JP2000346493A - Throttle device, refrigerating cycle apparatus and air conditioner - Google Patents

Throttle device, refrigerating cycle apparatus and air conditioner

Info

Publication number
JP2000346493A
JP2000346493A JP11153446A JP15344699A JP2000346493A JP 2000346493 A JP2000346493 A JP 2000346493A JP 11153446 A JP11153446 A JP 11153446A JP 15344699 A JP15344699 A JP 15344699A JP 2000346493 A JP2000346493 A JP 2000346493A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
control valve
flow control
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11153446A
Other languages
Japanese (ja)
Other versions
JP2000346493A5 (en
Inventor
Yoshihiro Sumida
嘉裕 隅田
Satoru Hirakuni
悟 平國
Masahiro Nakayama
雅弘 中山
Shigeki Onishi
茂樹 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11153446A priority Critical patent/JP2000346493A/en
Priority to JP23133199A priority patent/JP3428516B2/en
Publication of JP2000346493A publication Critical patent/JP2000346493A/en
Publication of JP2000346493A5 publication Critical patent/JP2000346493A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remarkably reduce a refrigerant flowing sound, to improve temperature and humidity controllability and to improve comfortableness in a room by constituting a throttle of a porous permeable material for communicating in a refrigerant flowing direction. SOLUTION: A first chamber heat exchanger is connected to a first channel 21 of a second flow control valve 6 of the air conditioner, a second chamber heat exchanger is connected to a second channel 22, and a main valve seat 23 opened at the second channel is formed integrally with a valve body. A main valve disc 24 vertically slides along an inner surface of a body of the valve 6, and a throttle is constituted of the seat 23 and the disc 24. An electromagnetic coil 25 for driving the disc 24 is energized or deenergized based on a command from a controller, thereby opening or closing the disc 24. The disc 24 is molded of a porous permeable material. The disc 24 is lifted to an upper portion by deenergizing the coil 25, and the channel 21 is connected to the channel 22 almost without pressure loss by separating the disc 14 from the seat 23.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷房あるいは暖房
運転時の温度および湿度の制御性を向上させるととも
に、冷媒流動音を低減し、室内の温湿度および騒音に対
する快適性を向上させた空気調和装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner which improves the controllability of temperature and humidity during a cooling or heating operation, reduces the flow noise of refrigerant, and improves the indoor temperature, humidity and noise comfort. It concerns the device.

【0002】[0002]

【従来の技術】従来の空気調和装置では、空調負荷の変
動に対応するためにインバータなどの容量可変型圧縮機
が用いられ、空調負荷の大小に応じて圧縮機の回転周波
数が制御されている。ところが冷房運転時に圧縮機回転
が小さくなると蒸発温度も上昇し、蒸発器での除湿能力
が低下したり、あるいは蒸発温度が部屋内の露点温度以
上に上昇し、除湿できなくなったりする問題点があっ
た。
2. Description of the Related Art In a conventional air conditioner, a variable displacement compressor such as an inverter is used to cope with fluctuations in air conditioning load, and the rotation frequency of the compressor is controlled according to the magnitude of the air conditioning load. . However, when the rotation of the compressor is reduced during the cooling operation, the evaporating temperature also increases, and the dehumidifying capacity of the evaporator decreases, or the evaporating temperature rises above the dew point temperature in the room, and there is a problem that the dehumidifying cannot be performed. Was.

【0003】この冷房低容量運転時の除湿能力を向上さ
せる手段としては次のような空気調和装置が考案されて
いる。図21は例えば特公昭61‐43631号公報に
示された従来の空気調和装置の冷媒回路構成を示す。図
において1は圧縮機、3は室外熱交換器、4は第1流量
制御弁、5は第1室内熱交換器、6は第2流量制御弁、
7は第2室内熱交換器であり、これらは配管で順次接続
され、冷凍サイクルを構成している。次に従来の空気調
和装置の動作について説明する。まず通常の冷房運転で
は、圧縮機1を出た冷媒は室外熱交換器3で凝縮液化
し、第1流量制御弁4で減圧され、第2室内熱交換器
5、第2流量制御弁6および第2室内熱交換器7を通っ
て圧縮機1に戻る。この時の第2流量制御弁は全開状態
であり、第1室内熱交換器5と第2室内熱交換器7は蒸
発器として動作して冷房運転が行なわれる。
The following air conditioner has been devised as a means for improving the dehumidifying capacity during the cooling low capacity operation. FIG. 21 shows, for example, a refrigerant circuit configuration of a conventional air conditioner disclosed in Japanese Patent Publication No. 61-43631. In the figure, 1 is a compressor, 3 is an outdoor heat exchanger, 4 is a first flow control valve, 5 is a first indoor heat exchanger, 6 is a second flow control valve,
Reference numeral 7 denotes a second indoor heat exchanger, which is sequentially connected by piping to form a refrigeration cycle. Next, the operation of the conventional air conditioner will be described. First, in a normal cooling operation, the refrigerant that has exited the compressor 1 is condensed and liquefied in the outdoor heat exchanger 3 and decompressed by the first flow control valve 4, and the second indoor heat exchanger 5, the second flow control valve 6, and It returns to the compressor 1 through the second indoor heat exchanger 7. At this time, the second flow control valve is in the fully opened state, and the first indoor heat exchanger 5 and the second indoor heat exchanger 7 operate as evaporators to perform the cooling operation.

【0004】一方、除湿運転時には、第1流量制御弁4
を全開状態とし、第2流量制御弁6で冷媒流量を制御す
ることにより、第1室内熱交換器5が凝縮器すなわち再
熱器、第2室内熱交換器7が蒸発器として動作し、室内
空気は第1室内熱交換器5で加熱されるため、室温の低
下が小さい除湿運転が可能となる。
On the other hand, during the dehumidifying operation, the first flow control valve 4
Is fully opened, and the refrigerant flow rate is controlled by the second flow control valve 6, whereby the first indoor heat exchanger 5 operates as a condenser or reheater, the second indoor heat exchanger 7 operates as an evaporator, and the indoor heat exchanger 7 operates as an evaporator. Since the air is heated by the first indoor heat exchanger 5, the dehumidifying operation in which the decrease in room temperature is small can be performed.

【0005】[0005]

【発明が解決しようとする課題】上記のような従来の空
気調和装置では、室内ユニット内に設置する第2流量制
御弁として、通常、オリフィスを有する流量制御弁を用
いているため、このオリフィスを冷媒が通過する時に発
生する冷媒流動音が大きく、室内環境を悪化させる要因
となっていた。特に除湿運転時には第2流量制御弁の入
口冷媒が気液二相状態になり、冷媒流動音が大きくなる
という問題があった。
In the conventional air conditioner as described above, a flow control valve having an orifice is usually used as the second flow control valve installed in the indoor unit. The flow noise of the refrigerant generated when the refrigerant passes through is large, which is a factor of deteriorating the indoor environment. In particular, during the dehumidifying operation, the refrigerant at the inlet of the second flow control valve is in a gas-liquid two-phase state, and there is a problem that the refrigerant flow noise is increased.

【0006】この除湿運転時の第2流量制御弁の冷媒流
動音低減対策としては、特開平7−91778号に示さ
れた流量制御弁内の主弁体に小孔を設けたものや、特開
平10−89803号に示された流量制御弁の下流に螺
旋状流路部分を設けたものなどがある。ところがこれら
の冷媒流動音低減対策はいずれも絞り部が小孔やオリフ
ィスで構成されているため、螺旋状流路を追加しても効
果的ではなく、特に流量制御弁入口冷媒が気液二相状態
の場合には、冷媒流動音が大きくなるという問題点があ
った。またこの冷媒流動音を低減するために、流量制御
弁本体に、遮音材や制振材を設けるなどの追加の対策を
必要としていたが、この追加対策によりコストが増加し
たり、設置スペースが大きくなるため室内ユニットが大
型化したり、製品回収時のリサイクル性が悪化するとい
う問題があった。
As measures for reducing the refrigerant flow noise of the second flow control valve during the dehumidifying operation, a method in which a small hole is provided in a main valve body in the flow control valve disclosed in Japanese Patent Application Laid-Open No. Hei 7-91778, Japanese Patent Application Laid-Open No. 10-89803 discloses a flow control valve provided with a spiral flow path downstream of the flow control valve. However, any of these measures for reducing the flow noise of the refrigerant is not effective even if a spiral flow path is added, since the throttle is composed of small holes or orifices. In the case of the state, there is a problem that the refrigerant flow noise increases. In order to reduce the flow noise of the refrigerant, additional measures such as providing a sound insulation material and a vibration damping material in the flow control valve body were necessary, but these additional measures increase costs and increase installation space. Therefore, there is a problem that the indoor unit becomes large and the recyclability at the time of product recovery deteriorates.

【0007】さらに、除湿運転時の圧縮機の運転容量を
小さく制御し、冷媒流量を小さくして、この冷媒流動音
を低減させることも可能であるが、結果として除湿運転
時の冷媒流量が制約されてしまうため、除湿能力を自由
に制御することができず、部屋の温度、湿度を一定に保
つことができないという問題があった。
[0007] Further, it is possible to reduce the refrigerant flow noise by controlling the operating capacity of the compressor during the dehumidifying operation to be small, thereby reducing the refrigerant flow noise. As a result, the refrigerant flow during the dehumidifying operation is restricted. Therefore, there is a problem that the dehumidification ability cannot be freely controlled, and the temperature and humidity of the room cannot be kept constant.

【0008】この発明は、上記のような問題を解決され
るためになされたもので、冷媒流動音を大幅に低減でき
る絞り装置および冷凍サイクル装置を得ることを目的と
し、また、冷房運転時および暖房運転時の温度および湿
度制御性を向上させられ、部屋内の快適性を一層向上さ
せる空気調和装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has as its object to provide a throttling device and a refrigeration cycle device that can significantly reduce refrigerant flow noise. It is an object of the present invention to obtain an air conditioner in which the controllability of temperature and humidity during a heating operation is improved and the comfort in a room is further improved.

【0009】[0009]

【課題を解決するための手段】この発明に係る絞り装置
は、絞り部を冷媒流れ方向に連通する多孔質透過材で構
成したものである。
In the throttle device according to the present invention, the throttle portion is made of a porous permeable material that communicates with the refrigerant in the flow direction.

【0010】また、電磁開閉弁が設けられた第1の流路
と、この第1の流路と並列に設けられた第2の流路と、
この第2の流路中に設けられ冷媒流れ方向に連通する多
孔質透過材で構成した絞り部とを備えたものである。
A first flow path provided with an electromagnetic on-off valve; a second flow path provided in parallel with the first flow path;
A restrictor provided in the second flow path and made of a porous permeable material communicating with the refrigerant in the flow direction.

【0011】また、前記多孔質透過材で冷媒流路を覆う
ものである。
Further, the refrigerant passage is covered with the porous permeable material.

【0012】また、前記多孔質透過材は空洞部を有する
又は中空体としたものでである。
Further, the porous permeable material has a hollow portion or a hollow body.

【0013】また、前記絞り部は、一端が開放した筒状
を成し、この筒状の周面および底面を介して前記筒状の
内外を連通する流路を多孔質透過材で構成したものであ
る。
Further, the throttle section has a cylindrical shape with one end opened, and a flow path communicating between the inside and the outside of the cylindrical shape through the cylindrical peripheral surface and the bottom surface is formed of a porous permeable material. It is.

【0014】また、前記多孔質透過材の透過面積を調節
する調節手段を備えたものである。
[0014] Further, there is provided an adjusting means for adjusting a transmission area of the porous permeable material.

【0015】また、弁室側壁に第1流路が開口する弁本
体と、弁室底面に第2流路が開口する主弁座と、弁室内
に前記主弁座を閉止できる主弁体を有し、前記主弁体に
多孔質透過材を用いて絞り部を構成したものである。
A valve body having a first flow passage opening in a valve chamber side wall, a main valve seat having a second flow passage opening in a valve chamber bottom surface, and a main valve body capable of closing the main valve seat in the valve chamber. And a throttle portion formed by using a porous permeable material for the main valve body.

【0016】また、前記多孔質透過材は一端が開放した
柱状を成し、前記主弁座閉止時に前記柱状の周面側と底
面側とが流路入口側と出口側とに分断されるものであ
る。
The porous permeable material has a columnar shape with one end open, and the peripheral surface and the bottom surface of the columnar shape are divided into a flow channel inlet side and an outlet side when the main valve seat is closed. It is.

【0017】また、弁室側壁に第1流路が開口する弁本
体と、弁室底面に第2流路が開口する主弁座と、弁室内
に前記主弁座を閉止できる主弁体を有し、前記主弁座に
多孔質透過材を用いて流量制御弁を構成したものであ
る。
Also, a valve body having a first flow path opened in a valve chamber side wall, a main valve seat having a second flow path opened in a valve chamber bottom face, and a main valve body capable of closing the main valve seat in the valve chamber. A flow control valve using a porous permeable material for the main valve seat.

【0018】また、周面が主弁座の側面と当接し、前記
周面と側面との当接面積を開閉方向への移動によって可
変する主弁体と、前記主弁体の開閉方向への移動を制御
する制御手段とを備え、前記主弁体、主弁座および制御
手段で多孔質透過材の透過面積を調節する調節手段を構
成したものである。
A main valve body having a peripheral surface in contact with a side surface of the main valve seat, and a contact area between the peripheral surface and the side surface being varied by movement in the opening and closing direction; And a control means for controlling the movement, wherein the main valve body, the main valve seat and the control means constitute an adjusting means for adjusting the permeation area of the porous permeable material.

【0019】また、多孔質透過材の通気孔を200から
0.5マイクロメートルの範囲としたものである。
Further, the air holes of the porous permeable material are set in the range of 200 to 0.5 micrometers.

【0020】また、前記多孔質透過材を焼結金属とした
ものである。
Further, the porous permeable material is a sintered metal.

【0021】また、この発明に係る冷凍サイクル装置
は、請求項1又は請求項2記載の絞り装置を備えた冷凍
サイクルにおいて、前記多孔質透過材に気液二相冷媒を
通過させるものである。
Further, according to a refrigeration cycle apparatus according to the present invention, in the refrigeration cycle provided with the expansion device according to claim 1 or 2, the gas-liquid two-phase refrigerant passes through the porous permeable material.

【0022】また、弁室側壁に第1流路が開口する弁本
体と、弁室底面に第2流路が開口する主弁座と、弁室内
に前記主弁座を閉止できると共に周面が主弁座の側面と
当接し、前記周面と側面との当接面積を開閉方向への移
動によって可変する主弁体とを備えた絞り装置と、前記
主弁体の開閉方向への移動を制御する制御手段と、を備
え、前記主弁座又は主弁体に多孔質透過材を用いて流量
制御弁を構成すると共に、前記主弁体、主弁座および制
御手段で多孔質透過材の透過面積を調節する調節手段を
構成したものである。
Also, a valve body having a first flow path opened in a valve chamber side wall, a main valve seat having a second flow path opened in a valve chamber bottom face, and the main valve seat can be closed in the valve chamber and a peripheral surface is formed. A throttle device having a main valve body that abuts on a side surface of the main valve seat and changes an abutting area between the peripheral surface and the side surface by movement in the opening and closing direction, and moving the main valve body in the opening and closing direction. And a control means for controlling the main valve seat or the main valve body to constitute a flow rate control valve using a porous permeable material, and the main valve body, the main valve seat and the control means of the porous permeable material. This constitutes adjusting means for adjusting the transmission area.

【0023】また、前記調節手段は前記絞り装置の圧力
差に応じて前記透過面積を調節するものである。
Further, the adjusting means adjusts the transmission area according to a pressure difference of the expansion device.

【0024】また、前記調節手段は所定の圧力差となる
よう前記透過面積を調節するものである。
Further, the adjusting means adjusts the transmission area so as to have a predetermined pressure difference.

【0025】また、この発明に係る空気調和装置は、圧
縮機、室外熱交換器、第1流量制御弁、第1室内熱交換
器、第2流量制御弁、第2室内熱交換器を順次接続した
冷凍サイクルを備えた空気調和装置において、前記第2
流量制御弁の絞り部を冷媒流れ方向に連通する多孔質透
過材で構成したものである。
Further, the air conditioner according to the present invention sequentially connects a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger. An air conditioner equipped with a refrigerating cycle,
The throttle portion of the flow control valve is formed of a porous permeable material that communicates with the refrigerant in the flow direction.

【0026】また、前記多孔質透過材の透過面積を調節
する調節手段を備えたものである。また、弁室側壁に第
1流路が開口する弁本体と、弁室底面に第2流路が開口
する主弁座と、弁室内に前記主弁座を閉止できる主弁体
を有し、前記主弁体に多孔質透過材を用いて第2流量制
御弁を構成したものである。
[0026] Further, there is provided an adjusting means for adjusting a transmission area of the porous permeable material. A valve body having a first flow path opened in a valve chamber side wall, a main valve seat having a second flow path opened in a valve chamber bottom face, and a main valve body capable of closing the main valve seat in a valve chamber; A second flow control valve is constituted by using a porous permeable material for the main valve body.

【0027】また、弁室側壁に第1流路が開口する弁本
体と、弁室底面に第2流路が開口する主弁座と、弁室内
に前記主弁座を閉止できる主弁体を有し、前記主弁座に
多孔質透過材を用いて第2流量制御弁を構成したもので
ある。
Also, a valve body having a first flow path opened in a valve chamber side wall, a main valve seat having a second flow path opened in a valve chamber bottom face, and a main valve body capable of closing the main valve seat in the valve chamber. And a second flow control valve using a porous permeable material for the main valve seat.

【0028】また、周面が主弁座の側面と当接し、前記
周面と側面との当接面積を開閉方向への移動によって可
変する主弁体と、前記主弁体の開閉方向への移動を制御
する制御手段とを備え、前記主弁体、主弁座および制御
手段で多孔質透過材の透過面積を調節する調節手段を構
成したものである。
A main valve body having a peripheral surface in contact with a side surface of the main valve seat, and a contact area between the peripheral surface and the side surface being varied by movement in the opening and closing direction; And a control means for controlling the movement, wherein the main valve body, the main valve seat and the control means constitute an adjusting means for adjusting the permeation area of the porous permeable material.

【0029】また、前記調節手段は前記第2流量制御弁
の圧力差に応じて前記透過面積を調節するものである。
Further, the adjusting means adjusts the permeation area according to the pressure difference of the second flow control valve.

【0030】また、前記調節手段は潜熱比を低下させる
運転時に所定の圧力差となるよう前記透過面積を調節す
るものである。
Further, the adjusting means adjusts the permeation area so as to have a predetermined pressure difference during an operation for lowering the latent heat ratio.

【0031】また、多孔質透過材の通気孔を200から
0.5マイクロメートルの範囲としたものである。
In addition, the pores of the porous permeable material are set in the range of 200 to 0.5 micrometers.

【0032】また、潜熱比を低下させる運転時に前記第
2流量制御弁を閉止するよう制御する制御部を備えたも
のである。
Further, a control unit is provided for controlling the second flow control valve to be closed during the operation for lowering the latent heat ratio.

【0033】また、前記制御部は冷房又は除湿並びに暖
房運転時に前記第2流量制御弁を閉止するよう制御する
ものである。
The control section controls the second flow control valve to be closed during cooling or dehumidification and heating operations.

【0034】また、暖房運転起動時に前記第2流量制御
弁を閉止するよう制御する制御部を備えたものである。
Further, a control unit for controlling the second flow control valve to be closed when the heating operation is started is provided.

【0035】また、暖房運転時で設定温度と室内温度と
の差が所定値以上の場合に前記第2流量制御弁を閉止す
るよう制御する制御部を備えたものである。
Further, a control unit is provided for controlling the second flow control valve to be closed when the difference between the set temperature and the room temperature is equal to or more than a predetermined value during the heating operation.

【0036】また、圧縮機、室外熱交換器、第1流量制
御弁、第1室内熱交換器、第2流量制御弁、第2室内熱
交換器を順次接続した冷凍サイクルを備えた空気調和装
置において、前記第2流量制御弁を内径1mm以上の毛
細管で構成したものである。
An air conditioner having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. In the above, the second flow control valve is constituted by a capillary having an inner diameter of 1 mm or more.

【0037】また、圧縮機、室外熱交換器、第1流量制
御弁、第1室内熱交換器、第2流量制御弁、第2室内熱
交換器を順次接続した冷凍サイクルを備えた空気調和装
置において、前記第2流量制御弁を毛細管で構成し、冷
房除湿運転時の前記毛細管入口配管と前記第2室内熱交
換器と前記圧縮機の間の配管とを熱交換させる熱交換器
を設けたものである。
An air conditioner equipped with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. In the above, the second flow control valve is constituted by a capillary, and a heat exchanger is provided for exchanging heat between the capillary inlet pipe and the pipe between the second indoor heat exchanger and the compressor during a cooling and dehumidifying operation. Things.

【0038】また、圧縮機、室外熱交換器、第1流量制
御弁、第1室内熱交換器、第2流量制御弁、第2室内熱
交換器を順次接続した冷凍サイクルを備えた空気調和装
置において、前記第2流量制御弁を毛細管で構成し、前
記第2室内熱交換器と前記圧縮機の間の配管と熱交換さ
せる熱交換器を設けたものである。
An air conditioner having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. In the above, the second flow control valve is constituted by a capillary tube, and a heat exchanger for exchanging heat with a pipe between the second indoor heat exchanger and the compressor is provided.

【0039】また、第2室内熱交換器及び第2流量制御
弁をバイパスするバイパス流路と、このバイパス流路を
開閉する開閉手段とを備えたものである。
[0039] The apparatus further includes a bypass passage for bypassing the second indoor heat exchanger and the second flow control valve, and opening and closing means for opening and closing the bypass passage.

【0040】また、圧縮機、室外熱交換器、第1流量制
御弁、第1室内熱交換器、第2流量制御弁、第2室内熱
交換器を順次接続した冷凍サイクルを備えた空気調和装
置において、第2室内熱交換器及び第2流量制御弁をバ
イパスするバイパス流路と、このバイパス流路を開閉す
る開閉手段とを備えたものである。
An air conditioner having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. And a bypass passage for bypassing the second indoor heat exchanger and the second flow control valve, and opening and closing means for opening and closing the bypass passage.

【0041】また、前記第2流量制御弁及び開閉手段を
制御する制御手段を備え、前記制御手段は潜熱比を低下
させる運転時に顕熱能力に応じて、前記第2流量制御弁
を絞り前記開閉手段を開く熱交換器分割運転と、前記第
2流量制御弁を絞り前記開閉手段を閉じる冷媒再熱運転
とを行なうよう制御するものである。
The apparatus further comprises control means for controlling the second flow rate control valve and the opening / closing means, wherein the control means throttles the second flow rate control valve in accordance with the sensible heat capacity during operation for lowering the latent heat ratio. The control is such that the heat exchanger split operation for opening the means and the refrigerant reheating operation for closing the opening / closing means by narrowing the second flow control valve.

【0042】また、前記第2流量制御弁及び開閉手段を
制御する制御手段を備え、前記制御手段は顕熱比が低下
した場合に、前記第2流量制御弁を閉じ、前記開閉手段
を閉じるよう制御するものである。
The apparatus further comprises control means for controlling the second flow control valve and the opening / closing means, wherein the control means closes the second flow control valve and closes the opening / closing means when the sensible heat ratio decreases. To control.

【0043】また、前記第2流量制御弁及び開閉手段を
制御する制御手段を備え、暖房運転起動時に前記第2流
量制御弁を閉じ、前記開閉手段を開くよう制御するもの
である。
Further, a control means for controlling the second flow rate control valve and the opening / closing means is provided, and when the heating operation is started, the second flow rate control valve is closed and the opening / closing means is opened.

【0044】また、第1流量制御弁と前記第1室内熱交
換器の間の配管に暖房運転時に液冷媒を貯留するレシー
バを設けたものである。
Further, a receiver for storing the liquid refrigerant during the heating operation is provided in a pipe between the first flow control valve and the first indoor heat exchanger.

【0045】[0045]

【発明の実施の形態】実施の形態1.図1はこの発明の
実施の形態の一例を示す空気調和装置の冷媒回路図で、
従来装置と同様の部分は同一符号で示している。図にお
いて、1は圧縮機、2は冷房運転および暖房運転の冷媒
の流れを切換える流路切換手段で例えば四方弁、3は室
外熱交換器、4は第1流量制御弁である電気式膨張弁、
5は第1室内熱交換器、7は第2室内熱交換器であり、
この第1室内熱交換器5と第2室内熱交換器7の間に
は、第2流量制御弁6が設けられており、これらは配管
によって順次接続され、冷凍サイクルを構成している。
また圧縮機1、四方弁2、室外熱交換器3および第1流
量制御弁4で室外ユニット11を構成し、第1室内熱交
換器5、第2室内熱交換器7および第2流量制御弁6で
室内ユニット12を構成している。この冷凍サイクルの
冷媒には、R32とR125の混合冷媒であるR410
Aが用いられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a refrigerant circuit diagram of an air conditioner showing an example of an embodiment of the present invention,
Parts similar to those of the conventional device are denoted by the same reference numerals. In the figure, 1 is a compressor, 2 is a flow path switching means for switching the flow of refrigerant in cooling operation and heating operation, for example, a four-way valve, 3 is an outdoor heat exchanger, and 4 is an electric expansion valve which is a first flow control valve. ,
5 is a first indoor heat exchanger, 7 is a second indoor heat exchanger,
A second flow control valve 6 is provided between the first indoor heat exchanger 5 and the second indoor heat exchanger 7, and these are sequentially connected by piping to constitute a refrigeration cycle.
The compressor 1, the four-way valve 2, the outdoor heat exchanger 3, and the first flow control valve 4 constitute an outdoor unit 11, and the first indoor heat exchanger 5, the second indoor heat exchanger 7, and the second flow control valve 6 constitutes the indoor unit 12. The refrigerant of this refrigeration cycle includes R410, which is a mixed refrigerant of R32 and R125.
A is used.

【0046】図2は図1に示した空気調和機の第2流量
制御弁6の構造を示す図であり、21が第1流路であ
り、第1室内熱交換器5が接続され、22が第2流路で
あり、第2室内熱交換器7が接続されている。23は第
2流路が開口する主弁座であり、この図では弁本体と一
体に形成されている。24は第2流路制御弁6本体の内
面に沿って上下に摺動する主弁体で、これら主弁座23
と主弁体24とで絞り部を構成している。25は主弁体
24を駆動する電磁コイルで、図示しない制御部からの
指令に基づいて電磁コイル25を通断電し、主弁体24
を開閉する。主弁体24は多孔質透過材により成形さ
れ、具体的には通気孔(流体が透過することのできる多
孔質体内部の気孔)が10マイクロメートルの焼結金属
(金属粉末あるいは合金粉末を型に入れて加圧成形し、
次いで溶融点以下の温度で焼結を行なって製造されたも
の)で構成されている。さらにこの第2流量制御弁6
は、電磁コイル25に非通電することにより、主弁体2
4を上部に引き上げ、主弁体24を主弁座23から引き
離すことによって、第1流路21と第2流路22がほと
んど圧力損失なしにつながる(図2(a))。また電磁
コイル25に通電することにより、主弁体24が下部に
下がり、主弁体24を主弁座23に密着させることによ
って、弁本体の通気孔を介して第1流路21と第2流路
22がつながる(図2(b))。
FIG. 2 is a view showing the structure of the second flow control valve 6 of the air conditioner shown in FIG. 1, wherein reference numeral 21 denotes a first flow path, the first indoor heat exchanger 5 is connected, and Is a second flow path, to which the second indoor heat exchanger 7 is connected. Reference numeral 23 denotes a main valve seat in which the second flow path opens, and in this figure, is formed integrally with the valve body. A main valve element 24 slides up and down along the inner surface of the main body of the second flow path control valve 6.
The main valve element 24 and the main valve element 24 constitute a throttle section. Reference numeral 25 denotes an electromagnetic coil for driving the main valve element 24, which cuts off power through the electromagnetic coil 25 based on a command from a control unit (not shown),
Open and close. The main valve body 24 is formed of a porous permeable material. Specifically, a sintered metal (metal powder or alloy powder) having a ventilation hole (pore inside the porous body through which a fluid can pass) of 10 micrometers is used. And press molded
Then, it is manufactured by sintering at a temperature below the melting point. Further, the second flow control valve 6
Is de-energized to the electromagnetic coil 25 so that the main valve body 2
The first flow path 21 and the second flow path 22 are connected with almost no pressure loss by pulling up the upper part 4 and separating the main valve body 24 from the main valve seat 23 (FIG. 2A). When the electromagnetic coil 25 is energized, the main valve body 24 is lowered to the lower portion, and the main valve body 24 is brought into close contact with the main valve seat 23. The flow path 22 is connected (FIG. 2B).

【0047】次に本実施の形態による空気調和装置の冷
房時の動作について説明する。図1では冷房時の冷媒の
流れを実線矢印で示している。冷房運転は、起動時や夏
季時など部屋の空調顕熱負荷と潜熱負荷がともに大きい
場合に対応する通常冷房運転と、中間期や梅雨時期のよ
うに空調潜熱負荷は小さいが、顕熱負荷が大きな場合に
対応する除湿運転に分けられる。通常冷房運転は、第2
流量制御弁6の電磁コイル25を非通電状態とする。こ
のとき圧縮機1を出た高温高圧の冷媒蒸気は、四方弁2
を通って室外熱交換器3に流入し、外気と熱交換して凝
縮、液化する。この高圧の液冷媒は、第1流量制御弁4
で低圧に減圧され、気液二相冷媒となって第1室内熱交
換器5および第2室内熱交換器7で室内空気の顕熱およ
び潜熱を奪って蒸発する。第2流量制御弁6では、図2
(a)に示すように第1流路21と第2流路が大きな開
口面積で接続されているので、この弁を通過する際の冷
媒圧力損失はほとんどなく、圧力損失による冷房能力や
効率面での低下もない。第2室内熱交換器7を出た低圧
の蒸気冷媒は、四方弁2を通って再び圧縮機1に戻る。
この通常冷房運転時の第1流量制御弁4の開度は、例え
ば第2室内熱交換器の出口冷媒の過熱度が5℃となるよ
うに制御されている。
Next, the operation of the air conditioner according to the present embodiment during cooling will be described. In FIG. 1, the flow of the refrigerant during cooling is indicated by solid arrows. Cooling operation is usually performed when the sensible heat load and latent heat load in the room are both large, such as during startup or during the summer. It is divided into dehumidification operation corresponding to a large case. Normal cooling operation is the second
The electromagnetic coil 25 of the flow control valve 6 is turned off. At this time, the high-temperature and high-pressure refrigerant vapor exiting the compressor 1 is supplied to the four-way valve 2.
Then, it flows into the outdoor heat exchanger 3 and exchanges heat with the outside air to condense and liquefy. This high-pressure liquid refrigerant is supplied to the first flow control valve 4
, And becomes a gas-liquid two-phase refrigerant and evaporates in the first indoor heat exchanger 5 and the second indoor heat exchanger 7 by removing the sensible heat and latent heat of the indoor air. In the second flow control valve 6, FIG.
As shown in (a), since the first flow path 21 and the second flow path are connected with a large opening area, there is almost no refrigerant pressure loss when passing through this valve. There is no decrease in The low-pressure vapor refrigerant that has exited the second indoor heat exchanger 7 passes through the four-way valve 2 and returns to the compressor 1 again.
The opening degree of the first flow control valve 4 during the normal cooling operation is controlled so that the superheat degree of the outlet refrigerant of the second indoor heat exchanger is 5 ° C., for example.

【0048】次に除湿運転時の動作について、図3に示
す圧力―エンタルピー線図を用いて説明する。なお、図
3に示した英文字は、図1に示した英文字と対応してい
る。この除湿運転時は、第2流量制御弁の電磁コイル2
5に通電し、図2(b)に示すように主弁体24を主弁
座23に密着させ、主弁体24の通気孔を介して第1流
路21である第1室内熱交換器5の出口と第2流路22
である第2室内熱交換器7の入口を接続する。この時、
圧縮機1を出た高温高圧の冷媒蒸気(A点)は、四方弁
2を通って室外熱交換器3に流入し、外気と熱交換して
凝縮する(B点)。この高圧の液冷媒あるいは気液二相
冷媒は、第1流量制御弁4で若干減圧され(C点)、中
間圧の気液二相冷媒となって第1室内熱交換器5に流入
する。この第1室内熱交換器5に流入した冷媒は、室内
空気と熱交換してさらに凝縮する(D点)。第1室内熱
交換器5を出た中間圧の液冷媒あるいは気液二相冷媒
は、第2流量制御弁6に流入する。第2流量制御弁6で
は、図2(b)に示すように主弁体24が主弁座23に
密着しているため、この弁に流入した冷媒は、焼結金属
で構成されている主弁体24内の通気孔を通って第2室
内熱交換器7に流入する。この主弁体24の通気孔は1
0マイクロメートル程度であり、この通気孔を通る冷媒
は減圧されて、低圧の気液二相冷媒となって、第2室内
熱交換器7に流入する(E点)。この第2室内熱交換器
7に流入した冷媒は、室内空気の顕熱および潜熱を奪っ
て蒸発する。第2室内熱交換器7を出た低圧の蒸気冷媒
は、四方弁2を通って再び圧縮機1に戻る。室内空気
は、第1室内熱交換器5で加熱され、第2室内熱交換器
7で冷却除湿されるため、部屋の室温低下を防ぎながら
除湿を行うことができる。
Next, the operation during the dehumidifying operation will be described with reference to the pressure-enthalpy diagram shown in FIG. The English characters shown in FIG. 3 correspond to the English characters shown in FIG. During this dehumidifying operation, the electromagnetic coil 2 of the second flow control valve
5, the main valve body 24 is brought into close contact with the main valve seat 23 as shown in FIG. 2B, and the first indoor heat exchanger which is the first flow path 21 through the vent hole of the main valve body 24. 5 and the second flow path 22
Is connected to the inlet of the second indoor heat exchanger 7. At this time,
The high-temperature and high-pressure refrigerant vapor (point A) that has exited the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2 and exchanges heat with outside air to condense (point B). This high-pressure liquid refrigerant or gas-liquid two-phase refrigerant is slightly depressurized by the first flow control valve 4 (point C), becomes an intermediate-pressure gas-liquid two-phase refrigerant, and flows into the first indoor heat exchanger 5. The refrigerant that has flowed into the first indoor heat exchanger 5 exchanges heat with indoor air and is further condensed (point D). The intermediate-pressure liquid refrigerant or gas-liquid two-phase refrigerant flowing out of the first indoor heat exchanger 5 flows into the second flow control valve 6. In the second flow control valve 6, since the main valve body 24 is in close contact with the main valve seat 23 as shown in FIG. 2B, the refrigerant flowing into this valve is made of a sintered metal. The gas flows into the second indoor heat exchanger 7 through the ventilation hole in the valve element 24. The ventilation hole of this main valve body 24 is 1
The refrigerant passing through the vent hole is reduced in pressure to become a low-pressure gas-liquid two-phase refrigerant and flows into the second indoor heat exchanger 7 (point E). The refrigerant flowing into the second indoor heat exchanger 7 evaporates by removing the sensible heat and latent heat of the indoor air. The low-pressure vapor refrigerant that has exited the second indoor heat exchanger 7 passes through the four-way valve 2 and returns to the compressor 1 again. The indoor air is heated in the first indoor heat exchanger 5 and cooled and dehumidified in the second indoor heat exchanger 7, so that dehumidification can be performed while preventing the room temperature from lowering.

【0049】なお、この除湿運転では、圧縮機1の回転
周波数や室外熱交換器3のファン回転数を調整して、室
外熱交換器3の熱交換量を制御し、第1室内熱交換器5
による室内空気の加熱量を制御して吹出し温度を広範囲
に制御できる。また第1流量制御弁7の開度や室内ファ
ン回転数を調整して、第1室内熱交換器5の凝縮温度を
制御し、第1室内熱交換器5による室内空気の加熱量を
制御することもできる。また第2流量制御弁4の開度
は、例えば第2室内熱交換器の出口冷媒の過熱度が5℃
となるように制御されている。
In this dehumidifying operation, the rotation frequency of the compressor 1 and the number of rotations of the fan of the outdoor heat exchanger 3 are adjusted to control the amount of heat exchange of the outdoor heat exchanger 3 and the first indoor heat exchanger. 5
To control the amount of indoor air heating to control the blowout temperature over a wide range. Further, by controlling the opening degree of the first flow control valve 7 and the number of rotations of the indoor fan, the condensation temperature of the first indoor heat exchanger 5 is controlled, and the amount of indoor air heated by the first indoor heat exchanger 5 is controlled. You can also. The degree of opening of the second flow control valve 4 is, for example, such that the degree of superheat of the outlet refrigerant of the second indoor heat exchanger is 5 ° C.
It is controlled so that

【0050】この実施の形態では、焼結金属を主弁体2
4に用いた第2流量制御弁6を第1室内熱交換器5と第
2室内熱交換器7の間に配置し、冷房除湿運転時の絞り
装置として用いているので、第2流量制御弁6を液冷媒
あるいは気液二相冷媒が通過する際の冷媒流動音を大幅
に低減することができる。通常のオリフィスタイプの絞
り装置に気液二相冷媒が通過する際には、大きな冷媒流
動音が発生する。特に気液二相冷媒の流動様式がスラグ
流となる場合に、大きな冷媒流動音が発生することが知
られている。この冷媒流動音の発生要因としては、絞り
装置内のオリフィス部など小孔をスラグ流が通過する際
に、小孔よりも大きな冷媒蒸気スラグあるいは冷媒気泡
が破壊し、この冷媒蒸気スラグあるいは冷媒気泡の崩壊
により振動が発生することや、小孔を蒸気冷媒と液冷媒
が交互に通過するため、この小孔を冷媒が通過する際に
発生する圧力損失が大きく変動することが考えられる。
図2に示した第2流量制御弁では、冷房除湿運転時に第
1室内熱交換器5を出た気液二相冷媒あるいは液冷媒
は、焼結金属で構成されている主弁体24内の微細な通
気孔を通り、この際に減圧されて第2室内熱交換器7に
流入するため、冷媒蒸気スラグや冷媒気泡の崩壊が発生
せず、また蒸気冷媒と液冷媒は同時に主弁体24の通気
孔内を通過するため、圧力損失の大きな変動も生じな
い。このため従来装置で必要であった遮音材や制振材を
弁の外周に巻きつけるなどの低騒音化手段が不要とな
り、コストの低減ができ、さらに空気調和機器のリサイ
クル性も向上する。尚、上述した気液二相冷媒に起因す
る冷媒流動音の課題に関しては、空気調和装置に限定さ
れることなく、冷蔵庫等の冷凍サイクル一般についての
課題であり、本実施の形態の絞り装置はこのような冷凍
サイクル一般に広く適用することで、同様の作用効果が
得られる。
In this embodiment, the sintered metal is
Since the second flow control valve 6 used in Step 4 is disposed between the first indoor heat exchanger 5 and the second indoor heat exchanger 7 and used as a throttle device during the cooling and dehumidifying operation, the second flow control valve is used. The refrigerant flow noise when a liquid refrigerant or a gas-liquid two-phase refrigerant passes through 6 can be greatly reduced. When the gas-liquid two-phase refrigerant passes through the ordinary orifice type expansion device, a loud refrigerant flow noise is generated. Particularly, it is known that a large refrigerant flow noise is generated when the flow mode of the gas-liquid two-phase refrigerant is a slag flow. The reason for the generation of the refrigerant flow noise is that when the slag flow passes through a small hole such as an orifice in the expansion device, the refrigerant vapor slag or the refrigerant bubble larger than the small hole is broken, and the refrigerant vapor slag or the refrigerant bubble It is conceivable that vibrations are generated due to collapse of the gas, and that the vapor refrigerant and the liquid refrigerant alternately pass through the small holes, so that the pressure loss generated when the refrigerant passes through the small holes varies greatly.
In the second flow control valve shown in FIG. 2, the gas-liquid two-phase refrigerant or the liquid refrigerant that has exited the first indoor heat exchanger 5 during the cooling and dehumidifying operation is discharged from the main valve body 24 made of sintered metal. At this time, the refrigerant passes through the fine ventilation holes and is decompressed and flows into the second indoor heat exchanger 7, so that the refrigerant vapor slag and the collapse of the refrigerant bubbles do not occur, and the vapor refrigerant and the liquid refrigerant are simultaneously discharged from the main valve body 24. Since the gas passes through the vent hole, no large fluctuation in pressure loss occurs. For this reason, noise reduction means such as wrapping a sound insulating material or a vibration damping material around the outer periphery of the valve, which is required in the conventional device, becomes unnecessary, so that the cost can be reduced and the recyclability of the air conditioning equipment is improved. Note that the problem of the refrigerant flow noise caused by the gas-liquid two-phase refrigerant described above is not limited to the air conditioner, but is a general problem of a refrigeration cycle such as a refrigerator. A similar effect can be obtained by widely applying such a refrigeration cycle in general.

【0051】冷房除湿運転時の第2流量制御弁6の流量
特性(冷媒流量と圧力損失の関係)は、主弁体24に用
いる焼結金属の通気孔の径や冷媒が通過する流路長さを
調整することによって調整することができる。すなわち
ある冷媒流量を小さな圧力損失で流す場合には、焼結金
属の通気孔を大きくしたり、弁本体の径を小さくすれば
良い。また図4に示すように、弁本体の内部に空洞部2
6を設け、焼結金属を通過する流路長さを小さくしても
良い。また逆に、ある冷媒流量を大きな圧力損失で流す
場合には、焼結金属の通気孔を小さくしたり、弁本体の
径を大きくすれば良い。このような主弁体24に用いる
焼結金属の通気孔の径や弁本体の形状は、機器設計時に
最適に設計される。尚、主弁体24先端が開放した空洞
部26に代えて、周囲が焼結金属で囲まれた中空部とし
てもよい。さらに主弁体24閉止時に柱状の主弁体24
の周面側と底面側とが流路入口側と出口側とに分断され
る構造であれば、周面側と底面側とで圧力損失等の調整
が独立して行なえる。この焼結金属の通気孔の径として
は、200から0.5マイクロメートルであれば充分な
冷媒流動音低原稿化低減効果が得られることを実験によ
り確認した。好適な例としては、冷媒がR410Aで、
焼結金属前後の圧力差が1MPa(メガパスカル)程度の
場合に上記通気孔径が10マイクロメートル程度とする
と良い。圧力差が大きい場合には通気孔径をより小さ
く、圧力差が小さい場合には通気孔径をより大きく設計
することで対応させられる。この焼結金属の通気孔は、
径が小さいほど焼結金属が小形となり、結果として第2
流量制御弁6もコンパクトになる。なお通気孔の小さな
焼結金属を弁本体に用いた際に、冷凍サイクル内の異物
やスラッジによる通気孔の詰まりを防止するために、第
2流量制御弁6の上流側に、金属メッシュなどのフィル
ターを設置しても良い。
The flow rate characteristics of the second flow rate control valve 6 during the cooling and dehumidifying operation (the relationship between the flow rate of the refrigerant and the pressure loss) are determined by the diameter of the vent hole of the sintered metal used for the main valve body 24 and the length of the flow path through which the refrigerant passes. It can be adjusted by adjusting the height. That is, when a certain refrigerant flow rate is caused to flow with a small pressure loss, it is only necessary to increase the size of the sintered metal vent or to reduce the diameter of the valve body. In addition, as shown in FIG.
6 may be provided to reduce the length of the flow path passing through the sintered metal. Conversely, when a certain refrigerant flow rate is caused to flow with a large pressure loss, the sintered metal vent holes may be reduced, or the diameter of the valve body may be increased. The diameter of the sintered metal vent hole used for the main valve body 24 and the shape of the valve body are optimally designed at the time of equipment design. Note that, instead of the hollow portion 26 in which the tip of the main valve body 24 is open, a hollow portion surrounded by a sintered metal may be used. Further, when the main valve body 24 is closed, the columnar main valve body 24 is closed.
If the peripheral surface side and the bottom surface side are divided into the flow channel inlet side and the outlet side, adjustment of pressure loss and the like can be performed independently on the peripheral surface side and the bottom surface side. It has been confirmed by experiments that if the diameter of the vent hole of the sintered metal is from 200 to 0.5 micrometers, a sufficient effect of reducing the flow noise of the refrigerant and reducing the original can be obtained. As a preferred example, the refrigerant is R410A,
When the pressure difference between before and after the sintered metal is about 1 MPa (megapascal), it is preferable that the diameter of the vent hole is about 10 micrometers. When the pressure difference is large, the diameter of the vent hole is smaller, and when the pressure difference is small, the diameter of the vent hole is designed to be larger. The vents of this sintered metal
The smaller the diameter is, the smaller the sintered metal becomes.
The flow control valve 6 is also compact. When a sintered metal having a small air hole is used for the valve body, a metal mesh or the like is provided upstream of the second flow control valve 6 in order to prevent the air hole from being clogged with foreign matter or sludge in the refrigeration cycle. A filter may be installed.

【0052】また本実施の形態では、第2流量制御弁
は、電磁コイル25への通電あるいは非通電により開閉
動作を行なうものについて説明したが、主弁体24をス
テッピングモータによって連続的に駆動し、第2流量制
御弁の流量特性を連続的に変化させるようにしても良
い。このように流量特性を連続的に制御することによ
り、冷房除湿運転時の温度および湿度制御性はより一層
向上し、快適な室内空間を実現できる。
In the present embodiment, the second flow control valve is described as performing opening and closing operations by energizing or de-energizing the electromagnetic coil 25. However, the main valve body 24 is continuously driven by the stepping motor. Alternatively, the flow characteristics of the second flow control valve may be continuously changed. By continuously controlling the flow characteristics in this manner, the controllability of temperature and humidity during the cooling and dehumidifying operation is further improved, and a comfortable indoor space can be realized.

【0053】次に、この実施の形態の空気調和装置の運
転制御法について説明する。空気調和装置には、部屋内
に居る居住者の好の温湿度環境を設定するために、例え
ば設定温度と設定湿度が空調装置運転時に設定される。
なおこの設定温度と設定湿度は、居住者がそれぞれの設
定値を室内ユニットのリモコンから直接入力してもよ
く、また暑がりの人用、寒がりの人用や子供用、老人用
など室内ユニットのリモコンに対象とする居住者別に定
めた温度および湿度の最適値テーブルを記憶させ、対象
居住者のみを直接入力するようにしてもよい。また室内
ユニット12には、室内の温度および湿度を検知するた
めに、室内ユニットの吸い込み空気の温度および湿度を
検出するセンサーがそれぞれ設けられている。
Next, an operation control method of the air conditioner of this embodiment will be described. In the air conditioner, for example, a set temperature and a set humidity are set during operation of the air conditioner in order to set a favorable temperature and humidity environment for a resident in the room.
The set temperature and the set humidity may be input directly by the occupant from the remote control of the indoor unit, and the set temperature and the set humidity of the indoor unit such as for a hot person, a cold person, a child, and an elderly person. The remote controller may store an optimum value table of temperature and humidity determined for each target resident, and directly input only the target resident. The indoor unit 12 is provided with sensors for detecting the temperature and humidity of the air taken into the indoor unit in order to detect the indoor temperature and humidity.

【0054】空気調和装置が起動されると、設定温度と
現在の室内吸込み空気温度との差を温度偏差、設定湿度
と現在の室内吸込み空気湿度との差を湿度偏差として演
算し、最終的にこれらの偏差がゼロあるいは所定の値以
内となるように空気調和装置の圧縮機1の回転周波数、
室外ファン回転数、室内ファン回転数、第1流量制御弁
4の絞り開度、および第2流量制御弁6の開閉を制御す
る。この時、温度および湿度偏差をゼロあるいは所定の
値以内に制御する際には、温度偏差を湿度偏差よりも優
先して空気調和装置の制御を行なう。すなわち、空気調
和装置起動時に、温度偏差および湿度偏差がともに大き
い場合は、第2流量制御弁7を開状態とし、まず通常冷
房運転で、室内の温度偏差を優先的にゼロまたは所定の
値以内となるように運転する。空気調和装置の冷房能力
が部屋の熱負荷と一致し、温度偏差がゼロまたは所定の
値以内となった場合に、湿度偏差を検出し、この時、湿
度偏差がゼロまたは所定の値以内となっている場合は、
現在の運転を続行する。
When the air conditioner is started, the difference between the set temperature and the current indoor suction air temperature is calculated as a temperature deviation, and the difference between the set humidity and the current indoor suction air humidity is calculated as a humidity deviation. The rotational frequency of the compressor 1 of the air conditioner is set so that these deviations become zero or within a predetermined value.
The controller controls the outdoor fan speed, the indoor fan speed, the throttle opening of the first flow control valve 4, and the opening and closing of the second flow control valve 6. At this time, when controlling the temperature and humidity deviations to be zero or within a predetermined value, the air conditioner is controlled by giving priority to the temperature deviations over the humidity deviations. That is, when both the temperature deviation and the humidity deviation are large at the time of starting the air conditioner, the second flow control valve 7 is opened, and the temperature deviation in the room is preferentially reduced to zero or within a predetermined value in the normal cooling operation. Drive so that When the cooling capacity of the air conditioner matches the heat load of the room and the temperature deviation is zero or within a predetermined value, a humidity deviation is detected. At this time, the humidity deviation becomes zero or within a predetermined value. If you have
Continue the current operation.

【0055】温度偏差がゼロまたは所定の値以内とな
り、この時の湿度偏差がまだ大きな値となっている場合
は、第2流量制御弁6を絞り、冷房除湿運転に切換え
る。この冷房除湿運転では、室内の温度偏差がゼロまた
は所定の値以内を維持できるように、第2室内熱交換器
7の加熱量を制御するとともに、湿度偏差がゼロまたは
所定の値以内に入るように、第1室内熱交換器5の冷却
除湿量を制御する。第2室内熱交換器7の加熱量の制御
には、室外熱交換器3のファン回転数や第1流量制御弁
4の開度などによって調整する。また第1室内熱交換器
5の冷却除湿量の制御には、圧縮機1の回転周波数や室
内ユニット12のファン回転数などによって制御する。
If the temperature deviation is zero or within a predetermined value and the humidity deviation at this time is still a large value, the second flow control valve 6 is throttled to switch to the cooling and dehumidifying operation. In this cooling and dehumidifying operation, the heating amount of the second indoor heat exchanger 7 is controlled so that the indoor temperature deviation can be maintained at zero or within a predetermined value, and the humidity deviation is set at zero or within a predetermined value. Next, the amount of cooling and dehumidification of the first indoor heat exchanger 5 is controlled. The heating amount of the second indoor heat exchanger 7 is controlled by adjusting the fan speed of the outdoor heat exchanger 3 and the opening of the first flow control valve 4. The amount of cooling and dehumidification of the first indoor heat exchanger 5 is controlled by the rotation frequency of the compressor 1, the number of fan rotations of the indoor unit 12, and the like.

【0056】このようにこの実施の形態では、冷房運転
時の部屋の負荷に応じて、冷媒回路を通常冷房運転と冷
房除湿運転に切換えることにより、部屋内の温湿度環境
を、居住者の好みに応じて最適な状態に制御することが
できる。
As described above, in this embodiment, the refrigerant circuit is switched between the normal cooling operation and the cooling and dehumidifying operation according to the load on the room during the cooling operation, so that the temperature and humidity environment in the room can be changed according to the occupants' preference. Can be controlled to an optimum state according to

【0057】実施の形態2.図5はこの発明の実施の形
態の他の例を示す空気調和装置の第2流量制御弁の構成
図であり、図2に示したものと同一または同様の構成部
品には同一符合を付して、その重複する説明を省略す
る。この実施の形態では、主弁体24には通常の金属製
弁を用い、主弁座23に焼結金属を用いている。図2と
同様に、電磁コイル25に非通電することにより、主弁
体24が主弁座23から引き離れ、第1流路21と第2
流路22がほとんど圧力損失なしにつながる(図5
(a))。また電磁コイル25に通電することにより、
主弁体24を主弁座23に密着させ、主弁座23の通気
孔を介して第1流路21と第2流路22がつながる(図
2(b))。冷房除湿運転時には、図5(b)のように
電磁コイルに通電することにより、第1室内熱交換器5
を出た冷媒は、第2流量制御弁6内の主弁座23の通気
孔を通って減圧され、第2室内熱交換器7に流入するた
め、冷媒流動音の発生がなく、快適な室内空間を実現で
きる。また通常冷房時には、電磁コイルを非通電とする
ことにより、図5(a)に示すように主弁体24を主弁
座23から引き離れ、第1流路21と第2流路22がほ
とんど圧力損失なしにつながるため、第1室内熱交換器
5と第2室内熱交換器7の間で圧力損失はなく、冷房能
力や効率面で低下することもない。
Embodiment 2 FIG. 5 is a configuration diagram of a second flow control valve of an air conditioner showing another example of the embodiment of the present invention. Components that are the same as or similar to those shown in FIG. Therefore, the duplicate description will be omitted. In this embodiment, an ordinary metal valve is used for the main valve body 24, and a sintered metal is used for the main valve seat 23. As in FIG. 2, when the electromagnetic coil 25 is de-energized, the main valve body 24 separates from the main valve seat 23 and the first flow path 21 and the second flow path
Channel 22 leads to almost no pressure loss (FIG. 5).
(A)). By energizing the electromagnetic coil 25,
The main valve element 24 is brought into close contact with the main valve seat 23, and the first flow path 21 and the second flow path 22 are connected via the vent hole of the main valve seat 23 (FIG. 2B). During the cooling and dehumidifying operation, the first indoor heat exchanger 5 is energized by energizing the electromagnetic coil as shown in FIG.
Is depressurized through the ventilation hole of the main valve seat 23 in the second flow control valve 6 and flows into the second indoor heat exchanger 7, so that no refrigerant flow noise is generated and a comfortable room is generated. Space can be realized. During normal cooling, the main coil 24 is pulled away from the main valve seat 23 as shown in FIG. 5A by turning off the electromagnetic coil, so that the first flow path 21 and the second flow path 22 Since there is no pressure loss, there is no pressure loss between the first indoor heat exchanger 5 and the second indoor heat exchanger 7, and there is no decrease in cooling capacity or efficiency.

【0058】図2に示した実施の形態のように主弁体2
4を焼結金属で成形するよりも、本実施の形態で示した
ように主弁座23を焼結金属で形成する方が形状が単純
なため、比較的容易であり、結果として安価で、しかも
冷媒流動音の発生しない流量制御弁を得ることができ
る。またこの流量制御弁の流量特性を設計するのも形状
が簡単なため、設計しやすい。この流量制御弁の流量特
性は、図2の実施の形態と同様に、主弁座23に用いる
焼結金属の通気孔の径や冷媒が通過する流路長さを調整
することによって調整することができる。すなわちある
冷媒流量を小さな圧力損失で流す場合には、焼結金属の
通気孔を大きくしたり、主弁座の冷媒が通過する流路長
さをを小さくすれば良い。また逆に、ある冷媒流量を大
きな圧力損失で流す場合には、焼結金属の通気孔を小さ
くしたり、図6に示すように主弁座の冷媒が通過する流
路長さを大きくしても良い。
As shown in the embodiment shown in FIG.
Forming the main valve seat 23 with a sintered metal as shown in the present embodiment is relatively simpler than forming the main valve seat 4 with a sintered metal as shown in the present embodiment, so that it is relatively easy, and as a result, In addition, it is possible to obtain a flow control valve that does not generate refrigerant flow noise. Also, the flow characteristics of the flow control valve can be designed easily because the shape is simple. The flow characteristic of the flow control valve is adjusted by adjusting the diameter of the vent of the sintered metal used for the main valve seat 23 and the length of the flow path through which the refrigerant passes, as in the embodiment of FIG. Can be. That is, when a certain flow rate of the refrigerant is caused to flow with a small pressure loss, the ventilation hole of the sintered metal may be increased, or the length of the passage of the main valve seat through which the refrigerant passes may be reduced. Conversely, when a certain refrigerant flow rate is caused to flow with a large pressure loss, the ventilation hole of the sintered metal is reduced or the flow path length of the main valve seat through which the refrigerant passes is increased as shown in FIG. Is also good.

【0059】なお、本実施の形態1および形態2では、
弁本体を焼結金属で成形した開閉弁や主弁座を焼結金属
で成形した開閉弁を第2流量制御弁として用いる例につ
いて説明したが、これに限ることはなく、焼結金属は、
弁内で減圧作用が生じる部位であれはどこでもよく、弁
本体および主弁座をともに焼結金属で成形してもよい。
また焼結金属の材質としては、鉄を主成分とし炭素、
銅、ニッケルなどを加えた低合金鋼や、ステンレス鋼、
あるいは青銅などであっても良い。
In the first and second embodiments,
An example in which an on-off valve in which the valve body is formed of sintered metal and an on-off valve in which the main valve seat is formed of sintered metal is used as the second flow control valve has been described. However, the present invention is not limited thereto.
Any location where a decompression action occurs in the valve may be used, and both the valve body and the main valve seat may be formed of sintered metal.
As the material of the sintered metal, iron is the main component, carbon,
Low alloy steel with added copper, nickel, etc., stainless steel,
Alternatively, bronze may be used.

【0060】また本実施の形態1および形態2では、弁
本体あるいは主弁座に焼結金属を用いた例について説明
したが、これに限ることはなく、気液二相冷媒が液体と
気体に分離することなく、減圧されるもでのあれば良
く、例えば樹脂の発砲材などの多孔質体であっても同様
の効果を発揮する。
Further, in the first and second embodiments, an example was described in which sintered metal was used for the valve body or the main valve seat. However, the present invention is not limited to this, and the gas-liquid two-phase refrigerant is changed to liquid and gas. It is sufficient that the pressure is reduced without separation, and for example, a porous material such as a resin foam material can exert the same effect.

【0061】また本実施の形態1および形態2では、第
1室内熱交換器5と第2室内熱交換器7の間に、焼結金
属を用いた第2流量制御弁を用いた例について説明した
が、これに限ることはなく、第1流量制御弁4に焼結金
属を用いた弁を用いることにより、第1流量制御弁での
冷媒流動音の発生を防止することができる。さらに焼結
金属の利用は、流量制御弁に限らず、冷凍サイクル内で
冷媒流動音が発生する全ての個所に適用し、その冷媒流
動音の発生を抑制することができる。例えば複数流路に
分割された熱交換器に用いる冷媒分配器の内部に焼結金
属を用い、冷媒分配器からの冷媒流動音発生を防止する
ことができる。また家庭用冷蔵庫など従来の絞り装置と
して毛細管などを用いた装置では、毛細管の変りに焼結
金属を絞り装置として用いることにより、冷媒流動音の
発生を防止することができる。
In the first and second embodiments, an example in which a second flow control valve using a sintered metal is used between the first indoor heat exchanger 5 and the second indoor heat exchanger 7 will be described. However, the present invention is not limited to this. By using a valve using a sintered metal for the first flow control valve 4, it is possible to prevent the refrigerant flow noise from being generated at the first flow control valve. Further, the use of the sintered metal is not limited to the flow control valve, but can be applied to all locations where the refrigerant flow noise is generated in the refrigeration cycle, and the generation of the refrigerant flow noise can be suppressed. For example, by using a sintered metal inside a refrigerant distributor used for a heat exchanger divided into a plurality of flow paths, generation of refrigerant flow noise from the refrigerant distributor can be prevented. Also, in a device using a capillary tube or the like as a conventional expansion device such as a home refrigerator, the use of a sintered metal as an expansion device instead of a capillary tube can prevent generation of refrigerant flow noise.

【0062】実施の形態3.図7はこの発明の実施の形
態の他の例を示す空気調和装置の第2流量制御弁の構成
図であり、図2に示したものと同一または同様の構成部
品には同一符合を付して、その重複する説明を省略す
る。この実施の形態では、主弁体24が銅や真鍮などの
金属製弁,主弁座23が多孔質透過材、例えば通気孔1
0マイクロミリメートルの焼結金属で構成されている。
また25は主弁体24を連続的に駆動する駆動部で、例
えばステッピングモータで構成され、図示しない制御手
段によって主弁体24を開閉方向へ移動するよう制御し
ている。
Embodiment 3 FIG. 7 is a configuration diagram of a second flow control valve of an air conditioner showing another example of the embodiment of the present invention. Components that are the same as or similar to those shown in FIG. Therefore, the duplicate description will be omitted. In this embodiment, the main valve body 24 is made of a metal valve such as copper or brass, and the main valve seat 23 is made of a porous permeable material, for example, the vent hole 1.
It is composed of 0 micromillimeter sintered metal.
Reference numeral 25 denotes a drive unit for continuously driving the main valve element 24, which is constituted by, for example, a stepping motor, and controls the main valve element 24 to move in the opening and closing direction by control means (not shown).

【0063】この実施の形態による第2流量制御弁6で
は、図1の回路構成において、通常冷房運転など第1室
内熱交換器5と第2室内熱交換器7を圧力損失なしにつ
なげる時には、図7(a)に示すようにステッピングモ
ータ25によって主弁体24を引き上げ、主弁体24と
主弁座23の間隙を冷媒が流れるようにする。一方、冷
房除湿運転時など第1室内熱交換器5と第2室内熱交換
器7で圧力差を生じさせる時には、図7(b)に示すよ
うにステッピングモータ25によって主弁体24を引き
下げ、主弁体24と主弁座23の間隙を無くし、冷媒が
焼結金属である主弁座23内の通気孔を通って流れるよ
うにする。この時、主弁体24の引き下げ量をステッピ
ングモータ25で調整することにより、冷媒が通過する
焼結金属の通過面積を変えることができ、この焼結金属
を通過する際の冷媒の圧力損失を制御することができ
る。すなわちステッピングモータ25による主弁体24
の移動量を制御することによって、この第2流量制御弁
6を通過する冷媒の圧力損失を自由に変えることがで
き、第1室内熱交換器5と第2室内熱交換器7の圧力差
を制御することができる。
In the second flow control valve 6 according to this embodiment, when the first indoor heat exchanger 5 and the second indoor heat exchanger 7 are connected without pressure loss in the circuit configuration of FIG. As shown in FIG. 7A, the main valve body 24 is pulled up by the stepping motor 25 so that the refrigerant flows through the gap between the main valve body 24 and the main valve seat 23. On the other hand, when a pressure difference is generated between the first indoor heat exchanger 5 and the second indoor heat exchanger 7 such as during a cooling and dehumidifying operation, the main valve body 24 is pulled down by the stepping motor 25 as shown in FIG. The gap between the main valve body 24 and the main valve seat 23 is eliminated so that the refrigerant flows through the vent holes in the main valve seat 23 which is a sintered metal. At this time, by adjusting the amount by which the main valve element 24 is lowered by the stepping motor 25, the passage area of the sintered metal through which the refrigerant passes can be changed, and the pressure loss of the refrigerant when passing through the sintered metal can be reduced. Can be controlled. That is, the main valve element 24 by the stepping motor 25
, The pressure loss of the refrigerant passing through the second flow control valve 6 can be freely changed, and the pressure difference between the first indoor heat exchanger 5 and the second indoor heat exchanger 7 can be reduced. Can be controlled.

【0064】冷房除湿運転時には、第1室内熱交換器5
のほぼ中間の冷媒温度と第2室内熱交換器7のほぼ中間
の冷媒温度の差温によって、この第2流量制御弁前後6
の圧力差を間接的に検知し、この圧力差を所定の値とな
るように第2流量制御弁6の主弁体24の移動量を制御
することにより、室内の温湿度環境をより快適に制御す
ることができる。
During the cooling and dehumidifying operation, the first indoor heat exchanger 5
The temperature difference between the substantially middle refrigerant temperature and the middle refrigerant temperature of the second indoor heat exchanger 7 causes
Is indirectly detected, and the amount of movement of the main valve element 24 of the second flow control valve 6 is controlled so that the pressure difference becomes a predetermined value, thereby making the indoor temperature and humidity environment more comfortable. Can be controlled.

【0065】また図8に示すように、主弁体24の一部
を金属製弁24a、他の部分を焼結金属24bで構成
し、また主弁座23を金属で構成し、この主弁座24の
移動量をステッピングモータ25によって連続的に制御
し、第2流量制御弁6前後の圧力差を自由に調整できる
ように構成してもよい。また主弁体が上下に連続的に移
動する場合だけではなく、回転運動などによって冷媒が
通過する焼結金属の通過面積を可変にする機構を設け、
焼結金属を通過する冷媒の圧力損失を自由に制御できる
ようにしても良い。
As shown in FIG. 8, a part of the main valve body 24 is constituted by a metal valve 24a, the other part is constituted by a sintered metal 24b, and the main valve seat 23 is constituted by a metal. The moving amount of the seat 24 may be continuously controlled by the stepping motor 25 so that the pressure difference between the front and rear of the second flow control valve 6 can be freely adjusted. In addition to the case where the main valve body moves continuously up and down, a mechanism is provided to change the passage area of the sintered metal through which the refrigerant passes due to rotational movement and the like,
The pressure loss of the refrigerant passing through the sintered metal may be freely controlled.

【0066】実施の形態4.以下、本発明の実施の形態
3による空気調和装置について説明する。本実施の形態
は、暖房運転に関するもので、空気調和機を構成する冷
媒回路は、例えば実施の形態1での図1と同様であり、
第2流量制御弁6の構造は図2と同様である。本実施の
形態による空気調和装置の暖房時の動作について説明す
る。図1では暖房時の冷媒の流れを破線矢印で示してい
る。通常の暖房運転は、第2流量制御弁6の電磁コイル
25を非通電状態とする。このとき圧縮機1を出た高温
高圧の冷媒蒸気は、四方弁2を通って第2室内熱交換器
7および第1室内熱交換器5に流入し、室内空気と熱交
換して凝縮、液化する。なお第2流量制御弁6は、図2
(a)に示すように第1流路21と第2流路が大きな開
口面積で接続されているので、この弁を通過する際の冷
媒圧力損失はほとんどなく、圧力損失による暖房能力や
効率面での低下もない。第1室内熱交換器5を出た高圧
の液冷媒は、第1流量制御弁4で低圧に減圧され、気液
二相冷媒となって室外熱交換器3で室外空気と熱交換し
て蒸発する。室外熱交換器3を出た低圧の蒸気冷媒は、
四方弁2を通って再び圧縮機1に戻る。この通常冷房運
転時の第1流量制御弁4の開度は、例えば室外熱交換器
3の出口冷媒の過熱度が5℃となるように制御されてい
る。
Embodiment 4 Hereinafter, an air conditioner according to Embodiment 3 of the present invention will be described. The present embodiment relates to a heating operation, and a refrigerant circuit constituting an air conditioner is, for example, the same as FIG. 1 in the first embodiment,
The structure of the second flow control valve 6 is the same as that of FIG. The operation during heating of the air-conditioning apparatus according to the present embodiment will be described. In FIG. 1, the flow of the refrigerant at the time of heating is indicated by a dashed arrow. In the normal heating operation, the electromagnetic coil 25 of the second flow control valve 6 is set in a non-energized state. At this time, the high-temperature and high-pressure refrigerant vapor exiting the compressor 1 flows into the second indoor heat exchanger 7 and the first indoor heat exchanger 5 through the four-way valve 2, and exchanges heat with indoor air to condense and liquefy. I do. Note that the second flow control valve 6 corresponds to FIG.
As shown in (a), since the first flow path 21 and the second flow path are connected with a large opening area, there is almost no refrigerant pressure loss when passing through this valve, and the heating capacity and the efficiency due to the pressure loss are reduced. There is no decrease in The high-pressure liquid refrigerant that has exited the first indoor heat exchanger 5 is reduced in pressure to a low pressure by the first flow control valve 4, becomes a gas-liquid two-phase refrigerant, exchanges heat with outdoor air in the outdoor heat exchanger 3, and evaporates. I do. The low-pressure vapor refrigerant that has exited the outdoor heat exchanger 3 is:
It returns to the compressor 1 again through the four-way valve 2. The degree of opening of the first flow control valve 4 during the normal cooling operation is controlled, for example, so that the degree of superheating of the refrigerant at the outlet of the outdoor heat exchanger 3 is 5 ° C.

【0067】次に暖房除湿運転時の動作について、図9
に示す圧力―エンタルピー線図を用いて説明する。な
お、図9に示した英文字は、図1に示した英文字と対応
している。この暖房除湿運転時は、第2流量制御弁の電
磁コイル25に通電し、図2(b)に示すように主弁体
24を主弁座23に密着させ、弁本体の通気孔を介して
第2流路22である第2室内熱交換器7の出口と第1流
路21である第1室内熱交換器5の入口とを接続する。
この時、圧縮機1を出た高温高圧の冷媒蒸気(F点)
は、四方弁2を通って第2室内熱交換器7流入し、室内
空気と熱交換して凝縮する(E点)。この高圧の液冷媒
あるいは気液二相冷媒は、第2流量制御弁6に流入す
る。第2流量制御弁6では、図2(b)に示すように主
弁体24が主弁座23に密着しているため、この弁に流
入した冷媒は、焼結金属で構成されている主弁体24内
の通気孔を通って第1室内熱交換器5に流入する。この
主弁体24の通気孔は10マイクロメートル程度であ
り、この通気孔を通る冷媒は減圧されて、中間圧の気液
二相冷媒となって、第1室内熱交換器5に流入する(D
点)。この第1室内熱交換器5に流入した冷媒の飽和温
度は室内空気の露点温度以下であり、室内空気の顕熱お
よび潜熱を奪って蒸発する(C点)。第1室内熱交換器
5を出た中間圧の気液二相冷媒は、第1流量制御弁4に
流入し、低圧まで減圧され、さらに室外熱交換器3に流
入し、室外空気と熱交換して蒸発する。室内外熱交換器
4を出た低圧の蒸気冷媒は、四方弁2を通って再び圧縮
機1に戻る。
Next, the operation during the heating and dehumidifying operation will be described with reference to FIG.
This will be described with reference to the pressure-enthalpy diagram shown in FIG. The English characters shown in FIG. 9 correspond to the English characters shown in FIG. During the heating and dehumidifying operation, the electromagnetic coil 25 of the second flow control valve is energized to bring the main valve body 24 into close contact with the main valve seat 23 as shown in FIG. The outlet of the second indoor heat exchanger 7 which is the second flow path 22 and the inlet of the first indoor heat exchanger 5 which is the first flow path 21 are connected.
At this time, high-temperature and high-pressure refrigerant vapor exiting the compressor 1 (point F)
Flows into the second indoor heat exchanger 7 through the four-way valve 2 and exchanges heat with indoor air to condense (point E). This high-pressure liquid refrigerant or gas-liquid two-phase refrigerant flows into the second flow control valve 6. In the second flow control valve 6, since the main valve body 24 is in close contact with the main valve seat 23 as shown in FIG. 2B, the refrigerant flowing into this valve is made of a sintered metal. The gas flows into the first indoor heat exchanger 5 through the ventilation hole in the valve element 24. The ventilation hole of the main valve body 24 is about 10 micrometers, and the refrigerant passing through this ventilation hole is decompressed, becomes a gas-liquid two-phase refrigerant of an intermediate pressure, and flows into the first indoor heat exchanger 5 ( D
point). The saturation temperature of the refrigerant flowing into the first indoor heat exchanger 5 is equal to or lower than the dew point temperature of the indoor air, and evaporates by removing the sensible heat and latent heat of the indoor air (point C). The intermediate-pressure gas-liquid two-phase refrigerant that has exited the first indoor heat exchanger 5 flows into the first flow control valve 4, is decompressed to a low pressure, further flows into the outdoor heat exchanger 3, and exchanges heat with outdoor air. And evaporate. The low-pressure vapor refrigerant that has exited the indoor / outdoor heat exchanger 4 passes through the four-way valve 2 and returns to the compressor 1 again.

【0068】この暖房除湿運転では、室内空気は、第2
室内熱交換器7で加熱されるとともに、第1室内熱交換
器5で冷却除湿されるため、部屋を暖房しながら除湿を
行うことができる。また暖房除湿運転では、圧縮機1の
回転周波数や室外熱交換器3のファン回転数を調整し
て、室外熱交換器3の熱交換量を制御し、第1室内熱交
換器5による室内空気の加熱量を制御して吹出し温度を
広範囲に制御できる。また第1流量制御弁7の開度や室
内ファン回転数を調整して、第1室内熱交換器5の蒸発
温度を制御し、第1室内熱交換器5による室内空気の除
湿量を制御することもできる。また第2流量制御弁4の
開度は、例えば第2室内熱交換器7の出口冷媒の過冷却
度が10℃となるように制御されている。
In this heating and dehumidifying operation, the room air is
Since it is heated by the indoor heat exchanger 7 and cooled and dehumidified by the first indoor heat exchanger 5, dehumidification can be performed while heating the room. In the heating and dehumidifying operation, the rotation frequency of the compressor 1 and the fan rotation speed of the outdoor heat exchanger 3 are adjusted to control the amount of heat exchange of the outdoor heat exchanger 3, and the indoor air by the first indoor heat exchanger 5 is controlled. By controlling the amount of heating, the blowing temperature can be controlled over a wide range. Further, the evaporating temperature of the first indoor heat exchanger 5 is controlled by adjusting the opening degree of the first flow control valve 7 and the number of rotations of the indoor fan, and the amount of indoor air dehumidified by the first indoor heat exchanger 5 is controlled. You can also. The degree of opening of the second flow control valve 4 is controlled such that the degree of supercooling of the refrigerant at the outlet of the second indoor heat exchanger 7 becomes 10 ° C., for example.

【0069】このように本実施の形態では、焼結金属を
弁本体として用いた第2流量制御弁を用いているため、
暖房時の除湿運転が可能となるとともに、この暖房除湿
運転時の冷媒流動音の発生を防止でき、温湿度環境およ
び騒音面でも快適な空間が実現できる。
As described above, in the present embodiment, since the second flow control valve using the sintered metal as the valve body is used,
The dehumidifying operation during heating becomes possible, and the generation of refrigerant flow noise during the heating and dehumidifying operation can be prevented, so that a comfortable space can be realized in terms of temperature and humidity environment and noise.

【0070】また暖房起動時など第2流量制御弁の電磁
コイル25に通電することにより、暖房吹出し温度を高
温化することも可能となる。すなわち、暖房起動時に上
記暖房除湿サイクルを形成し、第1室内熱交換器5の蒸
発温度を室内の吸込み空気温度とほぼ等しくなるように
第2流量制御弁で制御する。第1室内熱交換器5の蒸発
温度が室内の吸込み空気温度とほぼ等しいため、第1室
内熱交換器5ではほとんど冷却および除湿は行なわれ
ず、結果として暖房時の凝縮器の伝熱面積が通常の暖房
運転の約半分になり、このため凝縮温度は通常の暖房運
転よりも上昇し、吹出し温度の高温化が可能となる。さ
らにこの暖房高温吹出し運転時でも、第2流量制御弁6
での冷媒流動音発生はなく、騒音面でも問題となること
はない。
Further, by supplying a current to the electromagnetic coil 25 of the second flow control valve at the time of starting heating or the like, the temperature of the heating air can be increased. That is, the heating dehumidification cycle is formed at the time of starting heating, and the evaporation temperature of the first indoor heat exchanger 5 is controlled by the second flow control valve so as to be substantially equal to the suction air temperature in the room. Since the evaporation temperature of the first indoor heat exchanger 5 is almost equal to the temperature of the intake air in the room, the first indoor heat exchanger 5 hardly performs cooling and dehumidification, and as a result, the heat transfer area of the condenser during heating is normally The heating operation becomes about half of that of the conventional heating operation. Therefore, the condensing temperature is higher than that in the normal heating operation, and the outlet temperature can be increased. Further, even during the heating high-temperature blowing operation, the second flow control valve 6
There is no generation of refrigerant flow noise at the time, and there is no problem in terms of noise.

【0071】次に、この実施の形態の空気調和装置の具
体的な暖房運転制御法の一例について説明する。この空
気調和装置には、実施の形態1で説明したように、設定
温度と設定湿度および吸込み空気温度と湿度が入力され
ている。この空気調和装置は、暖房起動時に高温吹出し
運転運転を所定の時間、たとえば5分間行ない、その後
通常暖房運転に移行する。この後、部屋の温度偏差およ
び湿度偏差に応じて、通常暖房運転と暖房除湿運転を切
換制御される。
Next, an example of a specific heating operation control method of the air conditioner of this embodiment will be described. As described in Embodiment 1, the set temperature and the set humidity and the intake air temperature and the humidity are input to this air conditioner. This air conditioner performs a high-temperature blowing operation for a predetermined time, for example, 5 minutes when heating is started, and then shifts to a normal heating operation. Thereafter, the normal heating operation and the heating dehumidification operation are switched and controlled in accordance with the temperature deviation and the humidity deviation of the room.

【0072】暖房運転起動時は、第2流量制御弁6を閉
状態とし、圧縮機1を起動する。この時、第1室内熱交
換器5での冷却除湿能力がゼロとなるように、室外熱交
換器3のファン回転数や第1流量制御弁4の弁開度など
を調整して、第1室内熱交換器5の蒸発温度が、吸込み
空気温度と等しくなるように制御する。圧縮機起動から
所定の時間である5分間が経過すると、第2流量制御弁
6を開状態とし、通常暖房運転に移行する。この時、温
度偏差がゼロまたは所定の値以内となるように、圧縮機
1の回転周波数や、室内ファンの回転数、室外ファンの
回転数を調整する。この暖房通常運転により温度偏差が
ゼロまたは所定の値以内となった場合は、湿度偏差を検
出し、この湿度偏差がゼロまたは所定の値以内の場合、
および湿度偏差が所定の値以上であっても、加湿を必要
とする場合には、通常暖房運転を継続する。一方、湿度
偏差がゼロまたは所定の値以上であり、除湿を必要とす
る場合には、第2流量制御弁6を閉状態とし、暖房除湿
運転を行なう。この暖房除湿運転では、室内の温度偏差
がゼロまたは所定の値以内を維持できるように、第2室
内熱交換器7の加熱量を制御するとともに、湿度偏差が
ゼロまたは所定の値以内に入るように、第1室内熱交換
器5の冷却除湿量を制御する。第2室内熱交換器7の加
熱量の制御には、圧縮機1の回転周波数や室内ユニット
12のファン回転数などによって制御する。また第1室
内熱交換器5の冷却除湿量の制御には、室外熱交換器3
のファン回転数や第1流量制御弁4の開度などによって
調整する。
When the heating operation is started, the second flow control valve 6 is closed, and the compressor 1 is started. At this time, the fan rotation speed of the outdoor heat exchanger 3, the valve opening of the first flow control valve 4, and the like are adjusted so that the cooling and dehumidifying capacity of the first indoor heat exchanger 5 becomes zero. Control is performed so that the evaporation temperature of the indoor heat exchanger 5 becomes equal to the intake air temperature. When a predetermined time of 5 minutes elapses from the start of the compressor, the second flow control valve 6 is opened, and the operation shifts to the normal heating operation. At this time, the rotation frequency of the compressor 1, the rotation speed of the indoor fan, and the rotation speed of the outdoor fan are adjusted so that the temperature deviation becomes zero or within a predetermined value. If the temperature deviation becomes zero or within a predetermined value due to this heating normal operation, a humidity deviation is detected, and if this humidity deviation is within zero or a predetermined value,
Even when the humidity deviation is equal to or more than a predetermined value, if humidification is required, the normal heating operation is continued. On the other hand, when the humidity deviation is zero or a predetermined value or more and dehumidification is required, the second flow control valve 6 is closed, and the heating dehumidification operation is performed. In this heating and dehumidifying operation, the amount of heating of the second indoor heat exchanger 7 is controlled so that the indoor temperature deviation can be maintained at zero or within a predetermined value, and the humidity deviation is within zero or within a predetermined value. Next, the amount of cooling and dehumidification of the first indoor heat exchanger 5 is controlled. The amount of heating of the second indoor heat exchanger 7 is controlled by the rotation frequency of the compressor 1, the number of rotations of the fan of the indoor unit 12, and the like. The control of the amount of cooling and dehumidification of the first indoor heat exchanger 5 includes the outdoor heat exchanger 3.
And the opening degree of the first flow control valve 4 and the like.

【0073】このようにこの実施の形態では、暖房運転
時の運転時間や部屋の負荷に応じて、冷媒回路を暖房高
温吹出し運転や通常暖房運転、暖房除湿運転に切換える
ことにより、部屋内の温湿度環境を、居住者の好みに応
じて最適な状態に制御することができる。
As described above, in this embodiment, the refrigerant circuit is switched to the high-temperature blowing operation, the normal heating operation, or the heating dehumidification operation in accordance with the operation time during the heating operation and the load on the room, so that the temperature inside the room is changed. The humidity environment can be controlled to an optimum state according to the occupants' preferences.

【0074】実施の形態5.図10はこの発明の実施の
形態の他の例を示す空気調和装置の冷媒回路図で、図1
に示したものと同一または同様の構成部品には同一符合
を付して、その重複する説明を省略する。この実施の形
態では、多段に折り曲げた2列の室内熱交換器の上部を
第1室内熱交換器5に、下部を第2室内熱交換器7と
し、冷房除湿運転時は、上部の第1室内熱交換器5で室
内ユニットの吸込み空気を加熱し、下部の第2室内熱交
換器7で吸い込み空気を冷却、除湿し、これらの吸込み
空気を室内ファン(図示せず)によって混合して、室内
に吹出している。また暖房除湿運転時は、下部の第2室
内熱交換器7で室内ユニットの吸込み空気を加熱し、上
部の第1室内熱交換器5で吸い込み空気を冷却、除湿
し、これらの吸込み空気を室内ファン(図示せず)によ
って混合して、室内に吹出している。さらにこの実施の
形態でも、第2流量制御弁6は、図2に示した焼結金属
で成形された主弁体24を用いているので、冷房除湿お
よび暖房除湿運転時に、冷媒流動音の発生がなく、低騒
音な室内ユニットを実現できる。
Embodiment 5 FIG. 10 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention.
The same reference numerals are given to the same or similar components as those shown in (1), and the overlapping description is omitted. In this embodiment, the upper part of the two rows of indoor heat exchangers folded in multiple stages is the first indoor heat exchanger 5 and the lower part is the second indoor heat exchanger 7. The suction air of the indoor unit is heated by the indoor heat exchanger 5, the suction air is cooled and dehumidified by the lower second indoor heat exchanger 7, and the suction air is mixed by an indoor fan (not shown). It is blowing into the room. During the heating and dehumidifying operation, the lower second indoor heat exchanger 7 heats the suction air of the indoor unit, and the upper first indoor heat exchanger 5 cools and dehumidifies the suction air. They are mixed by a fan (not shown) and blown into the room. Further, also in this embodiment, since the second flow control valve 6 uses the main valve body 24 formed of the sintered metal shown in FIG. 2, the generation of the refrigerant flow noise occurs during the cooling dehumidification and the heating dehumidification operation. And a low-noise indoor unit can be realized.

【0075】また室内熱交換器の冷房時の冷媒流路は、
入口が1流路とし、途中で3方管8aにより2流路に分
岐し、第1室内熱交換器5を構成し、この2流路を3方
管8bで1流路に合流させ、第2流量制御弁6に接続し
ている。さらに第2流量制御弁6の出口配管は、3方管
8cで再度2流路に分岐され、第2室内熱交換器7を構
成し、第2室内熱交換器7の出口で3方管8dにより、
この2流路を1流路に合流させている。このように室内
熱交換器の冷房時の入口冷媒流路を1流路とし、途中で
2流路に分岐することにより、冷房時の冷媒圧力損失が
低減でき、通常冷房運転や冷房除湿運転時の性能が向上
する。また暖房時は、入口冷媒流路が2流路、出口流路
が1流路となるため、冷媒熱伝達率の小さい凝縮器出口
付近の冷媒流速が早くなり、熱交換器性能が向上する。
さらに第1室内熱交換器5と第2室内熱交換器7の間の
流路は3方管により1流路としているので、第2流量制
御弁6は1つで済み、室内ユニットが安価となる。
The refrigerant flow path during cooling of the indoor heat exchanger is as follows:
The inlet is formed as one flow path, and is branched into two flow paths by a three-way pipe 8a on the way to form a first indoor heat exchanger 5. The two flow paths are merged into one flow path by a three-way pipe 8b. 2 Connected to the flow control valve 6. Further, the outlet pipe of the second flow control valve 6 is again branched into two flow paths by a three-way pipe 8c to form a second indoor heat exchanger 7, and a three-way pipe 8d is formed at the outlet of the second indoor heat exchanger 7. By
The two flow paths merge into one flow path. In this way, the inlet refrigerant flow path of the indoor heat exchanger during cooling is made into one flow path, and by branching into two flow paths in the middle, refrigerant pressure loss during cooling can be reduced, and during normal cooling operation and cooling dehumidification operation. Performance is improved. In addition, at the time of heating, the inlet refrigerant flow path has two flow paths and the outlet flow path has one flow path, so that the flow velocity of the refrigerant near the condenser outlet having a small heat transfer coefficient of the refrigerant is increased, and the heat exchanger performance is improved.
Further, since the flow path between the first indoor heat exchanger 5 and the second indoor heat exchanger 7 is made into one flow path by a three-way pipe, only one second flow control valve 6 is required, and the indoor unit is inexpensive. Become.

【0076】なお、この実施の形態では、2列の熱交換
器の上部を第1室内熱交換器5、下部を第2室内熱交換
器とした構成について説明したが、これに限ることはな
く、2列熱交換器の1列目を第2室内熱交換器7、2列
目を第1室内熱交換器5として、前後に直列に並べて構
成してもよい。また3列熱交換器や、2列および3列熱
交換器の混在型であってもよい。
In this embodiment, the configuration in which the upper part of the two rows of heat exchangers is the first indoor heat exchanger 5 and the lower part is the second indoor heat exchanger has been described, but the present invention is not limited to this. The first row of the two-row heat exchanger may be the second indoor heat exchanger 7, and the second row may be the first indoor heat exchanger 5. Further, a three-row heat exchanger or a mixed type of two-row and three-row heat exchangers may be used.

【0077】またこの実施の形態では、第1流量制御弁
4と第1室内熱交換器5の間の配管に液冷媒を貯留する
レシーバ30を室外ユニット11内に設けている。この
レシーバは、通常暖房運転あるいは暖房除湿運転時に発
生する余剰冷媒を貯留し、これらの運転時の冷媒過多に
よる性能低下を防いでいる。すなわち、冷房除湿運転で
は、室外熱交換器3と第1室内熱交換器5が凝縮器とし
て動作し、凝縮器内容積が最も大きくなるため、必要な
冷媒量が最も多くなる。したがって空気調和機の冷媒充
填量は、この冷房除湿運転時に必要な冷媒量から決定さ
れる。暖房運転時は、室外熱交換器3よりも内容積の小
さな第1室内熱交換器5と第2室内熱交換器7が凝縮器
となり、また暖房除湿運転時は、第2室内熱交換器7の
みが凝縮器となるため、これらの運転時の必要冷媒量
は、冷房除湿運転時よりも少なくなる。レシーバ30を
設けずに、暖房運転あるいは暖房除湿運転を行なうと、
冷媒量が過多の状態で運転することになり、圧縮機1へ
の液バック量が増加して、圧縮機の信頼性低下や、サイ
クルの性能低下が生じる。そこでこの実施の形態では、
暖房運転あるいは暖房除湿運転時の余剰な液冷媒をレシ
ーバ30内に貯留し、全ての運転時の冷媒量を最適に制
御し、圧縮機の信頼性向上、および性能向上を実現して
いる。なお、レシーバ30の内容積は、あらかじめ各運
転時の最適冷媒量を試験などによって求め、その最大冷
媒量と最小冷媒量の差が貯留できる内容積として決定で
きる。またこのレシーバ30は室外ユニット11内に設
置しているため、室内ユニット12が大きくなったりす
ることがない。
In this embodiment, a receiver 30 for storing a liquid refrigerant is provided in the outdoor unit 11 in a pipe between the first flow control valve 4 and the first indoor heat exchanger 5. This receiver stores excess refrigerant generated during normal heating operation or heating dehumidification operation, and prevents performance degradation due to excessive refrigerant during these operations. That is, in the cooling and dehumidifying operation, the outdoor heat exchanger 3 and the first indoor heat exchanger 5 operate as condensers, and the internal volume of the condenser is the largest, so that the required refrigerant amount is the largest. Therefore, the refrigerant charging amount of the air conditioner is determined from the refrigerant amount required during the cooling and dehumidifying operation. During the heating operation, the first indoor heat exchanger 5 and the second indoor heat exchanger 7 having smaller internal volumes than the outdoor heat exchanger 3 serve as condensers. During the heating and dehumidifying operation, the second indoor heat exchanger 7 is used. Since only the condenser is used, the required refrigerant amount during these operations is smaller than during the cooling and dehumidifying operation. When the heating operation or the heating dehumidifying operation is performed without providing the receiver 30,
Since the operation is performed in a state where the amount of the refrigerant is excessive, the amount of liquid back to the compressor 1 increases, and the reliability of the compressor decreases and the performance of the cycle decreases. Therefore, in this embodiment,
Excess liquid refrigerant during the heating operation or the heating and dehumidifying operation is stored in the receiver 30, and the amount of the refrigerant during all operations is optimally controlled, thereby improving the reliability and performance of the compressor. Note that the internal volume of the receiver 30 can be determined in advance by, for example, testing the optimal amount of refrigerant during each operation and determining the difference between the maximum refrigerant amount and the minimum refrigerant amount as an internal volume that can be stored. Further, since the receiver 30 is installed in the outdoor unit 11, the size of the indoor unit 12 does not increase.

【0078】実施の形態6.図11はこの発明の実施の
形態の他の例を示す空気調和装置の冷媒回路図で、図1
に示したものと同一または同様の構成部品には同一符合
を付して、その重複する説明を省略する。この実施の形
態では、第1室内熱交換器5と第2室内熱交換器7の間
の配管に、焼結金属を用いた絞り装置31と電磁開閉弁
37を並列に接続し、第2流量制御弁を構成している。
この焼結金属を用いた絞り装置31は、図12に示すよ
うに容器内部の一端が閉じられ、他端が開放した円筒状
を成し、周面および底面を介して円筒状の内外を連通す
る焼結金属32が挿入されて絞り部を構成しており、こ
の焼結金属32の両端は、固定板33、34、およびバ
ネ35、36で容器内に固定されている。固定板34は
円周部が部分的に切りかかれた円盤状に形成されてい
る。
Embodiment 6 FIG. FIG. 11 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention.
The same reference numerals are given to the same or similar components as those shown in (1), and the overlapping description is omitted. In this embodiment, a throttle device 31 using a sintered metal and an electromagnetic on-off valve 37 are connected in parallel to a pipe between the first indoor heat exchanger 5 and the second indoor heat exchanger 7, and a second flow rate is set. It constitutes a control valve.
As shown in FIG. 12, the drawing device 31 using this sintered metal has a cylindrical shape with one end inside the container closed and the other end open, and communicates with the inside and outside of the cylindrical shape via the peripheral surface and the bottom surface. The sintered metal 32 is inserted to form a drawing portion, and both ends of the sintered metal 32 are fixed in the container by fixing plates 33 and 34 and springs 35 and 36. The fixing plate 34 is formed in a disk shape in which a circumferential portion is partially cut.

【0079】この実施の形態の、通常冷房運転、冷房除
湿運転、通常暖房運転、暖房除湿運転、および暖房高温
吹出し運転時の動作は、図1の実施の形態と同様であ
り、その詳細な説明は省略し、以下では各運転時の焼結
金属を用いた絞り装置31と電磁開閉弁37の動作につ
いて説明する。通常冷房運転および通常暖房運転時に
は、電磁開閉弁37を開状態とし、冷凍サイクルを構成
する。このとき焼結金属を用いた絞り装置31は開状態
の電磁開閉弁37に比べて流動抵抗が大きいため、ほと
んどの冷媒は絞り装置31を流れず、電磁開閉弁37を
流れる。一方、冷房除湿運転、暖房除湿運転、暖房高温
吹出し運転時は、電磁開閉弁37を閉状態とし、焼結金
属を用いた絞り装置31に冷媒を流して、減圧作用を行
なう。絞り装置31に流入した気液二相冷媒あるいは液
冷媒は、円筒状の焼結金属32内の通気孔を通過する。
この焼結金属32の通気孔は200から0.5マイクロ
メートル程度であり、この微細な通気孔を通る冷媒は減
圧されため、冷媒蒸気スラグや冷媒気泡の崩壊が発生せ
ず、また蒸気冷媒と液冷媒はともに焼結金属32の通気
孔内を通過するため、圧力損失の大きな変動も生じず。
冷媒流動音の発生が防止できる。このため、冷房除湿運
転、暖房除湿運転および暖房高温吹出し運転時に低騒音
な室内環境を実現できるとともに、従来装置で必要であ
った遮音材や制振材を弁の外周に巻きつけるなどの低騒
音化手段が不要となり、コストの低減ができ、さらに空
気調和機器のリサイクル性も向上する。また図2に示し
た主弁体24に焼結金属を用いた第2流量制御弁に比べ
て、焼結金属の複雑な加工が必要でなく、また電磁開閉
弁は通常の電磁弁の使用が可能であるため、第2流量制
御弁を安価に得ることができる。
The operation of this embodiment during normal cooling operation, cooling dehumidification operation, normal heating operation, heating dehumidification operation, and heating high-temperature blowing operation is the same as that of the embodiment of FIG. The operation of the expansion device 31 and the on-off valve 37 using the sintered metal during each operation will be described below. During the normal cooling operation and the normal heating operation, the electromagnetic on-off valve 37 is opened to configure a refrigeration cycle. At this time, since the throttle device 31 using the sintered metal has a larger flow resistance than the electromagnetic on-off valve 37 in the open state, most of the refrigerant does not flow through the throttle device 31 but flows through the electromagnetic on-off valve 37. On the other hand, during the cooling dehumidifying operation, the heating dehumidifying operation, and the heating high-temperature blowing operation, the electromagnetic on-off valve 37 is closed, and the refrigerant is caused to flow through the expansion device 31 using the sintered metal to perform the decompression operation. The gas-liquid two-phase refrigerant or liquid refrigerant that has flowed into the expansion device 31 passes through a vent in the cylindrical sintered metal 32.
The air holes of the sintered metal 32 are about 200 to 0.5 micrometers, and the refrigerant passing through the fine air holes is decompressed, so that the refrigerant vapor slag and the collapse of the refrigerant bubbles do not occur. Since both the liquid refrigerant passes through the ventilation holes of the sintered metal 32, there is no large fluctuation in pressure loss.
Generation of refrigerant flow noise can be prevented. As a result, a low-noise indoor environment can be realized during the cooling and dehumidifying operation, the heating and dehumidifying operation, and the heating and high-temperature blowing operation. Therefore, the cost can be reduced, and the recyclability of the air conditioning equipment can be improved. Further, as compared with the second flow control valve using the sintered metal for the main valve element 24 shown in FIG. 2, complicated processing of the sintered metal is not required, and a normal electromagnetic valve is used as the electromagnetic on-off valve. Since it is possible, the second flow control valve can be obtained at low cost.

【0080】なお、この実施の形態では、絞り装置31
内に設けられた焼結金属32を一端が閉じられた円筒状
で構成した例について説明したいが、これに限ることは
なく、円盤状や円柱状あるいは直方体など、その形状は
どのようなものでもよく、冷媒がこの焼結金属部を流れ
る際に、所定の減圧作用が得られるものであればよい。
In this embodiment, the diaphragm device 31 is used.
I would like to describe an example in which the sintered metal 32 provided inside is formed in a cylindrical shape with one end closed, but the present invention is not limited to this, and any shape such as a disk shape, a column shape, or a rectangular parallelepiped shape can be used. What is necessary is just to be able to obtain a predetermined pressure reducing action when the refrigerant flows through the sintered metal part.

【0081】実施の形態7.図13はこの発明の実施の
形態の他の例を示す空気調和装置の冷媒回路図で、図1
に示したものと同一または同様の構成部品には同一符合
を付して、その重複する説明を省略する。この実施の形
態では、第1室内熱交換器5と第2室内熱交換器7の間
の配管に、毛細管38と電磁開閉弁37を並列に接続
し、第2流量制御弁を構成している。この毛細管38は
内径が1mm以上、例えば内径2mmの銅配管を用いて
いる。
Embodiment 7 FIG. FIG. 13 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention.
The same reference numerals are given to the same or similar components as those shown in (1), and the overlapping description is omitted. In this embodiment, a capillary 38 and an electromagnetic on-off valve 37 are connected in parallel to a pipe between the first indoor heat exchanger 5 and the second indoor heat exchanger 7 to form a second flow control valve. . The capillary 38 is a copper pipe having an inner diameter of 1 mm or more, for example, an inner diameter of 2 mm.

【0082】この実施の形態の、通常冷房運転、冷房除
湿運転、通常暖房運転、暖房除湿運転、および暖房高温
吹出し運転時の動作は、図1の実施の形態と同様であ
り、その詳細な説明は省略し、以下では各運転時の毛細
管38と電磁開閉弁37の動作について説明する。通常
冷房運転および通常暖房運転時には、電磁開閉弁37を
開状態とし、冷凍サイクルを構成する。このとき毛細管
38は開状態の電磁開閉弁37に比べて流動抵抗が大き
いため、ほとんどの冷媒は毛細管38を流れず、電磁開
閉弁37を流れる。一方、冷房除湿運転、暖房除湿運
転、暖房高温吹出し運転時は、電磁開閉弁37を閉状態
とし、毛細管38に冷媒を流して、減圧作用を行なう。
The operation of this embodiment during the normal cooling operation, the cooling dehumidification operation, the normal heating operation, the heating dehumidification operation, and the heating high-temperature blowing operation is the same as that of the embodiment of FIG. 1, and will be described in detail. The operation of the capillary tube 38 and the solenoid on-off valve 37 during each operation will be described below. During the normal cooling operation and the normal heating operation, the electromagnetic on-off valve 37 is opened to configure a refrigeration cycle. At this time, since the flow resistance of the capillary tube 38 is larger than that of the electromagnetic on-off valve 37 in the open state, most of the refrigerant does not flow through the capillary tube 38 but flows through the electromagnetic on-off valve 37. On the other hand, during the cooling dehumidifying operation, the heating dehumidifying operation, and the heating high-temperature blowing operation, the electromagnetic on-off valve 37 is closed, and the refrigerant is caused to flow through the capillary tube 38 to reduce the pressure.

【0083】毛細管内を気液二相冷媒が流れる時の冷媒
流動音は、毛細管内の冷媒流速に大きく依存している。
図14は、冷媒流量が30kg/h一定のもとで、毛細
管内径を変えた時の冷媒流動音の測定結果であり、図の
横軸が毛細管内径、縦軸が毛細管の冷媒流動音である。
毛細管内を気液二相冷媒が流れる時の冷媒流動音は、毛
細管内径が小さくなるほど、すなわち毛細管内の冷媒流
速が早くなるほど、大きくなる。これは毛細管内部の冷
媒流速が早くなるほど、毛細管内部の圧力変動も大きく
なることや、毛細管出口部での冷媒流出速度も速くな
り、この毛細管出口部の冷媒エネルギーが増加すること
などが要因と考えられる。図14に示した冷媒流動音測
定結果によると、毛細管内径を1mm以上とすることに
より、毛細管から発生する冷媒流動音は許容値以下とな
り、冷房除湿運転、暖房除湿運転および暖房高温吹出し
運転時に低騒音な室内環境を実現できるとともに、従来
装置で必要であった遮音材や制振材を弁の外周に巻きつ
けるなどの低騒音化手段が不要となり、コストの低減が
でき、さらに空気調和機器のリサイクル性も向上する。
また図2に示した弁本体に焼結金属を用いた第2流量制
御弁に比べて、安価な絞り装置を得ることができる。な
お、図14に示した毛細管内径を変えた時の冷媒流動音
の測定結果は、冷媒流量が30kg/h一定のもとでの
結果であり、冷媒流量が30kg/hより大きい場合
は、冷媒流動音は全体的に大きくなり、また逆に冷媒流
量が30kg/hより小さい場合は、冷媒流動音は全体
的に小さくなるが、1mm以上の内径の毛細管を用いる
ことにより、冷媒流動音はほぼ許容値以下に低減するこ
とができる。
The flow noise of the refrigerant when the gas-liquid two-phase refrigerant flows through the capillary largely depends on the flow velocity of the refrigerant in the capillary.
FIG. 14 is a measurement result of the refrigerant flow noise when the inner diameter of the capillary is changed under the condition that the refrigerant flow rate is constant at 30 kg / h. The horizontal axis of the figure is the inner diameter of the capillary, and the vertical axis is the refrigerant flow noise of the capillary. .
The refrigerant flow noise when the gas-liquid two-phase refrigerant flows through the capillary increases as the inner diameter of the capillary decreases, that is, as the flow velocity of the refrigerant in the capillary increases. This is thought to be due to the fact that the higher the flow rate of the refrigerant inside the capillary tube, the larger the pressure fluctuation inside the capillary tube, the higher the refrigerant outflow speed at the capillary outlet portion, and the higher the refrigerant energy at the capillary outlet portion. Can be According to the refrigerant flow noise measurement result shown in FIG. 14, the refrigerant flow noise generated from the capillary becomes less than the allowable value by setting the inner diameter of the capillary to 1 mm or more, and is low during the cooling dehumidification operation, the heating dehumidification operation, and the heating high-temperature blowing operation. In addition to realizing a noisy indoor environment, noise reduction measures such as wrapping sound insulation and vibration damping materials around the valve, which were required for conventional equipment, are no longer necessary, and costs can be reduced. Recyclability also improves.
Further, an inexpensive throttle device can be obtained as compared with the second flow control valve using a sintered metal for the valve body shown in FIG. Note that the measurement results of the refrigerant flow noise when the inner diameter of the capillary shown in FIG. 14 is changed are the results when the refrigerant flow rate is constant at 30 kg / h. When the flow rate of the refrigerant is smaller than 30 kg / h, the flow rate of the refrigerant becomes smaller as a whole. However, the flow rate of the refrigerant is substantially reduced by using a capillary having an inner diameter of 1 mm or more. It can be reduced below the allowable value.

【0084】実施の形態8.図15はこの発明の実施の
形態の他の例を示す空気調和装置の冷媒回路図で、図1
に示したものと同一または同様の構成部品には同一符合
を付して、その重複する説明を省略する。この実施の形
態では、第1室内熱交換器5と第2室内熱交換器7の間
の配管に、毛細管38と電磁開閉弁37を並列に接続
し、さらに冷房除湿運転時の毛細管38入口配管と第2
室内熱交換器の出口の低圧配管とを熱交換する熱交換器
40を設けている。この熱交換器は二重管式熱交換器や
接触式熱交換器あるいはプレート式熱交換器などで構成
されている。
Embodiment 8 FIG. FIG. 15 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention.
The same reference numerals are given to the same or similar components as those shown in (1), and the overlapping description is omitted. In this embodiment, a capillary 38 and an electromagnetic on-off valve 37 are connected in parallel to a pipe between the first indoor heat exchanger 5 and the second indoor heat exchanger 7, and a capillary 38 inlet pipe at the time of the cooling and dehumidifying operation. And the second
A heat exchanger 40 for exchanging heat with the low-pressure pipe at the outlet of the indoor heat exchanger is provided. This heat exchanger comprises a double tube heat exchanger, a contact heat exchanger, a plate heat exchanger, or the like.

【0085】この実施の形態の、通常冷房運転、冷房除
湿運転の動作は、図1の実施の形態と同様であり、その
詳細な説明は省略し、以下では各運転時の毛細管38と
電磁開閉弁37および熱交換器40の動作について、図
16に示した冷房除湿運転時の圧力−エンタルピー線図
を用いて説明する。なお、図16に示した英文字は、図
15に示した英文字と対応している。通常冷房運転に
は、電磁開閉弁37を開状態とし、冷凍サイクルを構成
する。このとき毛細管38は開状態の電磁開閉弁37に
比べて流動抵抗が大きいため、ほとんどの冷媒は毛細管
38を流れず、電磁開閉弁37を流れ、熱交換器40も
動作しない。一方、冷房除湿運転は、電磁開閉弁37を
閉状態とし、毛細管38に冷媒を流して、減圧作用を行
なう。第1室内熱交換器5を出た中間圧の気液二相冷媒
は(D点)、熱交換器40に流入し、ここで第2室内熱
交換器7を出た低温低圧の冷媒によって冷却され、中間
圧の液冷媒となって毛細管38に流入する(E点)。こ
の液冷媒は、毛細管によって中間圧から低圧まで減圧さ
れ、低圧の気液二相冷媒となって第2室内熱交換器7に
流入する(F点)。
The operation of the normal cooling operation and the cooling and dehumidifying operation of this embodiment is the same as that of the embodiment of FIG. 1, and the detailed description thereof is omitted. The operation of the valve 37 and the heat exchanger 40 will be described with reference to the pressure-enthalpy diagram during the cooling and dehumidifying operation shown in FIG. The English characters shown in FIG. 16 correspond to the English characters shown in FIG. In the normal cooling operation, the refrigeration cycle is configured by opening the electromagnetic on-off valve 37. At this time, since the flow resistance of the capillary tube 38 is larger than that of the electromagnetic switching valve 37 in the open state, most of the refrigerant does not flow through the capillary tube 38, flows through the electromagnetic switching valve 37, and the heat exchanger 40 does not operate. On the other hand, in the cooling and dehumidifying operation, the electromagnetic on-off valve 37 is closed, and the refrigerant is caused to flow through the capillary tube 38 to reduce the pressure. The intermediate-pressure gas-liquid two-phase refrigerant exiting the first indoor heat exchanger 5 (point D) flows into the heat exchanger 40, where it is cooled by the low-temperature low-pressure refrigerant exiting the second indoor heat exchanger 7. Then, the refrigerant becomes an intermediate-pressure liquid refrigerant and flows into the capillary tube 38 (point E). This liquid refrigerant is reduced in pressure from the intermediate pressure to the low pressure by the capillary tube, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the second indoor heat exchanger 7 (point F).

【0086】毛細管内を流れる冷媒流動音は、毛細管入
口冷媒が気液二相状態よりも液状態の方が小さくなる。
これは毛細管入口冷媒が気液二相状態よりも液状態の方
が、毛細管内で減圧により発生する蒸気冷媒量が少な
く、このため毛細管内の冷媒の平均流速が小さくなるた
めである。この実施の形態では、冷房除湿運転時の第2
流量制御弁である毛細管38の入口冷媒を、熱交換器4
0内で第2室内熱交換器7の出口冷媒により冷却、液化
しているので、毛細管入口冷媒が液状態となり、冷媒流
動音の発生を低減することができる。なお、毛細管38
の冷媒状態は、必ずしも液状態まで冷却する必要はな
く、気液二相冷媒の蒸気冷媒の割合(乾き度)を小さく
するだけでも、冷媒流動音の低減効果は得られる。また
熱交換器40によって、第2室内熱交換器7の出口冷媒
は加熱されるため、第2室内熱交換器7の出口冷媒は湿
り冷媒となり、図1に示した実施の形態に比べて、第2
室内熱交換器内の冷媒伝熱性能が向上し、冷房除湿運転
時の効率も向上する。
The noise of the refrigerant flowing through the capillary is smaller in the liquid state of the refrigerant at the capillary inlet than in the gas-liquid two-phase state.
This is because the amount of vapor refrigerant generated by depressurization in the capillary is smaller when the capillary inlet refrigerant is in the liquid state than in the gas-liquid two-phase state, and the average flow velocity of the refrigerant in the capillary is smaller. In this embodiment, the second cooling operation is performed during the cooling and dehumidifying operation.
The refrigerant at the inlet of the capillary tube 38, which is a flow control valve, is supplied to the heat exchanger 4.
Since the refrigerant is cooled and liquefied by the refrigerant at the outlet of the second indoor heat exchanger 7 within 0, the refrigerant at the capillary inlet is in a liquid state, and the generation of refrigerant flow noise can be reduced. In addition, the capillary tube 38
The refrigerant state does not necessarily need to be cooled to the liquid state, and the effect of reducing the refrigerant flow noise can be obtained only by reducing the ratio (dryness) of the vapor refrigerant of the gas-liquid two-phase refrigerant. In addition, since the outlet refrigerant of the second indoor heat exchanger 7 is heated by the heat exchanger 40, the outlet refrigerant of the second indoor heat exchanger 7 becomes a wet refrigerant, as compared with the embodiment shown in FIG. Second
The refrigerant heat transfer performance in the indoor heat exchanger is improved, and the efficiency during the cooling and dehumidifying operation is also improved.

【0087】なおこの実施の形態では、毛細管38の入
口冷媒を第2室内熱交換器7の出口冷媒によって冷却す
る例について説明したが、これに限ることはなく、毛細
管38の入口冷媒を室内空気によって冷却するように構
成しても、同様の効果を発揮する。
In this embodiment, an example has been described in which the inlet refrigerant of the capillary tube 38 is cooled by the outlet refrigerant of the second indoor heat exchanger 7. However, the present invention is not limited to this. The same effect can be obtained even if the cooling is performed by the cooling device.

【0088】実施の形態9.図17はこの発明の実施の
形態の他の例を示す空気調和装置の冷媒回路図で、図1
に示したものと同一または同様の構成部品には同一符合
を付して、その重複する説明を省略する。この実施の形
態では、第1室内熱交換器5と第2室内熱交換器7の間
の配管に、毛細管38と電磁開閉弁37を並列に接続
し、さらに冷房除湿運転時に毛細管38と第2室内熱交
換器の出口の低圧配管とを熱交換する熱交換器40を設
けている。この熱交換器は二重管式熱交換器や接触式熱
交換器などで構成されている。
Embodiment 9 FIG. 17 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention.
The same reference numerals are given to the same or similar components as those shown in (1), and the overlapping description is omitted. In this embodiment, a capillary tube 38 and an electromagnetic on-off valve 37 are connected in parallel to a pipe between the first indoor heat exchanger 5 and the second indoor heat exchanger 7, and the capillary tube 38 and the second A heat exchanger 40 for exchanging heat with the low-pressure pipe at the outlet of the indoor heat exchanger is provided. This heat exchanger is composed of a double tube heat exchanger, a contact heat exchanger, and the like.

【0089】この実施の形態の、通常冷房運転、冷房除
湿運転の動作は、図1の実施の形態と同様であり、その
詳細な説明は省略し、以下では各運転時の毛細管38と
電磁開閉弁37および熱交換器40の動作について、図
18に示した冷房除湿運転時の圧力−エンタルピー線図
を用いて説明する。なお、図18に示した英文字は、図
17に示した英文字と対応している。通常冷房運転に
は、電磁開閉弁37を開状態とし、冷凍サイクルを構成
する。このとき毛細管38は開状態の電磁開閉弁37に
比べて流動抵抗が大きいため、ほとんどの冷媒は毛細管
38を流れず、電磁開閉弁37を流れ、熱交換器40も
動作しない。一方、冷房除湿運転は、電磁開閉弁37を
閉状態とし、毛細管38に冷媒を流して、減圧作用を行
なう。第1室内熱交換器5を出た中間圧の気液二相冷媒
は(D点)、毛細管38に流入し、さらに熱交換器40
で第2室内熱交換器7を出た低温低圧の冷媒によって冷
却されながら、中間圧から低圧まで減圧され、低圧の気
液二相冷媒となって第2室内熱交換器7に流入する(F
点)。
The operation of the normal cooling operation and the cooling / dehumidifying operation of this embodiment is the same as that of the embodiment of FIG. 1, and the detailed description thereof is omitted. The operation of the valve 37 and the heat exchanger 40 will be described using a pressure-enthalpy diagram during the cooling and dehumidifying operation shown in FIG. The English characters shown in FIG. 18 correspond to the English characters shown in FIG. In the normal cooling operation, the refrigeration cycle is configured by opening the electromagnetic on-off valve 37. At this time, since the flow resistance of the capillary tube 38 is larger than that of the electromagnetic switching valve 37 in the open state, most of the refrigerant does not flow through the capillary tube 38, flows through the electromagnetic switching valve 37, and the heat exchanger 40 does not operate. On the other hand, in the cooling and dehumidifying operation, the electromagnetic on-off valve 37 is closed, and the refrigerant is caused to flow through the capillary tube 38 to reduce the pressure. The intermediate-pressure gas-liquid two-phase refrigerant exiting the first indoor heat exchanger 5 (point D) flows into the capillary tube 38, and further flows into the heat exchanger 40.
While being cooled by the low-temperature and low-pressure refrigerant that has exited the second indoor heat exchanger 7, the pressure is reduced from the intermediate pressure to the low pressure, and the refrigerant flows into the second indoor heat exchanger 7 as a low-pressure gas-liquid two-phase refrigerant (F
point).

【0090】一般に、毛細管内を流れる気液二相冷媒
は、流れとともに減圧されるため、液冷媒から冷媒蒸気
が発生し、流れ方向に乾き度が大きくなる。毛細管内を
流れる気液二相冷媒の冷媒流動音は、毛細管内で発生す
る冷媒蒸気によって冷媒の速度が増加し、毛細管内での
圧力損失の変動が大きくなることや、毛細管出口部の冷
媒速度が増加することが要因である。この実施の形態で
は、冷房除湿運転時の第2流量制御弁である毛細管38
を、熱交換器40内で第2室内熱交換器7の出口冷媒に
より冷却しているので、毛細管内では蒸気冷媒の発生が
ほとんどなく、このため毛細管内部の圧力損失の変動も
小さく、また毛細管出口の冷媒速度の増加を抑制するこ
とができる。このため、毛細管で発生する冷媒流動音は
低減でき、室内の騒音環境を向上することができる。ま
た熱交換器40によって、第2室内熱交換器7の出口冷
媒は加熱されるため、第2室内熱交換器7の出口冷媒は
湿り冷媒となり、図1に示した実施の形態に比べて、第
2室内熱交換器内の冷媒伝熱性能が向上し、冷房除湿運
転時の効率も向上する。
Generally, the gas-liquid two-phase refrigerant flowing in the capillary is decompressed with the flow, so that refrigerant vapor is generated from the liquid refrigerant and the dryness increases in the flow direction. The refrigerant flow noise of the gas-liquid two-phase refrigerant flowing in the capillary tube is caused by the fact that the speed of the refrigerant increases due to the refrigerant vapor generated in the capillary tube, the fluctuation of the pressure loss in the capillary tube increases, and the refrigerant speed at the outlet of the capillary tube increases. This is due to the increase in In this embodiment, the capillary 38 serving as the second flow control valve during the cooling and dehumidifying operation is used.
Is cooled by the outlet refrigerant of the second indoor heat exchanger 7 in the heat exchanger 40, so that there is almost no generation of vapor refrigerant in the capillary tube, so that the fluctuation of the pressure loss inside the capillary tube is small, and An increase in the refrigerant speed at the outlet can be suppressed. For this reason, the refrigerant flow noise generated in the capillary can be reduced, and the indoor noise environment can be improved. In addition, since the outlet refrigerant of the second indoor heat exchanger 7 is heated by the heat exchanger 40, the outlet refrigerant of the second indoor heat exchanger 7 becomes a wet refrigerant, as compared with the embodiment shown in FIG. The refrigerant heat transfer performance in the second indoor heat exchanger is improved, and the efficiency during the cooling and dehumidifying operation is also improved.

【0091】なおこの実施の形態では、毛細管38を第
2室内熱交換器7の出口冷媒によって冷却する例につい
て説明したが、これに限ることはなく、毛細管38を室
内空気によって冷却するように構成しても、同様の効果
を発揮する。
In this embodiment, the example in which the capillary tube 38 is cooled by the refrigerant at the outlet of the second indoor heat exchanger 7 has been described. However, the present invention is not limited to this, and the capillary tube 38 is cooled by room air. However, the same effect is exhibited.

【0092】実施の形態10.図19はこの発明の実施
の形態の他の例を示す空気調和装置の冷媒回路図で、図
1に示したものと同一または同様の構成部品には同一符
合を付して、その重複する説明を省略する。この実施の
形態は、図1に示した実施の形態の、冷房除湿運転およ
び暖房高温吹出し運転の改良に関するものであり、第1
流量制御弁4と第1室内熱交換器5の間の配管と第2流
量制御弁6と第2室内熱交換器7の間の配管との間をバ
イパスするバイパス流路を接続し、このバイパス流路に
は開閉手段である電磁弁41が設けられている。第1流
量制御弁4、第2流量制御弁および電磁弁41は、図示
しない制御手段からの指示によって互いに関連しあいな
がら開閉する。
Embodiment 10 FIG. FIG. 19 is a refrigerant circuit diagram of an air conditioner showing another example of the embodiment of the present invention. The same or similar components as those shown in FIG. Is omitted. This embodiment relates to improvements in the cooling dehumidifying operation and the heating high-temperature blowing operation of the embodiment shown in FIG.
A bypass flow path that bypasses a pipe between the flow control valve 4 and the first indoor heat exchanger 5 and a pipe between the second flow control valve 6 and the second indoor heat exchanger 7 is connected. An electromagnetic valve 41 as an opening / closing means is provided in the flow path. The first flow control valve 4, the second flow control valve, and the solenoid valve 41 are opened and closed in association with each other according to an instruction from a control unit (not shown).

【0093】まずこの実施の形態の、冷房除湿運転時の
動作について説明する。通常冷房運転時は、電磁弁41
を閉じ、第2流量制御弁6を開として、図1の実施の形
態と同様の動作を行なう。冷房顕熱負荷が小さくなった
場合には、電磁弁41を開き、第2流量制御弁6を閉じ
た熱交換器分割による除湿運転を行なう。この熱交換器
分割による除湿運転では、圧縮機1を出た高温高圧の冷
媒蒸気は、四方弁2を通って室外熱交換器3に流入し、
外気と熱交換して凝縮、液化する。この高圧の液冷媒
は、第1流量制御弁4で低圧に減圧され、気液二相冷媒
となって電磁弁41を通って、第2室内熱交換器7に流
入し、室内空気の顕熱および潜熱を奪って蒸発する。こ
の時の第1流量制御弁4の開度は、例えば第2室内熱交
換器の出口冷媒の過熱度が5℃となるように制御されて
いる。この熱交換器分割による除湿運転では、通常冷房
運転が第1室内熱交換器5と第2室内熱交換器7とを蒸
発器としているのに対して、第2室内熱交換器7のみを
蒸発器としているので、冷房能力が小さく、圧縮機1の
回転周波数を小さくして状態でも、通常冷房運転に比べ
て、蒸発温度を低くすることができ、十分な除湿量を確
保することができる。
First, the operation of this embodiment during the cooling and dehumidifying operation will be described. During normal cooling operation, the solenoid valve 41
Is closed, the second flow control valve 6 is opened, and the same operation as in the embodiment of FIG. 1 is performed. When the cooling sensible heat load decreases, the dehumidifying operation is performed by splitting the heat exchanger with the electromagnetic valve 41 opened and the second flow control valve 6 closed. In the dehumidifying operation by this heat exchanger division, the high-temperature and high-pressure refrigerant vapor exiting the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2,
Condenses and liquefies by exchanging heat with the outside air. The high-pressure liquid refrigerant is reduced to a low pressure by the first flow control valve 4, becomes a gas-liquid two-phase refrigerant, flows into the second indoor heat exchanger 7 through the electromagnetic valve 41, and generates sensible heat of the indoor air. And take away latent heat and evaporate. At this time, the opening degree of the first flow control valve 4 is controlled such that the superheat degree of the outlet refrigerant of the second indoor heat exchanger becomes 5 ° C., for example. In the dehumidifying operation by this heat exchanger division, the normal cooling operation uses the first indoor heat exchanger 5 and the second indoor heat exchanger 7 as evaporators, whereas only the second indoor heat exchanger 7 evaporates. Since the cooling unit is used, the evaporating temperature can be reduced as compared with the normal cooling operation, and a sufficient amount of dehumidification can be ensured even when the cooling capacity is small and the rotation frequency of the compressor 1 is reduced.

【0094】さらに部屋の冷房顕熱能力が低下し、熱交
換器分割による除湿運転で圧縮機1の回転周波数を下げ
ると蒸発温度が上昇し、除湿量が充分に確保できなくな
った場合や、部屋の冷房顕熱がゼロ、すなわち部屋の室
温を低下させずに除湿運転を行なう場合には、冷媒再熱
による除湿運転を行なう。この冷媒再熱による除湿運転
では、電磁弁41を開、第2流量制御弁6を閉とし、実
施の形態1で示したように、第1室内熱交換器を凝縮
器、第2室内熱交換器7を蒸発器とした除湿運転を行な
う。この際、第2流量制御弁6には、絞り部に焼結金属
を使用したものや、毛細管を使用しているので、冷媒流
動音の発生を防止することができる。
Further, when the cooling sensible heat capacity of the room is reduced, and when the rotation frequency of the compressor 1 is reduced in the dehumidifying operation by dividing the heat exchanger, the evaporation temperature rises and the amount of dehumidification cannot be sufficiently secured. When the cooling sensible heat is zero, that is, when the dehumidifying operation is performed without lowering the room temperature, the dehumidifying operation by reheating the refrigerant is performed. In the dehumidifying operation by the reheating of the refrigerant, the electromagnetic valve 41 is opened, the second flow control valve 6 is closed, and the first indoor heat exchanger is connected to the condenser and the second indoor heat exchange is performed as described in the first embodiment. A dehumidifying operation is performed using the vessel 7 as an evaporator. At this time, since the second flow control valve 6 uses a sintered metal in the throttle portion or uses a capillary tube, it is possible to prevent the generation of refrigerant flow noise.

【0095】次に、この実施の形態の空気調和装置の冷
房時の具体的な運転制御法について説明する。空気調和
装置には、部屋内に居る居住者の好の温湿度環境を設定
するために、例えば設定温度と設定湿度が空調装置運転
時に設定される。なおこの設定温度と設定湿度は、居住
者がそれぞれの設定値を室内ユニットのリモコンから直
接入力してもよく、また暑がりの人用、寒がりの人用や
子供用、老人用など室内ユニットのリモコンに対象とす
る居住者別に定めた温度および湿度の最適値テーブルを
記憶させ、対象居住者のみを直接選択するようにしても
よい。また室内ユニット12には、室内の温度および湿
度を検知するために、室内ユニットの吸い込み空気の温
度および湿度を検出するセンサーがそれぞれ設けられて
いる。
Next, a specific operation control method of the air conditioner of this embodiment during cooling will be described. In the air conditioner, for example, a set temperature and a set humidity are set during operation of the air conditioner in order to set a favorable temperature and humidity environment for a resident in the room. The set temperature and the set humidity may be input directly by the occupant from the remote control of the indoor unit, and the set temperature and the set humidity of the indoor unit such as for a hot person, a cold person, a child, and an elderly person. The remote controller may store an optimum value table of temperature and humidity determined for each target resident, and directly select only the target resident. The indoor unit 12 is provided with sensors for detecting the temperature and humidity of the air taken into the indoor unit in order to detect the indoor temperature and humidity.

【0096】空気調和装置が起動されると、設定温度と
現在の室内吸込み空気温度との差を温度偏差、設定湿度
と現在の室内吸込み空気湿度との差を湿度偏差として演
算し、最終的にこれらの偏差がゼロあるいは所定の値以
内となるように空気調和装置の圧縮機1の回転周波数、
室外ファン回転数、室内ファン回転数、第1流量制御弁
4の絞り開度、および第2流量制御弁7の開閉、電磁弁
41を制御する。この時、温度および湿度偏差をゼロあ
るいは所定の値以内に制御する際には、温度偏差を湿度
偏差よりも優先して空気調和装置の制御を行なう。すな
わち、空気調和装置起動時に、温度偏差および湿度偏差
がともに大きい場合は、第2流量制御弁7を開状態と
し、また電磁弁41を閉状態として、まず通常冷房運転
で、室内の温度偏差を優先的にゼロまたは所定の値以内
となるように運転する。圧縮機1の回転周波数や室内フ
ァンの回転数の調整により空気調和装置の冷房能力が部
屋の熱負荷と一致し、温度偏差がゼロまたは所定の値以
内となった場合に、湿度偏差を検出し、この時、湿度偏
差がゼロまたは所定の値以内となっている場合は、現在
の運転を続行する。
When the air conditioner is started, the difference between the set temperature and the current indoor suction air temperature is calculated as a temperature deviation, and the difference between the set humidity and the current indoor suction air humidity is calculated as a humidity deviation. The rotational frequency of the compressor 1 of the air conditioner is set so that these deviations become zero or within a predetermined value.
The controller controls the outdoor fan speed, the indoor fan speed, the throttle opening of the first flow control valve 4, the opening and closing of the second flow control valve 7, and the electromagnetic valve 41. At this time, when controlling the temperature and humidity deviations to be zero or within a predetermined value, the air conditioner is controlled by giving priority to the temperature deviations over the humidity deviations. That is, when both the temperature deviation and the humidity deviation are large at the time of starting the air-conditioning apparatus, the second flow control valve 7 is opened, and the solenoid valve 41 is closed. The operation is preferentially performed so as to be zero or within a predetermined value. When the cooling capacity of the air conditioner matches the thermal load of the room by adjusting the rotation frequency of the compressor 1 and the rotation speed of the indoor fan, and when the temperature deviation becomes zero or within a predetermined value, the humidity deviation is detected. At this time, if the humidity deviation is zero or within a predetermined value, the current operation is continued.

【0097】温度偏差がゼロまたは所定の値以内とな
り、この時の湿度偏差がまだ大きな値となっている場合
は、その時の圧縮機1の回転周波数に応じて、熱交換器
分割による冷房除湿運転と冷媒再熱による冷房除湿運転
を選択し、冷媒回路を切換える。すなわち冷房顕熱能力
は、熱交換器分割による冷房除湿運転の方が、冷媒再熱
による冷房除湿運転よりも大きいため、温度偏差をゼロ
または所定の値以内に維持するために必要な冷房顕熱能
力を、通常冷房運転時の圧縮機1の回転周波数で間接的
に検知し、冷媒回路を選択する。すなわち、温度偏差を
ゼロまたは所定の値以内となった圧縮機1の回転周波数
が、所定の値、例えば30Hz以上であれば、第2流量
制御弁6を絞り、電磁弁41を開状態として、熱交換器
分割による冷房除湿運転に切換える。この熱交換器分割
による冷房除湿運転では、圧縮機1の回転周波数や室内
ファンの回転数などを調整して、温度偏差および湿度偏
差がともにゼロあるいは所定の値以内となるように制御
される。
If the temperature deviation is zero or within a predetermined value and the humidity deviation at this time is still a large value, the cooling and dehumidifying operation by splitting the heat exchanger according to the rotation frequency of the compressor 1 at that time. And the cooling and dehumidifying operation by the reheating of the refrigerant are selected, and the refrigerant circuit is switched. That is, the cooling sensible heat capacity is larger in the cooling dehumidifying operation by splitting the heat exchanger than in the cooling dehumidifying operation by reheating the refrigerant, so that the cooling sensible heat required to maintain the temperature deviation to zero or within a predetermined value is obtained. The capacity is indirectly detected by the rotation frequency of the compressor 1 during the normal cooling operation, and the refrigerant circuit is selected. That is, when the rotation frequency of the compressor 1 in which the temperature deviation is zero or within a predetermined value is equal to or higher than a predetermined value, for example, 30 Hz, the second flow control valve 6 is throttled, and the electromagnetic valve 41 is opened. Switch to cooling / dehumidifying operation by splitting the heat exchanger. In the cooling and dehumidifying operation by the division of the heat exchanger, the rotation frequency of the compressor 1 and the rotation speed of the indoor fan are adjusted so that the temperature deviation and the humidity deviation are both controlled to be zero or within a predetermined value.

【0098】一方、通常冷房運転で温度偏差がゼロまた
は所定の値以内となり、この時の湿度偏差がまだ大きな
値となり、かつ圧縮機1の回転周波数が所定の値、例え
ば30Hz以下であった場合や、上記説明のように通常
冷房運転から熱交換器分割による冷房除湿運転に移行し
た後、部屋の空調負荷が小さくなり、温度偏差をゼロま
たは所定の値以内に維持するために部屋の空気を加熱す
る必要があると判断された場合は、第2流量制御弁6を
絞り、電磁弁41を閉状態として、冷媒再熱による冷房
除湿運転に切換える。この冷媒再熱による冷房除湿運転
では、室内の温度偏差がゼロまたは所定の値以内を維持
できるように、第2室内熱交換器7の加熱量を制御する
とともに、湿度偏差がゼロまたは所定の値以内に入るよ
うに、第1室内熱交換器5の冷却除湿量を制御する。第
2室内熱交換器7の加熱量の制御には、室外熱交換器3
のファン回転数や第1流量制御弁4の開度などによって
調整する。また第1室内熱交換器5の冷却除湿量の制御
には、圧縮機1の回転周波数や室内ユニット12のファ
ン回転数などによって制御する。
On the other hand, when the temperature deviation during normal cooling operation is zero or within a predetermined value, the humidity deviation at this time is still a large value, and the rotation frequency of the compressor 1 is lower than a predetermined value, for example, 30 Hz. Or, as described above, after shifting from the normal cooling operation to the cooling dehumidification operation by splitting the heat exchanger, the air conditioning load of the room is reduced, and the air in the room is maintained to maintain the temperature deviation within zero or within a predetermined value. If it is determined that heating is necessary, the second flow control valve 6 is throttled, the solenoid valve 41 is closed, and the operation is switched to the cooling and dehumidifying operation by refrigerant reheating. In the cooling and dehumidifying operation by the refrigerant reheating, the heating amount of the second indoor heat exchanger 7 is controlled so that the indoor temperature deviation can be maintained at zero or within a predetermined value, and the humidity deviation is zero or at a predetermined value. The amount of cooling and dehumidification of the first indoor heat exchanger 5 is controlled so as to fall within the range. To control the heating amount of the second indoor heat exchanger 7, the outdoor heat exchanger 3
And the opening degree of the first flow control valve 4 and the like. The amount of cooling and dehumidification of the first indoor heat exchanger 5 is controlled by the rotation frequency of the compressor 1, the number of fan rotations of the indoor unit 12, and the like.

【0099】このようにこの実施の形態では、冷房時、
室内の顕熱および潜熱負荷に応じて、通常冷房運転、熱
交換器分割による除湿運転、冷媒再熱による除湿運転の
3つの運転モードが切換可能であるので、幅広い範囲で
部屋内の温度、湿度環境を最適に制御することが可能と
なる。また第2流量制御弁6には、絞り部に焼結金属を
使用したものや、毛細管を使用しているので、冷媒流動
音の発生を防止し、静かな室内環境を実現できる。
As described above, in this embodiment, during cooling,
Depending on the sensible heat and latent heat load in the room, three operation modes can be switched: normal cooling operation, dehumidification operation by splitting the heat exchanger, and dehumidification operation by refrigerant reheating. The environment can be optimally controlled. Further, since the second flow control valve 6 uses a sintered metal or a capillary tube for the throttle portion, the generation of refrigerant flow noise can be prevented, and a quiet indoor environment can be realized.

【0100】次にこの実施の形態の暖房高温吹出し運転
の動作について説明する。通常暖房運転時は、電磁弁4
1を閉じ、第2流量制御弁6を開として、図1の実施の
形態3と同様の動作を行なう。起動時など高温の吹出し
温度が要求された場合には、電磁弁41を開き、第2流
量制御弁6を閉じた熱交換器分割による暖房運転を行な
う。この熱交換器分割による暖房運転では、圧縮機1を
出た高温高圧の冷媒蒸気は、四方弁2を通って第2室内
熱交換器7に流入し、室内空気と熱交換して凝縮、液化
する。この高圧の液冷媒は、電磁弁41を通って。第1
流量制御弁4に流入し、低圧まで減圧され、室外熱交換
器3に流入し、室外の空気と熱交換して蒸発し、四方弁
2を通って再び圧縮機1に戻る。この時の第1流量制御
弁4の開度は、例えば室外熱交換器3の出口冷媒の過熱
度が5℃となるように制御されている。この熱交換器分
割による暖房運転では、通常暖房運転が第1室内熱交換
器5と第2室内熱交換器7と凝縮器としているのに対し
て、第2室内熱交換器7のみを凝縮器としているので、
通常冷房運転に比べて、凝縮温度を高くすることがで
き、この凝縮器で加熱され、室内に吹出される空気温度
を高くすることがでる。さらに暖房運転時に、室内の除
湿運転を行なう場合には、電磁弁41を閉、第2流量制
御弁6を閉とすることにより、実施の形態3で説明した
暖房除湿運転が可能となる。また第2流量制御弁6に
は、絞り部に焼結金属を使用したものや、毛細管を使用
しているので、冷媒流動音の発生を防止することができ
る。
Next, the operation of the heating high-temperature blowing operation of this embodiment will be described. During normal heating operation, the solenoid valve 4
1 is closed and the second flow control valve 6 is opened, and the same operation as in the third embodiment of FIG. 1 is performed. When a high blowing temperature is required, such as at the time of startup, the heating operation is performed by splitting the heat exchanger with the solenoid valve 41 opened and the second flow control valve 6 closed. In the heating operation by this heat exchanger division, the high-temperature and high-pressure refrigerant vapor exiting the compressor 1 flows into the second indoor heat exchanger 7 through the four-way valve 2 and exchanges heat with the indoor air to condense and liquefy. I do. This high-pressure liquid refrigerant passes through the solenoid valve 41. First
It flows into the flow control valve 4, is decompressed to a low pressure, flows into the outdoor heat exchanger 3, exchanges heat with outdoor air, evaporates, and returns to the compressor 1 again through the four-way valve 2. At this time, the degree of opening of the first flow control valve 4 is controlled such that the degree of superheating of the refrigerant at the outlet of the outdoor heat exchanger 3 becomes 5 ° C., for example. In the heating operation by this heat exchanger division, the normal heating operation includes the first indoor heat exchanger 5, the second indoor heat exchanger 7, and the condenser, whereas only the second indoor heat exchanger 7 is used as the condenser. And so
As compared with the normal cooling operation, the condensing temperature can be increased, and the temperature of the air heated by the condenser and blown into the room can be increased. Furthermore, when performing the indoor dehumidifying operation during the heating operation, the heating and dehumidifying operation described in the third embodiment can be performed by closing the electromagnetic valve 41 and closing the second flow control valve 6. In addition, since the second flow control valve 6 uses a sintered metal for the throttle portion or uses a capillary tube, it is possible to prevent the generation of refrigerant flow noise.

【0101】このようにこの実施の形態では、暖房時、
通常暖房運転、熱交換器分割による暖房高温吹出し運
転、暖房除湿運転の3つの運転モードが切換可能である
ので、使用者の好みに応じて部屋内の温度、湿度環境を
最適に制御することができる。また第2流量制御弁6に
は、絞り部に焼結金属を使用したものや、毛細管を使用
しているので、冷媒流動音の発生を防止し、静かな室内
環境を実現できる。
As described above, in this embodiment, during heating,
Since the three operation modes of the normal heating operation, the heating high-temperature blowing operation by splitting the heat exchanger, and the heating dehumidifying operation can be switched, it is possible to optimally control the temperature and humidity environment in the room according to the user's preference. it can. Further, since the second flow control valve 6 uses a sintered metal or a capillary tube for the throttle portion, the generation of refrigerant flow noise can be prevented, and a quiet indoor environment can be realized.

【0102】なお本実施の形態では、第1室内熱交換器
5と第2流量制御弁6と並列に電磁弁41を設置する例
について説明したが、これに限るものではなく、図20
に示すように、電磁弁41と第2流量制御弁6を一体化
した3方弁42を用いても良い。このように電磁弁41
と第2流量制御弁6を一体化した3方弁42を用いるこ
とにより、室内機の小形化が可能となる。
In the present embodiment, an example has been described in which the solenoid valve 41 is installed in parallel with the first indoor heat exchanger 5 and the second flow control valve 6, but the present invention is not limited to this.
As shown in FIG. 7, a three-way valve 42 in which the electromagnetic valve 41 and the second flow control valve 6 are integrated may be used. Thus, the solenoid valve 41
By using the three-way valve 42 in which the and the second flow control valve 6 are integrated, the indoor unit can be downsized.

【0103】また実施の形態1から形態9では、空気調
和装置の冷媒としてR410Aを用いた場合について説
明した。R410Aは、HFC系冷媒であり、オゾン層
を破壊しない地球環境保全に適した冷媒であるととも
に、従来冷媒として用いられてきたR22に比べて、冷
媒圧力損失が小さいため、第2流量制御弁6の絞り部に
用いる焼結金属の通気孔の径を小さくでき、より一層冷
媒流動音低減効果を得ることができる冷媒である。
In Embodiments 1 to 9, the case where R410A is used as the refrigerant of the air conditioner has been described. R410A is an HFC-based refrigerant, which is suitable for global environmental protection without destroying the ozone layer, and has a smaller refrigerant pressure loss than R22 which has been conventionally used as a refrigerant. This is a refrigerant that can reduce the diameter of the vent hole of the sintered metal used for the narrowed portion and can further obtain the refrigerant flow noise reduction effect.

【0104】さらにこの空気調和装置の冷媒としては、
R410Aに限ることはなく、HFC系冷媒であるR4
07CやR404A、R507Aであっても良い。また
地球温暖化防止の観点から、地球温暖化係数の小さなH
FC系冷媒であるR32単独R152a単独あるいはR
32/R134aなどの混合冷媒であっても良い。また
プロパンやブタンなどの炭化水素冷媒やアンモニア、二
酸化炭素、エーテルなどの自然系冷媒およびそれらの混
合冷媒であってもよい。
Further, as a refrigerant of this air conditioner,
It is not limited to R410A, but R4 which is an HFC-based refrigerant
07C, R404A and R507A. Also, from the viewpoint of preventing global warming, H with a small global warming potential
R32a alone or R152a alone or R
It may be a mixed refrigerant such as 32 / R134a. Further, hydrocarbon refrigerants such as propane and butane, natural refrigerants such as ammonia, carbon dioxide and ether, and mixed refrigerants thereof may be used.

【0105】また本実施の形態1から形態9では、特に
圧縮機の潤滑油については言及していないが、潤滑油と
しては鉱油やアルキルベンゼンなどの合成油であっても
良く、また近年、HFC系冷媒用として開発されたエス
テル油やエーテル油であっても良い。
In the first to ninth embodiments, no particular reference is made to the lubricating oil of a compressor, but the lubricating oil may be a synthetic oil such as mineral oil or alkylbenzene. Ester oil or ether oil developed for refrigerants may be used.

【0106】[0106]

【発明の効果】以上説明したとおりこの発明の絞り装置
によれば、絞り部を冷媒流れ方向に連通する多孔質透過
材で構成したので、冷媒流動音の発生を防止して騒音を
低減できる効果が得られる。
As described above, according to the expansion device of the present invention, since the expansion portion is formed of the porous permeable material communicating in the refrigerant flow direction, it is possible to prevent the generation of the refrigerant flow noise and reduce the noise. Is obtained.

【0107】また、電磁開閉弁が設けられた第1の流路
と、この第1の流路と並列に設けられた第2の流路と、
この第2の流路中に設けられ冷媒流れ方向に連通する多
孔質透過材で構成した絞り部とを備えたので、多孔質透
過材の複雑な加工を要求することなく、冷媒流動音の発
生を防止して騒音を低減できる効果が得られる。
A first flow path provided with an electromagnetic on-off valve, a second flow path provided in parallel with the first flow path,
And a throttle portion provided in the second flow path and made of a porous permeable material communicating with the refrigerant in the flow direction. Therefore, generation of the refrigerant flow noise can be achieved without requiring complicated processing of the porous permeable material. The effect of preventing noise and reducing noise can be obtained.

【0108】また、前記多孔質透過材で冷媒流路を覆う
ので、圧力損失の変動を抑制できると共に、冷媒流動音
の発生を防止して騒音を低減できる効果が得られる。
Further, since the refrigerant passage is covered with the porous permeable material, fluctuations in pressure loss can be suppressed, and the effect of preventing generation of refrigerant flow noise and reducing noise can be obtained.

【0109】また、前記多孔質透過材は空洞部を有する
又は中空体の構造としたので、多孔質透過材の通過孔の
大きさと圧力損失とを適切に選択できる効果が得られ
る。
Further, since the porous permeable material has a hollow portion or a hollow body structure, the effect of appropriately selecting the size of the through-hole and the pressure loss of the porous permeable material can be obtained.

【0110】また、前記絞り部は、一端が開放した筒状
を成し、この筒状の周面および底面を介して前記筒状の
内外を連通する流路を多孔質透過材で構成したので、多
孔質透過部材の通過面積を大きく確保できる効果が得ら
れる。
[0110] Also, the throttle section has a cylindrical shape with one end open, and a flow passage communicating between the inside and the outside of the cylindrical shape through the cylindrical peripheral surface and the bottom surface is made of a porous permeable material. In addition, an effect that a large passage area of the porous permeable member can be obtained can be obtained.

【0111】また、前記多孔質透過材の透過面積を調節
する調節手段を備えたので、多孔質透過材を通過するこ
とによる圧力差を適度に調節できる効果が得られる。
Further, since the adjusting means for adjusting the permeation area of the porous permeable material is provided, the effect of appropriately adjusting the pressure difference caused by passing through the porous permeable material can be obtained.

【0112】また、弁室側壁に第1流路が開口する弁本
体と、弁室底面に第2流路が開口する主弁座と、弁室内
に前記主弁座を閉止できる主弁体を有し、前記主弁体に
多孔質透過材を用いて絞り部を構成したので、冷媒流動
音の発生を防止でき、また通常の弁開時における圧力損
失による性能低下も防止できる効果が得られる。
Further, a valve body having a first flow path opened in the valve chamber side wall, a main valve seat having a second flow path opened in the valve chamber bottom face, and a main valve body capable of closing the main valve seat in the valve chamber are provided. Since the throttle portion is formed by using a porous permeable material for the main valve body, it is possible to prevent refrigerant flow noise from being generated and to prevent performance loss due to pressure loss when a normal valve is opened. .

【0113】また、前記多孔質透過材は一端が開放した
柱状を成し、前記主弁座閉止時に前記柱状の周面側と底
面側とが流路入口側と出口側とに分離されるので、周面
側と底面側とのそれぞれで多孔質透過材の通過孔の大き
さと圧力損失とを適切に選択できる効果が得られる。
Further, the porous permeable material has a columnar shape with one end opened, and when the main valve seat is closed, the peripheral surface and the bottom surface of the columnar shape are separated into a flow channel inlet side and an outlet side. Thus, the effect of appropriately selecting the size of the passage hole of the porous permeable material and the pressure loss on the peripheral surface side and the bottom surface side is obtained.

【0114】また、弁室側壁に第1流路が開口する弁本
体と、弁室底面に第2流路が開口する主弁座と、弁室内
に前記主弁座を閉止できる主弁体を有し、前記主弁座に
多孔質透過材を用いて流量制御弁を構成したので、絞り
部の設計が容易となり、安価で低騒音なものとできる効
果が得られる。
Further, a valve body having a first flow path opened in the valve chamber side wall, a main valve seat having a second flow path opened in the valve chamber bottom surface, and a main valve body capable of closing the main valve seat in the valve chamber are provided. Since the flow control valve is constituted by using a porous permeable material for the main valve seat, the design of the throttle portion is facilitated, and the effect of being inexpensive and low noise is obtained.

【0115】また、周面が主弁座の側面と当接し、前記
周面と側面との当接面積を開閉方向への移動によって可
変する主弁体と、前記主弁体の開閉方向への移動を制御
する制御手段とを備え、前記主弁体、主弁座および制御
手段で多孔質透過材の透過面積を調節する調節手段を構
成したので、主弁体の開閉動作と同方向の動作で多孔質
透過材を利用した圧力差を適度に調節できる効果が得ら
れる。
A main valve body whose peripheral surface is in contact with the side surface of the main valve seat and the contact area between the peripheral surface and the side surface is varied by moving the main valve body in the opening and closing direction. Control means for controlling the movement, and the main valve body, the main valve seat and the control means constitute adjusting means for adjusting the permeation area of the porous permeable material. Thus, the effect of appropriately adjusting the pressure difference utilizing the porous permeable material can be obtained.

【0116】また、多孔質透過材の通気孔を200から
0.5マイクロメートルの範囲としたので、液冷媒や気
液二相冷媒が通過する際の冷媒流動音の発生を防止でき
る効果が得られる。
Further, since the pores of the porous permeable material are set in the range of 200 to 0.5 μm, the effect of preventing generation of refrigerant flow noise when liquid refrigerant or gas-liquid two-phase refrigerant passes is obtained. Can be

【0117】また、前記多孔質透過材を焼結金属とした
ので、耐久性に優れた絞り装置とすることができる効果
が得られる。
Further, since the porous permeable material is made of sintered metal, an effect that a drawing device having excellent durability can be obtained can be obtained.

【0118】また、この発明の冷凍サイクルによれば、
上記絞り装置を備えたものにおいて、前記多孔質透過材
に気液二相冷媒を通過させるので、冷媒蒸気スラグや冷
媒気泡の崩壊の発生がなく、冷媒流動音の発生を防止で
きる効果が得られる。
Further, according to the refrigeration cycle of the present invention,
Since the gas-liquid two-phase refrigerant is allowed to pass through the porous permeable material in the apparatus provided with the above-described expansion device, there is no occurrence of collapse of refrigerant vapor slag or refrigerant bubbles, and an effect of preventing generation of refrigerant flow noise can be obtained. .

【0119】また、弁室側壁に第1流路が開口する弁本
体と、弁室底面に第2流路が開口する主弁座と、弁室内
に前記主弁座を閉止できると共に周面が主弁座の側面と
当接し、前記周面と側面との当接面積を開閉方向への移
動によって可変する主弁体とを備えた絞り装置と、前記
主弁体の開閉方向への移動を制御する制御手段と、を備
え、前記主弁座又は主弁体に多孔質透過材を用いて流量
制御弁を構成すると共に、前記主弁体、主弁座および制
御手段で多孔質透過材の透過面積を調節する調節手段を
構成したので、冷媒流動音の発生を防止しつつ、流量を
調節できる効果が得られる。
Further, a valve body having a first flow path opened in the valve chamber side wall, a main valve seat having a second flow path opened in the valve chamber bottom face, and the main valve seat can be closed in the valve chamber and the peripheral surface is formed. A throttle device having a main valve body that abuts on a side surface of the main valve seat and changes an abutting area between the peripheral surface and the side surface by movement in the opening and closing direction, and moving the main valve body in the opening and closing direction. And a control means for controlling the main valve seat or the main valve body to constitute a flow rate control valve using a porous permeable material, and the main valve body, the main valve seat and the control means of the porous permeable material. Since the adjusting means for adjusting the permeation area is configured, the effect of adjusting the flow rate while preventing the generation of the refrigerant flow noise can be obtained.

【0120】また、前記調節手段は前記絞り装置の圧力
差に応じて前記透過面積を調節するので、圧力差の調節
が図れる効果が得られる。
Further, since the adjusting means adjusts the transmission area according to the pressure difference of the expansion device, the effect of adjusting the pressure difference can be obtained.

【0121】 前記調節手段は所定の圧力差となるよう
前記透過面積を調節するので、圧力変動の影響を抑制で
きる効果が得られる。
Since the adjusting means adjusts the transmission area so as to have a predetermined pressure difference, the effect of suppressing the influence of pressure fluctuation can be obtained.

【0122】また、この発明の空気調和装置によれば、
圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交
換器、第2流量制御弁、第2室内熱交換器を順次接続し
た冷凍サイクルを備えたものにおいて、前記第2流量制
御弁の絞り部を冷媒流れ方向に連通する多孔質透過材で
構成したので、冷房および暖房時の室内の温湿度環境を
幅広く制御できるとともに、冷媒流動音の発生を防止で
き、快適な室内環境を提供できる効果が得られる。
Further, according to the air conditioner of the present invention,
A compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a refrigeration cycle in which a second indoor heat exchanger is sequentially connected, wherein the second flow control is performed. The throttle section of the valve is made of a porous permeable material that communicates with the refrigerant in the direction of flow of the refrigerant. The effect that can be provided is obtained.

【0123】また、前記多孔質透過材の透過面積を調節
する調節手段を備えたので、冷媒流動音の発生を防止し
つつ、流量を調節できるから、快適できめこまかい空調
運転ができる効果が得られる。
Further, since there is provided an adjusting means for adjusting the permeation area of the porous permeable material, the flow rate can be adjusted while preventing the generation of the refrigerant flow noise, so that the effect that the air conditioning operation can be performed comfortably and finely can be obtained. .

【0124】また、弁室側壁に第1流路が開口する弁本
体と、弁室底面に第2流路が開口する主弁座と、弁室内
に前記主弁座を閉止できる主弁体を有し、前記主弁体に
多孔質透過材を用いて第2流量制御弁を構成したので、
冷媒流動音の発生を防止でき、また通常冷房運転時や通
常暖房運転時の圧力損失による性能低下も生じない。さ
らに防振材などを弁の外周に巻きつけるなどの従来の冷
媒流動音低減対策が不要になり、装置が安価となるとと
もに、装置廃棄時のリサイクル性が向上する効果が得ら
れる。
Further, a valve body having a first flow path opened on the valve chamber side wall, a main valve seat having a second flow path opened on the bottom face of the valve chamber, and a main valve body capable of closing the main valve seat in the valve chamber are provided. Having a second flow control valve using a porous permeable material for the main valve body,
Generation of refrigerant flow noise can be prevented, and performance degradation due to pressure loss during normal cooling operation or normal heating operation does not occur. Further, conventional measures for reducing the flow noise of the refrigerant, such as wrapping a vibration isolator around the valve, become unnecessary, and the apparatus is inexpensive and the recyclability at the time of disposal of the apparatus is improved.

【0125】また、弁室側壁に第1流路が開口する弁本
体と、弁室底面に第2流路が開口する主弁座と、弁室内
に前記主弁座を閉止できる主弁体を有し、前記主弁座に
多孔質透過材を用いて第2流量制御弁を構成したので、
絞り部の形状変更が容易であり、設計が容易となり、ま
た安価で低騒音な流量制御弁を提供できる効果が得られ
る。
Further, a valve body having a first flow path opened in the valve chamber side wall, a main valve seat having a second flow path opened in the valve chamber bottom face, and a main valve body capable of closing the main valve seat in the valve chamber are provided. Having a second flow control valve using a porous permeable material for the main valve seat,
The effect of easily changing the shape of the throttle portion, simplifying the design, and providing an inexpensive and low-noise flow control valve is obtained.

【0126】また、周面が主弁座の側面と当接し、前記
周面と側面との当接面積を開閉方向への移動によって可
変する主弁体と、前記主弁体の開閉方向への移動を制御
する制御手段とを備え、前記主弁体、主弁座および制御
手段で多孔質透過材の透過面積を調節する調節手段を構
成したので、小型で冷媒流動音の発生を防止しつつ、流
量を調節できるから、快適できめこまかい空調運転がで
きる効果が得られる。
A main valve body whose peripheral surface is in contact with the side surface of the main valve seat, and the contact area between the peripheral surface and the side surface is varied by moving the main valve body in the opening and closing direction. Control means for controlling the movement, and the main valve body, the main valve seat and the control means constitute adjusting means for adjusting the permeation area of the porous permeable material. In addition, since the flow rate can be adjusted, it is possible to obtain a comfortable and detailed air conditioning operation.

【0127】また、前記調節手段は前記第2流量制御弁
の圧力差に応じて前記透過面積を調節するので、快適か
つ効率的な空気調和が行なえる効果が得られる。。
Further, since the adjusting means adjusts the permeation area according to the pressure difference of the second flow control valve, it is possible to obtain a comfortable and efficient air conditioning. .

【0128】また、前記調節手段は潜熱比を低下させる
運転時に所定の圧力差となるよう前記透過面積を調節す
るので、室内の温湿度環境をより快適に導ける効果が得
られる。
Further, since the adjusting means adjusts the permeation area so as to have a predetermined pressure difference at the time of operation for lowering the latent heat ratio, an effect of more comfortably guiding the indoor temperature and humidity environment can be obtained.

【0129】また、焼結金属の通気孔を200から0.
5マイクロメートルの範囲としたので、液冷媒あるいは
気液二相冷媒が通過する際の冷媒流動音の発生を防止す
ることができる効果が得られる。
Further, the ventilation hole of the sintered metal is set at 200 to 0.
Since it is in the range of 5 micrometers, the effect of preventing generation of refrigerant flow noise when the liquid refrigerant or the gas-liquid two-phase refrigerant passes can be obtained.

【0130】また、潜熱比を低下させる運転時に前記第
2流量制御弁を閉止するよう制御する制御部を備えたの
で、冷媒流動音を低減しながら広範囲に温度制御が行な
え、快適な除湿ができる効果が得られる。
Further, since the control unit for controlling the second flow control valve to be closed at the time of the operation for lowering the latent heat ratio is provided, the temperature can be controlled over a wide range while reducing the refrigerant flow noise, and comfortable dehumidification can be performed. The effect is obtained.

【0131】また、前記制御部は冷房又は除湿並びに暖
房運転時に前記第2流量制御弁を閉止するよう制御する
ので、運転モードの違いによる冷媒の相状態の変化に対
しても冷媒流動音を効果的に低減しながら快適な除湿が
できる効果が得られる。
Further, the control section controls the second flow control valve to be closed during the cooling, dehumidifying and heating operations, so that the refrigerant flow noise can be reduced even when the refrigerant phase changes due to the difference in the operation mode. The effect that comfortable dehumidification can be obtained while reducing the temperature is obtained.

【0132】また、暖房運転起動時に前記第2流量制御
弁を閉止するよう制御する制御部を備えたので、吹出温
度を高温にして速暖感を高めた快適な暖房ができる効果
が得られる。
Further, since the control section for controlling the second flow control valve to be closed at the time of starting the heating operation is provided, it is possible to obtain the effect that the temperature of the air is raised to a high temperature so that the feeling of quick warming can be improved and the comfortable heating can be performed.

【0133】また、暖房運転時で設定温度と室内温度と
の差が所定値以上の場合に前記第2流量制御弁を閉止す
るよう制御する制御部を備えたので、室内温度が設定温
度に対して充分低い場合に高温の吹出風を吹き出すこと
ができるから、冷風感を与えることなく快適な暖房がで
きる効果が得られる。
In addition, since the control unit is provided to control the second flow control valve to be closed when the difference between the set temperature and the room temperature is equal to or more than a predetermined value during the heating operation, the room temperature is controlled with respect to the set temperature. When the temperature is sufficiently low, the high-temperature blown air can be blown out, so that an effect of providing comfortable heating without giving a feeling of cool air can be obtained.

【0134】また、圧縮機、室外熱交換器、第1流量制
御弁、第1室内熱交換器、第2流量制御弁、第2室内熱
交換器を順次接続した冷凍サイクルを備えた空気調和装
置において、前記第2流量制御弁を内径1mm以上の毛
細管で構成したので、液冷媒あるいは気液二相冷媒が通
過する際の冷媒流動音を許容値以下に発生を確実に低減
することができ、しかも安価で、リサイクル性を向上さ
せた室内ユニットを提供することができる効果が得られ
る。
An air conditioner having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. In the above, since the second flow control valve is formed of a capillary tube having an inner diameter of 1 mm or more, it is possible to reliably reduce the generation of the refrigerant flow noise when the liquid refrigerant or the gas-liquid two-phase refrigerant passes below an allowable value, In addition, an effect that an inexpensive indoor unit with improved recyclability can be provided can be obtained.

【0135】また、圧縮機、室外熱交換器、第1流量制
御弁、第1室内熱交換器、第2流量制御弁、第2室内熱
交換器を順次接続した冷凍サイクルを備えた空気調和装
置において、前記第2流量制御弁を毛細管で構成し、冷
房除湿運転時の前記毛細管入口配管と前記第2室内熱交
換器と前記圧縮機の間の配管とを熱交換させる熱交換器
を設けたので、毛細管入口部の冷媒の蒸気成分を少なく
でき、毛細管より発生する冷媒流動音を大幅に低減する
ことができる。また冷房除湿運転時の室内熱交換器の伝
熱性能が向上し、装置の性能が向上できる効果が得られ
る。
An air conditioner having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. In the above, the second flow control valve is constituted by a capillary, and a heat exchanger for exchanging heat between the capillary inlet pipe and the pipe between the second indoor heat exchanger and the compressor during a cooling and dehumidifying operation is provided. Therefore, the vapor component of the refrigerant at the capillary inlet can be reduced, and the refrigerant flow noise generated from the capillary can be greatly reduced. Further, the heat transfer performance of the indoor heat exchanger during the cooling and dehumidifying operation is improved, and the effect of improving the performance of the device is obtained.

【0136】また、圧縮機、室外熱交換器、第1流量制
御弁、第1室内熱交換器、第2流量制御弁、第2室内熱
交換器を順次接続した冷凍サイクルを備えた空気調和装
置において、前記第2流量制御弁を毛細管で構成し、前
記第2室内熱交換器と前記圧縮機の間の配管と熱交換さ
せる熱交換器を設けたので、毛細管内での冷媒蒸気の発
生を抑制でき、毛細管より発生する冷媒流動音を大幅に
低減することができる。また冷房除湿運転時の室内熱交
換器の伝熱性能が向上し、装置の性能が向上できる効果
が得られる。
An air conditioner equipped with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. In the above, the second flow rate control valve is constituted by a capillary tube, and a heat exchanger for exchanging heat with a pipe between the second indoor heat exchanger and the compressor is provided, so that generation of refrigerant vapor in the capillary tube is suppressed. Thus, the flow noise of the refrigerant generated from the capillary can be greatly reduced. Further, the heat transfer performance of the indoor heat exchanger during the cooling and dehumidifying operation is improved, and the effect of improving the performance of the device is obtained.

【0137】また、第2室内熱交換器及び第2流量制御
弁をバイパスするバイパス流路と、このバイパス流路を
開閉する開閉手段とを備えたので、幅広い範囲で室内の
温度、湿度環境を制御できるとともに、温度条件を快適
に保ちながら潜熱比を低下させるためのきめこまかい運
転が可能になり、しかも冷媒流動音の発生を低減して、
低騒音な室内環境を実現できる効果が得られる。
Further, since the air conditioner is provided with a bypass passage for bypassing the second indoor heat exchanger and the second flow control valve and an opening / closing means for opening and closing the bypass passage, the indoor temperature and humidity environment can be controlled in a wide range. In addition to being able to control, it is also possible to perform fine-tuned operation to lower the latent heat ratio while keeping the temperature conditions comfortable, and to reduce the generation of refrigerant flow noise,
The effect of realizing a low noise indoor environment is obtained.

【0138】また、圧縮機、室外熱交換器、第1流量制
御弁、第1室内熱交換器、第2流量制御弁、第2室内熱
交換器を順次接続した冷凍サイクルを備えた空気調和装
置において、第2室内熱交換器及び第2流量制御弁をバ
イパスするバイパス流路と、このバイパス流路を開閉す
る開閉手段とを備えたので、幅広い範囲で室内の温度、
湿度環境を制御できるとともに、温度条件を快適に保ち
ながら潜熱比を低下させるためのきめこまかい運転が可
能になる効果が得られる。
An air conditioner equipped with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. In the above, since the air conditioner includes the bypass passage that bypasses the second indoor heat exchanger and the second flow control valve, and the opening and closing unit that opens and closes the bypass passage, the indoor temperature and
In addition to controlling the humidity environment, it is possible to obtain an effect that it is possible to perform a detailed operation for lowering the latent heat ratio while keeping the temperature condition comfortable.

【0139】また、前記第2流量制御弁及び開閉手段を
制御する制御手段を備え、前記制御手段は潜熱比を低下
させる運転時に顕熱能力に応じて、前記第2流量制御弁
を絞り前記開閉手段を開く熱交換器分割運転と、前記第
2流量制御弁を絞り前記開閉手段を閉じる冷媒再熱運転
とを行なうよう制御するので、温度条件を快適に保ちな
がら潜熱比を低下させるためのきめこまかい運転が顕熱
能力に応じて可能になる効果が得られる。
Further, a control means for controlling the second flow rate control valve and the opening / closing means is provided, and the control means throttles the second flow rate control valve in accordance with the sensible heat capacity during operation for lowering the latent heat ratio. Since the heat exchanger split operation for opening the means and the refrigerant reheating operation for closing the second flow control valve and closing the opening / closing means are controlled, a fine adjustment for lowering the latent heat ratio while keeping the temperature conditions comfortable. The effect that operation becomes possible according to sensible heat capacity is obtained.

【0140】また、前記第2流量制御弁及び開閉手段を
制御する制御手段を備え、前記制御手段は顕熱比が低下
した場合に、前記第2流量制御弁を閉じ、前記開閉手段
を閉じるよう制御するので、空調負荷が小さいときに冷
媒再熱方式によるきめこまかい空調制御が可能になる効
果が得られる。
Further, a control means for controlling the second flow control valve and the opening / closing means is provided, and the control means closes the second flow control valve and closes the opening / closing means when the sensible heat ratio decreases. Since the control is performed, there is an effect that when the air conditioning load is small, fine air conditioning control by the refrigerant reheating method can be performed.

【0141】また、前記第2流量制御弁及び開閉手段を
制御する制御手段を備え、暖房運転起動時に前記第2流
量制御弁を閉じ、前記開閉手段を開くよう制御するの
で、吹出温度を高温にして速暖感を高めた快適な暖房が
できる効果が得られる。
[0141] Further, a control means for controlling the second flow rate control valve and the opening / closing means is provided. When the heating operation is started, the second flow rate control valve is closed and the opening / closing means is opened. As a result, it is possible to obtain the effect of comfortable heating with a quick feeling of warmth.

【0142】また、第1流量制御弁と前記第1室内熱交
換器の間の配管に暖房運転時に液冷媒を貯留するレシー
バを設けたので、冷媒量を運転モードに応じて制御で
き、装置の性能向上と信頼性向上が図れる効果が得られ
る。
Further, since the receiver for storing the liquid refrigerant during the heating operation is provided in the pipe between the first flow control valve and the first indoor heat exchanger, the amount of the refrigerant can be controlled according to the operation mode, and the apparatus can be controlled. The effect of improving performance and reliability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1による空気調和装置の
冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to Embodiment 1 of the present invention.

【図2】 実施の形態1に係わり、第2流量制御弁の構
成を示す図である。
FIG. 2 is a diagram illustrating a configuration of a second flow control valve according to the first embodiment.

【図3】 実施の形態1に係わる空気調和装置の冷房除
湿運転時の動作状態を表す特性図である。
FIG. 3 is a characteristic diagram illustrating an operation state of the air-conditioning apparatus according to Embodiment 1 during a cooling and dehumidifying operation.

【図4】 実施の形態1に係わり、第2流量制御弁の他
の構成例を示す図である。
FIG. 4 is a diagram showing another configuration example of the second flow control valve according to the first embodiment.

【図5】 本発明の実施の形態2に係わり、第2流量制
御弁の構成を示す図である。
FIG. 5 is a diagram showing a configuration of a second flow control valve according to the second embodiment of the present invention.

【図6】 実施の形態2に係わり、第2流量制御弁の他
の構成例を示す図である。
FIG. 6 is a diagram showing another configuration example of the second flow control valve according to the second embodiment.

【図7】 本発明の実施の形態3に係わり、第2流量制
御弁の構成を示す図である。
FIG. 7 is a diagram illustrating a configuration of a second flow control valve according to the third embodiment of the present invention.

【図8】 実施の形態3に係わり、第2流量制御弁の他
の構成例を示す図である。
FIG. 8 is a diagram showing another configuration example of the second flow control valve according to the third embodiment.

【図9】 本発明の実施の形態4に係わり、暖房除湿運
転時の動作状態を表す特性図である。
FIG. 9 is a characteristic diagram illustrating an operation state during a heating and dehumidifying operation according to the fourth embodiment of the present invention.

【図10】 本発明の実施の形態5による空気調和装置
の冷媒回路図である。
FIG. 10 is a refrigerant circuit diagram of an air conditioner according to Embodiment 5 of the present invention.

【図11】 本発明の実施の形態6による空気調和装置
の冷媒回路図である。
FIG. 11 is a refrigerant circuit diagram of an air conditioner according to Embodiment 6 of the present invention.

【図12】 実施の形態6に係わり、第2流量制御弁の
構成を示す図である。
FIG. 12 is a diagram illustrating a configuration of a second flow control valve according to the sixth embodiment.

【図13】 本発明の実施の形態7による空気調和装置
の冷媒回路図である。
FIG. 13 is a refrigerant circuit diagram of an air conditioner according to Embodiment 7 of the present invention.

【図14】 実施の形態7に係わり、毛細管の冷媒流動
音の測定結果を示す図である。
FIG. 14 is a diagram illustrating a measurement result of a refrigerant flow noise of a capillary according to the seventh embodiment.

【図15】 本発明の実施の形態8による空気調和装置
の冷媒回路図である。
FIG. 15 is a refrigerant circuit diagram of an air conditioner according to Embodiment 8 of the present invention.

【図16】 実施の形態8に係わる空気調和装置の冷房
除湿運転時の動作状態を表す特性図である。
FIG. 16 is a characteristic diagram illustrating an operation state of the air-conditioning apparatus according to Embodiment 8 during the cooling and dehumidifying operation.

【図17】 本発明の実施の形態9による空気調和装置
の冷媒回路図である。
FIG. 17 is a refrigerant circuit diagram of an air conditioner according to Embodiment 9 of the present invention.

【図18】 実施の形態9に係わる空気調和装置の冷房
除湿運転時の動作状態を表す特性図である。
FIG. 18 is a characteristic diagram illustrating an operation state of the air-conditioning apparatus according to Embodiment 9 during a cooling and dehumidifying operation.

【図19】 本発明の実施の形態10による空気調和装
置の冷媒回路図である。
FIG. 19 is a refrigerant circuit diagram of an air conditioner according to Embodiment 10 of the present invention.

【図20】 実施の形態10に係わる空気調和装置の他
の例を示す冷媒回路図である。
FIG. 20 is a refrigerant circuit diagram showing another example of the air-conditioning apparatus according to Embodiment 10.

【図21】 従来の空気調和装置を示す冷媒回路図であ
る。
FIG. 21 is a refrigerant circuit diagram showing a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機、 3 室外熱交換器、 4 第1流量制御
弁、 5 第1室内熱交換器、 6 第2流量制御弁、
7 第2室内熱交換器、21 第1流路、 22 第
2流路、 23 主弁座、 24 弁本体、 30 レ
シーバ、 31 焼結金属、 38 毛細管、 40
熱交換器
1 compressor, 3 outdoor heat exchanger, 4 first flow control valve, 5 first indoor heat exchanger, 6 second flow control valve,
7 second indoor heat exchanger, 21 first flow path, 22 second flow path, 23 main valve seat, 24 valve body, 30 receiver, 31 sintered metal, 38 capillary tube, 40
Heat exchanger

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 雅弘 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 大西 茂樹 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3H106 DA07 DB32 DB34 DC02 DC17 EE20 GB11 GB18 KK23 3L049 BB20 BC01 3L092 AA03 AA10 BA14 BA27 BA28 DA01 DA03 DA04 DA14 DA15 EA02 FA23 FA24  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masahiro Nakayama 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Inventor Shigeki Onishi 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F term (reference) in Ryo Denki Co., Ltd. 3H106 DA07 DB32 DB34 DC02 DC17 EE20 GB11 GB18 KK23 3L049 BB20 BC01 3L092 AA03 AA10 BA14 BA27 BA28 DA01 DA03 DA04 DA14 DA15 EA02 FA23 FA24

Claims (37)

【特許請求の範囲】[Claims] 【請求項1】 絞り部を冷媒流れ方向に連通する多孔質
透過材で構成したことを特徴とする絞り装置。
1. An expansion device, wherein the expansion unit is made of a porous permeable material that communicates in the flow direction of the refrigerant.
【請求項2】 電磁開閉弁が設けられた第1の流路と、
この第1の流路と並列に設けられた第2の流路と、この
第2の流路中に設けられ冷媒流れ方向に連通する多孔質
透過材で構成した絞り部とを備えたことを特徴とする絞
り装置。
2. A first flow path provided with an electromagnetic on-off valve,
A second flow path provided in parallel with the first flow path; and a throttle portion provided in the second flow path and formed of a porous permeable material that communicates in a refrigerant flow direction. Characteristic squeezing device.
【請求項3】 前記多孔質透過材で冷媒流路を覆うこと
を特徴とする請求項1又は請求項2に記載の絞り装置。
3. The expansion device according to claim 1, wherein the refrigerant passage is covered with the porous permeable material.
【請求項4】 前記多孔質透過材は空洞部を有する又は
中空体であることを特徴とする請求項1乃至請求項3の
何れか1項に記載の絞り装置。
4. The aperture device according to claim 1, wherein the porous permeable material has a hollow portion or is a hollow body.
【請求項5】 前記絞り部は、一端が開放した筒状を成
し、この筒状の周面および底面を介して前記筒状の内外
を連通する流路を多孔質透過材で構成したことを特徴と
する請求項1乃至請求項3の何れか1項に記載の絞り装
置。
5. The throttle section has a cylindrical shape with one end open, and a flow passage communicating between the inside and the outside of the cylindrical shape through a peripheral surface and a bottom surface of the cylindrical shape is formed of a porous permeable material. The aperture device according to any one of claims 1 to 3, wherein:
【請求項6】 前記多孔質透過材の透過面積を調節する
調節手段を備えたことを特徴とする請求項1乃至請求項
3の何れか1項に記載の絞り装置。
6. The diaphragm device according to claim 1, further comprising an adjusting means for adjusting a transmission area of the porous transmission material.
【請求項7】 弁室側壁に第1流路が開口する弁本体
と、弁室底面に第2流路が開口する主弁座と、弁室内に
前記主弁座を閉止できる主弁体を有し、前記主弁体に多
孔質透過材を用いて絞り部を構成したことを特徴とする
請求項1又は請求項2に記載の絞り装置。
7. A valve body having a first flow path opened in a valve chamber side wall, a main valve seat having a second flow path opened in a valve chamber bottom face, and a main valve body capable of closing the main valve seat in the valve chamber. The throttle device according to claim 1, wherein a throttle portion is configured by using a porous permeable material for the main valve body.
【請求項8】 前記多孔質透過材は一端が開放した柱状
を成し、前記主弁座閉止時に前記柱状の周面側と底面側
とが流路入口側と出口側とに分離されることを特徴とす
る請求項7記載の絞り装置。
8. The porous permeable material has a columnar shape with one end opened, and when the main valve seat is closed, a peripheral surface side and a bottom surface side of the columnar shape are separated into a flow path inlet side and an outlet side. The diaphragm device according to claim 7, wherein
【請求項9】 弁室側壁に第1流路が開口する弁本体
と、弁室底面に第2流路が開口する主弁座と、弁室内に
前記主弁座を閉止できる主弁体を有し、前記主弁座に多
孔質透過材を用いて流量制御弁を構成したことを特徴と
する請求項1又は請求項2に記載の絞り装置。
9. A valve body having a first flow path opened in a valve chamber side wall, a main valve seat having a second flow path opened in a valve chamber bottom face, and a main valve body capable of closing the main valve seat in the valve chamber. The throttle device according to claim 1, wherein a flow control valve is configured by using a porous permeable material for the main valve seat.
【請求項10】 周面が主弁座の側面と当接し、前記周
面と側面との当接面積を開閉方向への移動によって可変
する主弁体と、前記主弁体の開閉方向への移動を制御す
る制御手段とを備え、前記主弁体、主弁座および制御手
段で多孔質透過材の透過面積を調節する調節手段を構成
したことを特徴とする請求項7又は請求項9記載の絞り
装置。
10. A main valve body having a peripheral surface in contact with a side surface of a main valve seat, and a contact area between the peripheral surface and the side surface being varied by movement in an opening and closing direction. 10. A control means for controlling movement, wherein said main valve body, main valve seat and control means constitute an adjusting means for adjusting a permeation area of a porous permeable material. Aperture device.
【請求項11】 多孔質透過材の通気孔を200から
0.5マイクロメートルの範囲としたことを特徴とする
請求項1乃至請求項10の何れか1項に記載の絞り装
置。
11. The throttle device according to claim 1, wherein the air holes of the porous permeable material are set in a range of 200 to 0.5 μm.
【請求項12】 前記多孔質透過材を焼結金属としたこ
とを特徴とする請求項1乃至請求項11の何れか1項に
記載の絞り装置。
12. The drawing device according to claim 1, wherein said porous permeable material is a sintered metal.
【請求項13】 請求項1又は請求項2記載の絞り装置
を備えた冷凍サイクルにおいて、前記多孔質透過材に気
液二相冷媒を通過させることを特徴とする冷凍サイクル
装置。
13. A refrigeration cycle equipped with the expansion device according to claim 1 or 2, wherein a gas-liquid two-phase refrigerant is passed through the porous permeable material.
【請求項14】 弁室側壁に第1流路が開口する弁本体
と、弁室底面に第2流路が開口する主弁座と、弁室内に
前記主弁座を閉止できると共に周面が主弁座の側面と当
接し、前記周面と側面との当接面積を開閉方向への移動
によって可変する主弁体とを備えた絞り装置と、 前記主弁体の開閉方向への移動を制御する制御手段と、
を備え、 前記主弁座又は主弁体に多孔質透過材を用いて流量制御
弁を構成すると共に、前記主弁体、主弁座および制御手
段で多孔質透過材の透過面積を調節する調節手段を構成
したことを特徴とする冷凍サイクル装置。
14. A valve body having a first flow passage opening in a valve chamber side wall, a main valve seat having a second flow passage opening in a bottom surface of the valve chamber, and a main valve seat capable of being closed in the valve chamber and having a peripheral surface. A throttle device having a main valve body that abuts on a side surface of the main valve seat and changes a contact area between the peripheral surface and the side surface by movement in the opening and closing direction; and moving the main valve body in the opening and closing direction. Control means for controlling;
A flow control valve is formed by using a porous permeable material for the main valve seat or the main valve body, and an adjustment for adjusting a permeable area of the porous permeable material by the main valve body, the main valve seat and the control means. A refrigeration cycle apparatus comprising means.
【請求項15】 前記調節手段は前記絞り装置の圧力差
に応じて前記透過面積を調節することを特徴とする請求
項14記載の冷凍サイクル装置。
15. The refrigeration cycle apparatus according to claim 14, wherein the adjusting means adjusts the transmission area according to a pressure difference of the expansion device.
【請求項16】 前記調節手段は所定の圧力差となるよ
う前記透過面積を調節することを特徴とする請求項15
記載の冷凍サイクル装置。
16. The apparatus according to claim 15, wherein the adjusting means adjusts the transmission area so as to have a predetermined pressure difference.
A refrigeration cycle apparatus as described in the above.
【請求項17】 圧縮機、室外熱交換器、第1流量制御
弁、第1室内熱交換器、第2流量制御弁、第2室内熱交
換器を順次接続した冷凍サイクルを備えた空気調和装置
において、前記第2流量制御弁の絞り部を冷媒流れ方向
に連通する多孔質透過材で構成したことを特徴とする空
気調和装置。
17. An air conditioner having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. The air conditioner according to any one of claims 1 to 3, wherein a throttle portion of the second flow control valve is formed of a porous permeable material that communicates in a refrigerant flow direction.
【請求項18】 前記多孔質透過材の透過面積を調節す
る調節手段を備えたことを特徴とする請求項17に記載
の空気調和装置。
18. The air conditioner according to claim 17, further comprising adjusting means for adjusting a transmission area of the porous permeable material.
【請求項19】 弁室側壁に第1流路が開口する弁本体
と、弁室底面に第2流路が開口する主弁座と、弁室内に
前記主弁座を閉止できる主弁体を有し、前記主弁体に多
孔質透過材を用いて第2流量制御弁を構成したことを特
徴とする請求17に記載の空気調和装置。
19. A valve body having a first flow path opened in a valve chamber side wall, a main valve seat having a second flow path opened in a valve chamber bottom face, and a main valve body capable of closing the main valve seat in the valve chamber. The air conditioner according to claim 17, wherein a second flow control valve is configured using a porous permeable material for the main valve body.
【請求項20】 弁室側壁に第1流路が開口する弁本体
と、弁室底面に第2流路が開口する主弁座と、弁室内に
前記主弁座を閉止できる主弁体を有し、前記主弁座に多
孔質透過材を用いて第2流量制御弁を構成したことを特
徴とする請求項17に記載の空気調和装置。
20. A valve body having a first flow path opened in a valve chamber side wall, a main valve seat having a second flow path opened in a valve chamber bottom face, and a main valve body capable of closing the main valve seat in the valve chamber. The air conditioner according to claim 17, wherein a second flow control valve is configured using a porous permeable material for the main valve seat.
【請求項21】 周面が主弁座の側面と当接し、前記周
面と側面との当接面積を開閉方向への移動によって可変
する主弁体と、前記主弁体の開閉方向への移動を制御す
る制御手段とを備え、前記主弁体、主弁座および制御手
段で多孔質透過材の透過面積を調節する調節手段を構成
したことを特徴とする請求項19又は請求項20記載の
空気調和装置。
21. A main valve body having a peripheral surface in contact with a side surface of a main valve seat, and a contact area between the peripheral surface and the side surface being varied by movement in the opening and closing direction. 21. A control means for controlling movement, wherein an adjusting means for adjusting a permeation area of a porous permeable material is constituted by the main valve body, the main valve seat and the control means. Air conditioner.
【請求項22】 前記調節手段は前記第2流量制御弁の
圧力差に応じて前記透過面積を調節することを特徴とす
る請求項21記載の空気調和装置。
22. The air conditioner according to claim 21, wherein the adjusting means adjusts the permeation area according to a pressure difference of the second flow control valve.
【請求項23】 前記調節手段は潜熱比を低下させる運
転時に所定の圧力差となるよう前記透過面積を調節する
ことを特徴とする請求項22記載の空気調和装置。
23. The air conditioner according to claim 22, wherein the adjusting means adjusts the permeation area so as to have a predetermined pressure difference during an operation for lowering a latent heat ratio.
【請求項24】 多孔質透過材の通気孔を200から
0.5マイクロメートルの範囲としたことを特徴とする
請求項17乃至請求項20の何れか1項に記載の空気調
和装置。
24. The air conditioner according to claim 17, wherein the air holes of the porous permeable material are in a range of 200 to 0.5 micrometers.
【請求項25】 潜熱比を低下させる運転時に前記第2
流量制御弁を閉止するよう制御する制御部を備えたこと
を特徴とする請求項17記載の空気調和装置。
25. The method according to claim 25, wherein the second heat is applied during an operation for lowering the latent heat ratio.
The air conditioner according to claim 17, further comprising a control unit that controls the flow control valve to close.
【請求項26】 前記制御部は冷房又は除湿並びに暖房
運転時に前記第2流量制御弁を閉止するよう制御するこ
とを特徴とする請求項25記載の空気調和装置。
26. The air conditioner according to claim 25, wherein the control unit controls to close the second flow control valve during cooling, dehumidification, and heating operations.
【請求項27】 暖房運転起動時に前記第2流量制御弁
を閉止するよう制御する制御部を備えたことを特徴とす
る請求項17記載の空気調和装置。
27. The air conditioner according to claim 17, further comprising a control unit that controls the second flow control valve to be closed when the heating operation is started.
【請求項28】 暖房運転時で設定温度と室内温度との
差が所定値以上の場合に前記第2流量制御弁を閉止する
よう制御する制御部を備えたことを特徴とする請求項1
7記載の空気調和装置。
28. The air conditioner according to claim 1, further comprising a control unit that controls the second flow control valve to close when a difference between the set temperature and the room temperature is equal to or more than a predetermined value during the heating operation.
8. The air conditioner according to 7.
【請求項29】 圧縮機、室外熱交換器、第1流量制御
弁、第1室内熱交換器、第2流量制御弁、第2室内熱交
換器を順次接続した冷凍サイクルを備えた空気調和装置
において、前記第2流量制御弁を内径1mm以上の毛細
管で構成したことを特徴とする空気調和装置。
29. An air conditioner having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. 2. The air conditioner according to claim 1, wherein the second flow control valve comprises a capillary having an inner diameter of 1 mm or more.
【請求項30】 圧縮機、室外熱交換器、第1流量制御
弁、第1室内熱交換器、第2流量制御弁、第2室内熱交
換器を順次接続した冷凍サイクルを備えた空気調和装置
において、前記第2流量制御弁を毛細管で構成し、冷房
除湿運転時の前記毛細管入口配管と前記第2室内熱交換
器と前記圧縮機の間の配管とを熱交換させる熱交換器を
設けたことを特徴とする空気調和装置。
30. An air conditioner having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. In the above, the second flow control valve is constituted by a capillary, and a heat exchanger for exchanging heat between the capillary inlet pipe and the pipe between the second indoor heat exchanger and the compressor during a cooling and dehumidifying operation is provided. An air conditioner characterized by the above-mentioned.
【請求項31】 圧縮機、室外熱交換器、第1流量制御
弁、第1室内熱交換器、第2流量制御弁、第2室内熱交
換器を順次接続した冷凍サイクルを備えた空気調和装置
において、前記第2流量制御弁を毛細管で構成し、前記
第2室内熱交換器と前記圧縮機の間の配管と熱交換させ
る熱交換器を設けたことを特徴とする空気調和装置。
31. An air conditioner including a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. The air conditioner according to claim 1, wherein the second flow control valve is formed of a capillary tube, and a heat exchanger for exchanging heat with a pipe between the second indoor heat exchanger and the compressor is provided.
【請求項32】 第2室内熱交換器及び第2の流量制御
弁をバイパスするバイパス流路と、このバイパス流路を
開閉する開閉手段とを備えたことを特徴とする請求項1
7乃至請求項31の何れか1項に記載の空気調和装置。
32. The apparatus according to claim 1, further comprising: a bypass passage for bypassing the second indoor heat exchanger and the second flow control valve; and opening and closing means for opening and closing the bypass passage.
The air conditioner according to any one of claims 7 to 31.
【請求項33】 圧縮機、室外熱交換器、第1流量制御
弁、第1室内熱交換器、第2流量制御弁、第2室内熱交
換器を順次接続した冷凍サイクルを備えた空気調和装置
において、第2室内熱交換器及び第2流量制御弁をバイ
パスするバイパス流路と、このバイパス流路を開閉する
開閉手段とを備えたことを特徴とする空気調和機。
33. An air conditioner having a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. The air conditioner according to claim 1, further comprising: a bypass passage that bypasses the second indoor heat exchanger and the second flow control valve; and an opening / closing unit that opens and closes the bypass passage.
【請求項34】 前記第2流量弁及び開閉手段を制御す
る制御手段を備え、前記制御手段は潜熱比を低下させる
運転時に顕熱能力に応じて、前記第2流量制御弁を絞り
前記開閉手段を開く熱交換器分割運転と、前記第2流量
制御弁を絞り前記開閉手段を閉じる冷媒再熱運転とを行
なうよう制御することを特徴とする請求項32又は請求
項33に記載の空気調和装置。
34. Control means for controlling the second flow valve and the opening / closing means, wherein the control means throttles the second flow control valve in accordance with the sensible heat capacity at the time of operation for reducing the latent heat ratio, and controls the opening / closing means. 34. The air conditioner according to claim 32, wherein the air conditioner is controlled so as to perform a heat exchanger split operation for opening a heat exchanger and a refrigerant reheating operation for narrowing the second flow control valve and closing the opening / closing means. .
【請求項35】 前記第2流量制御弁及び開閉手段を制
御する制御手段を備え、前記制御手段は顕熱比が低下し
た場合に、前記第2流量制御弁を閉じ、前記開閉手段を
閉じるよう制御することを特徴とする請求項32又は請
求項33に記載の空気調和装置。
35. Control means for controlling the second flow control valve and the opening / closing means, wherein the control means closes the second flow control valve and closes the opening / closing means when the sensible heat ratio decreases. The air conditioner according to claim 32 or 33, wherein the air conditioner is controlled.
【請求項36】 前記第2流量制御弁及び開閉手段を制
御する制御手段を備え、暖房運転起動時に前記第2流量
制御弁を閉じ、前記開閉手段を開くよう制御することを
特徴とする請求項32又は請求項33に記載の空気調和
装置。
36. A control device for controlling the second flow rate control valve and the opening / closing means, wherein the control means controls to close the second flow rate control valve and open the opening / closing means when heating operation is started. An air conditioner according to claim 32 or claim 33.
【請求項37】 第1流量制御弁と前記第1室内熱交換
器の間の配管に暖房運転時に液冷媒を貯留するレシーバ
を設けたことを特徴とする請求項17乃至請求項36の
何れか1項に記載の空気調和装置。
37. A piping according to claim 17, further comprising a receiver for storing a liquid refrigerant during a heating operation in a pipe between the first flow control valve and the first indoor heat exchanger. Item 2. The air conditioner according to item 1.
JP11153446A 1999-06-01 1999-06-01 Throttle device, refrigerating cycle apparatus and air conditioner Pending JP2000346493A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11153446A JP2000346493A (en) 1999-06-01 1999-06-01 Throttle device, refrigerating cycle apparatus and air conditioner
JP23133199A JP3428516B2 (en) 1999-06-01 1999-08-18 Aperture device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11153446A JP2000346493A (en) 1999-06-01 1999-06-01 Throttle device, refrigerating cycle apparatus and air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23133199A Division JP3428516B2 (en) 1999-06-01 1999-08-18 Aperture device

Publications (2)

Publication Number Publication Date
JP2000346493A true JP2000346493A (en) 2000-12-15
JP2000346493A5 JP2000346493A5 (en) 2006-05-18

Family

ID=15562737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11153446A Pending JP2000346493A (en) 1999-06-01 1999-06-01 Throttle device, refrigerating cycle apparatus and air conditioner

Country Status (1)

Country Link
JP (1) JP2000346493A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061350A1 (en) * 2001-01-31 2002-08-08 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle device, air conditioner, choke, and flow rate controller
JP2002235970A (en) * 2001-02-07 2002-08-23 Matsushita Electric Ind Co Ltd Air conditioner
JP2003065632A (en) * 2001-08-28 2003-03-05 Hitachi Ltd Air conditioner
EP1437561A1 (en) * 2001-09-25 2004-07-14 Daikin Industries, Ltd. Air conditioner
CN100436972C (en) * 2001-01-31 2008-11-26 三菱电机株式会社 Flow control device and air conditioner
JP2009095691A (en) * 2007-10-12 2009-05-07 Fuji Xerox Co Ltd Reaction apparatus
CN103968619A (en) * 2013-01-31 2014-08-06 广东美的制冷设备有限公司 Air conditioner capable of removing humidity quickly
WO2018062316A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner
JP2018087642A (en) * 2018-03-05 2018-06-07 株式会社不二工機 Motor-operated valve
JPWO2020053952A1 (en) * 2018-09-11 2021-05-13 三菱電機株式会社 Indoor unit of air conditioner

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2000756A3 (en) * 2001-01-31 2009-08-26 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
WO2002061350A1 (en) * 2001-01-31 2002-08-08 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle device, air conditioner, choke, and flow rate controller
CN1304803C (en) * 2001-01-31 2007-03-14 三菱电机株式会社 Refrigeratng cycle device, air conditioner, choke, and flow rate controller
US7225630B2 (en) 2001-01-31 2007-06-05 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle apparatus, air conditioning apparatus, throttle device and flow controller
US7290567B2 (en) 2001-01-31 2007-11-06 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle device, air conditioner, choke, and flow rate controller
CN100436972C (en) * 2001-01-31 2008-11-26 三菱电机株式会社 Flow control device and air conditioner
EP2000757A3 (en) * 2001-01-31 2009-11-11 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle apparatus
EP2003409A3 (en) * 2001-01-31 2009-08-12 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle apparatus
JP2002235970A (en) * 2001-02-07 2002-08-23 Matsushita Electric Ind Co Ltd Air conditioner
JP2003065632A (en) * 2001-08-28 2003-03-05 Hitachi Ltd Air conditioner
EP1437561A4 (en) * 2001-09-25 2010-02-17 Daikin Ind Ltd Air conditioner
EP1437561A1 (en) * 2001-09-25 2004-07-14 Daikin Industries, Ltd. Air conditioner
JP2009095691A (en) * 2007-10-12 2009-05-07 Fuji Xerox Co Ltd Reaction apparatus
CN103968619A (en) * 2013-01-31 2014-08-06 广东美的制冷设备有限公司 Air conditioner capable of removing humidity quickly
WO2018062316A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner
JP2018059702A (en) * 2016-09-30 2018-04-12 ダイキン工業株式会社 Air conditioner
JP2018087642A (en) * 2018-03-05 2018-06-07 株式会社不二工機 Motor-operated valve
JPWO2020053952A1 (en) * 2018-09-11 2021-05-13 三菱電機株式会社 Indoor unit of air conditioner

Similar Documents

Publication Publication Date Title
JP3428516B2 (en) Aperture device
US7225630B2 (en) Refrigerating cycle apparatus, air conditioning apparatus, throttle device and flow controller
JP3918421B2 (en) Air conditioner, operation method of air conditioner
WO2012172599A1 (en) Air conditioner
JP2007085730A (en) Air conditioner and method of operating air conditioner
JP2005308380A (en) Ejector cycle
JP2000346493A (en) Throttle device, refrigerating cycle apparatus and air conditioner
JP4103363B2 (en) Flow control device, refrigeration cycle device, and air conditioner
JP2001082761A (en) Air conditioner
JP2000346493A5 (en)
JP3817981B2 (en) Refrigeration cycle apparatus and air conditioner
JP2001065953A (en) Air conditioner and control method of the same
JP2002221353A (en) Air conditioner
JP3901103B2 (en) Air conditioner
JP2019158308A (en) Refrigeration cycle device
JP4221922B2 (en) Flow control device, throttle device, and air conditioner
JP3417351B2 (en) Aperture device
JP2008261626A (en) Flow control device, restricting device and air conditioner
JP4151236B2 (en) Flow control device and air conditioner
JP3924935B2 (en) Thermal expansion valve
JPH07120105A (en) Air conditioner
JP2003294339A (en) Orifice device
WO2013061365A1 (en) Air conditioning device
JP6977598B2 (en) Internal heat exchanger for heat pump
JP4106867B2 (en) Flow control device, air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080523

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080704