JP4306366B2 - Refrigerant control valve - Google Patents

Refrigerant control valve Download PDF

Info

Publication number
JP4306366B2
JP4306366B2 JP2003290917A JP2003290917A JP4306366B2 JP 4306366 B2 JP4306366 B2 JP 4306366B2 JP 2003290917 A JP2003290917 A JP 2003290917A JP 2003290917 A JP2003290917 A JP 2003290917A JP 4306366 B2 JP4306366 B2 JP 4306366B2
Authority
JP
Japan
Prior art keywords
refrigerant
filter
valve
passage
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003290917A
Other languages
Japanese (ja)
Other versions
JP2005061694A (en
Inventor
太郎 黒田
繁治 平良
敏幸 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2003290917A priority Critical patent/JP4306366B2/en
Publication of JP2005061694A publication Critical patent/JP2005061694A/en
Application granted granted Critical
Publication of JP4306366B2 publication Critical patent/JP4306366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Valves (AREA)

Description

この発明は、冷媒制御弁に関し、特に、除湿機能を有する空気調和機で除湿用膨張装置として使用される冷媒制御弁に関する。   The present invention relates to a refrigerant control valve, and particularly to a refrigerant control valve used as an expansion device for dehumidification in an air conditioner having a dehumidifying function.

空気調和機には、全開状態と絞り状態をとりうる冷媒制御弁を2つの室内熱交換器の間に設けて、この冷媒制御弁を絞り状態にして、冷媒流の上流側の室内熱交換器を凝縮器として機能させ、冷媒流の下流側の室内熱交換器を蒸発器として機能させて、上記蒸発器を通る空気を冷却除湿し、その空気をさらに上記凝縮器に通して暖める、いわゆる除湿運転(再熱ドライ運転)をする一方、上記冷媒制御弁を全開状態にして、冷房または暖房運転をするようにしたものがある。このような空気調和機では、除湿運転時に、冷媒制御弁が弁閉状態になり、冷媒制御弁内の絞り通路を冷媒が流れるため、冷媒流が乱れ、耳障りな冷媒通過音が発生する。   The air conditioner is provided with a refrigerant control valve that can be fully opened and throttled between two indoor heat exchangers, and the refrigerant control valve is set in a throttled state so that the indoor heat exchanger on the upstream side of the refrigerant flow So that the air passing through the evaporator is cooled and dehumidified, and the air is further passed through the condenser so as to be warmed. There is one that performs cooling (heating operation) with the refrigerant control valve fully opened while operating (reheat dry operation). In such an air conditioner, during the dehumidifying operation, the refrigerant control valve is closed, and the refrigerant flows through the throttle passage in the refrigerant control valve, so that the refrigerant flow is disturbed and an annoying refrigerant passing sound is generated.

このことに鑑みて、絞り通路に多孔質部材を設けたり、多孔質部材によって絞り通路を構成したりし、冷媒が多孔質部材を流れることにより整流化(均質化)して冷媒通過音を低減している。しかしながら、冷媒流中にはコンタミネーションと云われる固形の混入物(スラッジなど)が存在するから、長期間の使用において、多孔質部材に混入物が詰まり、冷媒流量が変化すると云う不具合が生じる。このため、長期間の使用において、安定した除湿運転性能を得ることが難しいので弁内にフィルタを組み込んだ膨張弁が知られている(特許文献1参照)。   In view of this, a porous member is provided in the throttle passage, or the throttle passage is configured by the porous member, and the refrigerant flows through the porous member to rectify (homogenize) to reduce refrigerant passage noise. is doing. However, since solid contaminants (sludge and the like) called contamination are present in the refrigerant flow, the porous member is clogged with contaminants and the refrigerant flow rate changes during long-term use. For this reason, since it is difficult to obtain a stable dehumidifying operation performance for a long period of use, an expansion valve in which a filter is incorporated is known (see Patent Document 1).

図8は従来技術による膨張弁の弁閉状態を示す断面図である。図8において、120は膨張弁(冷媒制御弁)であり、矢印は膨張弁120の弁閉状態における冷媒流の方向を示す。
101は第一冷媒入出口、102は第二冷媒入出口である。第一冷媒入出口101は、除湿運転時に上流側(室内凝縮器側)配管に接続され、第二冷媒入出口102は、除湿運転時に下流側(室内蒸発器側)配管に接続される。103は二つの冷媒入出口101、102間に形成された弁座、104は弁座103に形成された弁孔、105は弁座103に対し往復動し、先端部が弁座103に離接することにより弁孔104を開閉する弁棒である。106は弁棒内に形成された絞り通路、107,108は絞り通路106の前後に配置された多孔性物質よりなる二つの多孔体、109は弁棒105の先端部に形成され、絞り通路106を弁棒の先端側に連通する開口、110は弁棒105の外周に配置されたフィルタ、111は一方の冷媒入出口101に連通してフィルタ110の外周面に沿って形成された冷媒通路、112はフィルタ110と一方の多孔体107とを連通する連通路、113は弁座103と弁孔104とを有するハウジングである。
FIG. 8 is a cross-sectional view showing a closed state of a conventional expansion valve. In FIG. 8, 120 is an expansion valve (refrigerant control valve), and an arrow indicates the direction of the refrigerant flow when the expansion valve 120 is closed.
101 is a first refrigerant inlet / outlet, and 102 is a second refrigerant inlet / outlet. The first refrigerant inlet / outlet 101 is connected to the upstream (indoor condenser side) piping during the dehumidifying operation, and the second refrigerant inlet / outlet 102 is connected to the downstream (indoor evaporator side) piping during the dehumidifying operation. 103 is a valve seat formed between the two refrigerant inlets and outlets 101, 102, 104 is a valve hole formed in the valve seat 103, 105 reciprocates with respect to the valve seat 103, and a tip portion is separated from and contacting the valve seat 103. This is a valve rod that opens and closes the valve hole 104. 106 is a throttle passage formed in the valve stem, 107 and 108 are two porous bodies made of a porous material disposed before and after the throttle passage 106, 109 is formed at the tip of the valve stem 105, and the throttle passage 106 , 110 is a filter disposed on the outer periphery of the valve rod 105, 111 is a refrigerant passage formed along the outer peripheral surface of the filter 110, communicating with one refrigerant inlet / outlet 101, A communication path 112 communicates the filter 110 with one porous body 107, and a housing 113 has a valve seat 103 and a valve hole 104.

この膨張弁120は、冷媒運転時には開弁状態となり冷媒が、第一冷媒入出口101、弁孔104、第二冷媒入出口102へと順方向に流れる。
また、暖房運転時には、開弁状態となり冷媒が第二冷媒入出口102、弁孔104、、第一冷媒入出口101へと逆方向に流れる。
これに対し除湿運転時には、閉弁状態となり冷媒が第一冷媒入出口101、冷媒通路111、フィルタ110、連通路112、フィルタ側(連通路側)の多孔体107、絞り通路106、弁棒先端側(開口側)の多孔体108、開口109、第二冷媒入出口102へと順に流れる。
特開2002−323273号公報
The expansion valve 120 is opened during the refrigerant operation, and the refrigerant flows in the forward direction to the first refrigerant inlet / outlet 101, the valve hole 104, and the second refrigerant inlet / outlet 102.
Further, during the heating operation, the valve is opened and the refrigerant flows in the reverse direction to the second refrigerant inlet / outlet 102, the valve hole 104, and the first refrigerant inlet / outlet 101.
On the other hand, during the dehumidifying operation, the valve is closed and the refrigerant is in the first refrigerant inlet / outlet 101, the refrigerant passage 111, the filter 110, the communication passage 112, the porous body 107 on the filter side (communication passage side), the throttle passage 106, and the tip of the valve stem. It flows to the porous body 108 on the side (opening side), the opening 109, and the second refrigerant inlet / outlet 102 in this order.
JP 2002-323273 A

しかしながら、図8に示す膨張弁120では、閉弁時に、一方の第一冷媒入出口101から冷媒通路111へと通過した冷媒は、フィルタ110の圧損の少ない部分、フィルタ110の通過距離が短い部分(連通路112の近傍)に集中して流れる。このため、弁棒内部の多孔体及び絞り通路に流入する冷媒流量が脈動しやすくなり、冷媒が気液2相流のとき、液冷媒とガス冷媒が交互に流れるため、その脈動により不連続的な冷媒通過音が発生しやすくなるという問題がある。
また、冷媒がフィルタの一部に集中的に流れることからその部分に目詰まりが発生しやすくなり、冷媒流路が経時的に変化するという問題がある。
However, in the expansion valve 120 shown in FIG. 8, when the valve is closed, the refrigerant that has passed from the first refrigerant inlet / outlet 101 to the refrigerant passage 111 is a part where the pressure loss of the filter 110 is small and a part where the filter 110 is short. It flows in a concentrated manner (in the vicinity of the communication path 112). For this reason, the flow rate of the refrigerant flowing into the porous body and the throttle passage inside the valve stem is likely to pulsate, and when the refrigerant is a gas-liquid two-phase flow, the liquid refrigerant and the gas refrigerant alternately flow, and thus the pulsation causes discontinuity There is a problem that it is easy to generate a refrigerant passing sound.
Further, since the refrigerant flows intensively to a part of the filter, there is a problem that the part is easily clogged and the refrigerant flow path changes with time.

の発明の冷媒制御弁は、除湿運転時に上流側となる第一冷媒入出口と、除湿運転時に下流側となる第二冷媒入出口と、これら二つの冷媒入出口間に形成された弁座と、弁座に形成された弁孔と、弁座に対し往復動し、先端部が弁座に離接することにより弁孔を開閉する弁棒と、弁棒内に形成された絞り通路と、弁棒の先端部に形成され、絞り通路を弁棒の先端側に連通する開口と、弁棒の外周に配置されたフィルタと、第一冷媒入出口に連通してフィルタの外周面に沿って形成された冷媒通路と、フィルタと絞り通路とを連通する連通路とを備え、開弁時には弁孔を介し第一冷媒入出口と第二冷媒入出口とを連通し、閉弁時には冷媒通路、フィルタ、連通路、絞り通路、開口及び弁孔を介し第一冷媒入出口から第二冷媒入出口に冷媒が流れるように構成され、連通路近辺のフィルタ部分の冷媒流通抵抗をフィルタの他部分の冷媒流通抵抗に比し大きくする冷媒流通規制手段が設けられ、これにより冷媒が連通路近辺に集中して流れるのを緩和するようにしている。 The refrigerant control valve according to the first aspect of the invention is a valve formed between the first refrigerant inlet / outlet on the upstream side during the dehumidifying operation, the second refrigerant inlet / outlet on the downstream side during the dehumidifying operation, and these two refrigerant inlets / outlets. A seat, a valve hole formed in the valve seat, a valve rod that reciprocates with respect to the valve seat, and opens and closes the valve hole when the tip portion contacts and closes the valve seat; and a throttle passage formed in the valve rod; An opening formed at the tip of the valve stem and communicating the throttle passage to the tip of the valve stem; a filter disposed on the outer periphery of the valve stem; and a first refrigerant inlet / outlet along the outer peripheral surface of the filter And a communication passage that communicates the filter and the throttle passage. When the valve is opened, the first refrigerant inlet / outlet communicates with the second refrigerant inlet / outlet, and when the valve is closed, the refrigerant passage The refrigerant flows from the first refrigerant inlet / outlet to the second refrigerant inlet / outlet through the filter, the communication passage, the throttle passage, the opening and the valve hole. The refrigerant flow restricting means is configured to increase the refrigerant flow resistance of the filter portion in the vicinity of the communication path as compared with the refrigerant flow resistance of the other part of the filter, whereby the refrigerant flows in the vicinity of the communication path. I am trying to relax.

の発明の冷媒制御弁は、前記冷媒流通規制手段は、連通路近傍のフィルタの外周部に配置された邪魔板からなるようにしている。 In the refrigerant control valve according to the second aspect of the invention, the refrigerant flow restricting means is constituted by a baffle plate disposed on the outer peripheral portion of the filter in the vicinity of the communication path.

の発明の冷媒制御弁は、前記フィルタを挟んで前記邪魔板を連通路と対向させ、かつ、邪魔板をフィルタの外周部に当接させるようにしている。 In the refrigerant control valve according to the third aspect of the invention, the baffle plate is opposed to the communication path with the filter interposed therebetween, and the baffle plate is brought into contact with the outer peripheral portion of the filter.

の発明の冷媒制御弁は、前記フィルタを挟んで前記邪魔板を連通路と対向させ、かつ、冷媒通路中に隙間を介して配置するようにしている。 In a refrigerant control valve according to a fourth aspect of the invention, the baffle plate is opposed to the communication path with the filter interposed therebetween, and is disposed in the refrigerant path via a gap.

の発明の冷媒制御弁は、除湿運転時に上流側となる第一冷媒入出口と、除湿運転時に下流側となる第二冷媒入出口と、これら二つの冷媒入出口間に形成された弁座と、弁座に形成された弁孔と、弁座に対し往復動し、先端部が弁座に離接することにより弁孔を開閉する弁棒と、弁棒内に形成された絞り通路と、弁棒の先端部に形成され、絞り通路を弁棒の先端側に連通する開口と、弁棒の外周に配置されたフィルタと、第一冷媒入出口に連通してフィルタの外周面に沿って形成された冷媒通路と、フィルタと絞り通路とを連通する連通路と、フィルタの冷媒通過流量を均一化する冷媒通過量平均化手段とを備え、開弁時には弁孔を介し第一冷媒入出口と第二冷媒入出口とを連通し、閉弁時には冷媒通路、フィルタ、冷媒通過量平均化手段、連通路、絞り通路、開口及び弁孔を介し第一冷媒入出口から第二冷媒入出口に冷媒が流れるように構成され、前記冷媒通過量平均化手段は、連通路とフィルタとの間に形成された空間部からなるようにしている。 A refrigerant control valve according to a fifth aspect of the invention is a valve formed between a first refrigerant inlet / outlet that is upstream during a dehumidifying operation, a second refrigerant inlet / outlet that is downstream during a dehumidifying operation, and these two refrigerant inlets / outlets. A seat, a valve hole formed in the valve seat, a valve rod that reciprocates with respect to the valve seat, and opens and closes the valve hole when the tip portion contacts and closes the valve seat; and a throttle passage formed in the valve rod; An opening formed at the tip of the valve stem and communicating the throttle passage to the tip of the valve stem; a filter disposed on the outer periphery of the valve stem; and a first refrigerant inlet / outlet along the outer peripheral surface of the filter A refrigerant passage formed by connecting the filter and the throttle passage, and a refrigerant passage amount averaging means for equalizing the refrigerant passage flow rate of the filter. The outlet and the second refrigerant inlet / outlet communicate with each other, and when the valve is closed, the refrigerant passage, the filter, the refrigerant passage amount averaging means The refrigerant is configured to flow from the first refrigerant inlet / outlet to the second refrigerant inlet / outlet through the communication passage, the throttle passage, the opening, and the valve hole, and the refrigerant passage amount averaging means is formed between the communication passage and the filter. It is made up of a space part.

の発明の冷媒制御弁は、前記空間部は、前記フィルタから前記連通路に近くなるにつれ前記空間部の隙間寸法が大きくなるようにテーパ状に形成されるようにしている。 In the refrigerant control valve according to a sixth aspect of the invention, the space portion is formed in a tapered shape so that a gap dimension of the space portion increases as the distance from the filter approaches the communication path.

の発明の冷媒制御弁は、第1〜6のいずれかの発明の冷媒制御弁において、絞り通路と連通路との間に配置された連通路側の多孔体と、絞り通路と開口との間に配置された開口側の多孔体とをさらに備え、閉弁時には冷媒通路、フィルタ、連通路、連通路側の多孔体、絞り通路、開口側の多孔体、開口及び弁孔を介し第一冷媒入出口から第二冷媒入出口に冷媒が流れるように構成している。 The refrigerant control valve according to a seventh aspect of the present invention is the refrigerant control valve according to any one of the first to sixth aspects, wherein the porous body on the side of the communication path disposed between the throttle path and the communication path, the throttle path and the opening An opening-side porous body disposed between the refrigerant passage, the filter, the communication passage, the communication passage-side porous body, the throttle passage, the opening-side porous body, the opening, and the valve hole when the valve is closed. The refrigerant flows from one refrigerant inlet / outlet to the second refrigerant inlet / outlet.

の発明の冷媒制御弁は、第7の発明の冷媒制御弁において、前記フィルタの孔径は、連通路の孔径、連通路側の多孔体の孔径、開口側の多孔体の孔径、及び絞り通路の孔径よりも小さくしている。 The refrigerant control valve according to an eighth aspect of the present invention is the refrigerant control valve according to the seventh aspect of the present invention, wherein the hole diameter of the filter includes the hole diameter of the communication path, the hole diameter of the porous body on the communication path side, the hole diameter of the porous body on the opening side, and the restriction It is smaller than the hole diameter of the passage.

の発明の冷媒制御弁は、第または第の発明の冷媒制御弁において、絞り通路と連通路との間に配置された連通路側の多孔体の反弁座側端面に形成され、連通路を介して前記空間部と連通する他の空間部が設けられるようにしている。 A refrigerant control valve according to a ninth aspect is the refrigerant control valve according to the fifth or sixth aspect , wherein the refrigerant control valve is formed on a counter valve seat side end face of a porous body on the communication path side disposed between the throttle path and the communication path. The other space portion communicating with the space portion via the communication path is provided.

10の発明の冷媒制御弁は、第の発明の冷媒制御弁において、前記連通路は、弁軸方向に形成された小孔により形成されるようにしている。 A refrigerant control valve according to a tenth aspect of the invention is the refrigerant control valve according to the fifth aspect of the invention, wherein the communication path is formed by a small hole formed in the valve shaft direction.

11の発明の冷媒制御弁は、第1〜4のいずれかの発明の冷媒制御弁において、前記冷媒流通規制手段が設けられていない場合は、フィルタの連通路近傍に冷媒が集中して流れるようになっている。 The refrigerant control valve according to an eleventh aspect of the invention is the refrigerant control valve according to any one of the first to fourth aspects, wherein the refrigerant flows in the vicinity of the communication path of the filter when the refrigerant flow restriction means is not provided. It is like that.

まず、以下の各発明では、部品点数を増やしたり、冷媒制御弁の内部形状を大きくしたりすることなく、フィルタの形状と多孔質部材との配置関係や媒体通路を改善することにより、フィルタの冷媒通過流量を平均化することができ、また、絞り通路における混入物の詰まりと冷媒流動音とを効率よく低減することができ、かつ製造しやすい構造の冷媒制御弁およびそれを用いた冷媒回路を実現することができる。   First, in each of the following inventions, by improving the arrangement relationship between the shape of the filter and the porous member and the medium passage without increasing the number of parts or increasing the internal shape of the refrigerant control valve, Refrigerant control valve that can average the refrigerant flow rate, can efficiently reduce clogging of contaminants in the throttle passage and refrigerant flow noise, and has a structure that is easy to manufacture, and a refrigerant circuit using the same Can be realized.

また、第1の発明によれば、フィルタの厚みを厚くすることで冷媒が通過するフィルタ面積が広がり、フィルタの冷媒通過量の平均化を進めることができる。これにより、フィルタ面での冷媒通過面積を大きく確保して混入物の除去効率を高めるとともに、冷媒通過の平均化によりフィルタの冷媒通過流量を均一化して気液2相の冷媒の均質化を高めることにより不連続的な冷媒流動音を効率よく低減することができる。 In addition, according to the first invention, by increasing the thickness of the filter, the filter area through which the refrigerant passes can be expanded, and the refrigerant passage amount of the filter can be averaged. As a result, a large refrigerant passage area on the filter surface is ensured to increase the removal efficiency of contaminants, and the refrigerant passage flow rate of the filter is made uniform by averaging the refrigerant passage to increase the homogenization of the gas-liquid two-phase refrigerant. Thus, discontinuous refrigerant flow noise can be efficiently reduced.

第2の発明によれば、冷媒流通規制手段により、冷媒が連通路近辺に集中して流れるのを緩和し、フィルタの冷媒通過面積を広げて流すことができるため、連通路近辺に偏った流れがなくなり、連通路近辺に発生しやすい不連続的な冷媒流動音を効率よく低減することができ、かつ冷媒中の混入物を効率よく低減することができる。 According to the second aspect of the present invention, the refrigerant flow restricting means can alleviate the concentrated flow of the refrigerant in the vicinity of the communication path and increase the refrigerant passage area of the filter, so that the flow is biased near the communication path. Therefore, it is possible to efficiently reduce discontinuous refrigerant flow noise that is likely to occur in the vicinity of the communication path, and to efficiently reduce contaminants in the refrigerant.

第3の発明によれば、冷媒流通規制手段として邪魔板を連通路近辺のフィルタの外周に配置することにより、冷媒が連通路近辺に偏って流れることが制限され、フィルタの冷媒通過面積を広げて流すことができるため、連通路近辺に発生しやすい不連続的な冷媒流動音を効率よく低減することができ、かつ冷媒中の混入物を効率よく低減することができる。 According to the third invention, the baffle plate is arranged on the outer periphery of the filter in the vicinity of the communication path as the refrigerant flow regulating means, so that the refrigerant is restricted from flowing in the vicinity of the communication path, and the refrigerant passage area of the filter is widened. Therefore, it is possible to efficiently reduce discontinuous refrigerant flow noise that is likely to occur in the vicinity of the communication path, and to efficiently reduce contaminants in the refrigerant.

第4の発明によれば、フィルタを挟んで前記邪魔板を連通路と対向させ、かつ、邪魔板をフィルタの外周部に当接させたので、冷媒が邪魔板を迂回してフィルタに流入するので、フィルタを通過する距離が長くなり、フィルタ内部で冷媒の均質化が進み、冷媒通過音のさらなる静音化が図れる。 According to the fourth invention, since the baffle plate is opposed to the communication path with the filter interposed therebetween, and the baffle plate is brought into contact with the outer peripheral portion of the filter, the refrigerant flows around the baffle plate and flows into the filter. Therefore, the distance passing through the filter is increased, the homogenization of the refrigerant proceeds inside the filter, and further silence of the refrigerant passing sound can be achieved.

第5の発明によれば、邪魔板をフィルタに対して浮かしてハウジング側に取り付けたので、冷媒通過音の静音化は少し低下するが、組み立てが容易になり、冷媒制御弁の耐久性が図れる。 According to the fifth aspect, since the baffle plate is floated with respect to the filter and attached to the housing side, the noise passing through the refrigerant is slightly reduced, but the assembly is facilitated and the durability of the refrigerant control valve can be achieved. .

第6の発明によれば、冷媒通過量平均化手段によりフィルタの冷媒通過流量を均一化することができる。即ち、冷媒を連通路とフィルタとの間に形成された空間部を介して流すことができるため、フィルタに対する連通路の孔径が見かけ上広がることとなり、冷媒の局所的な流入を緩和できる。これにより、たとえ気液2相流であってもフィルタを通過する冷媒は一定(均質)となり、脈動が生じなくなるので連通路における不連続的な冷媒流動音を効率よく低減することができる。さらにフィルタの一部に集中して冷媒が流れることがなくなり局所的な目詰まりが生じにくくなる。 According to the sixth invention, the refrigerant passage flow rate of the filter can be made uniform by the refrigerant passage amount averaging means. That is, since the refrigerant can flow through the space formed between the communication path and the filter, the hole diameter of the communication path with respect to the filter is apparently widened, and local inflow of the refrigerant can be reduced. Thereby, even if it is a gas-liquid two-phase flow, the refrigerant | coolant which passes a filter becomes fixed (homogeneous), and since a pulsation does not arise, the discontinuous refrigerant | coolant flow noise in a communicating path can be reduced efficiently. Further, the refrigerant does not flow concentrated on a part of the filter, and local clogging is less likely to occur.

第7の発明によれば、連通路とフィルタとの間に形成された空間部がテーパ状に形成されているため、フィルタに対する連通路の孔径が見かけ上広がることとなり、連通路近辺に発生しやすい不連続的な冷媒流動音を効率よく低減することができるとともに目詰まりが生じにくくなる。フィルタを通過した冷媒中の気泡は、テーパ状の空間部を通過するときに再結合し難く、連通路で脈動が発生し難いので、さらに冷媒通過音が発生し難くなる。 According to the seventh aspect, since the space formed between the communication path and the filter is formed in a taper shape, the hole diameter of the communication path with respect to the filter is apparently widened and is generated in the vicinity of the communication path. It is possible to efficiently reduce the discontinuous refrigerant flow noise that easily occurs and to prevent clogging. Bubbles in the refrigerant that have passed through the filter are unlikely to recombine when passing through the tapered space, and pulsation is unlikely to occur in the communication path, and refrigerant passage noise is further less likely to occur.

第8の発明によれば、多孔体により連通路から流れ出る冷媒を均質化して絞り通路における不連続的な冷媒流動音を効率よく低減することができる。すなわち、連通路側の多孔体を設けると、多孔体は気液2相冷媒を均質化して絞りに流入することで冷媒の脈動を抑えることができる。また、開口側の多孔体を設けると、多孔体は絞りを通過した冷媒噴流のエネルギーを吸収することにより冷媒の脈動を抑えることができる。 According to the eighth aspect of the present invention, the refrigerant flowing out of the communication passage is homogenized by the porous body, and the discontinuous refrigerant flow noise in the throttle passage can be efficiently reduced. That is, when the porous body on the communication path side is provided, the porous body can suppress the pulsation of the refrigerant by homogenizing the gas-liquid two-phase refrigerant and flowing into the throttle. Further, when the porous body on the opening side is provided, the porous body can suppress the pulsation of the refrigerant by absorbing the energy of the refrigerant jet that has passed through the throttle.

第9の発明によれば、フィルタの下流、すなわち弁棒内部での目詰まりを防止することができる。 According to the ninth aspect, clogging downstream of the filter, that is, inside the valve stem can be prevented.

第10の発明によれば、減圧領域となる連通路の下流側で不純物の析出が生じる場合でも他の空間部が設けられていることにより目詰まりが発生し難くなる。 According to the tenth aspect, even when impurities are precipitated downstream of the communication path serving as the decompression region, clogging is less likely to occur due to the provision of another space.

以下本発明の実施形態について図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の一実施例である冷媒制御弁の弁閉状態を示す断面図である。図1において、矢印は冷媒制御弁の弁閉状態における冷媒の流れる方向を示す。図において20は冷媒制御弁を示す。1は第一冷媒入出口、2は第二冷媒入出口である。第一冷媒入出口1は、除湿運転時に上流側(室内凝縮器側)配管に接続され、第二冷媒入出口2は、除湿運転時に下流側(室内蒸発器側)配管に接続される。3は二つの冷媒入出口1、2間に形成された弁座、4は弁座3に形成された弁孔、5は弁座3に対し往復動し、先端部が弁座3に離接することにより弁孔4を開閉する弁棒である。6は弁棒内に形成された絞り通路、7、8は絞り通路6の前後に配置された多孔性物質よりなる二つの多孔体、9は弁棒5の先端部に形成され、絞り通路6を弁棒の先端側に連通する開口、10は弁棒5の外周に配置されたフィルタ、11は一方の冷媒入出口1に連通してフィルタ10の外周面に沿って形成された冷媒通路、12はフィルタ10と一方の多孔体7とを連通する連通路、14は弁座3と弁孔4とを有するハウジングである。この実施例では後述するようにフィルタ10と多孔体7との形状により冷媒通過量の平均化を図るようにしており、これらが冷媒通過量平均化手段13として機能する。   FIG. 1 is a sectional view showing a closed state of a refrigerant control valve according to one embodiment of the present invention. In FIG. 1, the arrows indicate the direction of refrigerant flow when the refrigerant control valve is closed. In the figure, reference numeral 20 denotes a refrigerant control valve. Reference numeral 1 is a first refrigerant inlet / outlet, and 2 is a second refrigerant inlet / outlet. The first refrigerant inlet / outlet 1 is connected to the upstream (indoor condenser side) piping during the dehumidifying operation, and the second refrigerant inlet / outlet 2 is connected to the downstream (indoor evaporator side) piping during the dehumidifying operation. 3 is a valve seat formed between the two refrigerant inlets and outlets 1 and 2, 4 is a valve hole formed in the valve seat 3, 5 is reciprocated with respect to the valve seat 3, and a tip part is separated from the valve seat 3. This is a valve rod that opens and closes the valve hole 4. 6 is a throttle passage formed in the valve stem, 7 and 8 are two porous bodies made of a porous material disposed before and after the throttle passage 6, and 9 is formed at the tip of the valve stem 5. 10 is a filter disposed on the outer periphery of the valve stem 5, 11 is a refrigerant passage formed along the outer peripheral surface of the filter 10 in communication with one refrigerant inlet / outlet 1, Reference numeral 12 denotes a communication passage that communicates the filter 10 with one porous body 7, and reference numeral 14 denotes a housing having a valve seat 3 and a valve hole 4. In this embodiment, the refrigerant passage amount is averaged by the shapes of the filter 10 and the porous body 7 as will be described later, and these function as the refrigerant passage amount averaging means 13.

冷媒制御弁の内部構造をさらに詳細に説明すると、弁棒5内には、絞り通路6と連通路12との間に多孔体7、絞り通路6と開口9との間に多孔体8を有している。
連通路12に連通される側の多孔体7の外形を他側の多孔体8の外形寸法より小さくし、フィルタ10は、内面が他側の多孔体8の外周面より弁棒側となるように、フィルタ厚みが設定されている。例えば、フィルタの厚みは1mm以上とするのが好ましい。
すなわち、連通路12に連通される第一冷媒入出口1側の多孔体7の外形寸法を第二冷媒入出口2側の多孔体8の外形寸法より小さくし、フィルタ10は、フィルタ内面が多孔体8の外周面より弁棒5中心側にくるようにしてフィルタ10の厚みを厚くすることで冷媒通過面積を拡大することにより冷媒通過量の平均化を図るようにしている。
なお、フィルタ厚みの上限は、設計可能な範囲で特に限定されないが、弁棒5内部に設ける多孔体7が必要とする径、弁棒5の肉厚を考慮すれば、弁棒5の半径の2/3以下であることが望ましい。
The internal structure of the refrigerant control valve will be described in more detail. In the valve stem 5, a porous body 7 is provided between the throttle passage 6 and the communication passage 12, and a porous body 8 is provided between the throttle passage 6 and the opening 9. is doing.
The outer shape of the porous body 7 on the side communicating with the communication passage 12 is made smaller than the outer dimension of the porous body 8 on the other side, and the filter 10 is arranged such that the inner surface is closer to the valve rod than the outer peripheral surface of the other porous body 8. In addition, the filter thickness is set. For example, the thickness of the filter is preferably 1 mm or more.
That is, the outer dimension of the porous body 7 on the first refrigerant inlet / outlet 1 side communicated with the communication passage 12 is made smaller than the outer dimension of the porous body 8 on the second refrigerant inlet / outlet 2 side. By increasing the thickness of the filter 10 so as to be closer to the center side of the valve stem 5 than the outer peripheral surface of the body 8, the refrigerant passage area is expanded to average the refrigerant passage amount.
The upper limit of the filter thickness is not particularly limited as long as it can be designed, but considering the diameter required for the porous body 7 provided inside the valve stem 5 and the thickness of the valve stem 5, the radius of the valve stem 5 It is desirable that it is 2/3 or less.

また、フィルタ10は、多孔体7、8より孔径が小さい多孔性物質により形成してある。これは、フィルタ10の下流側での目詰まりを防止するためである。また、目が細かいほど弁上流側の均質化が進むため、流動音の低減効果は大きくなるが、冷媒中を浮遊する混入物による目詰まりを起こしやすくなるため、例えば50μm程度の残渣が通過できる仕様でもよい。   The filter 10 is formed of a porous material having a pore diameter smaller than that of the porous bodies 7 and 8. This is to prevent clogging on the downstream side of the filter 10. Further, the finer the screen, the higher the homogenization on the upstream side of the valve, and the greater the effect of reducing the flow noise. Specification may be sufficient.

また、多孔体7、8としては、冷媒を通過させるものであればよいが、目詰まりが不均一に生じるのを防ぐ観点から、目(孔)が均質な多孔質材料がより好ましい。例えば、発泡金属、発泡樹脂、焼結金属、焼結セラミックス、金属メッシュの重ね合わせたもの、繊維を多層に巻いたもの、ハニカム構造部材のような均質材料は目詰まりが起こりにくく、フィルタ材料として特に好適である。
ただし、金属線やガラス繊維などからなる不織布などのような目(孔)がやや不均質な材料を用いた場合、目詰まりの点ではやや劣るが、冷媒脈動音の消音性能としては十分に優れているので不均質な材料であっても利用可能である。
なお、絞り通路6の詰まりを防止するという観点からは、多孔体として絞り通路6の孔径より目の細かい多孔質部材を用いることが望ましい。
The porous bodies 7 and 8 may be any material that allows the refrigerant to pass therethrough. However, a porous material having uniform eyes (pores) is more preferable from the viewpoint of preventing clogging from occurring unevenly. For example, foamed metal, foamed resin, sintered metal, sintered ceramics, superposed metal meshes, fibers wound in multiple layers, and homogeneous materials such as honeycomb structural members are less likely to clog and serve as filter materials. Particularly preferred.
However, when materials with slightly inhomogeneous eyes (holes) such as non-woven fabrics made of metal wires or glass fibers are used, they are slightly inferior in terms of clogging, but they are sufficiently excellent in terms of silencing performance of refrigerant pulsation noise. Therefore, even heterogeneous materials can be used.
From the viewpoint of preventing clogging of the throttle passage 6, it is desirable to use a porous member having a finer diameter than the diameter of the throttle passage 6 as the porous body.

連通路12は、弁棒5の周壁において弁軸方向に対し垂直方向に形成された複数の小孔で形成される。孔を複数にすれば絞り通路6の上流における冷媒状態の影響(液、ガスのばらつき)が平均化されることにより静音化が図れる。
この連通路12の孔の一端がフィルタの内面に連通し、他端が多孔体12に連通している。連通路12の孔径は0.5mm以上であることが孔加工の容易さから好ましい。
特に0.7mm以上であれば孔数を増やすことなく、流路断面積を十分に大きくすることができる。そして連通路12の孔数は6個あるいはそれ以下にして加工コストを抑えるようにするのが好ましい。
なお、連通路12の孔径の上限については、弁棒が構造上不安定にならない範囲で、かつ、孔加工に困難性がない範囲であれば特に限定されない。
The communication path 12 is formed by a plurality of small holes formed in the peripheral wall of the valve stem 5 in a direction perpendicular to the valve shaft direction. If a plurality of holes are provided, the influence of the refrigerant state (liquid and gas variations) upstream of the throttle passage 6 is averaged, thereby reducing noise.
One end of the hole of the communication path 12 communicates with the inner surface of the filter, and the other end communicates with the porous body 12. The hole diameter of the communication path 12 is preferably 0.5 mm or more in view of ease of hole processing.
In particular, when the thickness is 0.7 mm or more, the flow path cross-sectional area can be sufficiently increased without increasing the number of holes. The number of holes in the communication path 12 is preferably 6 or less so as to reduce the processing cost.
The upper limit of the hole diameter of the communication passage 12 is not particularly limited as long as the valve rod is not structurally unstable and there is no difficulty in drilling.

ここで、多孔体7、8の孔径、フィルタ10の孔径、連通路12の孔径について説明する。多孔体7、8の孔径は絞り通路6の孔径よりも小さく設定するようにして絞り通路6での目詰まりを防止する。
フィルタ10の孔径は、連通路12の孔径、多孔体7、8の孔径、絞り通路6の孔径、よりも小さくすることでフィルタ10の下流、すなわち弁棒5内部での目詰まりを防止する。
Here, the hole diameters of the porous bodies 7 and 8, the hole diameter of the filter 10, and the hole diameter of the communication passage 12 will be described. The hole diameters of the porous bodies 7 and 8 are set smaller than the hole diameter of the throttle passage 6 to prevent clogging in the throttle passage 6.
The pore diameter of the filter 10 is made smaller than the pore diameter of the communication passage 12, the pore diameters of the porous bodies 7 and 8, and the diameter of the throttle passage 6, thereby preventing clogging downstream of the filter 10, that is, inside the valve stem 5.

絞り通路6は図1に示すように1つでもよいが、複数にすることで減圧に伴うエネルギーが分散化され、更なる静音化を図ることができる。
連通路12の断面積(連通路12が複数のときは断面積の総和を意味する)は、絞り流路6の断面積(絞り通路6が複数のときは断面積の総和を意味する)よりもかなり大きくすることにより、絞り流路6が主な減圧領域となるようにする。一般に減圧領域には冷媒中の不純物が析出するので、絞り流路以外での減圧による析出を抑えて信頼性を向上させることができる。具体的には連通路12の断面積を絞り通路6の断面積の5.5倍以上にすれば析出物が付着しにくくすることができる。
As shown in FIG. 1, there may be only one throttle passage 6, but by using a plurality of throttle passages 6, energy accompanying decompression is dispersed, and further noise reduction can be achieved.
The cross-sectional area of the communication passage 12 (meaning the sum of cross-sectional areas when there are a plurality of communication passages 12) is the cross-sectional area of the throttle channel 6 (meaning the sum of cross-sectional areas when there are a plurality of constriction passages 6) Is also made considerably large so that the throttle channel 6 becomes the main decompression region. In general, since impurities in the refrigerant are deposited in the reduced pressure region, it is possible to improve the reliability by suppressing precipitation due to reduced pressure outside the throttle channel. Specifically, if the cross-sectional area of the communication passage 12 is 5.5 times or more the cross-sectional area of the throttle passage 6, deposits can be made difficult to adhere.

一方、連通路12の断面積を絞り通路6の断面積より大きくするが、0.01倍以上2倍以下程度にすると、不純物析出の点では劣るが、絞り通路6以外でも減圧がなされることとなり、冷媒の減圧が多段化されることとなり静音化の観点で好ましい。   On the other hand, although the cross-sectional area of the communication passage 12 is made larger than the cross-sectional area of the throttle passage 6, it is inferior in terms of impurity precipitation if it is 0.01 times or more and twice or less, but the pressure is reduced even outside the throttle passage 6. Thus, the decompression of the refrigerant is multistaged, which is preferable from the viewpoint of noise reduction.

また、図1に示すように絞り通路6の下流側に凹型の0.6mm以上の空間を形成している。よって、絞り通路6の通過による減圧に伴い冷媒中の溶解成分が析出しても下流側に形成した凹型の0.6mm以上の空間により、目詰まりを起こすのを防止することができる。また、上流側にも同形状の凹型の空間を形成することにより、絞り通路6の上下が同じ凹型であるため、絞り通路(オリフィス)を冷媒制御弁の組み込むとき、組み立てミスが発生しない。
また、図1に示すように絞り通路6を下流側の径が拡大するように2段形状にすると、段差部分で冷媒が急拡大するため、冷媒中のエネルギーを吸収することができ、静音化を図ることができる。さらに、上流側に同形状の段差を設けると絞り通路を組み込む時,組み立てミスが発生しない。
Further, as shown in FIG. 1, a concave space of 0.6 mm or more is formed on the downstream side of the throttle passage 6. Therefore, clogging can be prevented from occurring due to the concave space of 0.6 mm or more formed on the downstream side even if the dissolved component in the refrigerant is deposited due to the decompression due to the passage of the throttle passage 6. Further, by forming a concave space of the same shape on the upstream side, the upper and lower sides of the throttle passage 6 are the same concave shape, so that no assembly error occurs when the throttle passage (orifice) is incorporated into the refrigerant control valve.
Further, as shown in FIG. 1, when the throttle passage 6 is formed in a two-stage shape so that the diameter on the downstream side is enlarged, the refrigerant rapidly expands at the step portion, so that the energy in the refrigerant can be absorbed and the noise is reduced. Can be achieved. Furthermore, if a step having the same shape is provided on the upstream side, an assembly error does not occur when the throttle passage is incorporated.

次に、冷媒制御弁20の動作について説明する。
この冷媒制御弁20は、冷媒運転時には開弁状態となり冷媒が、第一冷媒入出口1、弁孔4、第二冷媒入出口2へと順方向に流れる。
また、暖房運転時には、開弁状態となり冷媒が第二冷媒入出口2、弁孔4、第一冷媒入出口1へと逆方向に流れる。
Next, the operation of the refrigerant control valve 20 will be described.
The refrigerant control valve 20 is opened during refrigerant operation, and the refrigerant flows in the forward direction to the first refrigerant inlet / outlet 1, the valve hole 4, and the second refrigerant inlet / outlet 2.
Further, during the heating operation, the valve is opened and the refrigerant flows in the reverse direction to the second refrigerant inlet / outlet 2, the valve hole 4, and the first refrigerant inlet / outlet 1.

これに対し除湿運転時には、閉弁状態となり冷媒が第一冷媒入出口1、冷媒通路11、フィルタ10、連通路12、フィルタ側(連通路側)の多孔体7、絞り通路6、弁棒先端側(開口側)の多孔体8、開口9、第二冷媒入出口2へと順に流れる。このとき、冷媒通過量平均化手段13として機能する厚いフィルタ10により冷媒が広い範囲でフィルタ10面を通過することになるので、冷媒通過流量を均一化して気液2相の冷媒の均質化を高めることができ、連通路における不連続的な冷媒流動音を効率よく低減するようになる。
さらには、冷媒が集中的に流れる部分がなくなり、フィルタ10の局所的な目詰まりが緩和するようになる。
On the other hand, during the dehumidifying operation, the valve is closed and the refrigerant is in the first refrigerant inlet / outlet 1, the refrigerant passage 11, the filter 10, the communication passage 12, the porous body 7 on the filter side (communication passage side), the throttle passage 6, and the tip of the valve rod. It flows to the porous body 8 on the side (opening side), the opening 9 and the second refrigerant inlet / outlet 2 in order. At this time, since the refrigerant passes through the surface of the filter 10 in a wide range by the thick filter 10 functioning as the refrigerant passage amount averaging means 13, the refrigerant passage flow rate is made uniform to homogenize the gas-liquid two-phase refrigerant. Thus, discontinuous refrigerant flow noise in the communication path can be efficiently reduced.
Furthermore, there is no portion where the refrigerant flows intensively, and local clogging of the filter 10 is alleviated.

図2は本発明の他の実施例による冷媒制御弁の弁閉状態を示す断面図である。図2において、符号1〜12、14及び20は、図1と同じものであるので説明を省略する。
この実施例では冷媒通過量平均化手段13は、連通路12近辺のフィルタ一部分の冷媒流通抵抗をフィルタ10の他の部分の冷媒流通抵抗より大きくするための冷媒流通規制手段を設けるようにしている。
FIG. 2 is a sectional view showing a closed state of a refrigerant control valve according to another embodiment of the present invention. In FIG. 2, reference numerals 1 to 12, 14 and 20 are the same as those in FIG.
In this embodiment, the refrigerant passage amount averaging means 13 is provided with refrigerant flow restriction means for making the refrigerant flow resistance of a part of the filter near the communication path 12 larger than the refrigerant flow resistance of the other part of the filter 10. .

冷媒流通抵抗を高くする冷媒流通規制手段には、フィルタ10自身の一部の冷媒流通抵抗を高くするものと、フィルタ10の外周部の一部に流通抵抗を大きくするための邪魔板を配置するものとがある。図2ではフィルタ10外周に邪魔板13aを設けたものを示している。すなわち、連通路12と対向させ、フィルタ10の外周部に当接させた邪魔板からなる冷媒流通規制手段であり、これが冷媒通過量平均化手段13として機能する。   In the refrigerant flow regulating means for increasing the refrigerant flow resistance, a part for increasing the refrigerant flow resistance of the filter 10 itself and a baffle plate for increasing the flow resistance are arranged on a part of the outer periphery of the filter 10. There is a thing. FIG. 2 shows a filter 10 provided with baffle plates 13a on the outer periphery. That is, it is a refrigerant flow restriction means that is made of a baffle plate that faces the communication path 12 and is in contact with the outer peripheral portion of the filter 10, and this functions as the refrigerant passage amount averaging means 13.

この場合、邪魔板13aとしては、例えば、金属リング、シールなどのように冷媒を全く通過させないものであってもよい、また、高圧損の多孔質部材のように冷媒を通過し難い部材であってもよい。また、金属リングの一部に複数の細孔をパンチングしたものであってもよい。   In this case, the baffle plate 13a may be a member that does not allow the coolant to pass through, such as a metal ring or a seal, or a member that does not easily pass the coolant, such as a high-pressure loss porous member. May be. Further, a plurality of fine holes may be punched in a part of the metal ring.

一方、図示しないが邪魔板13aに代えてフィルタ10自身の冷媒流通抵抗を変化させるようにしてもよい。すなわち、連通路12の近辺のフィルタの密度を大きくし、連通路12から遠ざかるにつれてフィルタ密度を小さくして冷媒流通規制手段とすることもできる。   On the other hand, although not shown, the refrigerant flow resistance of the filter 10 itself may be changed instead of the baffle plate 13a. That is, the density of the filter in the vicinity of the communication path 12 can be increased, and the filter density can be decreased as the distance from the communication path 12 is increased, thereby providing the refrigerant flow regulating means.

実施例2の構成により、冷媒通過量平均化手段13として、連通路近辺に配置された冷媒流通規制手段12により、冷媒をフィルタのより広い範囲を確保して流すことができ、また、フィルタの冷媒通過距離を長くして流すことができるため、冷媒が連通路12近傍のフィルタ面に集中して流れなくなり、冷媒脈動がより平均化され易く、不連続的な冷媒通過音を効率よく低減することができ、かつフィルタ内部で冷媒の均質化が進み、より静音化を図ることができる。さらに局所的なフィルタ目詰まりも防ぐことができる。   With the configuration of the second embodiment, the refrigerant flow restriction means 12 disposed in the vicinity of the communication path can serve as the refrigerant passage amount averaging means 13 so that the refrigerant can flow in a wider range of the filter. Since the refrigerant passage distance can be increased and the refrigerant can flow, the refrigerant ceases to flow in a concentrated manner on the filter surface in the vicinity of the communication path 12, the refrigerant pulsation is more easily averaged, and discontinuous refrigerant passage noise is efficiently reduced. In addition, the homogenization of the refrigerant progresses inside the filter, and the noise can be further reduced. Furthermore, local filter clogging can be prevented.

図3は本発明の他の実施例である冷媒制御弁の弁閉状態を示す断面図である。図3において、符号1〜12、14及び20は、図2と同じである。13bは連通路12と対向させ、フィルタ10から離して冷媒通路11内に配置した邪魔板である、この邪魔板13bが冷媒流通規制手段であり、冷媒通過量平均化手段13として機能する。
邪魔板13bは、実施例2と同様に連通路12近辺のフィルタ一部分の冷媒流通抵抗をフィルタの他部分の冷媒流通抵抗に比し大きくするように構成されている。
邪魔板13bをフィルタ10に対して浮かしてハウジング14側に取り付けたので、冷媒通過音の静音化は少し低下するが、組み立てが容易になり、冷媒制御弁20の耐久性が増す。
FIG. 3 is a sectional view showing a closed state of a refrigerant control valve according to another embodiment of the present invention. 3, reference numerals 1 to 12, 14 and 20 are the same as those in FIG. 13 b is a baffle plate that faces the communication passage 12 and is disposed in the refrigerant passage 11 away from the filter 10. The baffle plate 13 b is a refrigerant flow restricting means and functions as the refrigerant passage amount averaging means 13.
As in the second embodiment, the baffle plate 13b is configured to increase the refrigerant flow resistance of a part of the filter near the communication path 12 as compared with the refrigerant flow resistance of the other part of the filter.
Since the baffle plate 13b is floated with respect to the filter 10 and attached to the housing 14, the noise passing through the refrigerant is slightly reduced, but the assembly is facilitated and the durability of the refrigerant control valve 20 is increased.

このとき、後述する図7に示すように、冷媒制御弁20の上流側に外部フィルタ28を配置し、外部フィルタ28の孔径が、連通路11内でのフィルタ10と邪魔板13bとの隙間、すなわち弁棒5が摺動する摺動部の一部の隙間より狭く設定されることにより、外部フィルタ28を通過した残渣が冷媒制御弁20内で目詰まりを起こすのを防止することができる。また、外部フィルタ28を通過した残渣が摺動部で挟まり、弁棒が動作不良を引き起こすのを防止することができる。   At this time, as shown in FIG. 7 to be described later, the external filter 28 is disposed upstream of the refrigerant control valve 20, and the hole diameter of the external filter 28 is a gap between the filter 10 and the baffle plate 13b in the communication path 11, That is, it is possible to prevent the residue that has passed through the external filter 28 from being clogged in the refrigerant control valve 20 by setting it to be narrower than a gap in a part of the sliding portion on which the valve stem 5 slides. Further, it is possible to prevent the residue that has passed through the external filter 28 from being caught by the sliding portion and causing the valve rod to malfunction.

実施例3の構成により、冷媒通過量平均化手段13として、邪魔板13bをフィルタ10に対して浮かして本体側に取り付けたので、冷媒通過音の清音化は少し低下するが、組み立てが容易になり、冷媒制御弁の耐久性が図れる。   According to the configuration of the third embodiment, the baffle plate 13b is floated with respect to the filter 10 and attached to the main body as the refrigerant passage amount averaging means 13, so the refrigerant passage sound is slightly reduced, but assembly is easy. Thus, the durability of the refrigerant control valve can be achieved.

図4は本発明の他の実施例である冷媒制御弁20の弁閉状態を示す断面図である。図4において、符号1〜12、14及び20は、図1と同じであるので説明を省略する。13cは、フィルタ10と多孔体7の反弁座側端面に形成された連通路12との間に形成された空間部であり、この空間部13cが冷媒通過量平均化手段13として機能する。すなわち、空間部13cを設けることにより、フィルタ10に対する連通路12の孔径が見かけ上大きくなり、冷媒が流入するフィルタ面の範囲が拡大する。
空間部13cの深さが大きくなるほど冷媒が流入するフィルタ面が広がることになり、フィルタ外周での冷媒脈動による冷媒通過音は小さくすることができるが、フィルタ10によって微細化され均質化された冷媒中の気泡が再結合し、大きな気泡となって実際の連通路12を通過するので、冷媒音が大きくなる。そのため、大きな気泡が発生しないようにするため、空間部の深さ幅は0.5〜1.5mm程度が好ましい。
FIG. 4 is a sectional view showing a closed state of the refrigerant control valve 20 according to another embodiment of the present invention. 4, reference numerals 1 to 12, 14 and 20 are the same as those in FIG. Reference numeral 13 c denotes a space formed between the filter 10 and the communication passage 12 formed on the end face on the counter valve seat side of the porous body 7, and this space 13 c functions as the refrigerant passage amount averaging means 13. That is, by providing the space 13c, the hole diameter of the communication path 12 with respect to the filter 10 is apparently increased, and the range of the filter surface into which the refrigerant flows is expanded.
As the depth of the space 13c increases, the filter surface into which the refrigerant flows becomes wider, and the refrigerant passing sound due to the refrigerant pulsation on the outer periphery of the filter can be reduced. However, the refrigerant refined and homogenized by the filter 10 The air bubbles inside are recombined to form large air bubbles and pass through the actual communication path 12, so that the refrigerant noise is increased. Therefore, in order to prevent generation of large bubbles, the depth width of the space is preferably about 0.5 to 1.5 mm.

実施例4の構成により、冷媒を連通路とフィルタとの間に形成された空間部で見かけ上の連通路の孔径を大きくして流すことができるため、連通路近辺に発生しやすい不連続的な冷媒流動音を効率よく低減することができる。   According to the configuration of the fourth embodiment, the refrigerant can flow in the space formed between the communication path and the filter with an apparent hole diameter of the communication path increased, so that the discontinuity is likely to occur in the vicinity of the communication path. It is possible to efficiently reduce the refrigerant flow noise.

図5は本発明の他の実施例である冷媒制御弁の弁閉状態を示す断面図である。図5において、符号1〜12、14及び20は、図4と同じであるので説明を省略する。13dは、フィルタ10と多孔体7の反弁座側端面に形成された連通路12との間に形成された空間部であり、冷媒通過量平均化手段13として機能する。空間部13dは多孔体7から遠くなるにつれ、空間部13dの深さ寸法が小さくなるようにテーパ状に形成されている。このテーパ状の空間13dも見かけ上の連通路12の孔径を大きくすることになり、冷媒が流入するフィルタ面領域が広がる。   FIG. 5 is a sectional view showing a closed state of a refrigerant control valve according to another embodiment of the present invention. 5, reference numerals 1 to 12, 14 and 20 are the same as those in FIG. 13 d is a space formed between the filter 10 and the communication passage 12 formed on the end face on the counter valve seat side of the porous body 7, and functions as the refrigerant passage amount averaging means 13. The space portion 13d is formed in a tapered shape so that the depth dimension of the space portion 13d decreases as the distance from the porous body 7 increases. This tapered space 13d also increases the apparent hole diameter of the communication path 12, and the filter surface area into which the refrigerant flows is expanded.

実施例5の構成により、連通路12を流れる冷媒をフィルタ10の弁棒5側面に沿って形成された空間部13dで広くして流すことができるため、フィルタ10を通過した冷媒中の気泡は、空間部13dを通過するときに再結合し難くなる。よって、連通路12で脈動が発生し難くなるので、冷媒通過音が発生し難い。   With the configuration of the fifth embodiment, the refrigerant flowing through the communication passage 12 can be made to flow wider in the space portion 13d formed along the side surface of the valve rod 5 of the filter 10, so that bubbles in the refrigerant that have passed through the filter 10 , It becomes difficult to recombine when passing through the space 13d. Therefore, pulsation is less likely to occur in the communication path 12, and refrigerant passage noise is unlikely to occur.

図6は本発明の他の実施例である冷媒制御弁の弁閉状態を示す断面図である。図6において、符号1〜12、14及び20は、図4と同じであるので説明を省略する。13eは、フィルタ10内面に沿って形成された空間部、13fは多孔体7の反弁座側端面に形成された空間部であり、空間部13eは連通路12と空間部13fに連通し、多孔体7から遠くなるにつれ空間部13eの深さ寸法が小さくなるようにテーパ状に形成されている。このテーパ状の空間13eも見かけ上の連通路12の孔径を大きくすることになり冷媒が流入するフィルタ面が広がる。さらに狭窄部となる連通路12を介して空間部13fに連通することにより、減圧領域となる連通路12の下流側で不純物の析出が生じる場合でも空間部13fが設けられていることにより目詰まりが発生し難くなる。
また、実施例1と同様、連通路12の断面積を、絞り流路6の断面積よりもかなり大きくすることにより、絞り流路6が主な減圧領域となるようにすることができる。減圧領域には冷媒中の不純物が析出するので、絞り流路以外での減圧による析出を抑えて信頼性を向上させることができる。具体的には連通路12の断面積を絞り通路6の断面積の5.5倍以上にすれば、析出物が付着しにくくすることができる。
さらに実施例1と同様、連通路12の断面積を絞り流路の断面積の0.01倍〜2倍程度にすると連通路12が減圧領域として機能することになるので、絞り通路の多段化を図ることができ、冷媒のエネルギーが分散され、静音化が図れる。
FIG. 6 is a sectional view showing a closed state of a refrigerant control valve according to another embodiment of the present invention. In FIG. 6, reference numerals 1 to 12, 14 and 20 are the same as those in FIG. 13e is a space portion formed along the inner surface of the filter 10, 13f is a space portion formed on the counter valve seat side end surface of the porous body 7, and the space portion 13e communicates with the communication path 12 and the space portion 13f. As the distance from the porous body 7 increases, the depth of the space 13e is reduced. This tapered space 13e also increases the apparent hole diameter of the communication passage 12, and the filter surface into which the refrigerant flows is expanded. Further, by communicating with the space portion 13f via the communication passage 12 serving as the constriction portion, clogging occurs due to the provision of the space portion 13f even when impurities are precipitated on the downstream side of the communication passage 12 serving as the decompression region. Is less likely to occur.
Further, as in the first embodiment, by making the cross-sectional area of the communication channel 12 considerably larger than the cross-sectional area of the throttle channel 6, the throttle channel 6 can be a main decompression region. Since impurities in the refrigerant are deposited in the reduced pressure region, it is possible to improve the reliability by suppressing precipitation due to reduced pressure outside the throttle channel. Specifically, if the cross-sectional area of the communication passage 12 is set to 5.5 times or more the cross-sectional area of the throttle passage 6, the deposits can be made difficult to adhere.
Further, as in the first embodiment, if the cross-sectional area of the communication passage 12 is about 0.01 to 2 times the cross-sectional area of the throttle passage, the communication passage 12 functions as a decompression region. Therefore, the energy of the refrigerant is dispersed and noise reduction can be achieved.

実施例6の構成により、連通路を流れる冷媒をフィルタの弁棒側面に沿って形成された空間部で広くして流すことができるため、フィルタを通過した冷媒中の気泡は、空間部を通過するときに再結合し難い。よって、連通路で脈動が発生し難いので、冷媒通過音が発生し難い。   According to the configuration of the sixth embodiment, the refrigerant flowing through the communication passage can be made to widen and flow in the space formed along the side surface of the valve rod of the filter, so that bubbles in the refrigerant that has passed through the filter pass through the space. Difficult to recombine when. Therefore, pulsation hardly occurs in the communication path, so that refrigerant passing sound hardly occurs.

図7は本発明の他の実施例である冷媒制御弁を用いた空気調和機の冷媒回路の回路図である。図7において、この冷媒回路は、冷媒制御弁20と、除湿運転時に室内蒸発器となる室内第二熱交換器21と、内外連絡配管22、四方弁23と、圧縮機24と、室外熱交換器25と、膨張弁26と、内外連絡配管22と、除湿運転時に室内凝縮器となる室内第一熱交換器27とを順次接続した閉回路である。この冷媒制御弁20は、その冷媒入出口1を室内第一熱交換器27に配管接続し、冷媒入出口2を室内第二熱交換器21に配管接続している。
冷媒入出口1と室内第一熱交換器27との間(除湿運転時に冷媒入出口1の上流となる側)には、除湿運転時に、冷媒制御弁内に不純物が混入するのを防ぐための外部フィルタ28が設けられている。
FIG. 7 is a circuit diagram of a refrigerant circuit of an air conditioner using a refrigerant control valve according to another embodiment of the present invention. In FIG. 7, this refrigerant circuit includes a refrigerant control valve 20, an indoor second heat exchanger 21 that becomes an indoor evaporator during dehumidifying operation, an internal / external communication pipe 22, a four-way valve 23, a compressor 24, and outdoor heat exchange. This is a closed circuit in which an oven 25, an expansion valve 26, an inside / outside communication pipe 22, and an indoor first heat exchanger 27 that becomes an indoor condenser during dehumidifying operation are sequentially connected. The refrigerant control valve 20 has a refrigerant inlet / outlet 1 connected to the indoor first heat exchanger 27 by piping and the refrigerant inlet / outlet 2 connected to the indoor second heat exchanger 21 by piping.
In order to prevent impurities from entering the refrigerant control valve between the refrigerant inlet / outlet 1 and the indoor first heat exchanger 27 (the upstream side of the refrigerant inlet / outlet 1 during the dehumidifying operation) during the dehumidifying operation. An external filter 28 is provided.

上記構成の空気調和機は、膨張弁26を全開状態にして四方弁23を実線の矢印に示す状態にすると冷房運転を行い、四方弁22を点線の矢印に示す状態に切り替えると暖房運転を行う。一方、四方弁23を図7に示す冷房運転状態にして、冷媒制御弁20を、例えば、図1に示す絞り状態にすると、冷媒制御弁20は膨張源として機能し、室内第一熱交換器27及び室内第二熱交換器21が動作して、除湿運転(再熱ドライ運転)を行うことができる。   The air conditioner having the above configuration performs cooling operation when the expansion valve 26 is fully opened and the four-way valve 23 is in the state indicated by the solid line arrow, and heating operation is performed when the four-way valve 22 is switched to the state indicated by the dotted line arrow. . On the other hand, when the four-way valve 23 is in the cooling operation state shown in FIG. 7 and the refrigerant control valve 20 is in the throttle state shown in FIG. 1, for example, the refrigerant control valve 20 functions as an expansion source, and the indoor first heat exchanger 27 and the indoor second heat exchanger 21 can be operated to perform a dehumidifying operation (reheat drying operation).

また、空気調和機は、図示しない制御部により除湿運転する前に一定時間自動的に冷房運転するようにする。これにより、開弁状態で冷媒制御弁20と外部フィルタ28との間に残った残渣が冷媒制御弁20の下流側に流れるため、フィルタ10や絞り流路6が目詰まりを起こすのを防止することができる。特に外部フィルタを設ける位置が冷媒制御弁20の入口直前であれば冷房運転時に内部の残渣を簡単に下流に流し去ることができる。   The air conditioner is automatically cooled for a certain period of time before being dehumidified by a control unit (not shown). As a result, the residue remaining between the refrigerant control valve 20 and the external filter 28 in the opened state flows to the downstream side of the refrigerant control valve 20, thereby preventing the filter 10 and the throttle channel 6 from being clogged. be able to. In particular, if the position where the external filter is provided is immediately before the inlet of the refrigerant control valve 20, the internal residue can be easily washed away downstream during the cooling operation.

本実施例では外部フィルタ28を冷媒入出口1と室内第一熱交換器27との間に設けたが、これはできるだけ外部フィルタ28と冷媒制御弁20の配管距離を短くして、残渣除去が必要な空間を小さくし除湿運転前に行う残渣除去のための冷房運転時間を短く済ませるためである。一方、冷媒入出口1と室内第一熱交換器27との間に外部フィルタ28を取り付けた場合に、冷房運転時および暖房運転時にガスが流れるため圧損が大きくなってしまう。
それゆえ、圧損を小さくするために外部フィルタ28を室内第一熱交換器27の上流側入口の直前位置Aに取り付けてもよい。このようにすれば、外部フィルタ28には液状態の冷媒が流れるので圧損は小さくなる。ただし、冷媒制御弁20までの配管距離が長くなるので残渣除去のための冷房運転時間を長くする必要が生じる。
In the present embodiment, the external filter 28 is provided between the refrigerant inlet / outlet 1 and the indoor first heat exchanger 27. However, this reduces the piping distance between the external filter 28 and the refrigerant control valve 20 as much as possible to remove the residue. This is to reduce the necessary space and shorten the cooling operation time for removing the residue before the dehumidifying operation. On the other hand, when the external filter 28 is attached between the refrigerant inlet / outlet 1 and the indoor first heat exchanger 27, the pressure loss increases because the gas flows during the cooling operation and the heating operation.
Therefore, in order to reduce the pressure loss, the external filter 28 may be attached to the position A immediately before the upstream inlet of the indoor first heat exchanger 27. In this way, since the liquid refrigerant flows through the external filter 28, the pressure loss is reduced. However, since the piping distance to the refrigerant control valve 20 becomes long, it is necessary to lengthen the cooling operation time for removing the residue.

また、冷媒制御弁20の下流B(すなわち冷媒制御弁20の第二冷媒入出口2側)に外部フィルタ28を設けたり、室内蒸発器21の下流Cに外部フィルタを設けたりしてもよい。
位置Bと位置Cとを比較すると、液が残っている位置Bの方が圧損の点および残渣が少ない点では有利であるが、位置Bは熱交換器の構造上フィルタを取り付けにくくコストアップにつながる。
これに対し、位置Cはガス冷媒が多く圧損の点では劣るが、構造上フィルタを取り付けやすい。
Further, an external filter 28 may be provided downstream B of the refrigerant control valve 20 (that is, the second refrigerant inlet / outlet 2 side of the refrigerant control valve 20), or an external filter may be provided downstream C of the indoor evaporator 21.
Comparing position B and position C, position B where the liquid remains is more advantageous in terms of pressure loss and less residue, but position B is difficult to mount a filter due to the structure of the heat exchanger and increases costs. Connected.
On the other hand, position C has a lot of gas refrigerant and is inferior in terms of pressure loss, but it is easy to attach a filter because of its structure.

このように外部フィルタ28の取り付け位置によって、メリットデメリットがあるので必要に応じて最適な位置に外部フィルタ28を設ければよい。また、外部フィルタは1つだけでなく複数取り付けるようにしてもよい。
以上述べたように、冷媒中の残渣をこれらの外部フィルタ28でも捕捉するようにすれば、連通路12の目詰まりをさらに防止することができる。
As described above, since there are merits and demerits depending on the mounting position of the external filter 28, the external filter 28 may be provided at an optimum position as necessary. Further, not only one external filter but also a plurality of external filters may be attached.
As described above, the clogging of the communication path 12 can be further prevented if the residue in the refrigerant is also captured by these external filters 28.

また、冷媒通過音を減音するマフラー29をさらに配置し、外部フィルタ28をマフラー29内に形成してもよい。これにより、外部フィルタ28を通過する冷媒の通過面積を大きくでき、低圧損化することができる。   Further, a muffler 29 for reducing the refrigerant passing sound may be further arranged, and the external filter 28 may be formed in the muffler 29. Thereby, the passage area of the refrigerant passing through the external filter 28 can be increased, and the low pressure loss can be achieved.

なお、外部フィルタ28の孔径は、冷媒制御弁20の連通路12の隙間より小さくなるように設定する必要がある。これにより外部フィルタ28を通過した残渣が連通路12を詰まらせる可能性が小さくなる。
特に冷媒制御弁20に実施例3に示した邪魔板がフィルタから浮かして取付けたものを用いる場合、外部フィルタ28の孔径が、冷媒制御弁20の弁棒が摺動する摺動領域の一部の隙間(隙間が最小となる部分)より狭く設定する必要がある。これにより、摺動領域での詰まりも防止することができる。
Note that the hole diameter of the external filter 28 needs to be set to be smaller than the gap of the communication passage 12 of the refrigerant control valve 20. Thereby, the possibility that the residue that has passed through the external filter 28 clogs the communication path 12 is reduced.
In particular, when the refrigerant control valve 20 using the baffle plate shown in the third embodiment is mounted so as to float from the filter, the hole diameter of the external filter 28 is a part of the sliding region in which the valve rod of the refrigerant control valve 20 slides. It is necessary to set narrower than the gap (the part where the gap is minimized). Thereby, clogging in the sliding region can also be prevented.

外部フィルタ28の孔径は、100〜200メッシュ(100メッシュは隙間が0.154mm、150メッシュは隙間が0.109mm、200メッシュは隙間が0.77mm)の範囲であるのが好ましい。特に、100、150、200メッシュ材は汎用されているので入手が容易でありかつ安価であるのでこれらのいずれかを用いるのが望ましい。
これにより、外部フィルタ28を通過した残渣が連通路や摺動部で目詰まりを起こすのを防止することができるとともに、冷媒を流す際の圧損も支障のない程度の低さに抑えることができる。
The pore size of the external filter 28 is preferably in the range of 100 to 200 mesh (100 mesh has a gap of 0.154 mm, 150 mesh has a gap of 0.109 mm, and 200 mesh has a gap of 0.77 mm). In particular, since 100, 150, and 200 mesh materials are widely used and are easily available and inexpensive, it is desirable to use one of them.
Thereby, it is possible to prevent the residue that has passed through the external filter 28 from being clogged in the communication path and the sliding portion, and it is also possible to suppress the pressure loss when flowing the refrigerant to a level that does not cause any trouble. .

このとき、実施例1から実施例7の冷媒制御弁20を用いているから、絞り通路における混入物の詰まりと、冷媒通過音の発生を防止することができる。
この空気調和機においては、冷媒としてはHCFC系冷媒に限らず、HFC系冷媒等種々の冷媒が使用でき、また、冷凍機油として、鉱油の他に、エーテル系、エステル系等の油を使用できる。
At this time, since the refrigerant control valve 20 of Example 1 to Example 7 is used, it is possible to prevent clogging of contaminants in the throttle passage and generation of refrigerant passing sound.
In this air conditioner, the refrigerant is not limited to the HCFC refrigerant, and various refrigerants such as an HFC refrigerant can be used. In addition to mineral oil, ether-based and ester-based oils can be used as the refrigeration oil. .

実施例7の構成により、本発明の冷媒制御弁は、安定して静かな除湿運転性能を有する空気調和機の膨張装置として適用することができる。   With the configuration of the seventh embodiment, the refrigerant control valve of the present invention can be applied as an expansion device for an air conditioner having a stable and quiet dehumidifying operation performance.

本発明の冷媒制御弁は、安定して静かな除湿運転性能が必要な病院や図書館などの空気調和機の冷媒制御弁として適用することができる。   The refrigerant control valve of the present invention can be applied as a refrigerant control valve of an air conditioner such as a hospital or library that requires stable and quiet dehumidifying operation performance.

本発明の実施例1による冷媒制御弁の弁閉状態を示す断面図である。It is sectional drawing which shows the valve closed state of the refrigerant control valve by Example 1 of this invention. 本発明の実施例2による冷媒制御弁の弁閉状態を示す断面図である。It is sectional drawing which shows the valve closed state of the refrigerant control valve by Example 2 of this invention. 本発明の実施例3による冷媒制御弁の弁閉状態を示す断面図である。It is sectional drawing which shows the valve closed state of the refrigerant control valve by Example 3 of this invention. 本発明の実施例4による冷媒制御弁の弁閉状態を示す断面図である。It is sectional drawing which shows the valve closed state of the refrigerant | coolant control valve by Example 4 of this invention. 本発明の実施例5による冷媒制御弁の弁閉状態を示す断面図である。It is sectional drawing which shows the valve closing state of the refrigerant | coolant control valve by Example 5 of this invention. 本発明の実施例6による冷媒制御弁の弁閉状態を示す断面図である。It is sectional drawing which shows the valve closing state of the refrigerant | coolant control valve by Example 6 of this invention. 本発明の実施例7による冷媒制御弁を用いた空気調和機の冷媒回路の回路図である。It is a circuit diagram of the refrigerant circuit of the air conditioner using the refrigerant control valve by Example 7 of this invention. 従来技術による冷媒制御弁の弁閉状態を示す断面図である。It is sectional drawing which shows the valve closed state of the refrigerant | coolant control valve by a prior art.

符号の説明Explanation of symbols

1 冷媒入出口
2 冷媒入出口
3 弁座
4 弁孔
5 弁棒
6 絞り通路
7 多孔体
8 多孔体
9 開口
10 フィルタ
11 冷媒通路
12 連通路
13 冷媒通過量平均化手段
14 ハウジング
20 冷媒制御弁
21 室内蒸発器
22 内外連絡配管
23 四方弁
24 圧縮機
25 室外熱交換器
26 膨張弁
27 室内凝縮器
28 外部フィルタ
29 マフラー
DESCRIPTION OF SYMBOLS 1 Refrigerant inlet / outlet 2 Refrigerant inlet / outlet 3 Valve seat 4 Valve hole 5 Valve rod 6 Restriction passage 7 Porous body 8 Porous body 9 Opening 10 Filter 11 Refrigerant passage 12 Communication passage 13 Refrigerant passage amount averaging means 14 Housing 20 Refrigerant control valve 21 Indoor evaporator 22 Internal / external communication pipe 23 Four-way valve 24 Compressor 25 Outdoor heat exchanger 26 Expansion valve 27 Indoor condenser 28 External filter 29 Muffler

Claims (11)

除湿運転時に上流側となる第一冷媒入出口と、除湿運転時に下流側となる第二冷媒入出口と、これら二つの冷媒入出口間に形成された弁座と、弁座に形成された弁孔と、弁座に対し往復動し、先端部が弁座に離接することにより弁孔を開閉する弁棒と、弁棒内に形成された絞り通路と、弁棒の先端部に形成され、絞り通路を弁棒の先端側に連通する開口と、弁棒の外周に配置されたフィルタと、第一冷媒入出口に連通してフィルタの外周面に沿って形成された冷媒通路と、フィルタと絞り通路とを連通する連通路とを備え、開弁時には弁孔を介し第一冷媒入出口と第二冷媒入出口とを連通し、閉弁時には冷媒通路、フィルタ、連通路、絞り通路、開口及び弁孔を介し第一冷媒入出口から第二冷媒入出口に冷媒が流れるように構成され、  A first refrigerant inlet / outlet that is upstream during the dehumidifying operation, a second refrigerant inlet / outlet that is downstream during the dehumidifying operation, a valve seat formed between these two refrigerant inlets / outlets, and a valve formed in the valve seat A valve rod that reciprocates with respect to the hole and the valve seat, and opens and closes the valve hole when the tip portion contacts and closes the valve seat; a throttle passage formed in the valve rod; and a tip portion of the valve rod, An opening communicating the throttle passage with the tip end of the valve stem, a filter disposed on the outer periphery of the valve stem, a refrigerant passage communicating with the first refrigerant inlet / outlet and formed along the outer peripheral surface of the filter, a filter, A communication passage that communicates with the throttle passage. When the valve is opened, the first refrigerant inlet / outlet communicates with the second refrigerant inlet / outlet. When the valve is closed, the refrigerant passage, filter, communication passage, throttle passage, opening And the refrigerant flows through the valve hole from the first refrigerant inlet / outlet to the second refrigerant inlet / outlet,
連通路近辺のフィルタ部分の冷媒流通抵抗をフィルタの他部分の冷媒流通抵抗に比し大きくする冷媒流通規制手段が設けられ、これにより冷媒が連通路近辺に集中して流れるのを緩和することを特徴とする冷媒制御弁。  Refrigerant flow restricting means is provided to increase the refrigerant flow resistance of the filter portion near the communication path as compared with the refrigerant flow resistance of the other part of the filter, thereby reducing the concentration of refrigerant flowing in the vicinity of the communication path. A featured refrigerant control valve.
前記冷媒流通規制手段は、連通路近傍のフィルタの外周部に配置された邪魔板からなることを特徴とする請求項1に記載の冷媒制御弁。  2. The refrigerant control valve according to claim 1, wherein the refrigerant flow restricting means includes a baffle plate disposed on an outer peripheral portion of a filter in the vicinity of the communication path. 前記フィルタを挟んで前記邪魔板を連通路と対向させ、かつ、邪魔板をフィルタの外周部に当接させたことを特徴とする請求項2に記載の冷媒制御弁。  The refrigerant control valve according to claim 2, wherein the baffle plate is opposed to the communication path with the filter interposed therebetween, and the baffle plate is brought into contact with an outer peripheral portion of the filter. 前記フィルタを挟んで前記邪魔板を連通路と対向させ、かつ、冷媒通路中に隙間を介して配置したことを特徴とする請求項2に記載の冷媒制御弁。  The refrigerant control valve according to claim 2, wherein the baffle plate is opposed to the communication path with the filter interposed therebetween, and is disposed in the refrigerant path via a gap. 除湿運転時に上流側となる第一冷媒入出口と、除湿運転時に下流側となる第二冷媒入出口と、これら二つの冷媒入出口間に形成された弁座と、弁座に形成された弁孔と、弁座に対し往復動し、先端部が弁座に離接することにより弁孔を開閉する弁棒と、弁棒内に形成された絞り通路と、弁棒の先端部に形成され、絞り通路を弁棒の先端側に連通する開口と、弁棒の外周に配置されたフィルタと、第一冷媒入出口に連通してフィルタの外周面に沿って形成された冷媒通路と、フィルタと絞り通路とを連通する連通路と、フィルタの冷媒通過流量を均一化する冷媒通過量平均化手段とを備え、開弁時には弁孔を介し第一冷媒入出口と第二冷媒入出口とを連通し、閉弁時には冷媒通路、フィルタ、冷媒通過量平均化手段、連通路、絞り通路、開口及び弁孔を介し第一冷媒入出口から第二冷媒入出口に冷媒が流れるように構成され、  First refrigerant inlet / outlet on the upstream side during the dehumidifying operation, second refrigerant inlet / outlet on the downstream side in the dehumidifying operation, a valve seat formed between these two refrigerant inlets / outlets, and a valve formed on the valve seat A valve rod that reciprocates with respect to the hole and the valve seat, and opens and closes the valve hole when the tip portion contacts and closes the valve seat; a throttle passage formed in the valve rod; and a tip portion of the valve rod, An opening communicating the throttle passage with the tip end of the valve stem, a filter disposed on the outer periphery of the valve stem, a refrigerant passage communicating with the first refrigerant inlet / outlet and formed along the outer peripheral surface of the filter, a filter, A communication passage communicating with the throttle passage and a refrigerant passage amount averaging means for equalizing the refrigerant passage flow rate of the filter are provided, and when the valve is opened, the first refrigerant inlet / outlet and the second refrigerant inlet / outlet are communicated via the valve hole. When the valve is closed, the refrigerant passage, filter, refrigerant passage amount averaging means, communication passage, throttle passage, opening and Is composed from the first coolant inlet and outlet through the valve hole so the refrigerant flows through the second coolant inlet and outlet,
前記冷媒通過量平均化手段は、連通路とフィルタとの間に形成された空間部からなることを特徴とする冷媒制御弁。  The refrigerant control valve according to claim 1, wherein the refrigerant passage amount averaging means comprises a space formed between the communication path and the filter.
前記空間部は、前記フィルタから前記連通路に近くなるにつれ前記空間部の隙間寸法が大きくなるようにテーパ状に形成されていることを特徴とする請求項5に記載の冷媒制御弁。  The refrigerant control valve according to claim 5, wherein the space portion is formed in a tapered shape so that a gap dimension of the space portion increases as the distance from the filter approaches the communication path. 絞り通路と連通路との間に配置された連通路側の多孔体と、絞り通路と開口との間に配置された開口側の多孔体とをさらに備え、  A porous body on the side of the communication path disposed between the throttle path and the communication path, and a porous body on the side of the opening disposed between the throttle path and the opening,
閉弁時には冷媒通路、フィルタ、連通路、連通路側の多孔体、絞り通路、開口側の多孔体、開口及び弁孔を介し第一冷媒入出口から第二冷媒入出口に冷媒が流れるように構成されていることを特徴とする請求項1〜6のいずれか一項に記載の冷媒制御弁。  When the valve is closed, the refrigerant flows from the first refrigerant inlet / outlet to the second refrigerant inlet / outlet through the refrigerant passage, the filter, the communication passage, the porous body on the communication passage side, the throttle passage, the porous body on the opening side, the opening and the valve hole. It is comprised, The refrigerant | coolant control valve as described in any one of Claims 1-6 characterized by the above-mentioned.
前記フィルタの孔径は、連通路の孔径、連通路側の多孔体の孔径、開口側の多孔体の孔径、及び絞り通路の孔径よりも小さいことを特徴とする請求項7に記載の冷媒制御弁。  8. The refrigerant control valve according to claim 7, wherein the hole diameter of the filter is smaller than the hole diameter of the communication path, the hole diameter of the porous body on the communication path side, the hole diameter of the porous body on the opening side, and the hole diameter of the throttle passage. . 絞り通路と連通路との間に配置された連通路側の多孔体の反弁座側端面に形成され、連通路を介して前記空間部と連通する他の空間部が設けられていることを特徴とする請求項5または請求項6に記載の冷媒制御弁。  It is formed on the counter valve seat side end surface of the porous body on the communication passage side disposed between the throttle passage and the communication passage, and another space portion communicating with the space portion through the communication passage is provided. The refrigerant control valve according to claim 5 or 6, wherein the refrigerant control valve is characterized in that: 前記連通路は、弁軸方向に形成された小孔により形成されていることを特徴とする請求項5に記載の冷媒制御弁。  The refrigerant control valve according to claim 5, wherein the communication path is formed by a small hole formed in a valve shaft direction. 前記冷媒流通規制手段が設けられていない場合は、フィルタの連通路近傍に冷媒が集中して流れることを特徴とする請求項1〜4のいずれか一項に記載の冷媒制御弁。  The refrigerant control valve according to any one of claims 1 to 4, wherein when the refrigerant flow regulation means is not provided, the refrigerant flows in a concentrated manner in the vicinity of the communication path of the filter.
JP2003290917A 2003-08-08 2003-08-08 Refrigerant control valve Expired - Fee Related JP4306366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003290917A JP4306366B2 (en) 2003-08-08 2003-08-08 Refrigerant control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003290917A JP4306366B2 (en) 2003-08-08 2003-08-08 Refrigerant control valve

Publications (2)

Publication Number Publication Date
JP2005061694A JP2005061694A (en) 2005-03-10
JP4306366B2 true JP4306366B2 (en) 2009-07-29

Family

ID=34368768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003290917A Expired - Fee Related JP4306366B2 (en) 2003-08-08 2003-08-08 Refrigerant control valve

Country Status (1)

Country Link
JP (1) JP4306366B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128001A (en) * 2018-01-25 2019-08-01 株式会社不二工機 Flow rate regulation valve
JP7466485B2 (en) 2021-03-24 2024-04-12 株式会社鷺宮製作所 Motor-operated valve

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152176U (en) * 1988-04-12 1989-10-20
JP3428516B2 (en) * 1999-06-01 2003-07-22 三菱電機株式会社 Aperture device
JP4071451B2 (en) * 2001-04-12 2008-04-02 株式会社鷺宮製作所 Throttle device and air conditioner
JP4465128B2 (en) * 2001-04-26 2010-05-19 ダイキン工業株式会社 Expansion valve and air conditioner
JP2003202167A (en) * 2001-10-29 2003-07-18 Mitsubishi Electric Corp Flow rate control valve, refrigerating air conditioning device and method for manufacturing flow rate control valve
JP2003156269A (en) * 2001-11-20 2003-05-30 Fuji Koki Corp Solenoid valve
JP4077205B2 (en) * 2002-01-28 2008-04-16 株式会社鷺宮製作所 Bidirectional solenoid valve and air conditioner
JP4197470B2 (en) * 2003-07-01 2008-12-17 株式会社不二工機 solenoid valve

Also Published As

Publication number Publication date
JP2005061694A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
US7290567B2 (en) Refrigerating cycle device, air conditioner, choke, and flow rate controller
JP2006275452A (en) Expansion valve
JP7259071B2 (en) Valve silencer and electronic expansion valve having this valve silencer
JP3490640B2 (en) Aperture device
JP4285155B2 (en) Multistage electric expansion valve and refrigeration system
CN102192358B (en) Solenoid valve
CN205747604U (en) Short pipe throttling valve and air conditioner with same
JP2006097901A (en) Flow control valve, refrigeration air conditioner, and method of manufacturing flow control valve
JP2008298343A (en) Expansion valve of refrigerant flow divider integral structure and refrigerator using the same
JP4465122B2 (en) Air conditioner
JP4306366B2 (en) Refrigerant control valve
JP3951983B2 (en) Refrigerant control valve
JP4535308B2 (en) Air conditioner
JP2006349274A (en) Throttle device, flow control valve and air conditioner incorporating them
JP2006266662A (en) Throttle device, flow control valve, and air conditioner incorporating the same
CN1453532B (en) Throttle valve and air conditioner
JP4077340B2 (en) Throttle valve device and air conditioner
JP3712355B2 (en) Refrigeration cycle equipment
JP4064762B2 (en) Throttle valve device and air conditioner
EP1291593B1 (en) Silencer for air conditioner
JP2003202167A (en) Flow rate control valve, refrigerating air conditioning device and method for manufacturing flow rate control valve
JP6138271B2 (en) Expansion valve and refrigeration cycle apparatus equipped with the same
CN216743119U (en) Throttling piece, throttling valve and refrigerating system thereof
JP2002195696A (en) Air conditioner
JP2007225163A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

R151 Written notification of patent or utility model registration

Ref document number: 4306366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees