2流量制御弁
は、電磁コイル25への通電あるいは非通電により開閉
動作を行なうものについて説明したが、主弁体24をス
テッピングモータによって連続的に駆動し、第2流量制
御弁の流量特性を連続的に変化させるようにしても良
い。このように流量特性を連続的に制御することによ
り、冷房除湿運転時の温度および湿度制御性はより一層
向上し、快適な室内空間を実現できる。
In the present embodiment, the second flow control valve has been described as an opening / closing operation by energizing or de-energizing the electromagnetic coil 25. However, the main valve body 24 is continuously driven by a stepping motor. The flow rate characteristic of the second flow rate control valve may be continuously changed. By continuously controlling the flow rate characteristics in this manner, the temperature and humidity controllability during the cooling / dehumidifying operation is further improved, and a comfortable indoor space can be realized.

【0026】次に、この実施の形態の空気調和装置の運
転制御法について説明する。空気調和装置には、部屋内
に居る居住者の好みの温湿度環境を設定するために、例
えば設定温度と設定湿度が空調装置運転時に設定され
る。なおこの設定温度と設定湿度は、居住者がそれぞれ
の設定値を室内ユニットのリモコンから直接入力しても
よく、また暑がりの人用、寒がりの人用や子供用、老人
用など室内ユニットのリモコンに対象とする居住者別に
定めた温度および湿度の最適値テーブルを記憶させ、対
象居住者のみを直接入力するようにしてもよい。また室
内ユニット12には、室内の温度および湿度を検知する
ために、室内ユニットの吸い込み空気の温度および湿度
を検出するセンサーがそれぞれ設けられている。
Next, the operation control method of the air conditioner of this embodiment will be described. In the air conditioner, for example, a set temperature and a set humidity are set when the air conditioner is operating in order to set a temperature / humidity environment preferred by a resident in the room. Note that the set temperature and set humidity may be entered directly by the resident by the remote control of the indoor unit, or for indoor units such as those who are hot, those who are cold, children and the elderly. The remote controller may store an optimum value table of temperature and humidity determined for each target resident, and directly input only the target resident. In addition, the indoor unit 12 is provided with sensors for detecting the temperature and humidity of the indoor unit, respectively, in order to detect the temperature and humidity inside the room.

【0027】空気調和装置が起動されると、設定温度と
現在の室内吸込み空気温度との差を温度偏差、設定湿度
と現在の室内吸込み空気湿度との差を湿度偏差として演
算し、最終的にこれらの偏差がゼロあるいは所定の値以
内となるように空気調和装置の圧縮機1の回転周波数、
室外ファン回転数、室内ファン回転数、第1流量制御弁
4の絞り開度、および第2流量制御弁6の開閉を制御す
る。この時、温度および湿度偏差をゼロあるいは所定の
値以内に制御する際には、温度偏差を湿度偏差よりも優
先して空気調和装置の制御を行なう。すなわち、空気調
和装置起動時に、温度偏差および湿度偏差がともに大き
い場合は、第2流量制御弁7を開状態とし、まず通常冷
房運転で、室内の温度偏差を優先的にゼロまたは所定の
値以内となるように運転する。空気調和装置の冷房能力
が部屋の熱負荷と一致し、温度偏差がゼロまたは所定の
値以内となった場合に、湿度偏差を検出し、この時、湿
度偏差がゼロまたは所定の値以内となっている場合は、
現在の運転を続行する。
When the air conditioner is activated, the difference between the set temperature and the current indoor intake air temperature is calculated as a temperature deviation, and the difference between the set humidity and the current indoor intake air humidity is calculated as a humidity deviation, and finally the difference is calculated. The rotation frequency of the compressor 1 of the air conditioner so that these deviations are zero or within a predetermined value,
The outdoor fan speed, the indoor fan speed, the throttle opening of the first flow rate control valve 4, and the opening / closing of the second flow rate control valve 6 are controlled. At this time, when controlling the temperature and humidity deviations to be zero or within a predetermined value, the temperature deviation is prioritized over the humidity deviations to control the air conditioner. That is, when both the temperature deviation and the humidity deviation are large at the time of starting the air conditioner, the second flow rate control valve 7 is opened, and first, in the normal cooling operation, the temperature deviation in the room is preferentially zero or within a predetermined value. To drive. Humidity deviation is detected when the cooling capacity of the air conditioner matches the heat load of the room and the temperature deviation is within zero or within a specified value.At this time, the humidity deviation is within zero or within a specified value. If
Continue current operation.

【0028】温度偏差がゼロまたは所定の値以内とな
り、この時の湿度偏差がまだ大きな値となっている場合
は、第2流量制御弁6を絞り、冷房除湿運転に切換え
る。この冷房除湿運転では、室内の温度偏差がゼロまた
は所定の値以内を維持できるように、第2室内熱交換器
7の加熱量を制御するとともに、湿度偏差がゼロまたは
所定の値以内に入るように、第1室内熱交換器5の冷却
除湿量を制御する。第2室内熱交換器7の加熱量の制御
には、室外熱交換器3のファン回転数や第1流量制御弁
4の開度などによって調整する。また第1室内熱交換器
5の冷却除湿量の制御には、圧縮機1の回転周波数や室
内ユニット12のファン回転数などによって制御する。
When the temperature deviation is zero or within a predetermined value, and the humidity deviation at this time is still a large value, the second flow control valve 6 is throttled to switch to the cooling / dehumidifying operation. In this cooling / dehumidifying operation, the heating amount of the second indoor heat exchanger 7 is controlled so that the temperature deviation in the room can be maintained within zero or within a predetermined value, and the humidity deviation is controlled within zero or within a predetermined value. Then, the cooling / dehumidifying amount of the first indoor heat exchanger 5 is controlled. The heating amount of the second indoor heat exchanger 7 is controlled by adjusting the fan speed of the outdoor heat exchanger 3, the opening of the first flow control valve 4, and the like. The cooling / dehumidifying amount of the first indoor heat exchanger 5 is controlled by the rotation frequency of the compressor 1, the fan rotation speed of the indoor unit 12, and the like.

【0029】このようにこの実施の形態では、冷房運転
時の部屋の負荷に応じて、冷媒回路を通常冷房運転と冷
房除湿運転に切換えることにより、部屋内の温湿度環境
を、居住者の好みに応じて最適な状態に制御することが
できる。
As described above, according to this embodiment, the refrigerant circuit is switched between the normal cooling operation and the cooling / dehumidifying operation according to the load of the room during the cooling operation, so that the temperature and humidity environment in the room can be changed by the occupants. It can be controlled to an optimum state according to.

【0030】実施の形態2. 図5はこの発明の実施の形態の他の例を示す空気調和装
置の第2流量制御弁の構成図であり、図2に示したもの
と同一または同様の構成部品には同一符合を付して、そ
の重複する説明を省略する。この実施の形態では、主弁
体24には通常の金属製弁を用い、主弁座23に焼結金
属を用いている。図2と同様に、電磁コイル25に非通
電することにより、主弁体24が主弁座23から引き離
れ、第1流路21と第2流路22がほとんど圧力損失な
しにつながる(図5(a))。また電磁コイル25に通
電することにより、主弁体24を主弁座23に密着さ
せ、主弁座23の通気孔を介して第1流路21と第2流
路22がつながる(図2(b))。冷房除湿運転時に
は、図5(b)のように電磁コイルに通電することによ
り、第1室内熱交換器5を出た冷媒は、第2流量制御弁
6内の主弁座23の通気孔を通って減圧され、第2室内
熱交換器7に流入するため、冷媒流動音の発生がなく、
快適な室内空間を実現できる。また通常冷房時には、電
磁コイルを非通電とすることにより、図5(a)に示す
ように主弁体24を主弁座23から引き離れ、第1流路
21と第2流路22がほとんど圧力損失なしにつながる
ため、第1室内熱交換器5と第2室内熱交換器7の間で
圧力損失はなく、冷房能力や効率面で低下することもな
い。
Embodiment 2. FIG. 5 is a configuration diagram of a second flow control valve of an air conditioner showing another example of the embodiment of the present invention, and the same or similar components as those shown in FIG. 2 are designated by the same reference numerals. The overlapping description will be omitted. In this embodiment, an ordinary metal valve is used for the main valve body 24 and a sintered metal is used for the main valve seat 23. As in the case of FIG. 2, by deenergizing the electromagnetic coil 25, the main valve body 24 is separated from the main valve seat 23, and the first flow passage 21 and the second flow passage 22 are connected with almost no pressure loss (FIG. 5). (A)). Further, by energizing the electromagnetic coil 25, the main valve body 24 is brought into close contact with the main valve seat 23, and the first flow passage 21 and the second flow passage 22 are connected via the ventilation hole of the main valve seat 23 (see FIG. b)). During the cooling / dehumidifying operation, by energizing the electromagnetic coil as shown in FIG. 5B, the refrigerant exiting the first indoor heat exchanger 5 passes through the vent hole of the main valve seat 23 in the second flow control valve 6. Since it is depressurized there and flows into the second indoor heat exchanger 7, there is no refrigerant flow noise,
A comfortable indoor space can be realized. Further, during normal cooling, by deenergizing the electromagnetic coil, the main valve body 24 is pulled away from the main valve seat 23 as shown in FIG. 5A, and the first flow passage 21 and the second flow passage 22 are almost completely removed. Since there is no pressure loss, there is no pressure loss between the first indoor heat exchanger 5 and the second indoor heat exchanger 7, and there is no reduction in cooling capacity or efficiency.

【0031】図2に示した実施の形態のように主弁体2
4を焼結金属で成形するよりも、本実施の形態で示した
ように主弁座23を焼結金属で形成する方が形状が単純
なため、比較的容易であり、結果として安価で、しかも
冷媒流動音の発生しない流量制御弁を得ることができ
る。またこの流量制御弁の流量特性を設計するのも形状
が簡単なため、設計しやすい。この流量制御弁の流量特
性は、図2の実施の形態と同様に、主弁座23に用いる
焼結金属の通気孔の径や冷媒が通過する流路長さを調整
することによって調整することができる。すなわちある
冷媒流量を小さな圧力損失で流す場合には、焼結金属の
通気孔を大きくしたり、主弁座の冷媒が通過する流路長
さをを小さくすれば良い。また逆に、ある冷媒流量を大
きな圧力損失で流す場合には、焼結金属の通気孔を小さ
くしたり、図6に示すように主弁座の冷媒が通過する流
路長さを大きくしても良い。
As in the embodiment shown in FIG. 2, the main valve body 2
It is relatively easy to form the main valve seat 23 from the sintered metal as shown in the present embodiment because it has a simpler shape than is formed from the sintered metal. Moreover, it is possible to obtain a flow rate control valve in which no refrigerant flow noise is generated. Further, the flow characteristic of this flow control valve is also easy to design because the shape is simple. The flow rate characteristic of this flow rate control valve can be adjusted by adjusting the diameter of the vent hole of the sintered metal used for the main valve seat 23 and the flow path length through which the refrigerant passes, as in the embodiment of FIG. You can That is, when a certain refrigerant flow rate is caused to flow with a small pressure loss, the ventilation holes of the sintered metal may be made large, or the flow path length of the main valve seat through which the refrigerant passes may be made small. On the contrary, when a certain refrigerant flow rate is caused to flow with a large pressure loss, the vent hole of the sintered metal is made small, or the passage length of the main valve seat through which the refrigerant passes is made large as shown in FIG. Is also good.

【0032】なお、本実施の形態1および形態2では、
弁本体を焼結金属で成形した開閉弁や主弁座を焼結金属
で成形した開閉弁を第2流量制御弁として用いる例につ
いて説明したが、これに限ることはなく、焼結金属は、
弁内で減圧作用が生じる部位であれはどこでもよく、弁
本体および主弁座をともに焼結金属で成形してもよい。
また焼結金属の材質としては、鉄を主成分とし炭素、
銅、ニッケルなどを加えた低合金鋼や、ステンレス鋼、
あるいは青銅などであっても良い。
In the first and second embodiments,
The example in which the on-off valve whose valve body is made of sintered metal and the on-off valve whose main valve seat is made of sintered metal are used as the second flow control valve has been described, but the present invention is not limited to this, and the sintered metal is
The valve main body and the main valve seat may both be formed of sintered metal, as long as the pressure reducing action occurs in the valve.
Further, as the material of the sintered metal, iron as a main component and carbon,
Low alloy steel with copper, nickel, etc., stainless steel,
Alternatively, bronze may be used.

【0033】また本実施の形態1および形態2では、弁
本体あるいは主弁座に焼結金属を用いた例について説明
したが、これに限ることはなく、気液二相冷媒が液体と
気体に分離することなく、減圧されるもでのあれば良
く、例えば樹脂の発砲材などの多孔質体であっても同様
の効果を発揮する。
Further, in the first and second embodiments, an example in which a sintered metal is used for the valve body or the main valve seat has been described, but the present invention is not limited to this, and the gas-liquid two-phase refrigerant can be a liquid and a gas. It is sufficient that the pressure is reduced without being separated, and the same effect can be obtained even with a porous material such as a resin foam material.

【0034】また本実施の形態1および形態2では、第
1室内熱交換器5と第2室内熱交換器7の間に、焼結金
属を用いた第2流量制御弁を用いた例について説明した
が、これに限ることはなく、第1流量制御弁4に焼結金
属を用いた弁を用いることにより、第1流量制御弁での
冷媒流動音の発生を防止することができる。さらに焼結
金属の利用は、流量制御弁に限らず、冷凍サイクル内で
冷媒流動音が発生する全ての個所に適用し、その冷媒流
動音の発生を抑制することができる。例えば複数流路に
分割された熱交換器に用いる冷媒分配器の内部に焼結金
属を用い、冷媒分配器からの冷媒流動音発生を防止する
ことができる。また家庭用冷蔵庫など従来の絞り装置と
して毛細管などを用いた装置では、毛細管の変りに焼結
金属を絞り装置として用いることにより、冷媒流動音の
発生を防止することができる。
In Embodiments 1 and 2, an example in which a second flow rate control valve made of sintered metal is used between the first indoor heat exchanger 5 and the second indoor heat exchanger 7 will be described. However, the present invention is not limited to this, and by using a valve made of sintered metal for the first flow rate control valve 4, it is possible to prevent the generation of refrigerant flowing noise at the first flow rate control valve. Further, the use of the sintered metal can be applied not only to the flow control valve but also to all the places where the refrigerant flowing noise is generated in the refrigeration cycle, and the generation of the refrigerant flowing noise can be suppressed. For example, it is possible to prevent the refrigerant flow noise from being generated from the refrigerant distributor by using a sintered metal inside the refrigerant distributor used for the heat exchanger divided into a plurality of flow paths. Further, in a device such as a home refrigerator that uses a capillary tube as a conventional expansion device, the use of sintered metal as the expansion device instead of the capillary tube can prevent refrigerant flow noise.

【0035】実施の形態3. 図7はこの発明の実施の形態の他の例を示す空気調和装
置の第2流量制御弁の構成図であり、図2に示したもの
と同一または同様の構成部品には同一符合を付して、そ
の重複する説明を省略する。この実施の形態では、主弁
体24が銅や真鍮などの金属製弁,主弁座23が多孔質
透過材、例えば通気孔10マイクロミリメートルの焼結
金属で構成されている。また25は主弁体24を連続的
に駆動する駆動部で、例えばステッピングモータで構成
され、図示しない制御手段によって主弁体24を開閉方
向へ移動するよう制御している。
Embodiment 3. FIG. 7 is a configuration diagram of a second flow control valve of an air conditioner showing another example of the embodiment of the present invention, and the same or similar components as those shown in FIG. 2 are designated by the same reference numerals. The overlapping description will be omitted. In this embodiment, the main valve body 24 is made of a metal valve such as copper or brass, and the main valve seat 23 is made of a porous permeable material, for example, a sintered metal having a ventilation hole of 10 μm. Further, reference numeral 25 denotes a drive unit for continuously driving the main valve body 24, which is constituted by, for example, a stepping motor, and controls the main valve body 24 to move in the opening / closing direction by a control means not shown.

【0036】この実施の形態による第2流量制御弁6で
は、図1の回路構成において、通常冷房運転など第1室
内熱交換器5と第2室内熱交換器7を圧力損失なしにつ
なげる時には、図7(a)に示すようにステッピングモ
ータ25によって主弁体24を引き上げ、主弁体24と
主弁座23の間隙を冷媒が流れるようにする。一方、冷
房除湿運転時など第1室内熱交換器5と第2室内熱交換
器7で圧力差を生じさせる時には、図7(b)に示すよ
うにステッピングモータ25によって主弁体24を引き
下げ、主弁体24と主弁座23の間隙を無くし、冷媒が
焼結金属である主弁座23内の通気孔を通って流れるよ
うにする。この時、主弁体24の引き下げ量をステッピ
ングモータ25で調整することにより、冷媒が通過する
焼結金属の通過面積を変えることができ、この焼結金属
を通過する際の冷媒の圧力損失を制御することができ
る。すなわちステッピングモータ25による主弁体24
の移動量を制御することによって、この第2流量制御弁
6を通過する冷媒の圧力損失を自由に変えることがで
き、第1室内熱交換器5と第2室内熱交換器7の圧力差
を制御することができる。
In the second flow rate control valve 6 according to this embodiment, when the first indoor heat exchanger 5 and the second indoor heat exchanger 7 are connected without pressure loss in the circuit configuration of FIG. As shown in FIG. 7A, the stepping motor 25 pulls up the main valve body 24 so that the refrigerant flows through the gap between the main valve body 24 and the main valve seat 23. On the other hand, when a pressure difference is generated between the first indoor heat exchanger 5 and the second indoor heat exchanger 7 such as during the cooling / dehumidifying operation, the main valve body 24 is pulled down by the stepping motor 25 as shown in FIG. 7B. The gap between the main valve body 24 and the main valve seat 23 is eliminated so that the refrigerant flows through the vent holes in the main valve seat 23, which is a sintered metal. At this time, by adjusting the amount of lowering of the main valve body 24 by the stepping motor 25, the passing area of the sintered metal through which the refrigerant passes can be changed, and the pressure loss of the refrigerant when passing through this sintered metal can be changed. Can be controlled. That is, the main valve body 24 by the stepping motor 25
The pressure loss of the refrigerant passing through the second flow rate control valve 6 can be freely changed by controlling the movement amount of the second indoor heat exchanger 5 and the pressure difference between the first indoor heat exchanger 5 and the second indoor heat exchanger 7. Can be controlled.

【0037】冷房除湿運転時には、第1室内熱交換器5
のほぼ中間の冷媒温度と第2室内熱交換器7のほぼ中間
の冷媒温度の差温によって、この第2流量制御弁前後6
の圧力差を間接的に検知し、この圧力差を所定の値とな
るように第2流量制御弁6の主弁体24の移動量を制御
することにより、室内の温湿度環境をより快適に制御す
ることができる。
During the cooling and dehumidifying operation, the first indoor heat exchanger 5
The temperature difference between the refrigerant temperature approximately in the middle and the refrigerant temperature approximately in the middle of the second indoor heat exchanger 7,
By indirectly detecting the pressure difference between the two and controlling the moving amount of the main valve body 24 of the second flow rate control valve 6 so that the pressure difference becomes a predetermined value, the indoor temperature and humidity environment can be made more comfortable. Can be controlled.

【0038】また図8に示すように、主弁体24の一部
を金属製弁24a、他の部分を焼結金属24bで構成
し、また主弁座23を金属で構成し、この主弁座24の
移動量をステッピングモータ25によって連続的に制御
し、第2流量制御弁6前後の圧力差を自由に調整できる
ように構成してもよい。また主弁体が上下に連続的に移
動する場合だけではなく、回転運動などによって冷媒が
通過する焼結金属の通過面積を可変にする機構を設け、
焼結金属を通過する冷媒の圧力損失を自由に制御できる
ようにしても良い。
Further, as shown in FIG. 8, a part of the main valve body 24 is made of a metal valve 24a, the other part is made of a sintered metal 24b, and the main valve seat 23 is made of a metal. The movement amount of the seat 24 may be continuously controlled by the stepping motor 25 so that the pressure difference across the second flow rate control valve 6 can be freely adjusted. Further, not only when the main valve body continuously moves up and down, but also provided with a mechanism for varying the passing area of the sintered metal through which the refrigerant passes by rotational movement,
The pressure loss of the refrigerant passing through the sintered metal may be freely controlled.

【0039】実施の形態4. 以下、本発明の実施の形態3による空気調和装置につい
て説明する。本実施の形態は、暖房運転に関するもの
で、空気調和機を構成する冷媒回路は、例えば実施の形
態1での図1と同様であり、第2流量制御弁6の構造は
図2と同様である。本実施の形態による空気調和装置の
暖房時の動作について説明する。図1では暖房時の冷媒
の流れを破線矢印で示している。通常の暖房運転は、第
2流量制御弁6の電磁コイル25を非通電状態とする。
このとき圧縮機1を出た高温高圧の冷媒蒸気は、四方弁
2を通って第2室内熱交換器7および第1室内熱交換器
5に流入し、室内空気と熱交換して凝縮、液化する。な
お第2流量制御弁6は、図2(a)に示すように第1流
路21と第2流路が大きな開口面積で接続されているの
で、この弁を通過する際の冷媒圧力損失はほとんどな
く、圧力損失による暖房能力や効率面での低下もない。
第1室内熱交換器5を出た高圧の液冷媒は、第1流量制
御弁4で低圧に減圧され、気液二相冷媒となって室外熱
交換器3で室外空気と熱交換して蒸発する。室外熱交換
器3を出た低圧の蒸気冷媒は、四方弁2を通って再び圧
縮機1に戻る。この通常冷房運転時の第1流量制御弁4
の開度は、例えば室外熱交換器3の出口冷媒の過熱度が
5℃となるように制御されている。
Fourth Embodiment Hereinafter, an air conditioner according to Embodiment 3 of the present invention will be described. The present embodiment relates to heating operation, the refrigerant circuit constituting the air conditioner is the same as, for example, FIG. 1 in the first embodiment, and the structure of the second flow control valve 6 is the same as that in FIG. is there. The operation of the air-conditioning apparatus according to this embodiment during heating will be described. In FIG. 1, the flow of the refrigerant during heating is indicated by a dashed arrow. In the normal heating operation, the electromagnetic coil 25 of the second flow rate control valve 6 is de-energized.
At this time, the high-temperature and high-pressure refrigerant vapor that has exited the compressor 1 flows through the four-way valve 2 into the second indoor heat exchanger 7 and the first indoor heat exchanger 5, and exchanges heat with the indoor air to condense and liquefy. To do. In the second flow control valve 6, the first flow passage 21 and the second flow passage are connected with a large opening area as shown in FIG. 2 (a), so that the refrigerant pressure loss when passing through this valve is small. There is almost no loss of heating capacity or efficiency due to pressure loss.
The high-pressure liquid refrigerant discharged from the first indoor heat exchanger 5 is decompressed to a low pressure by the first flow control valve 4, becomes a gas-liquid two-phase refrigerant, and exchanges heat with the outdoor air in the outdoor heat exchanger 3 to evaporate. To do. The low-pressure vapor refrigerant that has exited the outdoor heat exchanger 3 passes through the four-way valve 2 and returns to the compressor 1 again. The first flow control valve 4 during the normal cooling operation
The opening degree of is controlled such that the superheat degree of the outlet refrigerant of the outdoor heat exchanger 3 is 5 ° C., for example.

【0040】次に暖房除湿運転時の動作について、図9
に示す圧力―エンタルピー線図を用いて説明する。な
お、図9に示した英文字は、図1に示した英文字と対応
している。この暖房除湿運転時は、第2流量制御弁の電
磁コイル25に通電し、図2(b)に示すように主弁体
24を主弁座23に密着させ、弁本体の通気孔を介して
第2流路22である第2室内熱交換器7の出口と第1流
路21である第1室内熱交換器5の入口とを接続する。
この時、圧縮機1を出た高温高圧の冷媒蒸気(F点)
は、四方弁2を通って第2室内熱交換器7流入し、室内
空気と熱交換して凝縮する(E点)。この高圧の液冷媒
あるいは気液二相冷媒は、第2流量制御弁6に流入す
る。第2流量制御弁6では、図2(b)に示すように主
弁体24が主弁座23に密着しているため、この弁に流
入した冷媒は、焼結金属で構成されている主弁体24内
の通気孔を通って第1室内熱交換器5に流入する。この
主弁体24の通気孔は10マイクロメートル程度であ
り、この通気孔を通る冷媒は減圧されて、中間圧の気液
二相冷媒となって、第1室内熱交換器5に流入する(D
点)。この第1室内熱交換器5に流入した冷媒の飽和温
度は室内空気の露点温度以下であり、室内空気の顕熱お
よび潜熱を奪って蒸発する(C点)。第1室内熱交換器
5を出た中間圧の気液二相冷媒は、第1流量制御弁4に
流入し、低圧まで減圧され、さらに室外熱交換器3に流
入し、室外空気と熱交換して蒸発する。室内外熱交換器
4を出た低圧の蒸気冷媒は、四方弁2を通って再び圧縮
機1に戻る。
Next, the operation during the heating and dehumidifying operation will be described with reference to FIG.
It will be explained using the pressure-enthalpy diagram shown in FIG. The English characters shown in FIG. 9 correspond to the English characters shown in FIG. During this heating / dehumidifying operation, the electromagnetic coil 25 of the second flow control valve is energized to bring the main valve body 24 into close contact with the main valve seat 23 as shown in FIG. 2 (b), and through the vent hole of the valve body. The outlet of the second indoor heat exchanger 7, which is the second flow path 22, is connected to the inlet of the first indoor heat exchanger 5, which is the first flow path 21.
At this time, high-temperature high-pressure refrigerant vapor (point F) exiting the compressor 1
Enters the second indoor heat exchanger 7 through the four-way valve 2 and exchanges heat with indoor air to condense (point E). This high-pressure liquid refrigerant or gas-liquid two-phase refrigerant flows into the second flow rate control valve 6. In the second flow rate control valve 6, the main valve body 24 is in close contact with the main valve seat 23 as shown in FIG. 2B, so that the refrigerant flowing into this valve is mainly composed of sintered metal. It flows into the first indoor heat exchanger 5 through the vent hole in the valve body 24. The vent hole of the main valve body 24 has a diameter of about 10 μm, and the refrigerant passing through the vent hole is decompressed to become an intermediate pressure gas-liquid two-phase refrigerant and flows into the first indoor heat exchanger 5 ( D
point). The saturation temperature of the refrigerant flowing into the first indoor heat exchanger 5 is equal to or lower than the dew point temperature of the indoor air, and the sensible heat and latent heat of the indoor air are taken to evaporate (point C). The intermediate-pressure gas-liquid two-phase refrigerant that has left the first indoor heat exchanger 5 flows into the first flow rate control valve 4, is decompressed to a low pressure, and further flows into the outdoor heat exchanger 3 to exchange heat with the outdoor air. Then evaporate. The low-pressure vapor refrigerant that has exited the indoor / outdoor heat exchanger 4 returns to the compressor 1 through the four-way valve 2.

【0041】この暖房除湿運転では、室内空気は、第2
室内熱交換器7で加熱されるとともに、第1室内熱交換
器5で冷却除湿されるため、部屋を暖房しながら除湿を
行うことができる。また暖房除湿運転では、圧縮機1の
回転周波数や室外熱交換器3のファン回転数を調整し
て、室外熱交換器3の熱交換量を制御し、第1室内熱交
換器5による室内空気の加熱量を制御して吹出し温度を
広範囲に制御できる。また第1流量制御弁7の開度や室
内ファン回転数を調整して、第1室内熱交換器5の蒸発
温度を制御し、第1室内熱交換器5による室内空気の除
湿量を制御することもできる。また第2流量制御弁4の
開度は、例えば第2室内熱交換器7の出口冷媒の過冷却
度が10℃となるように制御されている。
In this heating / dehumidifying operation, the room air is
Since the indoor heat exchanger 7 is heated and the first indoor heat exchanger 5 is cooled and dehumidified, it is possible to perform dehumidification while heating the room. In the heating dehumidifying operation, the rotation frequency of the compressor 1 and the fan rotation speed of the outdoor heat exchanger 3 are adjusted to control the heat exchange amount of the outdoor heat exchanger 3, and the indoor air by the first indoor heat exchanger 5 is controlled. The blowout temperature can be controlled in a wide range by controlling the heating amount. Also, the opening temperature of the first flow control valve 7 and the indoor fan rotation speed are adjusted to control the evaporation temperature of the first indoor heat exchanger 5, and to control the dehumidification amount of the indoor air by the first indoor heat exchanger 5. You can also Further, the opening degree of the second flow rate control valve 4 is controlled so that the degree of supercooling of the outlet refrigerant of the second indoor heat exchanger 7 is 10 ° C., for example.

【0042】このように本実施の形態では、焼結金属を
弁本体として用いた第2流量制御弁を用いているため、
暖房時の除湿運転が可能となるとともに、この暖房除湿
運転時の冷媒流動音の発生を防止でき、温湿度環境およ
び騒音面でも快適な空間が実現できる。
As described above, in this embodiment, since the second flow control valve using the sintered metal as the valve body is used,
The dehumidifying operation during heating can be performed, the generation of refrigerant flowing noise during the heating dehumidifying operation can be prevented, and a comfortable space in terms of temperature and humidity environment and noise can be realized.

【0043】また暖房起動時など第2流量制御弁の電磁
コイル25に通電することにより、暖房吹出し温度を高
温化することも可能となる。すなわち、暖房起動時に上
記暖房除湿サイクルを形成し、第1室内熱交換器5の蒸
発温度を室内の吸込み空気温度とほぼ等しくなるように
第2流量制御弁で制御する。第1室内熱交換器5の蒸発
温度が室内の吸込み空気温度とほぼ等しいため、第1室
内熱交換器5ではほとんど冷却および除湿は行なわれ
ず、結果として暖房時の凝縮器の伝熱面積が通常の暖房
運転の約半分になり、このため凝縮温度は通常の暖房運
転よりも上昇し、吹出し温度の高温化が可能となる。さ
らにこの暖房高温吹出し運転時でも、第2流量制御弁6
での冷媒流動音発生はなく、騒音面でも問題となること
はない。
Further, by energizing the electromagnetic coil 25 of the second flow rate control valve at the time of starting the heating, it is possible to raise the heating blowout temperature. That is, when the heating is started, the heating dehumidifying cycle is formed, and the second flow rate control valve controls the evaporation temperature of the first indoor heat exchanger 5 to be substantially equal to the intake air temperature in the room. Since the evaporation temperature of the first indoor heat exchanger 5 is almost equal to the indoor intake air temperature, cooling and dehumidification are hardly performed in the first indoor heat exchanger 5, and as a result, the heat transfer area of the condenser during heating is usually The heating temperature is about half that of the normal heating operation, and the condensing temperature is higher than in the normal heating operation, and the blowout temperature can be increased. Further, even during this heating high temperature blowing operation, the second flow control valve 6
There is no refrigerant flow noise generated in the above, and there is no problem in terms of noise.

【0044】次に、この実施の形態の空気調和装置の具
体的な暖房運転制御法の一例について説明する。この空
気調和装置には、実施の形態1で説明したように、設定
温度と設定湿度および吸込み空気温度と湿度が入力され
ている。この空気調和装置は、暖房起動時に高温吹出し
運転運転を所定の時間、たとえば5分間行ない、その後
通常暖房運転に移行する。この後、部屋の温度偏差およ
び湿度偏差に応じて、通常暖房運転と暖房除湿運転を切
換制御される。
Next, an example of a specific heating operation control method for the air-conditioning apparatus of this embodiment will be described. As described in the first embodiment, the set temperature and the set humidity and the intake air temperature and the humidity are input to the air conditioner. This air conditioner performs a high-temperature blowout operation operation for a predetermined time, for example, 5 minutes when the heating is started, and then shifts to the normal heating operation. After that, the normal heating operation and the heating dehumidifying operation are switched and controlled according to the temperature deviation and the humidity deviation of the room.

【0045】暖房運転起動時は、第2流量制御弁6を閉
状態とし、圧縮機1を起動する。この時、第1室内熱交
換器5での冷却除湿能力がゼロとなるように、室外熱交
換器3のファン回転数や第1流量制御弁4の弁開度など
を調整して、第1室内熱交換器5の蒸発温度が、吸込み
空気温度と等しくなるように制御する。圧縮機起動から
所定の時間である5分間が経過すると、第2流量制御弁
6を開状態とし、通常暖房運転に移行する。この時、温
度偏差がゼロまたは所定の値以内となるように、圧縮機
1の回転周波数や、室内ファンの回転数、室外ファンの
回転数を調整する。この暖房通常運転により温度偏差が
ゼロまたは所定の値以内となった場合は、湿度偏差を検
出し、この湿度偏差がゼロまたは所定の値以内の場合、
および湿度偏差が所定の値以上であっても、加湿を必要
とする場合には、通常暖房運転を継続する。一方、湿度
偏差がゼロまたは所定の値以上であり、除湿を必要とす
る場合には、第2流量制御弁6を閉状態とし、暖房除湿
運転を行なう。この暖房除湿運転では、室内の温度偏差
がゼロまたは所定の値以内を維持できるように、第2室
内熱交換器7の加熱量を制御するとともに、湿度偏差が
ゼロまたは所定の値以内に入るように、第1室内熱交換
器5の冷却除湿量を制御する。第2室内熱交換器7の加
熱量の制御には、圧縮機1の回転周波数や室内ユニット
12のファン回転数などによって制御する。また第1室
内熱交換器5の冷却除湿量の制御には、室外熱交換器3
のファン回転数や第1流量制御弁4の開度などによって
調整する。
When the heating operation is started, the second flow control valve 6 is closed and the compressor 1 is started. At this time, the fan rotation speed of the outdoor heat exchanger 3 and the valve opening degree of the first flow control valve 4 are adjusted so that the cooling / dehumidifying capacity of the first indoor heat exchanger 5 becomes zero, and The evaporation temperature of the indoor heat exchanger 5 is controlled to be equal to the intake air temperature. After a lapse of a predetermined time of 5 minutes from the start-up of the compressor, the second flow control valve 6 is opened and the normal heating operation is started. At this time, the rotation frequency of the compressor 1, the rotation speed of the indoor fan, and the rotation speed of the outdoor fan are adjusted so that the temperature deviation is zero or within a predetermined value. If the temperature deviation is within zero or within a predetermined value due to this heating normal operation, the humidity deviation is detected, and if this humidity deviation is within zero or within a predetermined value,
Even if the humidity deviation is equal to or greater than a predetermined value, the normal heating operation is continued when humidification is required. On the other hand, when the humidity deviation is zero or more than a predetermined value and dehumidification is required, the second flow rate control valve 6 is closed and the heating dehumidification operation is performed. In this heating / dehumidifying operation, the heating amount of the second indoor heat exchanger 7 is controlled so that the temperature deviation in the room can be maintained at zero or within a predetermined value, and the humidity deviation is kept within zero or a predetermined value. Then, the cooling / dehumidifying amount of the first indoor heat exchanger 5 is controlled. The heating amount of the second indoor heat exchanger 7 is controlled by the rotation frequency of the compressor 1 and the fan rotation speed of the indoor unit 12. The outdoor heat exchanger 3 is used to control the cooling / dehumidifying amount of the first indoor heat exchanger 5.
The fan rotation speed and the opening degree of the first flow control valve 4 are adjusted.

【0046】このようにこの実施の形態では、暖房運転
時の運転時間や部屋の負荷に応じて、冷媒回路を暖房高
温吹出し運転や通常暖房運転、暖房除湿運転に切換える
ことにより、部屋内の温湿度環境を、居住者の好みに応
じて最適な状態に制御することができる。
As described above, in this embodiment, the temperature of the room is changed by switching the refrigerant circuit to the heating high temperature blowing operation, the normal heating operation, or the heating dehumidifying operation according to the operating time during the heating operation and the load on the room. The humidity environment can be controlled to an optimum condition according to the occupants' preference.

【0047】実施の形態5. 図10はこの発明の実施の形態の他の例を示す空気調和
装置の冷媒回路図で、図1に示したものと同一または同
様の構成部品には同一符合を付して、その重複する説明
を省略する。この実施の形態では、多段に折り曲げた2
列の室内熱交換器の上部を第1室内熱交換器5に、下部
を第2室内熱交換器7とし、冷房除湿運転時は、上部の
第1室内熱交換器5で室内ユニットの吸込み空気を加熱
し、下部の第2室内熱交換器7で吸い込み空気を冷却、
除湿し、これらの吸込み空気を室内ファン(図示せず)
によって混合して、室内に吹出している。また暖房除湿
運転時は、下部の第2室内熱交換器7で室内ユニットの
吸込み空気を加熱し、上部の第1室内熱交換器5で吸い
込み空気を冷却、除湿し、これらの吸込み空気を室内フ
ァン(図示せず)によって混合して、室内に吹出してい
る。さらにこの実施の形態でも、第2流量制御弁6は、
図2に示した焼結金属で成形された主弁体24を用いて
いるので、冷房除湿および暖房除湿運転時に、冷媒流動
音の発生がなく、低騒音な室内ユニットを実現できる。
Embodiment 5. FIG. 10 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention, in which the same or similar components as those shown in FIG. Is omitted. In this embodiment, the two
The upper part of the indoor heat exchanger in the row is the first indoor heat exchanger 5, and the lower part is the second indoor heat exchanger 7. During the cooling / dehumidifying operation, the upper first indoor heat exchanger 5 is used to draw in the intake air of the indoor unit. Is heated, and the intake air is cooled by the second indoor heat exchanger 7 at the bottom,
Dehumidify and suck these intake air into an indoor fan (not shown)
Mix and blow out indoors. During the heating dehumidifying operation, the lower second indoor heat exchanger 7 heats the intake air of the indoor unit, and the upper first indoor heat exchanger 5 cools and dehumidifies the intake air. It is mixed by a fan (not shown) and blown out into the room. Further, also in this embodiment, the second flow control valve 6 is
Since the main valve body 24 formed of the sintered metal shown in FIG. 2 is used, it is possible to realize a low-noise indoor unit that does not generate refrigerant flow noise during the cooling and dehumidifying operations.

【0048】また室内熱交換器の冷房時の冷媒流路は、
入口が1流路とし、途中で3方管8aにより2流路に分
岐し、第1室内熱交換器5を構成し、この2流路を3方
管8bで1流路に合流させ、第2流量制御弁6に接続し
ている。さらに第2流量制御弁6の出口配管は、3方管
8cで再度2流路に分岐され、第2室内熱交換器7を構
成し、第2室内熱交換器7の出口で3方管8dにより、
この2流路を1流路に合流させている。このように室内
熱交換器の冷房時の入口冷媒流路を1流路とし、途中で
2流路に分岐することにより、冷房時の冷媒圧力損失が
低減でき、通常冷房運転や冷房除湿運転時の性能が向上
する。また暖房時は、入口冷媒流路が2流路、出口流路
が1流路となるため、冷媒熱伝達率の小さい凝縮器出口
付近の冷媒流速が早くなり、熱交換器性能が向上する。
さらに第1室内熱交換器5と第2室内熱交換器7の間の
流路は3方管により1流路としているので、第2流量制
御弁6は1つで済み、室内ユニットが安価となる。
Further, the cooling medium flow path during cooling of the indoor heat exchanger is
The inlet is set to one flow path, and on the way, it is branched into two flow paths by the three-way tube 8a to form the first indoor heat exchanger 5, and these two flow paths are merged into one flow path by the three-way tube 8b. 2 is connected to the flow rate control valve 6. Further, the outlet pipe of the second flow rate control valve 6 is branched into two flow paths again by the three-way pipe 8c to form the second indoor heat exchanger 7, and the three-way pipe 8d is provided at the outlet of the second indoor heat exchanger 7. Due to
These two flow paths are merged into one flow path. In this way, the inlet refrigerant flow path during cooling of the indoor heat exchanger is defined as one flow path, and by branching into two flow paths in the middle, refrigerant pressure loss during cooling can be reduced, and during normal cooling operation or cooling dehumidification operation. Performance is improved. Further, during heating, the number of inlet refrigerant channels is two, and the number of outlet channels is one, so that the refrigerant flow velocity near the outlet of the condenser, which has a low refrigerant heat transfer coefficient, is increased, and the heat exchanger performance is improved.
Furthermore, since the flow path between the first indoor heat exchanger 5 and the second indoor heat exchanger 7 is one flow path by the three-way pipe, only one second flow rate control valve 6 is required, and the indoor unit is inexpensive. Become.

【0049】なお、この実施の形態では、2列の熱交換
器の上部を第1室内熱交換器5、下部を第2室内熱交換
器とした構成について説明したが、これに限ることはな
く、2列熱交換器の1列目を第2室内熱交換器7、2列
目を第1室内熱交換器5として、前後に直列に並べて構
成してもよい。また3列熱交換器や、2列および3列熱
交換器の混在型であってもよい。
In this embodiment, the structure in which the upper part of the two rows of heat exchangers is the first indoor heat exchanger 5 and the lower part is the second indoor heat exchanger has been described, but the present invention is not limited to this. The first row of the second row heat exchanger may be the second indoor heat exchanger 7, and the second row may be the first indoor heat exchanger 5, which may be arranged in series in front and rear. Further, it may be a three-row heat exchanger or a mixed type of two-row and three-row heat exchangers.

【0050】またこの実施の形態では、第1流量制御弁
4と第1室内熱交換器5の間の配管に液冷媒を貯留する
レシーバ30を室外ユニット11内に設けている。この
レシーバは、通常暖房運転あるいは暖房除湿運転時に発
生する余剰冷媒を貯留し、これらの運転時の冷媒過多に
よる性能低下を防いでいる。すなわち、冷房除湿運転で
は、室外熱交換器3と第1室内熱交換器5が凝縮器とし
て動作し、凝縮器内容積が最も大きくなるため、必要な
冷媒量が最も多くなる。したがって空気調和機の冷媒充
填量は、この冷房除湿運転時に必要な冷媒量から決定さ
れる。暖房運転時は、室外熱交換器3よりも内容積の小
さな第1室内熱交換器5と第2室内熱交換器7が凝縮器
となり、また暖房除湿運転時は、第2室内熱交換器7の
みが凝縮器となるため、これらの運転時の必要冷媒量
は、冷房除湿運転時よりも少なくなる。レシーバ30を
設けずに、暖房運転あるいは暖房除湿運転を行なうと、
冷媒量が過多の状態で運転することになり、圧縮機1へ
の液バック量が増加して、圧縮機の信頼性低下や、サイ
クルの性能低下が生じる。そこでこの実施の形態では、
暖房運転あるいは暖房除湿運転時の余剰な液冷媒をレシ
ーバ30内に貯留し、全ての運転時の冷媒量を最適に制
御し、圧縮機の信頼性向上、および性能向上を実現して
いる。なお、レシーバ30の内容積は、あらかじめ各運
転時の最適冷媒量を試験などによって求め、その最大冷
媒量と最小冷媒量の差が貯留できる内容積として決定で
きる。またこのレシーバ30は室外ユニット11内に設
置しているため、室内ユニット12が大きくなったりす
ることがない。
In this embodiment, the receiver 30 for storing the liquid refrigerant is provided in the outdoor unit 11 in the pipe between the first flow control valve 4 and the first indoor heat exchanger 5. This receiver stores excess refrigerant generated during normal heating operation or heating dehumidifying operation, and prevents performance deterioration due to excessive refrigerant during these operations. That is, in the cooling / dehumidifying operation, the outdoor heat exchanger 3 and the first indoor heat exchanger 5 operate as a condenser, and the condenser internal volume becomes the largest, so that the required refrigerant amount becomes the largest. Therefore, the amount of refrigerant charged in the air conditioner is determined from the amount of refrigerant required during this cooling / dehumidifying operation. During the heating operation, the first indoor heat exchanger 5 and the second indoor heat exchanger 7 having a smaller internal volume than the outdoor heat exchanger 3 serve as condensers, and during the heating dehumidifying operation, the second indoor heat exchanger 7 Since only the condenser serves as the condenser, the required amount of refrigerant during these operations is smaller than that during the cooling / dehumidifying operation. If the heating operation or the heating dehumidifying operation is performed without providing the receiver 30,
Since the operation is performed in a state where the amount of refrigerant is excessive, the amount of liquid back to the compressor 1 increases, and the reliability of the compressor is reduced and the performance of the cycle is reduced. So, in this embodiment,
Excess liquid refrigerant during heating operation or heating dehumidifying operation is stored in the receiver 30, and the amount of refrigerant during all operations is optimally controlled to improve the reliability and performance of the compressor. The internal volume of the receiver 30 can be determined as an internal volume in which the difference between the maximum refrigerant amount and the minimum refrigerant amount can be stored by previously obtaining the optimum refrigerant amount during each operation by a test or the like. Further, since the receiver 30 is installed in the outdoor unit 11, the indoor unit 12 does not become large.

【0051】実施の形態6. 図11はこの発明の実施の形態の他の例を示す空気調和
装置の冷媒回路図で、図1に示したものと同一または同
様の構成部品には同一符合を付して、その重複する説明
を省略する。この実施の形態では、第1室内熱交換器5
と第2室内熱交換器7の間の配管に、焼結金属を用いた
絞り装置31と電磁開閉弁37を並列に接続し、第2流
量制御弁を構成している。この焼結金属を用いた絞り装
置31は、図12に示すように容器内部の一端が閉じら
れ、他端が開放した円筒状を成し、周面および底面を介
して円筒状の内外を連通する焼結金属32が挿入されて
絞り部を構成しており、この焼結金属32の両端は、固
定板33、34、およびバネ35、36で容器内に固定
されている。固定板34は円周部が部分的に切りかかれ
た円盤状に形成されている。
Sixth Embodiment FIG. 11 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention, in which the same or similar components as those shown in FIG. Is omitted. In this embodiment, the first indoor heat exchanger 5
A throttle device 31 made of sintered metal and an electromagnetic opening / closing valve 37 are connected in parallel to a pipe between the second indoor heat exchanger 7 and a second flow control valve. As shown in FIG. 12, the squeezing device 31 using this sintered metal has a cylindrical shape in which one end inside the container is closed and the other end is open, and the cylindrical inside and outside communicate with each other via the peripheral surface and the bottom surface. The sintered metal 32 is inserted to form a narrowed portion, and both ends of the sintered metal 32 are fixed in the container by fixing plates 33 and 34 and springs 35 and 36. The fixed plate 34 is formed in a disk shape with a circumferential portion partially cut off.

【0052】この実施の形態の、通常冷房運転、冷房除
湿運転、通常暖房運転、暖房除湿運転、および暖房高温
吹出し運転時の動作は、図1の実施の形態と同様であ
り、その詳細な説明は省略し、以下では各運転時の焼結
金属を用いた絞り装置31と電磁開閉弁37の動作につ
いて説明する。通常冷房運転および通常暖房運転時に
は、電磁開閉弁37を開状態とし、冷凍サイクルを構成
する。このとき焼結金属を用いた絞り装置31は開状態
の電磁開閉弁37に比べて流動抵抗が大きいため、ほと
んどの冷媒は絞り装置31を流れず、電磁開閉弁37を
流れる。一方、冷房除湿運転、暖房除湿運転、暖房高温
吹出し運転時は、電磁開閉弁37を閉状態とし、焼結金
属を用いた絞り装置31に冷媒を流して、減圧作用を行
なう。絞り装置31に流入した気液二相冷媒あるいは液
冷媒は、円筒状の焼結金属32内の通気孔を通過する。
この焼結金属32の通気孔は200から0.5マイクロ
メートル程度であり、この微細な通気孔を通る冷媒は減
圧されため、冷媒蒸気スラグや冷媒気泡の崩壊が発生せ
ず、また蒸気冷媒と液冷媒はともに焼結金属32の通気
孔内を通過するため、圧力損失の大きな変動も生じず。
冷媒流動音の発生が防止できる。このため、冷房除湿運
転、暖房除湿運転および暖房高温吹出し運転時に低騒音
な室内環境を実現できるとともに、従来装置で必要であ
った遮音材や制振材を弁の外周に巻きつけるなどの低騒
音化手段が不要となり、コストの低減ができ、さらに空
気調和機器のリサイクル性も向上する。また図2に示し
た主弁体24に焼結金属を用いた第2流量制御弁に比べ
て、焼結金属の複雑な加工が必要でなく、また電磁開閉
弁は通常の電磁弁の使用が可能であるため、第2流量制
御弁を安価に得ることができる。
The operations of the present embodiment during the normal cooling operation, the cooling / dehumidifying operation, the normal heating operation, the heating dehumidifying operation, and the heating high temperature blowing operation are similar to those of the embodiment shown in FIG. The operation of the expansion device 31 and the solenoid on-off valve 37 using sintered metal during each operation will be described below. During the normal cooling operation and the normal heating operation, the electromagnetic opening / closing valve 37 is opened to configure the refrigeration cycle. At this time, since the throttle device 31 using the sintered metal has a larger flow resistance than the electromagnetic on-off valve 37 in the open state, most of the refrigerant does not flow through the throttle device 31 but flows through the electromagnetic on-off valve 37. On the other hand, during the cooling dehumidifying operation, the heating dehumidifying operation, and the heating high temperature blowing operation, the electromagnetic on-off valve 37 is closed, and the refrigerant is caused to flow through the expansion device 31 made of sintered metal to perform the depressurizing action. The gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the expansion device 31 passes through the ventilation holes in the cylindrical sintered metal 32.
The ventilation holes of the sintered metal 32 are about 200 to 0.5 μm, and the refrigerant passing through the minute ventilation holes is decompressed, so that the refrigerant vapor slag and the refrigerant bubbles do not collapse, and the vapor refrigerant is used. Since both the liquid refrigerant and the liquid refrigerant pass through the ventilation holes of the sintered metal 32, a large fluctuation in pressure loss does not occur.
The generation of refrigerant flow noise can be prevented. Therefore, it is possible to realize a low noise indoor environment during cooling dehumidification operation, heating dehumidification operation, and heating high-temperature blowout operation, and to reduce noise such as wrapping around the outer circumference of the valve with the sound insulating material and damping material required by the conventional device. As a result, the cost reduction can be achieved and the recyclability of the air conditioner can be improved. Further, compared to the second flow rate control valve using the sintered metal for the main valve body 24 shown in FIG. 2, complicated processing of the sintered metal is not required, and the solenoid opening / closing valve does not require the use of a normal solenoid valve. Since it is possible, the second flow rate control valve can be obtained at low cost.

【0053】なお、この実施の形態では、絞り装置31
内に設けられた焼結金属32を一端が閉じられた円筒状
で構成した例について説明したいが、これに限ることは
なく、円盤状や円柱状あるいは直方体など、その形状は
どのようなものでもよく、冷媒がこの焼結金属部を流れ
る際に、所定の減圧作用が得られるものであればよい。
In this embodiment, the diaphragm device 31
I would like to explain an example in which the sintered metal 32 provided inside has a cylindrical shape with one end closed, but it is not limited to this and any shape such as a disk shape, a column shape or a rectangular parallelepiped can be used. It suffices that a predetermined pressure reducing action be obtained when the refrigerant flows through the sintered metal portion.

【0054】実施の形態7. 図13はこの発明の実施の形態の他の例を示す空気調和
装置の冷媒回路図で、図1に示したものと同一または同
様の構成部品には同一符合を付して、その重複する説明
を省略する。この実施の形態では、第1室内熱交換器5
と第2室内熱交換器7の間の配管に、毛細管38と電磁
開閉弁37を並列に接続し、第2流量制御弁を構成して
いる。この毛細管38は内径が1mm以上、例えば内径
2mmの銅配管を用いている。
Embodiment 7. FIG. 13 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention, and the same or similar components as those shown in FIG. Is omitted. In this embodiment, the first indoor heat exchanger 5
The capillary tube 38 and the electromagnetic on-off valve 37 are connected in parallel to the pipe between the second indoor heat exchanger 7 and the second flow control valve. The capillary tube 38 uses a copper pipe having an inner diameter of 1 mm or more, for example, an inner diameter of 2 mm.

【0055】この実施の形態の、通常冷房運転、冷房除
湿運転、通常暖房運転、暖房除湿運転、および暖房高温
吹出し運転時の動作は、図1の実施の形態と同様であ
り、その詳細な説明は省略し、以下では各運転時の毛細
管38と電磁開閉弁37の動作について説明する。通常
冷房運転および通常暖房運転時には、電磁開閉弁37を
開状態とし、冷凍サイクルを構成する。このとき毛細管
38は開状態の電磁開閉弁37に比べて流動抵抗が大き
いため、ほとんどの冷媒は毛細管38を流れず、電磁開
閉弁37を流れる。一方、冷房除湿運転、暖房除湿運
転、暖房高温吹出し運転時は、電磁開閉弁37を閉状態
とし、毛細管38に冷媒を流して、減圧作用を行なう。
The operations of the present embodiment during the normal cooling operation, the cooling / dehumidifying operation, the normal heating operation, the heating dehumidifying operation, and the heating high-temperature blowout operation are the same as those of the embodiment shown in FIG. The operation of the capillary tube 38 and the electromagnetic opening / closing valve 37 during each operation will be described below. During the normal cooling operation and the normal heating operation, the electromagnetic opening / closing valve 37 is opened to configure the refrigeration cycle. At this time, since the capillary tube 38 has a larger flow resistance than the electromagnetic on-off valve 37 in the open state, most of the refrigerant does not flow through the capillary tube 38, but flows through the electromagnetic on-off valve 37. On the other hand, during the cooling dehumidifying operation, the heating dehumidifying operation, and the heating high temperature blowing operation, the electromagnetic opening / closing valve 37 is closed, and the refrigerant is flown through the capillary 38 to perform the depressurizing action.

【0056】毛細管内を気液二相冷媒が流れる時の冷媒
流動音は、毛細管内の冷媒流速に大きく依存している。
図14は、冷媒流量が30kg/h一定のもとで、毛細
管内径を変えた時の冷媒流動音の測定結果であり、図の
横軸が毛細管内径、縦軸が毛細管の冷媒流動音である。
毛細管内を気液二相冷媒が流れる時の冷媒流動音は、毛
細管内径が小さくなるほど、すなわち毛細管内の冷媒流
速が早くなるほど、大きくなる。これは毛細管内部の冷
媒流速が早くなるほど、毛細管内部の圧力変動も大きく
なることや、毛細管出口部での冷媒流出速度も速くな
り、この毛細管出口部の冷媒エネルギーが増加すること
などが要因と考えられる。図14に示した冷媒流動音測
定結果によると、毛細管内径を1mm以上とすることに
より、毛細管から発生する冷媒流動音は許容値以下とな
り、冷房除湿運転、暖房除湿運転および暖房高温吹出し
運転時に低騒音な室内環境を実現できるとともに、従来
装置で必要であった遮音材や制振材を弁の外周に巻きつ
けるなどの低騒音化手段が不要となり、コストの低減が
でき、さらに空気調和機器のリサイクル性も向上する。
また図2に示した弁本体に焼結金属を用いた第2流量制
御弁に比べて、安価な絞り装置を得ることができる。な
お、図14に示した毛細管内径を変えた時の冷媒流動音
の測定結果は、冷媒流量が30kg/h一定のもとでの
結果であり、冷媒流量が30kg/hより大きい場合
は、冷媒流動音は全体的に大きくなり、また逆に冷媒流
量が30kg/hより小さい場合は、冷媒流動音は全体
的に小さくなるが、1mm以上の内径の毛細管を用いる
ことにより、冷媒流動音はほぼ許容値以下に低減するこ
とができる。
The refrigerant flow noise when the gas-liquid two-phase refrigerant flows in the capillary tube largely depends on the refrigerant flow velocity in the capillary tube.
FIG. 14 shows the measurement results of the refrigerant flowing sound when the inner diameter of the capillary is changed under the condition that the refrigerant flow rate is constant at 30 kg / h, the horizontal axis of the figure is the inner diameter of the capillary, and the vertical axis is the refrigerant flowing sound of the capillary. .
The refrigerant flow noise when the gas-liquid two-phase refrigerant flows in the capillary tube becomes louder as the inner diameter of the capillary tube becomes smaller, that is, as the refrigerant flow velocity in the capillary tube becomes faster. It is considered that this is because the faster the refrigerant flow velocity inside the capillary tube, the greater the pressure fluctuation inside the capillary tube, the faster the refrigerant outflow rate at the capillary tube outlet, and the greater the refrigerant energy at the capillary tube outlet. To be According to the refrigerant flow noise measurement result shown in FIG. 14, when the inner diameter of the capillary is 1 mm or more, the refrigerant flow noise generated from the capillary becomes less than the allowable value and is low during the cooling dehumidifying operation, the heating dehumidifying operation, and the heating high temperature blowing operation. In addition to realizing a noisy indoor environment, noise reduction means such as wrapping around the outer circumference of the valve with sound insulating materials and damping materials, which were required in conventional devices, are not required, and costs can be reduced. Recyclability is also improved.
Further, as compared with the second flow rate control valve shown in FIG. 2 in which the valve body is made of sintered metal, an inexpensive throttle device can be obtained. The measurement results of the refrigerant flow sound when the inner diameter of the capillary tube is changed shown in FIG. 14 are the results under a constant refrigerant flow rate of 30 kg / h, and when the refrigerant flow rate is higher than 30 kg / h, On the contrary, when the flow rate of the refrigerant is smaller than 30 kg / h, the flow noise becomes smaller as a whole, but the flow noise becomes smaller by using a capillary tube having an inner diameter of 1 mm or more. It can be reduced to the allowable value or less.

【0057】実施の形態8. 図15はこの発明の実施の形態の他の例を示す空気調和
装置の冷媒回路図で、図1に示したものと同一または同
様の構成部品には同一符合を付して、その重複する説明
を省略する。この実施の形態では、第1室内熱交換器5
と第2室内熱交換器7の間の配管に、毛細管38と電磁
開閉弁37を並列に接続し、さらに冷房除湿運転時の毛
細管38入口配管と第2室内熱交換器の出口の低圧配管
とを熱交換する熱交換器40を設けている。この熱交換
器は二重管式熱交換器や接触式熱交換器あるいはプレー
ト式熱交換器などで構成されている。
Embodiment 8. FIG. 15 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention, in which the same or similar components as those shown in FIG. Is omitted. In this embodiment, the first indoor heat exchanger 5
The capillary tube 38 and the electromagnetic on-off valve 37 are connected in parallel to the pipe between the second indoor heat exchanger 7, and the capillary tube 38 inlet pipe during cooling and dehumidifying operation and the low-pressure pipe at the outlet of the second indoor heat exchanger. A heat exchanger 40 for exchanging heat is provided. This heat exchanger is composed of a double pipe heat exchanger, a contact heat exchanger, a plate heat exchanger, or the like.

【0058】この実施の形態の、通常冷房運転、冷房除
湿運転の動作は、図1の実施の形態と同様であり、その
詳細な説明は省略し、以下では各運転時の毛細管38と
電磁開閉弁37および熱交換器40の動作について、図
16に示した冷房除湿運転時の圧力−エンタルピー線図
を用いて説明する。なお、図16に示した英文字は、図
15に示した英文字と対応している。通常冷房運転に
は、電磁開閉弁37を開状態とし、冷凍サイクルを構成
する。このとき毛細管38は開状態の電磁開閉弁37に
比べて流動抵抗が大きいため、ほとんどの冷媒は毛細管
38を流れず、電磁開閉弁37を流れ、熱交換器40も
動作しない。一方、冷房除湿運転は、電磁開閉弁37を
閉状態とし、毛細管38に冷媒を流して、減圧作用を行
なう。第1室内熱交換器5を出た中間圧の気液二相冷媒
は(D点)、熱交換器40に流入し、ここで第2室内熱
交換器7を出た低温低圧の冷媒によって冷却され、中間
圧の液冷媒となって毛細管38に流入する(E点)。こ
の液冷媒は、毛細管によって中間圧から低圧まで減圧さ
れ、低圧の気液二相冷媒となって第2室内熱交換器7に
流入する(F点)。
The operations of the normal cooling operation and the cooling / dehumidifying operation of this embodiment are the same as those of the embodiment of FIG. 1, and a detailed description thereof will be omitted. In the following, the capillary tube 38 and the electromagnetic opening / closing during each operation will be omitted. The operation of the valve 37 and the heat exchanger 40 will be described with reference to the pressure-enthalpy diagram shown in FIG. 16 during the cooling / dehumidifying operation. The English characters shown in FIG. 16 correspond to the English characters shown in FIG. In the normal cooling operation, the electromagnetic opening / closing valve 37 is opened to form a refrigeration cycle. At this time, since the capillary tube 38 has a larger flow resistance than the electromagnetic opening / closing valve 37 in the open state, most of the refrigerant does not flow through the capillary tube 38, flows through the electromagnetic opening / closing valve 37, and the heat exchanger 40 does not operate. On the other hand, in the cooling / dehumidifying operation, the electromagnetic opening / closing valve 37 is closed, and the refrigerant is flown through the capillary tube 38 to perform the depressurizing action. The intermediate-pressure gas-liquid two-phase refrigerant exiting the first indoor heat exchanger 5 (point D) flows into the heat exchanger 40, where it is cooled by the low-temperature low-pressure refrigerant exiting the second indoor heat exchanger 7. Then, it becomes an intermediate pressure liquid refrigerant and flows into the capillary tube 38 (point E). This liquid refrigerant is decompressed from an intermediate pressure to a low pressure by a capillary tube, becomes a low pressure gas-liquid two-phase refrigerant, and flows into the second indoor heat exchanger 7 (point F).

【0059】毛細管内を流れる冷媒流動音は、毛細管入
口冷媒が気液二相状態よりも液状態の方が小さくなる。
これは毛細管入口冷媒が気液二相状態よりも液状態の方
が、毛細管内で減圧により発生する蒸気冷媒量が少な
く、このため毛細管内の冷媒の平均流速が小さくなるた
めである。この実施の形態では、冷房除湿運転時の第2
流量制御弁である毛細管38の入口冷媒を、熱交換器4
0内で第2室内熱交換器7の出口冷媒により冷却、液化
しているので、毛細管入口冷媒が液状態となり、冷媒流
動音の発生を低減することができる。なお、毛細管38
の冷媒状態は、必ずしも液状態まで冷却する必要はな
く、気液二相冷媒の蒸気冷媒の割合(乾き度)を小さく
するだけでも、冷媒流動音の低減効果は得られる。また
熱交換器40によって、第2室内熱交換器7の出口冷媒
は加熱されるため、第2室内熱交換器7の出口冷媒は湿
り冷媒となり、図1に示した実施の形態に比べて、第2
室内熱交換器内の冷媒伝熱性能が向上し、冷房除湿運転
時の効率も向上する。
The refrigerant flow noise flowing in the capillary tube becomes smaller when the refrigerant at the capillary inlet is in the liquid state than in the gas-liquid two-phase state.
This is because when the capillary inlet refrigerant is in a liquid state rather than in a gas-liquid two-phase state, the amount of vapor refrigerant generated by decompression in the capillary is smaller, and therefore the average flow rate of the refrigerant in the capillary is smaller. In this embodiment, the second operation during the cooling and dehumidifying operation is performed.
The inlet refrigerant of the capillary tube 38, which is a flow control valve, is transferred to the heat exchanger 4
Since it is cooled and liquefied by the outlet refrigerant of the second indoor heat exchanger 7 in 0, the capillary inlet refrigerant is in a liquid state, and the generation of refrigerant flowing noise can be reduced. The capillary tube 38
The refrigerant state is not necessarily required to be cooled to the liquid state, and the effect of reducing the refrigerant flow noise can be obtained by only reducing the ratio (dryness) of the vapor refrigerant of the gas-liquid two-phase refrigerant. Further, since the outlet refrigerant of the second indoor heat exchanger 7 is heated by the heat exchanger 40, the outlet refrigerant of the second indoor heat exchanger 7 becomes a wet refrigerant, which is different from the embodiment shown in FIG. Second
The heat transfer performance of the refrigerant in the indoor heat exchanger is improved, and the efficiency during cooling and dehumidifying operation is also improved.

【0060】なおこの実施の形態では、毛細管38の入
口冷媒を第2室内熱交換器7の出口冷媒によって冷却す
る例について説明したが、これに限ることはなく、毛細
管38の入口冷媒を室内空気によって冷却するように構
成しても、同様の効果を発揮する。
In this embodiment, an example in which the inlet refrigerant of the capillaries 38 is cooled by the outlet refrigerant of the second indoor heat exchanger 7 has been described, but the present invention is not limited to this, and the inlet refrigerant of the capillaries 38 can be replaced with room air. Even if it is configured to cool by, the same effect is exhibited.

【0061】実施の形態9. 図17はこの発明の実施の形態の他の例を示す空気調和
装置の冷媒回路図で、図1に示したものと同一または同
様の構成部品には同一符合を付して、その重複する説明
を省略する。この実施の形態では、第1室内熱交換器5
と第2室内熱交換器7の間の配管に、毛細管38と電磁
開閉弁37を並列に接続し、さらに冷房除湿運転時に毛
細管38と第2室内熱交換器の出口の低圧配管とを熱交
換する熱交換器40を設けている。この熱交換器は二重
管式熱交換器や接触式熱交換器などで構成されている。
Ninth Embodiment FIG. 17 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention. The same or similar components as those shown in FIG. Is omitted. In this embodiment, the first indoor heat exchanger 5
The capillary tube 38 and the electromagnetic opening / closing valve 37 are connected in parallel to the pipe between the second indoor heat exchanger 7 and the capillary tube 38 and the low-pressure pipe at the outlet of the second indoor heat exchanger during the cooling / dehumidifying operation. A heat exchanger 40 is provided. This heat exchanger is composed of a double tube heat exchanger, a contact heat exchanger, and the like.

【0062】この実施の形態の、通常冷房運転、冷房除
湿運転の動作は、図1の実施の形態と同様であり、その
詳細な説明は省略し、以下では各運転時の毛細管38と
電磁開閉弁37および熱交換器40の動作について、図
18に示した冷房除湿運転時の圧力−エンタルピー線図
を用いて説明する。なお、図18に示した英文字は、図
17に示した英文字と対応している。通常冷房運転に
は、電磁開閉弁37を開状態とし、冷凍サイクルを構成
する。このとき毛細管38は開状態の電磁開閉弁37に
比べて流動抵抗が大きいため、ほとんどの冷媒は毛細管
38を流れず、電磁開閉弁37を流れ、熱交換器40も
動作しない。一方、冷房除湿運転は、電磁開閉弁37を
閉状態とし、毛細管38に冷媒を流して、減圧作用を行
なう。第1室内熱交換器5を出た中間圧の気液二相冷媒
は(D点)、毛細管38に流入し、さらに熱交換器40
で第2室内熱交換器7を出た低温低圧の冷媒によって冷
却されながら、中間圧から低圧まで減圧され、低圧の気
液二相冷媒となって第2室内熱交換器7に流入する(F
点)。
The operations of the normal cooling operation and the cooling / dehumidifying operation of this embodiment are the same as those of the embodiment of FIG. 1, and a detailed description thereof will be omitted. In the following, the capillary tube 38 and the electromagnetic opening / closing during each operation will be omitted. The operation of the valve 37 and the heat exchanger 40 will be described with reference to the pressure-enthalpy diagram shown in FIG. 18 during the cooling / dehumidifying operation. Note that the English characters shown in FIG. 18 correspond to the English characters shown in FIG. In the normal cooling operation, the electromagnetic opening / closing valve 37 is opened to form a refrigeration cycle. At this time, since the capillary tube 38 has a larger flow resistance than the electromagnetic opening / closing valve 37 in the open state, most of the refrigerant does not flow through the capillary tube 38, flows through the electromagnetic opening / closing valve 37, and the heat exchanger 40 does not operate. On the other hand, in the cooling / dehumidifying operation, the electromagnetic opening / closing valve 37 is closed, and the refrigerant is flown through the capillary tube 38 to perform the depressurizing action. The intermediate-pressure gas-liquid two-phase refrigerant that exits the first indoor heat exchanger 5 (point D) flows into the capillary tube 38, and the heat exchanger 40
While being cooled by the low-temperature low-pressure refrigerant that has left the second indoor heat exchanger 7, the pressure is reduced from the intermediate pressure to the low pressure, and becomes a low-pressure gas-liquid two-phase refrigerant that flows into the second indoor heat exchanger 7 (F
point).

【0063】一般に、毛細管内を流れる気液二相冷媒
は、流れとともに減圧されるため、液冷媒から冷媒蒸気
が発生し、流れ方向に乾き度が大きくなる。毛細管内を
流れる気液二相冷媒の冷媒流動音は、毛細管内で発生す
る冷媒蒸気によって冷媒の速度が増加し、毛細管内での
圧力損失の変動が大きくなることや、毛細管出口部の冷
媒速度が増加することが要因である。この実施の形態で
は、冷房除湿運転時の第2流量制御弁である毛細管38
を、熱交換器40内で第2室内熱交換器7の出口冷媒に
より冷却しているので、毛細管内では蒸気冷媒の発生が
ほとんどなく、このため毛細管内部の圧力損失の変動も
小さく、また毛細管出口の冷媒速度の増加を抑制するこ
とができる。このため、毛細管で発生する冷媒流動音は
低減でき、室内の騒音環境を向上することができる。ま
た熱交換器40によって、第2室内熱交換器7の出口冷
媒は加熱されるため、第2室内熱交換器7の出口冷媒は
湿り冷媒となり、図1に示した実施の形態に比べて、第
2室内熱交換器内の冷媒伝熱性能が向上し、冷房除湿運
転時の効率も向上する。
In general, the gas-liquid two-phase refrigerant flowing in the capillaries is decompressed as it flows, so that refrigerant vapor is generated from the liquid refrigerant and the dryness increases in the flow direction. The refrigerant flow noise of the gas-liquid two-phase refrigerant flowing in the capillary tube is that the speed of the refrigerant increases due to the refrigerant vapor generated in the capillary tube, the fluctuation of the pressure loss in the capillary tube becomes large, and the refrigerant speed at the capillary outlet part Is due to the increase. In this embodiment, the capillary tube 38 that is the second flow rate control valve during the cooling and dehumidifying operation is used.
Is cooled by the outlet refrigerant of the second indoor heat exchanger 7 in the heat exchanger 40, so that the vapor refrigerant is hardly generated in the capillary tube, and therefore the fluctuation of the pressure loss inside the capillary tube is small, and the capillary tube is small. It is possible to suppress an increase in the refrigerant velocity at the outlet. Therefore, the refrigerant flow noise generated in the capillaries can be reduced, and the noise environment in the room can be improved. Further, since the outlet refrigerant of the second indoor heat exchanger 7 is heated by the heat exchanger 40, the outlet refrigerant of the second indoor heat exchanger 7 becomes a wet refrigerant, which is different from the embodiment shown in FIG. The heat transfer performance of the refrigerant in the second indoor heat exchanger is improved, and the efficiency during the cooling and dehumidifying operation is also improved.

【0064】なおこの実施の形態では、毛細管38を第
2室内熱交換器7の出口冷媒によって冷却する例につい
て説明したが、これに限ることはなく、毛細管38を室
内空気によって冷却するように構成しても、同様の効果
を発揮する。
In this embodiment, the example in which the capillary tube 38 is cooled by the outlet refrigerant of the second indoor heat exchanger 7 has been described, but the present invention is not limited to this, and the capillary tube 38 is cooled by indoor air. However, the same effect is exhibited.

【0065】実施の形態10. 図19はこの発明の実施の形態の他の例を示す空気調和
装置の冷媒回路図で、図1に示したものと同一または同
様の構成部品には同一符合を付して、その重複する説明
を省略する。この実施の形態は、図1に示した実施の形
態の、冷房除湿運転および暖房高温吹出し運転の改良に
関するものであり、第1流量制御弁4と第1室内熱交換
器5の間の配管と第2流量制御弁6と第2室内熱交換器
7の間の配管との間をバイパスするバイパス流路を接続
し、このバイパス流路には開閉手段である電磁弁41が
設けられている。第1流量制御弁4、第2流量制御弁お
よび電磁弁41は、図示しない制御手段からの指示によ
って互いに関連しあいながら開閉する。
Embodiment 10. FIG. 19 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention, in which the same or similar components as those shown in FIG. Is omitted. This embodiment relates to an improvement of the cooling and dehumidifying operation and the heating high temperature blowout operation of the embodiment shown in FIG. 1, and includes a pipe between the first flow control valve 4 and the first indoor heat exchanger 5. A bypass flow path that bypasses between the second flow rate control valve 6 and the pipe between the second indoor heat exchanger 7 is connected, and an electromagnetic valve 41 that is an opening / closing means is provided in this bypass flow path. The first flow rate control valve 4, the second flow rate control valve, and the solenoid valve 41 open and close in association with each other according to an instruction from a control unit (not shown).

【0066】まずこの実施の形態の、冷房除湿運転時の
動作について説明する。通常冷房運転時は、電磁弁41
を閉じ、第2流量制御弁6を開として、図1の実施の形
態と同様の動作を行なう。冷房顕熱負荷が小さくなった
場合には、電磁弁41を開き、第2流量制御弁6を閉じ
た熱交換器分割による除湿運転を行なう。この熱交換器
分割による除湿運転では、圧縮機1を出た高温高圧の冷
媒蒸気は、四方弁2を通って室外熱交換器3に流入し、
外気と熱交換して凝縮、液化する。この高圧の液冷媒
は、第1流量制御弁4で低圧に減圧され、気液二相冷媒
となって電磁弁41を通って、第2室内熱交換器7に流
入し、室内空気の顕熱および潜熱を奪って蒸発する。こ
の時の第1流量制御弁4の開度は、例えば第2室内熱交
換器の出口冷媒の過熱度が5℃となるように制御されて
いる。この熱交換器分割による除湿運転では、通常冷房
運転が第1室内熱交換器5と第2室内熱交換器7とを蒸
発器としているのに対して、第2室内熱交換器7のみを
蒸発器としているので、冷房能力が小さく、圧縮機1の
回転周波数を小さくして状態でも、通常冷房運転に比べ
て、蒸発温度を低くすることができ、十分な除湿量を確
保することができる。
First, the operation of this embodiment during the cooling and dehumidifying operation will be described. Solenoid valve 41 during normal cooling operation
Is closed and the second flow control valve 6 is opened, and the same operation as that of the embodiment of FIG. 1 is performed. When the cooling sensible heat load becomes small, the dehumidifying operation is performed by dividing the heat exchanger with the solenoid valve 41 opened and the second flow rate control valve 6 closed. In the dehumidifying operation by dividing the heat exchanger, the high-temperature and high-pressure refrigerant vapor that has exited the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2,
It exchanges heat with the outside air to condense and liquefy. This high-pressure liquid refrigerant is decompressed to a low pressure by the first flow control valve 4, becomes a gas-liquid two-phase refrigerant, passes through the electromagnetic valve 41, flows into the second indoor heat exchanger 7, and the sensible heat of the indoor air is generated. And it takes latent heat and evaporates. The opening degree of the first flow control valve 4 at this time is controlled so that the superheat degree of the outlet refrigerant of the second indoor heat exchanger is 5 ° C., for example. In the dehumidifying operation by the heat exchanger division, the normal cooling operation uses the first indoor heat exchanger 5 and the second indoor heat exchanger 7 as evaporators, whereas only the second indoor heat exchanger 7 evaporates. Since it is a cooling device, the cooling capacity is small, and even when the rotation frequency of the compressor 1 is small, the evaporation temperature can be made lower than in the normal cooling operation, and a sufficient amount of dehumidification can be secured.

【0067】さらに部屋の冷房顕熱能力が低下し、熱交
換器分割による除湿運転で圧縮機1の回転周波数を下げ
ると蒸発温度が上昇し、除湿量が充分に確保できなくな
った場合や、部屋の冷房顕熱がゼロ、すなわち部屋の室
温を低下させずに除湿運転を行なう場合には、冷媒再熱
による除湿運転を行なう。この冷媒再熱による除湿運転
では、電磁弁41を開、第2流量制御弁6を閉とし、実
施の形態1で示したように、第1室内熱交換器を凝縮
器、第2室内熱交換器7を蒸発器とした除湿運転を行な
う。この際、第2流量制御弁6には、絞り部に焼結金属
を使用したものや、毛細管を使用しているので、冷媒流
動音の発生を防止することができる。
Further, when the cooling sensible heat capacity of the room is lowered and the rotation frequency of the compressor 1 is lowered in the dehumidification operation by dividing the heat exchanger, the evaporation temperature rises and the dehumidification amount cannot be sufficiently secured, When the sensible heat of cooling is zero, that is, when the dehumidifying operation is performed without lowering the room temperature of the room, the dehumidifying operation is performed by reheating the refrigerant. In the dehumidifying operation by reheating the refrigerant, the solenoid valve 41 is opened and the second flow control valve 6 is closed, and as described in the first embodiment, the first indoor heat exchanger is the condenser and the second indoor heat exchange is the same. Dehumidifying operation is performed using the device 7 as an evaporator. At this time, since the second flow rate control valve 6 uses a sintered metal or a capillary tube in the throttle portion, it is possible to prevent the refrigerant flow noise from being generated.

【0068】次に、この実施の形態の空気調和装置の冷
房時の具体的な運転制御法について説明する。空気調和
装置には、部屋内に居る居住者の好の温湿度環境を設定
するために、例えば設定温度と設定湿度が空調装置運転
時に設定される。なおこの設定温度と設定湿度は、居住
者がそれぞれの設定値を室内ユニットのリモコンから直
接入力してもよく、また暑がりの人用、寒がりの人用や
子供用、老人用など室内ユニットのリモコンに対象とす
る居住者別に定めた温度および湿度の最適値テーブルを
記憶させ、対象居住者のみを直接選択するようにしても
よい。また室内ユニット12には、室内の温度および湿
度を検知するために、室内ユニットの吸い込み空気の温
度および湿度を検出するセンサーがそれぞれ設けられて
いる。
Next, a specific operation control method during cooling of the air conditioner of this embodiment will be described. In the air conditioner, for example, a set temperature and a set humidity are set when the air conditioner is operating in order to set a favorable temperature and humidity environment for the occupants in the room. Note that the set temperature and set humidity may be entered directly by the resident by the remote control of the indoor unit, or for indoor units such as those who are hot, those who are cold, children and the elderly. The remote controller may store an optimum temperature and humidity value table determined for each occupant, and directly select only the occupant. In addition, the indoor unit 12 is provided with sensors for detecting the temperature and humidity of the indoor unit, respectively, in order to detect the temperature and humidity inside the room.

【0069】空気調和装置が起動されると、設定温度と
現在の室内吸込み空気温度との差を温度偏差、設定湿度
と現在の室内吸込み空気湿度との差を湿度偏差として演
算し、最終的にこれらの偏差がゼロあるいは所定の値以
内となるように空気調和装置の圧縮機1の回転周波数、
室外ファン回転数、室内ファン回転数、第1流量制御弁
4の絞り開度、および第2流量制御弁7の開閉、電磁弁
41を制御する。この時、温度および湿度偏差をゼロあ
るいは所定の値以内に制御する際には、温度偏差を湿度
偏差よりも優先して空気調和装置の制御を行なう。すな
わち、空気調和装置起動時に、温度偏差および湿度偏差
がともに大きい場合は、第2流量制御弁7を開状態と
し、また電磁弁41を閉状態として、まず通常冷房運転
で、室内の温度偏差を優先的にゼロまたは所定の値以内
となるように運転する。圧縮機1の回転周波数や室内フ
ァンの回転数の調整により空気調和装置の冷房能力が部
屋の熱負荷と一致し、温度偏差がゼロまたは所定の値以
内となった場合に、湿度偏差を検出し、この時、湿度偏
差がゼロまたは所定の値以内となっている場合は、現在
の運転を続行する。
When the air conditioner is activated, the difference between the set temperature and the current indoor intake air temperature is calculated as a temperature deviation, and the difference between the set humidity and the current indoor intake air humidity is calculated as a humidity deviation, and finally the difference is calculated. The rotation frequency of the compressor 1 of the air conditioner so that these deviations are zero or within a predetermined value,
The outdoor fan speed, the indoor fan speed, the throttle opening of the first flow control valve 4, the opening and closing of the second flow control valve 7, and the solenoid valve 41 are controlled. At this time, when controlling the temperature and humidity deviations to be zero or within a predetermined value, the temperature deviation is prioritized over the humidity deviations to control the air conditioner. That is, when both the temperature deviation and the humidity deviation are large at the time of starting the air conditioner, the second flow rate control valve 7 is opened and the solenoid valve 41 is closed. Priority is given to the operation within zero or within a specified value. By adjusting the rotation frequency of the compressor 1 and the rotation speed of the indoor fan, if the cooling capacity of the air conditioner matches the heat load of the room and the temperature deviation is zero or within a predetermined value, the humidity deviation is detected. At this time, if the humidity deviation is zero or within a predetermined value, the current operation is continued.

【0070】温度偏差がゼロまたは所定の値以内とな
り、この時の湿度偏差がまだ大きな値となっている場合
は、その時の圧縮機1の回転周波数に応じて、熱交換器
分割による冷房除湿運転と冷媒再熱による冷房除湿運転
を選択し、冷媒回路を切換える。すなわち冷房顕熱能力
は、熱交換器分割による冷房除湿運転の方が、冷媒再熱
による冷房除湿運転よりも大きいため、温度偏差をゼロ
または所定の値以内に維持するために必要な冷房顕熱能
力を、通常冷房運転時の圧縮機1の回転周波数で間接的
に検知し、冷媒回路を選択する。すなわち、温度偏差を
ゼロまたは所定の値以内となった圧縮機1の回転周波数
が、所定の値、例えば30Hz以上であれば、第2流量
制御弁6を絞り、電磁弁41を開状態として、熱交換器
分割による冷房除湿運転に切換える。この熱交換器分割
による冷房除湿運転では、圧縮機1の回転周波数や室内
ファンの回転数などを調整して、温度偏差および湿度偏
差がともにゼロあるいは所定の値以内となるように制御
される。
When the temperature deviation is zero or within a predetermined value and the humidity deviation at this time is still a large value, the cooling / dehumidifying operation by the heat exchanger division is performed according to the rotation frequency of the compressor 1 at that time. Select the cooling and dehumidifying operation by reheating the refrigerant and switch the refrigerant circuit. In other words, the cooling sensible heat capacity is larger in the cooling dehumidification operation by dividing the heat exchanger than in the cooling dehumidification operation by the refrigerant reheating, so that the cooling sensible heat required to maintain the temperature deviation within zero or within a predetermined value. The capacity is indirectly detected by the rotation frequency of the compressor 1 during the normal cooling operation, and the refrigerant circuit is selected. That is, when the rotation frequency of the compressor 1 in which the temperature deviation is zero or within a predetermined value is a predetermined value, for example, 30 Hz or more, the second flow control valve 6 is throttled and the solenoid valve 41 is opened. Switch to cooling / dehumidifying operation by dividing the heat exchanger. In the cooling / dehumidifying operation by dividing the heat exchanger, the rotation frequency of the compressor 1 and the rotation speed of the indoor fan are adjusted so that the temperature deviation and the humidity deviation are both zero or within a predetermined value.

【0071】一方、通常冷房運転で温度偏差がゼロまた
は所定の値以内となり、この時の湿度偏差がまだ大きな
値となり、かつ圧縮機1の回転周波数が所定の値、例え
ば30Hz以下であった場合や、上記説明のように通常
冷房運転から熱交換器分割による冷房除湿運転に移行し
た後、部屋の空調負荷が小さくなり、温度偏差をゼロま
たは所定の値以内に維持するために部屋の空気を加熱す
る必要があると判断された場合は、第2流量制御弁6を
絞り、電磁弁41を閉状態として、冷媒再熱による冷房
除湿運転に切換える。この冷媒再熱による冷房除湿運転
では、室内の温度偏差がゼロまたは所定の値以内を維持
できるように、第2室内熱交換器7の加熱量を制御する
とともに、湿度偏差がゼロまたは所定の値以内に入るよ
うに、第1室内熱交換器5の冷却除湿量を制御する。第
2室内熱交換器7の加熱量の制御には、室外熱交換器3
のファン回転数や第1流量制御弁4の開度などによって
調整する。また第1室内熱交換器5の冷却除湿量の制御
には、圧縮機1の回転周波数や室内ユニット12のファ
ン回転数などによって制御する。
On the other hand, in the normal cooling operation, the temperature deviation is zero or within a predetermined value, the humidity deviation at this time is still a large value, and the rotation frequency of the compressor 1 is a predetermined value, for example, 30 Hz or less. Or, after shifting from the normal cooling operation to the cooling / dehumidifying operation by dividing the heat exchanger as described above, the air conditioning load of the room becomes small, and the air in the room is kept to maintain the temperature deviation within zero or a predetermined value. If it is determined that heating is necessary, the second flow rate control valve 6 is throttled, the electromagnetic valve 41 is closed, and the cooling / dehumidifying operation by reheating the refrigerant is performed. In the cooling / dehumidifying operation by reheating the refrigerant, the heating amount of the second indoor heat exchanger 7 is controlled so that the temperature deviation in the room can be maintained at zero or within a predetermined value, and the humidity deviation is zero or at a predetermined value. The cooling / dehumidifying amount of the first indoor heat exchanger 5 is controlled so as to be within the range. To control the heating amount of the second indoor heat exchanger 7, the outdoor heat exchanger 3
The fan rotation speed and the opening degree of the first flow control valve 4 are adjusted. The cooling / dehumidifying amount of the first indoor heat exchanger 5 is controlled by the rotation frequency of the compressor 1, the fan rotation speed of the indoor unit 12, and the like.

【0072】このようにこの実施の形態では、冷房時、
室内の顕熱および潜熱負荷に応じて、通常冷房運転、熱
交換器分割による除湿運転、冷媒再熱による除湿運転の
3つの運転モードが切換可能であるので、幅広い範囲で
部屋内の温度、湿度環境を最適に制御することが可能と
なる。また第2流量制御弁6には、絞り部に焼結金属を
使用したものや、毛細管を使用しているので、冷媒流動
音の発生を防止し、静かな室内環境を実現できる。
As described above, in this embodiment, during cooling,
Depending on the sensible heat and latent heat load in the room, it is possible to switch between three operation modes: normal cooling operation, dehumidifying operation by dividing the heat exchanger, and dehumidifying operation by reheating the refrigerant. It is possible to control the environment optimally. Further, since the second flow rate control valve 6 uses a sintered metal or a capillary tube in the throttle portion, it is possible to prevent the generation of refrigerant flowing noise and realize a quiet indoor environment.

【0073】次にこの実施の形態の暖房高温吹出し運転
の動作について説明する。通常暖房運転時は、電磁弁4
1を閉じ、第2流量制御弁6を開として、図1の実施の
形態3と同様の動作を行なう。起動時など高温の吹出し
温度が要求された場合には、電磁弁41を開き、第2流
量制御弁6を閉じた熱交換器分割による暖房運転を行な
う。この熱交換器分割による暖房運転では、圧縮機1を
出た高温高圧の冷媒蒸気は、四方弁2を通って第2室内
熱交換器7に流入し、室内空気と熱交換して凝縮、液化
する。この高圧の液冷媒は、電磁弁41を通って。第1
流量制御弁4に流入し、低圧まで減圧され、室外熱交換
器3に流入し、室外の空気と熱交換して蒸発し、四方弁
2を通って再び圧縮機1に戻る。この時の第1流量制御
弁4の開度は、例えば室外熱交換器3の出口冷媒の過熱
度が5℃となるように制御されている。この熱交換器分
割による暖房運転では、通常暖房運転が第1室内熱交換
器5と第2室内熱交換器7と凝縮器としているのに対し
て、第2室内熱交換器7のみを凝縮器としているので、
通常冷房運転に比べて、凝縮温度を高くすることがで
き、この凝縮器で加熱され、室内に吹出される空気温度
を高くすることがでる。さらに暖房運転時に、室内の除
湿運転を行なう場合には、電磁弁41を閉、第2流量制
御弁6を閉とすることにより、実施の形態3で説明した
暖房除湿運転が可能となる。また第2流量制御弁6に
は、絞り部に焼結金属を使用したものや、毛細管を使用
しているので、冷媒流動音の発生を防止することができ
る。
Next, the operation of the heating high temperature blowing operation of this embodiment will be described. Solenoid valve 4 during normal heating operation
1 is closed and the second flow control valve 6 is opened, and the same operation as in the third embodiment of FIG. 1 is performed. When a high blowout temperature is required at the time of startup, the solenoid valve 41 is opened and the second flow rate control valve 6 is closed to perform the heating operation by dividing the heat exchanger. In the heating operation by the heat exchanger division, the high-temperature and high-pressure refrigerant vapor that has exited the compressor 1 flows into the second indoor heat exchanger 7 through the four-way valve 2 and exchanges heat with the indoor air to condense and liquefy. To do. This high pressure liquid refrigerant passes through the solenoid valve 41. First
It flows into the flow rate control valve 4, is decompressed to a low pressure, flows into the outdoor heat exchanger 3, exchanges heat with the outdoor air to evaporate, and returns to the compressor 1 through the four-way valve 2 again. At this time, the opening degree of the first flow control valve 4 is controlled so that the superheat degree of the outlet refrigerant of the outdoor heat exchanger 3 is 5 ° C., for example. In the heating operation by the heat exchanger division, the normal heating operation uses the first indoor heat exchanger 5, the second indoor heat exchanger 7, and the condenser, whereas only the second indoor heat exchanger 7 is used as the condenser. Because,
The condensing temperature can be raised as compared with the normal cooling operation, and the temperature of the air heated by this condenser and blown into the room can be raised. Further, when the indoor dehumidifying operation is performed during the heating operation, the heating dehumidifying operation described in the third embodiment can be performed by closing the electromagnetic valve 41 and closing the second flow rate control valve 6. Further, since the second flow control valve 6 uses a sintered metal or a capillary tube in the throttle portion, it is possible to prevent the refrigerant flow noise from being generated.

【0074】このようにこの実施の形態では、暖房時、
通常暖房運転、熱交換器分割による暖房高温吹出し運
転、暖房除湿運転の3つの運転モードが切換可能である
ので、使用者の好みに応じて部屋内の温度、湿度環境を
最適に制御することができる。また第2流量制御弁6に
は、絞り部に焼結金属を使用したものや、毛細管を使用
しているので、冷媒流動音の発生を防止し、静かな室内
環境を実現できる。
Thus, in this embodiment, during heating,
Since it is possible to switch between three operation modes: normal heating operation, heating high-temperature blowout operation by splitting heat exchangers, and heating dehumidification operation, it is possible to optimally control the temperature and humidity environment in the room according to the user's preference. it can. Further, since the second flow rate control valve 6 uses a sintered metal or a capillary tube in the throttle portion, it is possible to prevent the generation of refrigerant flowing noise and realize a quiet indoor environment.

【0075】なお本実施の形態では、第1室内熱交換器
5と第2流量制御弁6と並列に電磁弁41を設置する例
について説明したが、これに限るものではなく、図20
に示すように、電磁弁41と第2流量制御弁6を一体化
した3方弁42を用いても良い。このように電磁弁41
と第2流量制御弁6を一体化した3方弁42を用いるこ
とにより、室内機の小形化が可能となる。
In the present embodiment, an example in which the solenoid valve 41 is installed in parallel with the first indoor heat exchanger 5 and the second flow control valve 6 has been described, but the present invention is not limited to this, and FIG.
As shown in, a three-way valve 42 in which the solenoid valve 41 and the second flow control valve 6 are integrated may be used. In this way, the solenoid valve 41
By using the three-way valve 42 in which the second flow rate control valve 6 and the second flow control valve 6 are integrated, the indoor unit can be downsized.

【0076】また実施の形態1から形態9では、空気調
和装置の冷媒としてR410Aを用いた場合について説
明した。R410Aは、HFC系冷媒であり、オゾン層
を破壊しない地球環境保全に適した冷媒であるととも
に、従来冷媒として用いられてきたR22に比べて、冷
媒圧力損失が小さいため、第2流量制御弁6の絞り部に
用いる焼結金属の通気孔の径を小さくでき、より一層冷
媒流動音低減効果を得ることができる冷媒である。
In the first to ninth embodiments, the case where R410A is used as the refrigerant of the air conditioner has been described. R410A is an HFC-based refrigerant that is suitable for global environment protection that does not destroy the ozone layer, and has a smaller refrigerant pressure loss than R22 that has been used as a conventional refrigerant, so the second flow control valve 6 This is a refrigerant in which the diameter of the vent hole of the sintered metal used for the throttle portion can be reduced and the effect of reducing the refrigerant flow noise can be further obtained.

【0077】さらにこの空気調和装置の冷媒としては、
R410Aに限ることはなく、HFC系冷媒であるR4
07CやR404A、R507Aであっても良い。また
地球温暖化防止の観点から、地球温暖化係数の小さなH
FC系冷媒であるR32単独R152a単独あるいはR
32/R134aなどの混合冷媒であっても良い。また
プロパンやブタンなどの炭化水素冷媒やアンモニア、二
酸化炭素、エーテルなどの自然系冷媒およびそれらの混
合冷媒であってもよい。
Further, as the refrigerant of this air conditioner,
Not limited to R410A, R4 that is an HFC refrigerant
It may be 07C, R404A, or R507A. From the perspective of preventing global warming, H with a small global warming potential
FC refrigerant R32 alone R152a alone or R
A mixed refrigerant such as 32 / R134a may be used. It may also be a hydrocarbon refrigerant such as propane or butane, a natural refrigerant such as ammonia, carbon dioxide or ether, or a mixed refrigerant thereof.

【0078】また本実施の形態1から形態9では、特に
圧縮機の潤滑油については言及していないが、潤滑油と
しては鉱油やアルキルベンゼンなどの合成油であっても
良く、また近年、HFC系冷媒用として開発されたエス
テル油やエーテル油であっても良い。
Further, although the lubricating oil for the compressor is not particularly mentioned in the first to ninth embodiments, the lubricating oil may be a mineral oil or a synthetic oil such as an alkylbenzene, and in recent years, the HFC type has been used. It may be an ester oil or an ether oil developed for a refrigerant.

【0079】[0079]

【発明の効果】以上説明したとおりこの発明の絞り装置
によれば、絞り部を冷媒流れ方向に連通する多孔質透過
材で構成し、前記多孔質透過材の透過面積を調節する調
節手段を備えたので、絞り部を冷媒流れ方向に連通する
多孔質透過材で構成したので、冷媒流動音の発生を防止
して騒音を低減できると共に多孔質透過材を通過するこ
とによる圧力差を適度に調節できる効果が得られる。
As described above, according to the throttling device of the present invention, the throttling portion is made of a porous permeable material that communicates in the flow direction of the refrigerant, and is provided with adjusting means for adjusting the permeation area of the porous permeable material. Therefore, since the throttle part is composed of a porous permeable material that communicates in the refrigerant flow direction, it is possible to prevent the generation of refrigerant flow noise and reduce noise, and to properly adjust the pressure difference due to passing through the porous permeable material. The effect that can be obtained is obtained.

【0080】また、電磁開閉弁が設けられた第1の流路
と、この第1の流路と並列に設けられた第2の流路と、
この第2の流路中に設けられ冷媒流れ方向に連通する多
孔質透過材で構成した絞り部と、前記多孔質透過材の透
過面積を調節する調節手段とを備えたので、多孔質透過
材の複雑な加工を要求することなく、冷媒流動音の発生
を防止して騒音を低減できると共に多孔質透過材を通過
することによる圧力差を適度に調節できる効果が得られ
る。
A first flow path provided with an electromagnetic opening / closing valve, and a second flow path provided in parallel with the first flow path,
The porous permeable material is provided with a throttle portion provided in the second flow path and formed of a porous permeable material that communicates with the refrigerant flow direction, and an adjusting unit that adjusts the permeation area of the porous permeable material. It is possible to obtain an effect that the generation of the refrigerant flow noise can be prevented, the noise can be reduced, and the pressure difference due to passing through the porous permeable material can be appropriately adjusted without requiring complicated processing.

【0081】また、前記多孔質透過材で冷媒流路を覆う
ので、圧力損失の変動を抑制できると共に、冷媒流動音
の発生を防止して騒音を低減できる効果が得られる。
Further, since the refrigerant flow path is covered with the porous permeable material, it is possible to suppress fluctuations in pressure loss and to prevent noise from flowing in the refrigerant to reduce noise.

【0082】また、弁室側壁に第1流路が開口する弁本
体と、弁室底面に第2流路が開口する主弁座と、弁室内
に前記主弁座を閉止できる主弁体を有し、前記主弁体に
冷媒流れ方向に連通する多孔質透過材を用いて絞り部を
構成したので、冷媒流動音の発生を防止して騒音を低減
できると共に通常の弁開時における圧力損失による性能
低下も防止できる効果が得られる。
Further, a valve body having a first flow passage opening in the side wall of the valve chamber, a main valve seat having a second flow passage opening in the bottom of the valve chamber, and a main valve body capable of closing the main valve seat in the valve chamber are provided. Since the throttle portion is formed by using a porous permeable material that communicates with the main valve body in the refrigerant flow direction, it is possible to prevent the generation of refrigerant flow noise and reduce noise, and also the pressure loss during normal valve opening. The effect of preventing performance deterioration due to

【0083】また、前記多孔質透過材は一端が開放した
柱状を成し、前記主弁座閉止時に前記柱状の周面側と底
面側とが流路入口側と出口側とに分離されるので、周面
側と底面側とのそれぞれで多孔質透過材の通過孔の大き
さと圧力損失とを適切に選択できる効果が得られる。
Further, the porous permeable material has a columnar shape with one end open, and when the main valve seat is closed, the peripheral surface side and the bottom surface side of the columnar shape are separated into the flow path inlet side and the outlet side. It is possible to obtain the effect of appropriately selecting the size of the through holes of the porous permeable material and the pressure loss on each of the peripheral surface side and the bottom surface side.

【0084】また、弁室側壁に第1流路が開口する弁本
体と、弁室底面に第2流路が開口する主弁座と、弁室内
に前記主弁座を閉止できる主弁体を有し、前記主弁座に
冷媒流れ方向に連通する多孔質透過材を用いて流量制御
弁を構成したので、冷媒流動音の発生を防止して騒音を
低減できると共に絞り部の設計が容易となり、安価で低
騒音なものとできる効果が得られる。
Further, a valve body having a first flow passage opening in the side wall of the valve chamber, a main valve seat having a second flow passage opening in the bottom of the valve chamber, and a main valve body capable of closing the main valve seat in the valve chamber are provided. Since the flow rate control valve is configured by using the porous permeable material that communicates with the main valve seat in the refrigerant flow direction, it is possible to prevent the refrigerant flow noise from being generated and reduce the noise, and also the design of the throttle portion is facilitated. In addition, it is possible to obtain an effect that it is cheap and low in noise.

【0085】また、周面が主弁座の側面と当接し、前記
周面と側面との当接面積を開閉方向への移動によって可
変する主弁体と、前記主弁体の開閉方向への移動を制御
する制御手段とを備え、前記主弁体、主弁座および制御
手段で多孔質透過材の透過面積を調節する調節手段を構
成したので、主弁体の開閉動作と同方向の動作で多孔質
透過材を利用した圧力差を適度に調節できる効果が得ら
れる。
The main surface of the main valve body whose peripheral surface is in contact with the side surface of the main valve seat, and the contact area between the peripheral surface and the side surface is changed by movement in the opening and closing direction, and the main valve body in the opening and closing direction. The main valve body, the main valve seat, and the control means constitute the adjusting means for adjusting the permeation area of the porous permeable material, so that the main valve body opens and closes in the same direction as the opening and closing operation. Thus, the effect of appropriately adjusting the pressure difference using the porous permeable material can be obtained.

【0086】また、多孔質透過材の通気孔を200から
0.5マイクロメートルの範囲としたので、液冷媒や気
液二相冷媒が通過する際の冷媒流動音の発生を防止でき
る効果が得られる。
Further, since the ventilation holes of the porous permeable material are in the range of 200 to 0.5 μm, it is possible to obtain the effect of preventing the generation of the refrigerant flowing noise when the liquid refrigerant or the gas-liquid two-phase refrigerant passes. To be

【0087】また、前記多孔質透過材を焼結金属とした
ので、耐久性に優れた絞り装置とすることができる効果
が得られる。
Further, since the porous permeable material is made of sintered metal, it is possible to obtain an effect that a diaphragm device having excellent durability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態1による空気調和装置の
冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to a first embodiment of the present invention.

【図2】 実施の形態1に係わり、第2流量制御弁の構
成を示す図である。
FIG. 2 is a diagram relating to the first embodiment and showing a configuration of a second flow rate control valve.

【図3】 実施の形態1に係わる空気調和装置の冷房除
湿運転時の動作状態を表す特性図である。
FIG. 3 is a characteristic diagram showing an operating state of the air-conditioning apparatus according to Embodiment 1 during a cooling / dehumidifying operation.

【図4】 実施の形態1に係わり、第2流量制御弁の他
の構成例を示す図である。
FIG. 4 is a diagram relating to the first embodiment and showing another configuration example of the second flow rate control valve.

【図5】 本発明の実施の形態2に係わり、第2流量制
御弁の構成を示す図である。
FIG. 5 is a diagram illustrating a configuration of a second flow rate control valve according to the second embodiment of the present invention.

【図6】 実施の形態2に係わり、第2流量制御弁の他
の構成例を示す図である。
FIG. 6 is a diagram illustrating another configuration example of the second flow rate control valve according to the second embodiment.

【図7】 本発明の実施の形態3に係わり、第2流量制
御弁の構成を示す図である。
FIG. 7 is a diagram showing a configuration of a second flow rate control valve according to the third embodiment of the present invention.

【図8】 実施の形態3に係わり、第2流量制御弁の他
の構成例を示す図である。
FIG. 8 is a diagram illustrating another configuration example of the second flow rate control valve according to the third embodiment.

【図9】 本発明の実施の形態4に係わり、暖房除湿運
転時の動作状態を表す特性図である。
FIG. 9 is a characteristic diagram related to the fourth embodiment of the present invention and showing an operating state during a heating dehumidifying operation.

【図10】 本発明の実施の形態5による空気調和装置
の冷媒回路図である。
FIG. 10 is a refrigerant circuit diagram of an air conditioner according to a fifth embodiment of the present invention.

【図11】 本発明の実施の形態6による空気調和装置
の冷媒回路図である。
FIG. 11 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 6 of the present invention.

【図12】 実施の形態6に係わり、第2流量制御弁の
構成を示す図である。
FIG. 12 is a diagram illustrating a configuration of a second flow rate control valve according to the sixth embodiment.

【図13】 本発明の実施の形態7による空気調和装置
の冷媒回路図である。
FIG. 13 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 7 of the present invention.

【図14】 実施の形態7に係わり、毛細管の冷媒流動
音の測定結果を示す図である。
FIG. 14 is a diagram showing a measurement result of a refrigerant flowing sound of a capillary tube according to the seventh embodiment.

【図15】 本発明の実施の形態8による空気調和装置
の冷媒回路図である。
FIG. 15 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 8 of the present invention.

【図16】 実施の形態8に係わる空気調和装置の冷房
除湿運転時の動作状態を表す特性図である。
FIG. 16 is a characteristic diagram showing an operating state of the air-conditioning apparatus according to Embodiment 8 during a cooling / dehumidifying operation.

【図17】 本発明の実施の形態9による空気調和装置
の冷媒回路図である。
FIG. 17 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 9 of the present invention.

【図18】 実施の形態9に係わる空気調和装置の冷房
除湿運転時の動作状態を表す特性図である。
FIG. 18 is a characteristic diagram showing an operating state of the air-conditioning apparatus according to Embodiment 9 during a cooling / dehumidifying operation.

【図19】 本発明の実施の形態10による空気調和装
置の冷媒回路図である。
FIG. 19 is a refrigerant circuit diagram of an air-conditioning apparatus according to Embodiment 10 of the present invention.

【図20】 実施の形態10に係わる空気調和装置の他
の例を示す冷媒回路図である。
FIG. 20 is a refrigerant circuit diagram showing another example of the air-conditioning apparatus according to Embodiment 10.

【図21】 従来の空気調和装置を示す冷媒回路図であ
る。
FIG. 21 is a refrigerant circuit diagram showing a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機、 3 室外熱交換器、 4 第1流量制御
弁、 5 第1室内熱交換器、 6 第2流量制御弁、
7 第2室内熱交換器、21 第1流路、 22 第
2流路、 23 主弁座、 24 主弁体、 30 レ
シーバ、 31 焼結金属、 38 毛細管、 40
熱交換器。
1 compressor, 3 outdoor heat exchanger, 4 1st flow control valve, 5 1st indoor heat exchanger, 6 2nd flow control valve,
7 2nd indoor heat exchanger, 21 1st flow path, 22 2nd flow path, 23 main valve seat, 24 main valve body, 30 receiver, 31 sintered metal, 38 capillary tube, 40
Heat exchanger.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大西 茂樹 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (56)参考文献 特開 昭57−65557(JP,A) 特開 平6−207764(JP,A) 特開 平10−185363(JP,A) 特開 平7−146032(JP,A) 特開 平5−141813(JP,A) 実開 昭53−104469(JP,U) 実公 昭51−11740(JP,Y1) (58)調査した分野(Int.Cl.7,DB名) F25B 41/06 G05D 7/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeki Onishi 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (56) Reference JP-A-57-65557 (JP, A) JP-A-6 -207764 (JP, A) JP 10-185363 (JP, A) JP 7-146032 (JP, A) JP 5-141813 (JP, A) Actual development Sho 53-104469 (JP, U) ) Actual publication 51-11740 (JP, Y1) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 41/06 G05D 7/06

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絞り部を冷媒流れ方向に連通する多孔質
透過材で構成し、前記多孔質透過材の透過面積を調節す
る調節手段を備えたことを特徴とする絞り装置。
1. A throttle portion is made of a porous permeable material that communicates with a refrigerant flow direction, and a permeation area of the porous permeable material is adjusted.
Throttle apparatus characterized by comprising adjusting means that.
【請求項2】 電磁開閉弁が設けられた第1の流路と、
この第1の流路と並列に設けられた第2の流路と、この
第2の流路中に設けられ冷媒流れ方向に連通する多孔質
透過材で構成した絞り部と、前記多孔質透過材の透過面
積を調節する調節手段とを備えたことを特徴とする絞り
装置。
2. A first flow path provided with an electromagnetic opening / closing valve,
A second flow path provided in parallel with the first flow path, a throttle portion which is constituted by a porous permeable member communicating with the refrigerant flow direction provided in the second flow path, the porous permeable Transparent surface of material
A diaphragm device comprising: an adjusting unit that adjusts a product .
【請求項3】 前記多孔質透過材で冷媒流路を覆うこと
を特徴とする請求項1又は請求項2に記載の絞り装置。
3. The throttle device according to claim 1, wherein the refrigerant passage is covered with the porous permeable material.
【請求項4】 弁室側壁に第1流路が開口する弁本体
と、弁室底面に第2流路が開口する主弁座と、弁室内に
前記主弁座を閉止できる主弁体を有し、前記主弁体に
媒流れ方向に連通する多孔質透過材を用いて絞り部を構
成したことを特徴とする絞り装置。
4. A valve body having a first flow passage opening on a side wall of the valve chamber, a main valve seat having a second flow passage opening on a bottom surface of the valve chamber, and a main valve body capable of closing the main valve seat in the valve chamber. Has a cold in the main valve body
A diaphragm device comprising a diaphragm part made of a porous permeable material that communicates in a medium flow direction .
【請求項5】 前記多孔質透過材は一端が開放した柱状
を成し、前記主弁座閉止時に前記柱状の周面側と底面側
とが流路入口側と出口側とに分離されることを特徴とす
請求項4記載の絞り装置。
5. The porous permeable material has a columnar shape with one end open, and when the main valve seat is closed, the peripheral surface side and the bottom surface side of the columnar shape are separated into a flow path inlet side and an outlet side. The diaphragm device according to claim 4, wherein
【請求項6】 弁室側壁に第1流路が開口する弁本体
と、弁室底面に第2流路が開口する主弁座と、弁室内に
前記主弁座を閉止できる主弁体を有し、前記主弁座に
媒流れ方向に連通する多孔質透過材を用いて流量制御弁
を構成したことを特徴とする絞り装置。
6. A valve body having a first flow passage opening in a side wall of the valve chamber, a main valve seat having a second flow passage opening in a bottom surface of the valve chamber, and a main valve body capable of closing the main valve seat in the valve chamber. Has a cold on the main valve seat
A throttle device characterized in that a flow control valve is constituted by using a porous permeable material that communicates with a medium flow direction .
【請求項7】 周面が主弁座の側面と当接し、前記周面
と側面との当接面積を開閉方向への移動によって可変す
る主弁体と、前記主弁体の開閉方向への移動を制御する
制御手段とを備え、前記主弁体、主弁座および制御手段
で多孔質透過材の透過面積を調節する調節手段を構成し
たことを特徴とする請求項4又は請求項6記載の絞り装
置。
7. A main valve body having a peripheral surface in contact with a side surface of a main valve seat, the contact area between the peripheral surface and the side surface being varied by movement in the opening / closing direction, and a main valve body in the opening / closing direction. and control means for controlling the movement, said main valve body, according to claim 4 or claim 6 further characterized in that the transmission area of the porous permeable member to constitute a means for adjusting the main valve seat and control means Diaphragm device.
【請求項8】 多孔質透過材の通気孔を200から0.
5マイクロメートルの範囲としたことを特徴とする請求
項1乃至請求項7の何れか1項に記載の絞り装置。
8. A porous permeable material having ventilation holes of 200 to 0.
The aperture device according to any one of claims 1 to 7 , wherein the aperture device has a range of 5 micrometers.
【請求項9】 前記多孔質透過材を焼結金属としたこと
を特徴とする請求項1乃至請求項8の何れか1項に記載
の絞り装置。
9. The diaphragm device according to any one of claims 1 to 8, characterized in that the sintered metal the porous permeable member.
JP23133199A 1999-06-01 1999-08-18 Aperture device Expired - Lifetime JP3428516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23133199A JP3428516B2 (en) 1999-06-01 1999-08-18 Aperture device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11153446A JP2000346493A (en) 1999-06-01 1999-06-01 Throttle device, refrigerating cycle apparatus and air conditioner
JP23133199A JP3428516B2 (en) 1999-06-01 1999-08-18 Aperture device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11153446A Division JP2000346493A (en) 1999-06-01 1999-06-01 Throttle device, refrigerating cycle apparatus and air conditioner

Publications (2)

Publication Number Publication Date
JP2000346495A JP2000346495A (en) 2000-12-15
JP3428516B2 true JP3428516B2 (en) 2003-07-22

Family

ID=27736320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23133199A Expired - Lifetime JP3428516B2 (en) 1999-06-01 1999-08-18 Aperture device

Country Status (1)

Country Link
JP (1) JP3428516B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015063854A1 (en) 2013-10-29 2015-05-07 三菱電機株式会社 Expansion valve
US9638443B2 (en) 2011-06-14 2017-05-02 Mitsubishi Electric Corporation Air-conditioning apparatus

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195696A (en) * 2000-12-21 2002-07-10 Matsushita Electric Ind Co Ltd Air conditioner
WO2002061350A1 (en) 2001-01-31 2002-08-08 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle device, air conditioner, choke, and flow rate controller
CN100436972C (en) * 2001-01-31 2008-11-26 三菱电机株式会社 Flow control device and air conditioner
AU2004202567B2 (en) * 2001-01-31 2007-02-15 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle apparatus
JP2002235970A (en) * 2001-02-07 2002-08-23 Matsushita Electric Ind Co Ltd Air conditioner
JP4535308B2 (en) * 2001-02-07 2010-09-01 パナソニック株式会社 Air conditioner
JP4064762B2 (en) * 2001-09-07 2008-03-19 株式会社鷺宮製作所 Throttle valve device and air conditioner
JP2003097754A (en) * 2001-09-26 2003-04-03 Fuji Koki Corp Motor operated valve
JP2003202167A (en) * 2001-10-29 2003-07-18 Mitsubishi Electric Corp Flow rate control valve, refrigerating air conditioning device and method for manufacturing flow rate control valve
GB2397868B (en) * 2002-11-19 2005-03-02 Bosch Gmbh Robert Electromagnetically actuated valve, in particular for hydraulic brake systems in motor vehicles
JP2004183950A (en) * 2002-12-02 2004-07-02 Daikin Ind Ltd Solenoid valve
JP4306366B2 (en) * 2003-08-08 2009-07-29 ダイキン工業株式会社 Refrigerant control valve
JP4550635B2 (en) * 2005-03-17 2010-09-22 シャープ株式会社 Air conditioner
JP4992655B2 (en) * 2007-10-12 2012-08-08 富士ゼロックス株式会社 Reactor
JP5455178B2 (en) * 2008-03-28 2014-03-26 株式会社不二工機 Temperature sensing cylinder for expansion valve
CN102445032B (en) * 2010-09-30 2013-09-25 珠海格力电器股份有限公司 Buffer and air-conditioner using same
WO2013061365A1 (en) * 2011-10-26 2013-05-02 三菱電機株式会社 Air conditioning device
JP6031078B2 (en) * 2014-11-12 2016-11-24 株式会社鷺宮製作所 Throttle device and refrigeration cycle system including the same
KR101866430B1 (en) * 2016-02-23 2018-06-11 그린산업 주식회사 Valve body structure for electronical expansion valve and manufacturing method for the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111740Y2 (en) * 1972-04-05 1976-03-30
JPS53104469U (en) * 1977-01-28 1978-08-22
JPS5765557A (en) * 1980-10-09 1982-04-21 Hitachi Ltd Refrigerant decompressor
JPH05141813A (en) * 1991-11-18 1993-06-08 Mitsubishi Motors Corp Expansion valve
JPH05286048A (en) * 1992-04-16 1993-11-02 Idemitsu Petrochem Co Ltd Method and apparatus for producing resin foam
JPH06207764A (en) * 1993-01-11 1994-07-26 Mitsubishi Heavy Ind Ltd Freezing device
JPH07146032A (en) * 1993-11-26 1995-06-06 Matsushita Seiko Co Ltd Expansion valve
JPH10185363A (en) * 1996-12-25 1998-07-14 Mitsubishi Heavy Ind Ltd Refrigerant distributor for refrigerating cycle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9638443B2 (en) 2011-06-14 2017-05-02 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2015063854A1 (en) 2013-10-29 2015-05-07 三菱電機株式会社 Expansion valve

Also Published As

Publication number Publication date
JP2000346495A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
JP3428516B2 (en) Aperture device
US7225630B2 (en) Refrigerating cycle apparatus, air conditioning apparatus, throttle device and flow controller
JP3918421B2 (en) Air conditioner, operation method of air conditioner
WO2012172599A1 (en) Air conditioner
JP2007085730A (en) Air conditioner and method of operating air conditioner
JP4103363B2 (en) Flow control device, refrigeration cycle device, and air conditioner
JP2000346493A (en) Throttle device, refrigerating cycle apparatus and air conditioner
JP2001082761A (en) Air conditioner
JP2000346493A5 (en)
JP3817981B2 (en) Refrigeration cycle apparatus and air conditioner
JP2002221353A (en) Air conditioner
JP2001065953A (en) Air conditioner and control method of the same
JP3901103B2 (en) Air conditioner
JP4221922B2 (en) Flow control device, throttle device, and air conditioner
JP3870768B2 (en) Air conditioner and method of operating air conditioner
JPWO2003104719A1 (en) Dehumidifying air conditioner
JP3417351B2 (en) Aperture device
JP2008261626A (en) Flow control device, restricting device and air conditioner
JP4151236B2 (en) Flow control device and air conditioner
JP4020705B2 (en) Heat pump and dehumidifying air conditioner
JP2003294339A (en) Orifice device
JP4106867B2 (en) Flow control device, air conditioner
WO2013061365A1 (en) Air conditioning device
JPH07120105A (en) Air conditioner
JP3412602B2 (en) Refrigeration cycle device and air conditioner

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R151 Written notification of patent or utility model registration

Ref document number: 3428516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term