JP2006097901A - Flow control valve, refrigeration air conditioner, and method of manufacturing flow control valve - Google Patents

Flow control valve, refrigeration air conditioner, and method of manufacturing flow control valve Download PDF

Info

Publication number
JP2006097901A
JP2006097901A JP2005362913A JP2005362913A JP2006097901A JP 2006097901 A JP2006097901 A JP 2006097901A JP 2005362913 A JP2005362913 A JP 2005362913A JP 2005362913 A JP2005362913 A JP 2005362913A JP 2006097901 A JP2006097901 A JP 2006097901A
Authority
JP
Japan
Prior art keywords
refrigerant
flow
valve
control valve
permeable material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005362913A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sumida
嘉裕 隅田
Satoru Hirakuni
悟 平國
Atsushi Mochizuki
厚志 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005362913A priority Critical patent/JP2006097901A/en
Publication of JP2006097901A publication Critical patent/JP2006097901A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Details Of Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively reduce refrigerant flow noise in passing a gas-liquid two-phase refrigerant, and to secure reliability of a flow control valve for a long period by using a porous permeation material, in the flow control valve capable of improving temperature and humidity controllability of a refrigeration cycle. <P>SOLUTION: A valve seat 23 having an opening connected with one of two flow channels 21, 22 is fixed in a valve chest 26, and a valve element 24 operated in the valve chest 26 for opening and closing the opening comprises a through-flow channel penetrated in the valve element 24 for allowing the opening to be communicated with the other of two flow channels 21, 22. The porous permeable material 30 having a pore diameter of 100 micrometer or more, is mounted in the valve element 24 to allow the fluid flowing in the through-flow channel to pass therethrough. The fluid flowing between two flow channels 21, 22 is passed through the porous permeable material of the through-flow channel, thus its pressure is reduce, when the opening is closed by the valve element 24. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、循環する冷媒の凝縮熱または蒸発熱を利用する冷凍サイクルにおいて、冷媒の流量を制御する流量制御弁に関し、特に冷媒流動音の低減に関するものである。また、この流量制御弁を用いた冷凍装置や空気調和装置に関するものである。   The present invention relates to a flow rate control valve that controls the flow rate of a refrigerant in a refrigeration cycle that uses the heat of condensation or evaporation of a circulating refrigerant, and more particularly to reduction of refrigerant flow noise. The present invention also relates to a refrigeration apparatus and an air conditioner using this flow control valve.

従来の空気調和装置では、空調負荷の変動に対応するためにインバーターなどの容量可変型圧縮機が用いられ、空調負荷の大小に応じて圧縮機の回転周波数が制御されている。ところが冷房運転時に圧縮機回転が小さくなると蒸発温度も上昇し、蒸発器での除湿能力が低下したり、あるいは蒸発温度が室内の露点温度以上に上昇し、除湿できなくなったりする問題点があった。   In a conventional air conditioner, a variable capacity compressor such as an inverter is used to cope with fluctuations in the air conditioning load, and the rotational frequency of the compressor is controlled according to the size of the air conditioning load. However, when the compressor rotation is reduced during cooling operation, the evaporation temperature also rises, and the dehumidifying ability in the evaporator decreases, or the evaporation temperature rises above the indoor dew point temperature, which makes it impossible to dehumidify. .

この冷房低容量運転時の除湿能力を向上させる手段として、次のような空気調和装置が考案されている。図25は、例えば特公昭61−43631号公報に掲載された従来の空気調和装置を示す冷媒回路図である。図において、1は圧縮機、3は室外熱交換器、4は第1流量制御弁、5は第1室内熱交換器、6は第2流量制御弁、7は第2室内熱交換器であり、これらは配管で順次接続され、冷凍サイクルを構成している。   The following air conditioner has been devised as means for improving the dehumidifying capacity during the cooling and low capacity operation. FIG. 25 is a refrigerant circuit diagram showing a conventional air conditioner described in, for example, Japanese Patent Publication No. Sho 61-43631. In the figure, 1 is a compressor, 3 is an outdoor heat exchanger, 4 is a first flow control valve, 5 is a first indoor heat exchanger, 6 is a second flow control valve, and 7 is a second indoor heat exchanger. These are sequentially connected by piping to constitute a refrigeration cycle.

次に従来の空気調和装置の動作について説明する。通常の冷房運転では、圧縮機1を出た冷媒は室外熱交換器3で凝縮液化し、第1流量制御弁4で減圧され、第2室内熱交換器5、第2流量制御弁6および第2室内熱交換器7を通って圧縮機1に戻る。この時の第2流量制御弁6は全開状態であり、第1室内熱交換器5と第2室内熱交換器7を蒸発器として動作させ、その蒸発熱を利用して冷房運転が行なわれる。   Next, the operation of the conventional air conditioner will be described. In normal cooling operation, the refrigerant leaving the compressor 1 is condensed and liquefied by the outdoor heat exchanger 3, depressurized by the first flow control valve 4, the second indoor heat exchanger 5, the second flow control valve 6, and the second flow control valve 6. 2 Return to the compressor 1 through the indoor heat exchanger 7. At this time, the second flow rate control valve 6 is in a fully opened state, the first indoor heat exchanger 5 and the second indoor heat exchanger 7 are operated as an evaporator, and a cooling operation is performed using the heat of evaporation.

一方、冷房除湿運転時には、第1流量制御弁4を全開状態とし、第2流量制御弁6で冷媒流量を制御することにより冷媒を減圧して、第1室内熱交換器5を凝縮器すなわち再熱器、第2室内熱交換器7を蒸発器として動作させ、室内空気は第1室内熱交換器5で加熱されるとともに第2室内熱交換器7で冷却除湿されるため、室温の低下が小さい除湿運転が可能となる。   On the other hand, during the cooling and dehumidifying operation, the first flow rate control valve 4 is fully opened, the refrigerant flow rate is reduced by controlling the refrigerant flow rate with the second flow rate control valve 6, and the first indoor heat exchanger 5 is reconstituted. The heater and the second indoor heat exchanger 7 are operated as an evaporator, and the room air is heated by the first indoor heat exchanger 5 and cooled and dehumidified by the second indoor heat exchanger 7, so that the room temperature is lowered. A small dehumidifying operation is possible.

特公昭61−43631号公報Japanese Patent Publication No. 61-43631

上記のような構成の空気調和装置で、室内ユニット内に設置する第2流量制御弁として、オリフィスのみによって冷媒を減圧する絞り部を構成している流量制御弁を用いると、冷媒がオリフィスを通過する時に冷媒流動音が発生する。この冷媒流動音は、「ジュルジュル」、「ボコボコ」、「シャー」などの聴感であり、室内環境を悪化させる要因となっていた。特に冷房除湿運転時には第2流量制御弁の入口冷媒が気液二相状態になり、冷媒流動音が大きくなるという問題があった。   In the air conditioner configured as described above, when a flow control valve that constitutes a throttle portion that decompresses the refrigerant only by the orifice is used as the second flow control valve installed in the indoor unit, the refrigerant passes through the orifice. A refrigerant flow noise is generated when This refrigerant flow noise is an audible sensation such as “Jurujuru”, “Bokoboko”, “Sher”, and has been a factor that deteriorates the indoor environment. In particular, during the cooling and dehumidifying operation, the refrigerant at the inlet of the second flow control valve is in a gas-liquid two-phase state, and there is a problem that the refrigerant flow noise increases.

この除湿運転時の第2流量制御弁における冷媒流動音の低減対策としては、特開平7−91778号公報に示された流量制御弁内の主弁体に小孔を設けたものや、特開平7−120105号公報に示された流量制御弁の下流に螺旋状流路部分を設けたものなどがある。ところがこれらの冷媒流動音の低減対策はいずれも絞り部が小孔やオリフィスのみで構成されているため、螺旋状流路を追加しても効果的ではなく、特に流量制御弁の入口冷媒が気液二相状態の場合には、不連続な聴感の冷媒流動音が大きくなるという問題点があった。またこの冷媒流動音を低減するために、流量制御弁本体に、遮音材や制振材を設けるなどの追加の対策を必要としていたが、この追加対策によりコストが増加したり、設置スペースが大きくなるため室内ユニットが大型化したり、製品回収時のリサイクル性が悪化するという問題があった。   As countermeasures for reducing the refrigerant flow noise in the second flow control valve during the dehumidifying operation, there is a method in which a small hole is provided in the main valve body in the flow control valve disclosed in Japanese Patent Laid-Open No. 7-91778, or There is one in which a spiral flow path portion is provided downstream of a flow control valve disclosed in Japanese Patent Laid-Open No. 7-120105. However, all of these measures for reducing the refrigerant flow noise are not effective even if a spiral flow path is added because the throttle portion is composed only of a small hole or an orifice. In the case of the liquid two-phase state, there is a problem in that the refrigerant flow sound with discontinuous hearing becomes loud. In addition, in order to reduce the refrigerant flow noise, additional measures such as providing a sound insulation material and vibration damping material were required on the flow control valve body, but this additional measure increased costs and increased installation space Therefore, there is a problem that the indoor unit becomes large and the recyclability at the time of product recovery deteriorates.

さらに、除湿運転時の圧縮機の運転回転数を小さく制御し、冷媒流量を小さくすることによって、この冷媒流動音をある程度低減させることも可能であるが、結果として除湿運転時の冷媒流量が制約されてしまうため、除湿能力を自由に制御することができず、部屋の温度、湿度を常に一定に保つことができないという問題があった。   Furthermore, it is possible to reduce the refrigerant flow noise to some extent by controlling the rotational speed of the compressor during the dehumidifying operation to be small and reducing the refrigerant flow rate, but as a result, the refrigerant flow rate during the dehumidifying operation is limited. Therefore, the dehumidifying ability cannot be freely controlled, and there is a problem that the room temperature and humidity cannot always be kept constant.

さらに、上記の問題を解決するための従来技術として、実開平1−152176号公報や実開平2−141778号公報には、電磁弁の流路に通気性多孔体を嵌着し、流体の流出に伴う擦過音の発生を抑制しようとしたものが掲載されている。ところが、この電磁弁の記載からは、通気性多孔体の通気孔の径などの構成に関することや、擦過音の抑制における通気性多孔体の作用するメカニズムなど、具体的なことが明らかではない。また空気調和装置の冷凍サイクル内では,鉄や銅などの金属紛や冷凍機油の劣化物であるスラッジなどの固形異物が冷媒と共に循環しているが,電磁弁流路に通気性多孔体を設置した場合,これらの固形異物が通気性多孔体に捕捉堆積し,通気性多孔体の流動抵抗が増加し,除湿運転時の減圧量が変化し,除湿運転性能が低下する場合がある。さらにこの通気性多孔体への固形異物の堆積が進むと,この部分で冷媒の流れが閉塞され,空気調和装置の運転ができなくなるなど,長期的な信頼性を損なうことが予測されるが,上記従来技術では,この通気性多孔体による搾過音抑制と固形異物による詰り防止を両立する構成など,具体的なことが明らかではない。   Further, as a prior art for solving the above problem, Japanese Utility Model Laid-Open No. 1-152176 and Japanese Utility Model Laid-Open No. 2-141778 have a breathable porous body fitted in the flow path of the electromagnetic valve, and the outflow of fluid. There is a publication that tries to suppress the generation of scratching noise. However, from the description of this electromagnetic valve, it is not clear what is concrete about the structure such as the diameter of the air holes of the air permeable porous body and the mechanism of the air permeable porous body acting in suppressing the scratching sound. Also, in the refrigeration cycle of the air conditioner, metal particles such as iron and copper and solid foreign matter such as sludge, which is a deteriorated product of refrigeration oil, circulate together with the refrigerant. In such a case, these solid foreign substances are trapped and deposited on the air-permeable porous body, the flow resistance of the air-permeable porous body increases, the amount of reduced pressure during the dehumidifying operation changes, and the dehumidifying operation performance may deteriorate. Furthermore, as solid foreign matter accumulates in this air-permeable porous body, it is predicted that the flow of refrigerant will be blocked at this part and the operation of the air conditioner will be disabled, impairing long-term reliability. In the above prior art, it is not clear what is concrete, such as a configuration that achieves both suppression of oversqueezing noise by the air-permeable porous body and prevention of clogging by solid foreign matters.

この発明は、上記のような問題を解決するためになされたもので、性能の良い、すなわち冷凍サイクルの温度および湿度制御性を向上でき、冷媒流動音を低減できる,しかも長期的な信頼性も高い流量制御弁を得ることを目的とする。特に、流量制御弁の流路に多孔質透過材を設け、この多孔質透過材によって冷媒流動音を効果的に低減すると共に、この多孔質透過材へのスラッジなどの固形異物の堆積を防止し,長期にわたり安定した流量制御性を確保できる流量制御弁を得ることを目的とする。また、この流量制御弁を用い、冷房または暖房運転時の温度および湿度制御性を向上でき、低騒音で、長期にわたる信頼性を確保できる冷凍空調装置を得ることを目的とする。また、冷媒流動音を大幅に低減できる流量制御弁の製造方法を得ることを目的とする。   The present invention has been made to solve the above-described problems, and has high performance, that is, can improve the temperature and humidity controllability of the refrigeration cycle, can reduce refrigerant flow noise, and has long-term reliability. The purpose is to obtain a high flow control valve. In particular, a porous permeable material is provided in the flow path of the flow control valve, and the refrigerant permeable sound is effectively reduced by the porous permeable material, and accumulation of solid foreign matters such as sludge on the porous permeable material is prevented. The purpose is to obtain a flow control valve that can ensure stable flow control over a long period of time. It is another object of the present invention to provide a refrigerating and air-conditioning apparatus that can improve temperature and humidity controllability during cooling or heating operation by using this flow rate control valve, and can ensure long-term reliability with low noise. Moreover, it aims at obtaining the manufacturing method of the flow control valve which can reduce a refrigerant | coolant flow noise significantly.

この発明の請求項1に係る流量制御弁は、2つの流路を接続する弁室内に固設され流路の一方に接続する開口を有する弁座と、弁室内で稼動されて弁座の開口を開閉する弁体と、弁体内を貫通し開口と流路の他方とを流通可能とする貫通流路と、貫通流路を流れる液冷媒と蒸気冷媒の両方が同時に通るように弁体内に設けられこの冷媒が通る平均径が冷媒内に含まれ流通する固形異物の多くを通過させる径以上の多孔質透過材と、を備え、弁体によって開口を閉じたときに2つの流路間を流れる流体を貫通流路の多孔質透過材を通過させて減圧するものである。   According to a first aspect of the present invention, there is provided a flow control valve having a valve seat fixed in a valve chamber connecting two flow paths and having an opening connected to one of the flow paths; A valve body that opens and closes the valve body, a through-flow path that passes through the valve body and allows the other of the opening and the flow path to flow, and is provided in the valve body so that both liquid refrigerant and vapor refrigerant that flow through the through-flow path pass simultaneously. And a porous permeable material having an average diameter through which the refrigerant passes is larger than a diameter that allows most of the solid foreign matter that is contained in the refrigerant to pass therethrough, and flows between the two flow paths when the opening is closed by the valve body The fluid is depressurized by passing through the porous permeable material in the through channel.

この発明の請求項2に係る流量制御弁は、2つの流路を接続する弁室内に固設され流路の一方に接続する開口を有する弁座と、弁室内で稼動されて弁座の開口を開閉する弁体と、弁室内で弁体または弁座の外側に配設され、開口を迂回して2つの流路間を流れる流体を流通可能とする迂回流路と、迂回流路を流れる流体が通るように弁室内に設けられた多孔質透過材と、を備え、弁体によって開口を閉じたときに迂回流路を流れる流体を多孔質透過材を通過させて減圧するものである。   According to a second aspect of the present invention, there is provided a flow rate control valve having a valve seat fixed in a valve chamber connecting two flow paths and having an opening connected to one of the flow paths; A valve body that opens and closes the valve body, a bypass passage that is disposed outside the valve body or the valve seat in the valve chamber, and that allows the fluid flowing between the two flow paths to bypass the opening and to flow through the bypass passage And a porous permeable material provided in the valve chamber so that the fluid passes, and when the opening is closed by the valve body, the fluid flowing through the bypass channel is reduced in pressure by passing through the porous permeable material.

この発明の請求項3に係る流量制御弁は、2つの流路を接続する弁室内に固設され流路の一方に接続する開口を有する弁座と、弁室内で稼動されて弁座の開口を開閉する弁体と、弁体内を貫通し開口と2つの流路の他方とを流通可能とする貫通流路と、貫通流路を流れる液冷媒と蒸気冷媒の両方が同時に通るように弁体内に設けられこの冷媒が通る第1の多孔質透過材と、弁室内に設けられ2つの流路を仕切るとともに冷媒が通る平均径が冷媒内に含まれ流通する固形異物の多くを通過させる径以上の第2の多孔質透過材と、を備えたものである。   According to a third aspect of the present invention, there is provided a flow rate control valve having a valve seat fixed in a valve chamber connecting two flow paths and having an opening connected to one of the flow paths; A valve body that opens and closes the valve body, a through-flow path that passes through the valve body and that can flow through the opening and the other of the two flow paths, and that both liquid refrigerant and vapor refrigerant that flow through the through-flow path pass simultaneously. The first porous permeable material through which the refrigerant passes, and the average diameter through which the refrigerant passes and the two passages are provided in the valve chamber are larger than the diameter through which most of the solid foreign substances contained in the refrigerant pass. The second porous permeation material.

この発明の請求項4に係る流量制御弁は、多孔質透過材の冷媒が流通する径はほぼ均質もしくは複数の異なるサイズ径を有するものである。   In the flow control valve according to claim 4 of the present invention, the diameter of the porous permeable material through which the refrigerant flows is substantially uniform or has a plurality of different size diameters.

この発明の請求項5に係る流量制御弁は、多孔質透過材の近傍に設けたオリフィスと、を備え、多孔質透過材の冷媒が流通する平均径が蒸気冷媒や液冷媒をオリフィスの孔径以下に分割する径以下である。   The flow control valve according to claim 5 of the present invention comprises an orifice provided in the vicinity of the porous permeable material, and the average diameter through which the refrigerant of the porous permeable material flows is equal to or less than the hole diameter of the orifice of the vapor refrigerant or liquid refrigerant. It is below the diameter divided into.

この発明の請求項6に係る流量制御弁は、流体が一方方向に流れる多孔質透過材の流路の上流側の冷媒が流入する面積を、下流側の冷媒が流出する面積よりも大きな面積となるようにしたものである。   In the flow control valve according to claim 6 of the present invention, the area into which the refrigerant on the upstream side of the flow path of the porous permeable material through which the fluid flows in one direction is larger than the area from which the refrigerant on the downstream side flows out. It was made to become.

この発明の請求項7に係る流量制御弁は、流体が一方方向に流れる多孔質透過材の流路の上流側の流体が流入する面の形状と、下流側の流体が流出する面の形状を異なる形状にしたものである。   According to a seventh aspect of the present invention, there is provided a flow control valve having a shape of a surface into which an upstream fluid flows in a flow path of a porous permeable material in which a fluid flows in one direction and a shape of a surface from which a downstream fluid flows out. It has a different shape.

この発明の請求項8に係る流量制御弁は、多孔質透過材の冷媒が通る異なる径を流路に直列になるように配置したものである。   The flow control valve according to claim 8 of the present invention is such that different diameters through which the refrigerant of the porous permeable material passes are arranged in series with the flow path.

この発明の請求項9に係る流量制御弁は、多孔質透過材の流路の上流側の冷媒が通る径を下流側の冷媒が通る径より大きくしたものである。   According to a ninth aspect of the present invention, the flow control valve according to the ninth aspect of the present invention has a diameter through which the refrigerant on the upstream side of the flow path of the porous permeable material passes larger than a diameter through which the refrigerant on the downstream side passes.

この発明の請求項10に係る流量制御弁は、第1流路と第2流路の間の圧力差が所定の値以上となった時にこの圧力差を小さくするリリーフ機構を備えたものである。   According to a tenth aspect of the present invention, the flow control valve includes a relief mechanism that reduces the pressure difference when the pressure difference between the first flow path and the second flow path exceeds a predetermined value. .

この発明の請求項11に係る流量制御弁は、多孔質透過材を発泡金属で構成したものである。   In a flow control valve according to an eleventh aspect of the present invention, the porous permeable material is made of a foam metal.

この発明の請求項12に係る流量制御弁は、多孔質透過材は、平均100マイクロメートル以上の流体が通る径を有するものである。   In a flow control valve according to a twelfth aspect of the present invention, the porous permeable material has a diameter through which a fluid having an average of 100 micrometers or more passes.

この発明の請求項13に係る冷凍空調装置は、圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備え、第2流量制御弁は請求項1ないし請求項12のいずれかに記載の流量制御弁である。   According to a thirteenth aspect of the present invention, a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. A refrigeration cycle is provided, and the second flow control valve is the flow control valve according to any one of claims 1 to 12.

この発明の請求項14に係る冷凍空調装置は、冷凍サイクルの流路内に配置され流路内を流れる固形異物を除去するストレーナと、を備え、第2流量制御弁の冷媒が通る多孔質透過材の平均径はストレーナーの冷媒が通る平均径と同程度以上である。   According to a fourteenth aspect of the present invention, there is provided a refrigerating and air-conditioning apparatus comprising: a strainer that is disposed in a flow path of a refrigeration cycle and removes solid foreign substances flowing in the flow path; The average diameter of the material is not less than the average diameter through which the strainer refrigerant passes.

この発明の請求項15に係る冷凍空調装置は、冷凍サイクルの冷媒として、凝縮温度40゜C、蒸発温度10゜Cとした時の飽和圧力の差が1.0MPa以上となる冷媒を用いたものである。   In the refrigeration and air-conditioning apparatus according to claim 15 of the present invention, as the refrigerant for the refrigeration cycle, a refrigerant having a saturation pressure difference of 1.0 MPa or more when the condensation temperature is 40 ° C. and the evaporation temperature is 10 ° C. It is.

この発明の請求項16に係る冷凍空調装置の、冷凍サイクルの冷媒は、可燃性冷媒である。   In the refrigerating and air-conditioning apparatus according to claim 16 of the present invention, the refrigerant of the refrigeration cycle is a combustible refrigerant.

この発明の請求項17に係る流量制御弁の製造方法は、円筒形状の底面部間を貫通させる、弁室が接続する第1、第2流路と同程度の径の第1の貫通孔及びこの貫通孔よりも小さな径の第2の貫通孔を有し、弁室に設けられる流路の上流側の冷媒が通る径座ブロックを形成するステップと、第1の貫通孔を除き第2の貫通孔を覆うように弁座ブロックの底面部の少なくとも一方に多孔質透過材を固定するステップと、多孔質透過材が固定された弁座ブロックを弁室内に挿設するステップと、を備え、前記第1の貫通孔を閉じた時に第1流路から流入した流体が第2の貫通孔と多孔質透過材を通って第2流路に流通可能な構成を有するものである。   According to a seventeenth aspect of the present invention, there is provided a flow rate control valve manufacturing method comprising: a first through hole having a diameter similar to that of the first and second flow paths connected to the valve chamber, which passes between the cylindrical bottom surfaces; A step of forming a diameter seat block having a second through-hole having a smaller diameter than the through-hole, through which the refrigerant on the upstream side of the flow path provided in the valve chamber passes, and the second through-hole except for the first through-hole A step of fixing a porous permeable material to at least one of the bottom portions of the valve seat block so as to cover the through hole, and a step of inserting a valve seat block to which the porous permeable material is fixed in the valve chamber, The fluid that flows in from the first flow path when the first through hole is closed has a configuration that can flow through the second through hole and the porous permeable material to the second flow path.

この発明の請求項18に係る流量制御弁の製造方法は、第1の貫通孔が底面部のほぼ中央で底面部を貫通し、第2の貫通孔が第1の貫通孔の周辺で底面部を貫通するように弁座ブロックを形成したものである。   In the manufacturing method of the flow rate control valve according to claim 18 of the present invention, the first through hole penetrates the bottom surface portion at substantially the center of the bottom surface portion, and the second through hole is a bottom surface portion around the first through hole. The valve seat block is formed so as to pass through.

この発明の請求項1に係る流量制御弁は、2つの流路を接続する弁室内に固設され流路の一方に接続する開口を有する弁座と、弁室内で稼動されて弁座の開口を開閉する弁体と、弁体内を貫通し開口と流路の他方とを流通可能とする貫通流路と、貫通流路を流れる液冷媒と蒸気冷媒の両方が同時に通るように弁体内に設けられこの冷媒が通る平均径が冷媒内に含まれ流通する固形異物の多くを通過させる径以上の多孔質透過材と、を備え、弁体によって開口を閉じたときに2つの流路間を流れる流体を貫通流路の多孔質透過材を通過させて減圧するので、信頼性の高い性能の良い装置が得られる。   According to a first aspect of the present invention, there is provided a flow control valve having a valve seat fixed in a valve chamber connecting two flow paths and having an opening connected to one of the flow paths; A valve body that opens and closes the valve body, a through-flow path that passes through the valve body and allows the other of the opening and the flow path to flow, and is provided in the valve body so that both liquid refrigerant and vapor refrigerant that flow through the through-flow path pass simultaneously. And a porous permeable material having an average diameter through which the refrigerant passes is larger than a diameter that allows most of the solid foreign matter that is contained in the refrigerant to pass therethrough, and flows between the two flow paths when the opening is closed by the valve body Since the fluid is reduced in pressure by passing through the porous permeation material in the through channel, a highly reliable device with good performance can be obtained.

この発明の請求項2に係る流量制御弁は、2つの流路を接続する弁室内に固設され流路の一方に接続する開口を有する弁座と、弁室内で稼動されて弁座の開口を開閉する弁体と、弁室内で弁体または弁座の外側に配設され、開口を迂回して2つの流路間を流れる流体を流通可能とする迂回流路と、迂回流路を流れる流体が通るように弁室内に設けられた多孔質透過材と、を備え、弁体によって開口を閉じたときに迂回流路を流れる流体を多孔質透過材を通過させて減圧するので、寿命が長く性能の良い装置が得られる。   According to a second aspect of the present invention, there is provided a flow rate control valve having a valve seat fixed in a valve chamber connecting two flow paths and having an opening connected to one of the flow paths; A valve body that opens and closes the valve body, a bypass passage that is disposed outside the valve body or the valve seat in the valve chamber, and that allows the fluid flowing between the two flow paths to bypass the opening and to flow through the bypass passage A porous permeable material provided in the valve chamber so that fluid can pass through, and when the opening is closed by the valve body, the fluid flowing through the bypass channel is reduced in pressure by passing through the porous permeable material. A long and high performance device can be obtained.

この発明の請求項3に係る流量制御弁は、2つの流路を接続する弁室内に固設され流路の一方に接続する開口を有する弁座と、弁室内で稼動されて弁座の開口を開閉する弁体と、弁体内を貫通し開口と2つの流路の他方とを流通可能とする貫通流路と、貫通流路を流れる液冷媒と蒸気冷媒の両方が同時に通るように弁体内に設けられこの冷媒が通る第1の多孔質透過材と、弁室内に設けられ2つの流路を仕切るとともに冷媒が通る平均径が冷媒内に含まれ流通する固形異物の多くを通過させる径以上の第2の多孔質透過材と、を備えたので、寿命が長く性能の良い安定した運転が可能な装置が得られる。   According to a third aspect of the present invention, there is provided a flow rate control valve having a valve seat fixed in a valve chamber connecting two flow paths and having an opening connected to one of the flow paths; A valve body that opens and closes the valve body, a through-flow path that passes through the valve body and that can flow through the opening and the other of the two flow paths, and that both liquid refrigerant and vapor refrigerant that flow through the through-flow path pass simultaneously. The first porous permeable material through which the refrigerant passes, and the average diameter through which the refrigerant passes and the two passages are provided in the valve chamber are larger than the diameter through which most of the solid foreign substances contained in the refrigerant pass. Thus, an apparatus capable of stable operation with a long life and good performance can be obtained.

この発明の請求項4に係る流量制御弁は、多孔質透過材の冷媒が流通する径はほぼ均質もしくは複数の異なるサイズ径を有するので、寸法形状などにとらわれずにどのようなものにも使用できるフレキシブルな流量制御弁が可能になる。   The flow control valve according to claim 4 of the present invention can be used for any type of material regardless of the size and shape because the diameter of the porous permeable material through which the refrigerant flows is substantially uniform or has a plurality of different size diameters. A flexible flow control valve is possible.

この発明の請求項5に係る流量制御弁は、多孔質透過材の近傍に設けたオリフィスと、を備え、多孔質透過材の冷媒が流通する平均径が蒸気冷媒や液冷媒をオリフィスの孔径以下に分割する径以下であるので、確実に騒音を低減できる。   The flow control valve according to claim 5 of the present invention comprises an orifice provided in the vicinity of the porous permeable material, and the average diameter through which the refrigerant of the porous permeable material flows is equal to or less than the hole diameter of the orifice of the vapor refrigerant or liquid refrigerant. Since the diameter is equal to or smaller than the diameter, noise can be reliably reduced.

この発明の請求項6に係る流量制御弁は、流体が一方方向に流れる多孔質透過材の流路の上流側の冷媒が流入する面積を、下流側の冷媒が流出する面積よりも大きな面積となるようにしたので、異物の詰まり対策に有効な信頼性が高い装置が得られる。   According to a sixth aspect of the present invention, there is provided a flow control valve having an area in which the upstream refrigerant flows in the flow path of the porous permeable material in which the fluid flows in one direction, and an area larger than an area in which the downstream refrigerant flows out. As a result, a highly reliable device effective in measures against clogging of foreign matters can be obtained.

この発明の請求項7に係る流量制御弁は、流体が一方方向に流れる多孔質透過材の流路の上流側の流体が流入する面の形状と、下流側の流体が流出する面の形状を異なる形状にしたので、異物の詰まり対策に有効な装置でフレキシブルな形状が可能な使い勝手の良い装置が得られる。   According to a seventh aspect of the present invention, there is provided a flow control valve having a shape of a surface into which a fluid on the upstream side of a flow path of a porous permeable material through which a fluid flows in one direction and a shape of a surface from which a fluid on the downstream side flows out. Since they have different shapes, it is possible to obtain an easy-to-use device capable of forming a flexible shape with a device effective for countermeasures against clogging of foreign substances.

この発明の請求項8に係る流量制御弁は、多孔質透過材の冷媒が通る異なる径を流路に直列になるように配置したので、広い用途に適用でき確実な異物対策が可能になる。   Since the flow control valve according to the eighth aspect of the present invention is arranged so that different diameters through which the refrigerant of the porous permeable material passes are arranged in series with the flow path, it can be applied to a wide range of applications and can surely take measures against foreign matters.

この発明の請求項9に係る流量制御弁は、多孔質透過材の流路の上流側の冷媒が通る径を下流側の冷媒が通る径より大きくしたので、異物が詰まりにくく寿命の長い装置が得られる。   In the flow rate control valve according to claim 9 of the present invention, the diameter through which the refrigerant on the upstream side of the flow path of the porous permeable material passes is larger than the diameter through which the refrigerant on the downstream side passes. can get.

この発明の請求項10に係る流量制御弁は、第1流路と第2流路の間の圧力差が所定の値以上となった時にこの圧力差を小さくするリリーフ機構を備えたので、万一、スラッジなどの固形異物が弁内に堆積しても、除湿能力が変動したり、除湿運転に必要な電気入力が増大することなく、信頼性の高い流量制御弁が得られる。   Since the flow control valve according to the tenth aspect of the present invention includes the relief mechanism for reducing the pressure difference when the pressure difference between the first flow path and the second flow path becomes a predetermined value or more, 1. Even if solid foreign matters such as sludge are accumulated in the valve, a highly reliable flow rate control valve can be obtained without changing the dehumidifying capacity or increasing the electric input required for the dehumidifying operation.

この発明の請求項11に係る流量制御弁は、多孔質透過材を発泡金属で構成したので、低コストで性能の良い装置が得られる。   In the flow control valve according to the eleventh aspect of the present invention, since the porous permeable material is made of foam metal, a low-cost and high-performance apparatus can be obtained.

この発明の請求項12に係る流量制御弁は、多孔質透過材は、平均100マイクロメートル以上の流体が通る径を有するので、冷凍サイクル回路構成部品とマッチングが取れて信頼性の高い冷凍サイクルを可能とする装置が得られる。   In the flow control valve according to the twelfth aspect of the present invention, since the porous permeable material has a diameter through which a fluid having an average of 100 micrometers or more can pass, matching with the refrigeration cycle circuit components and a highly reliable refrigeration cycle can be achieved. A device is made possible.

この発明の請求項13に係る冷凍空調装置は、圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備え、第2流量制御弁は請求項1ないし請求項12のいずれかに記載の流量制御弁であるので、信頼性が高く性能が良い冷凍空調装置が得られる。   According to a thirteenth aspect of the present invention, a compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected. Since the refrigeration cycle is provided and the second flow control valve is the flow control valve according to any one of claims 1 to 12, a refrigeration air conditioner having high reliability and good performance can be obtained.

この発明の請求項14に係る冷凍空調装置は、冷凍サイクルの流路内に配置され流路内を流れる固形異物を除去するストレーナと、を備え、第2流量制御弁の冷媒が通る多孔質透過材の平均径はストレーナーの冷媒が通る平均径と同程度以上であるので、例え異物の発生が少々多い装置であっても寿命が長く安定した運転が可能な冷凍空調装置が得られる。   According to a fourteenth aspect of the present invention, there is provided a refrigerating and air-conditioning apparatus comprising a strainer that is disposed in a flow path of a refrigeration cycle and removes solid foreign substances flowing in the flow path, and through which the refrigerant of the second flow control valve passes. Since the average diameter of the material is about the same as or more than the average diameter through which the strainer refrigerant passes, a refrigeration and air-conditioning apparatus that has a long life and can be stably operated is obtained even if the apparatus generates a large amount of foreign matter.

この発明の請求項15に係る冷凍空調装置は、冷凍サイクルの冷媒として、凝縮温度40゜C、蒸発温度10゜Cとした時の飽和圧力の差が1.0MPa以上となる冷媒を用いたので、特性の安定した性能の良い冷凍空調装置が得られる。   In the refrigerating and air-conditioning apparatus according to claim 15 of the present invention, a refrigerant having a saturation pressure difference of 1.0 MPa or more when the condensation temperature is 40 ° C. and the evaporation temperature is 10 ° C. is used as the refrigerant of the refrigeration cycle. Thus, a refrigeration air conditioner with stable characteristics and good performance can be obtained.

この発明の請求項16に係る流量制御弁は、冷凍サイクルの冷媒は、可燃性冷媒であるので、信頼性が非常に良くなる。   In the flow control valve according to the sixteenth aspect of the present invention, since the refrigerant of the refrigeration cycle is a combustible refrigerant, the reliability is very good.

この発明の請求項17に係る流量制御弁の製造方法は、円筒形状の底面部間を貫通させる、弁室が接続する第1、第2流路と同程度の径の第1の貫通孔及びこの貫通孔よりも小さな径の第2の貫通孔を有し、弁室に設けられる流路の上流側の冷媒が通る径座ブロックを形成するステップと、第1の貫通孔を除き第2の貫通孔を覆うように弁座ブロックの底面部の少なくとも一方に多孔質透過材を固定するステップと、多孔質透過材が固定された弁座ブロックを弁室内に挿設するステップと、を備え、前記第1の貫通孔を閉じた時に第1流路から流入した流体が第2の貫通孔と多孔質透過材を通って第2流路に流通可能な構成を有するので、冷媒流動音を大幅に低減できる流量制御弁を、工程を増やすことなく比較的安価に製造できる。   According to a seventeenth aspect of the present invention, there is provided a flow rate control valve manufacturing method comprising: a first through-hole having a diameter similar to that of the first and second flow paths to which the valve chamber is connected; A step of forming a diameter seat block having a second through-hole having a smaller diameter than the through-hole, through which a refrigerant on the upstream side of the flow path provided in the valve chamber passes, and the second through-hole except for the first through-hole A step of fixing the porous permeable material to at least one of the bottom portions of the valve seat block so as to cover the through hole, and a step of inserting the valve seat block to which the porous permeable material is fixed into the valve chamber, Since the fluid flowing in from the first flow path when the first through hole is closed flows through the second through hole and the porous permeable material to the second flow path, the refrigerant flow noise is greatly increased. A flow control valve that can be reduced to a low level can be manufactured relatively inexpensively without increasing the number of steps.

この発明の請求項18に係る流量制御弁の製造方法は、第1の貫通孔が底面部のほぼ中央で底面部を貫通し、第2の貫通孔が第1の貫通孔の周辺で底面部を貫通するように弁座ブロックを形成したので、冷媒流動音を低減でき、多孔質透過材へ異物詰りに対して信頼性の高い流量制御弁を、工程を増やすことなく比較的安価に製造できる。   In the manufacturing method of the flow rate control valve according to claim 18 of the present invention, the first through hole penetrates the bottom surface portion at substantially the center of the bottom surface portion, and the second through hole is a bottom surface portion around the first through hole. Since the valve seat block is formed so as to pass through, the refrigerant flow noise can be reduced, and a highly reliable flow rate control valve against clogging of foreign matters into the porous permeable material can be manufactured at a relatively low cost without increasing the number of steps. .

実施の形態1.
図1はこの発明の実施の形態1による冷凍空調装置の一例として、空気調和装置を示す冷媒回路図である。空気調和装置は、冷凍サイクルを循環する冷媒の凝縮熱または蒸発熱を利用して室内の冷房や暖房を行う。図において、1は圧縮機、2は冷房運転および暖房運転の冷媒の流れを切換える流路切換手段で例えば四方弁、3は室外熱交換器、43は第1ストレーナー、4は第1流量制御弁で例えば電気式膨張弁、44は第2ストレーナー、5は第1室内熱交換器、6は第2流量制御弁、7は第2室内熱交換器、45は第3ストレーナーであり、これらは配管によって順次接続され冷凍サイクルを構成している。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram showing an air conditioner as an example of a refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. An air conditioner performs indoor cooling or heating using the heat of condensation or evaporation of refrigerant circulating in the refrigeration cycle. In the figure, 1 is a compressor, 2 is a flow path switching means for switching the flow of refrigerant in cooling operation and heating operation, for example, a four-way valve, 3 is an outdoor heat exchanger, 43 is a first strainer, and 4 is a first flow control valve. For example, an electric expansion valve, 44 is a second strainer, 5 is a first indoor heat exchanger, 6 is a second flow control valve, 7 is a second indoor heat exchanger, 45 is a third strainer, and these are pipes Are sequentially connected to form a refrigeration cycle.

また、圧縮機1、四方弁2、室外熱交換器3、第1ストレーナー、第1流量制御弁4、第2ストレーナーおよび第3ストレーナーで室外ユニット11を構成し、第1室内熱交換器5、第2室内熱交換器7および第2流量制御弁6で室内ユニット12を構成している。次に一般的なストレーナー、すなわち冷媒が流れる冷凍サイクル内に設ける異物を捕捉するストレーナーの一例についてを説明する。図16に第2ストレーナー43の概略を示す。第2ストレーナー43は室外熱交換器の配管部に、例えば150メッシュから100メッシュと呼ばれる金網をかご状に成型し、端末を金属製のリングに固定した物を配管内に圧入して設置している。この150メッシュとは1インチ当たりに150本の細線を等間隔に配置したものであり、細線直径は70マイクロメートル程度のもでのであり、細線の間隔は100マイクロメートル程度のものを用いている。これは、冷房運転時第1流量制御弁4への異物流入を防止する目的で設置している。第2ストレーナー44は室外ユニットと延長配管を接続するサービスバルブに150メッシュから100メッシュと呼ばれる金網をかご状に成型し、端末を金属製のリングに固定した物をバルブ内に設置している。これは、暖房運転時に第2流量制御弁6への異物流入を防止する目的で設置している。第3ストレーナー45は圧縮機吸入配管に、150メッシュから100メッシュと呼ばれる金網をかご状に成型し、端末を金属製のリングに固定した物をマフラー容器内のデミスタ上部に圧入して設置している。これは、圧縮機への異物流入を防止する目的で設置している。この冷凍サイクルの冷媒には、例えばR32とR125の混合冷媒であるR410Aが用いられる。   Further, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the first strainer, the first flow control valve 4, the second strainer and the third strainer constitute the outdoor unit 11, and the first indoor heat exchanger 5, The second indoor heat exchanger 7 and the second flow control valve 6 constitute an indoor unit 12. Next, an example of a general strainer, that is, a strainer that captures foreign matters provided in a refrigeration cycle through which a refrigerant flows will be described. FIG. 16 shows an outline of the second strainer 43. The second strainer 43 is installed in a pipe part of an outdoor heat exchanger by, for example, forming a metal mesh called 150 mesh to 100 mesh into a cage shape, and press-fitting a terminal fixed to a metal ring into the pipe. Yes. This 150 mesh is one in which 150 fine lines are arranged at equal intervals per inch, and the diameter of the fine lines is about 70 micrometers, and the distance between the fine lines is about 100 micrometers. . This is installed for the purpose of preventing foreign matter from flowing into the first flow control valve 4 during cooling operation. The second strainer 44 is a service valve that connects an outdoor unit and an extension pipe, and a wire net called 150 mesh to 100 mesh is molded into a cage shape, and a terminal fixed to a metal ring is installed in the valve. This is installed for the purpose of preventing foreign matter from flowing into the second flow control valve 6 during heating operation. The third strainer 45 is formed by molding a wire net called 150 mesh to 100 mesh into a cage shape into a compressor suction pipe, and press-fitting an object with a terminal fixed to a metal ring into the upper part of the demister in the muffler container. Yes. This is installed for the purpose of preventing foreign matter from flowing into the compressor. For example, R410A, which is a mixed refrigerant of R32 and R125, is used as the refrigerant of the refrigeration cycle.

図2はこの実施の形態に係る第2流量制御弁6を示す断面図であり、図1に示した冷凍サイクルでは第2流量制御弁6として用いられる。図2(a)、(b)はそれぞれ作動状態を示している。図2において、21は第1流路であり、第1室内熱交換器5に接続されている。22は第2流路であり、第2室内熱交換器7に接続されている。23は第2流路22に接続する開口に設けた弁座であり、ここでは第2流量制御弁6本体と一体に構成されている。24は流路制御弁6本体の内面に沿って上下に摺動する弁体、25は弁体24を稼動する電磁コイル、26は2つの流路、第1流路21と第2流路22を接続する弁室で、この弁室26内に弁座23が固設されている。27はバネである。   FIG. 2 is a sectional view showing the second flow rate control valve 6 according to this embodiment, and is used as the second flow rate control valve 6 in the refrigeration cycle shown in FIG. 2 (a) and 2 (b) show the operating state. In FIG. 2, reference numeral 21 denotes a first flow path, which is connected to the first indoor heat exchanger 5. Reference numeral 22 denotes a second flow path, which is connected to the second indoor heat exchanger 7. Reference numeral 23 denotes a valve seat provided in an opening connected to the second flow path 22, and here, is configured integrally with the second flow control valve 6 main body. 24 is a valve body that slides up and down along the inner surface of the main body of the flow path control valve 6, 25 is an electromagnetic coil that operates the valve body 24, 26 is two flow paths, and the first flow path 21 and the second flow path 22. The valve seat 23 is fixedly installed in the valve chamber 26. Reference numeral 27 denotes a spring.

制御部(図示せず)からの指令に基づいて電磁コイル25に通断電することで、弁体24を上下に稼動して弁座23の開口を開閉し、第2流量制御弁6を開閉する。弁体24の内部には空洞部29が設けられており、さらに弁体24の側面には連通孔28が設けられ、この連通孔28と空洞部29により弁体24内部に貫通流路が形成される。さらに弁体24の内部の貫通流路の空洞部29に、この流路を塞ぐように円柱状の多孔質透過材30が設けられ、弁体24の内部を流れる冷媒が多孔質透過材30を通過する時に減圧されるように構成している。この多孔質透過材30は、例えば通気孔(流体が透過することのできる多孔質体内部の気孔)の平均直径が100マイクロメートル、空隙率(外径容積に対する発泡金属内部の隙間容積の比率)が97%の発泡金属で構成する。なお発泡金属は、例えばウレタンフォームにNi(ニッケル)などの金属粉末あるいは合金粉末を塗布後、熱処理をしてウレタンフォームを焼失させ、3次元の格子状に成形したものである。強度を上げるためにCr(クロム)メッキ処理などを施してもよい。なおこの多孔質透過材は冷媒を通すメッシュが存在しておれば良く発泡金属以外でもよいことは当然であるが、冷媒に対する化学的安定性が必要であり、また弁製造でロー付け加工するなどから耐熱性が必要であり、金属を使用する。   Based on a command from a control unit (not shown), the electromagnetic coil 25 is turned on and off to operate the valve body 24 up and down to open and close the opening of the valve seat 23 and open and close the second flow control valve 6. To do. A hollow portion 29 is provided inside the valve body 24, and a communication hole 28 is provided on a side surface of the valve body 24, and a through flow path is formed inside the valve body 24 by the communication hole 28 and the cavity portion 29. Is done. Further, a cylindrical porous permeable material 30 is provided in the hollow portion 29 of the through flow passage inside the valve body 24 so as to close the flow passage, and the refrigerant flowing inside the valve body 24 causes the porous permeable material 30 to flow. It is configured to be depressurized when passing. The porous permeating material 30 has, for example, an average diameter of air holes (pores inside the porous body through which fluid can permeate) of 100 micrometers and a porosity (ratio of the gap volume inside the foam metal to the outer diameter volume). Of 97% foam metal. The foam metal is obtained by, for example, applying metal powder such as Ni (nickel) or alloy powder to urethane foam and then heat-treating the urethane foam to form a three-dimensional lattice. In order to increase the strength, Cr (chromium) plating treatment or the like may be performed. The porous permeation material may be any metal other than foam metal as long as a mesh for passing the refrigerant is present, but chemical stability with respect to the refrigerant is necessary, and brazing is performed in valve manufacturing. Since heat resistance is necessary, use metal.

図2に示した第2流量制御弁6において、電磁コイル25に非通電とすることにより、バネ27のバネ力により弁体24を上方に稼動し、弁体24を弁座23から引き離す。このとき第2流路22に接続される開口は開となり、図2(a)に示すように第1流路21と第2流路22はほとんど圧力損失なしに連通される。また電磁コイル25に通電することにより、バネ力よりも電磁力の方が大きいため、弁体24を下方へ稼動し、弁体24を弁座23に密着させる。このとき開口は閉となり、図2(b)に示すように弁体24の内部に設けた貫通流路を通って発泡金属30の通気孔を介して、第1流路21と第2流路22が接続される。第1流路から弁室26内に流入した冷媒は、連通孔28を通って弁体24内の貫通流路に流れる。そして発泡金属30を通る時に発泡金属30の通気孔によって減圧され、開口から第2流路22へ流出する。   In the second flow control valve 6 shown in FIG. 2, by deenergizing the electromagnetic coil 25, the valve body 24 is operated upward by the spring force of the spring 27, and the valve body 24 is pulled away from the valve seat 23. At this time, the opening connected to the second flow path 22 is opened, and the first flow path 21 and the second flow path 22 are communicated with almost no pressure loss, as shown in FIG. Further, since the electromagnetic force is larger than the spring force by energizing the electromagnetic coil 25, the valve body 24 is operated downward and the valve body 24 is brought into close contact with the valve seat 23. At this time, the opening is closed, and as shown in FIG. 2 (b), the first flow path 21 and the second flow path pass through the through flow path provided in the valve body 24 and through the vent hole of the foam metal 30. 22 is connected. The refrigerant that has flowed into the valve chamber 26 from the first flow path flows into the through flow path in the valve body 24 through the communication hole 28. Then, when passing through the foam metal 30, the pressure is reduced by the vent of the foam metal 30 and flows out from the opening to the second flow path 22.

次にこの実施の形態による空気調和装置の冷房運転時の動作について説明する。図1では冷房時の冷媒の流れを実線矢印で示している。冷房運転は、起動時や夏季時など部屋の空調顕熱負荷と潜熱負荷がともに大きい場合に対応する通常冷房運転と、中間期や梅雨時期のように空調潜熱負荷は小さいが、顕熱負荷が大きな場合に対応する冷房除湿運転に分けられる。通常冷房運転は、第2流量制御弁6の電磁コイル25を非通電状態とする。このとき圧縮機1を出た高温高圧の冷媒蒸気は、四方弁2を通って室外熱交換器3に流入し、外気と熱交換して凝縮、液化する。この高圧の液冷媒は、第1流量制御弁4で低圧に減圧され、気液二相冷媒となって第1室内熱交換器5および第2室内熱交換器7で室内空気の顕熱および潜熱を奪って蒸発する。第2流量制御弁6では、図2(a)に示すように第1流路21と第2流路22が大きな開口面積で接続されているので、この弁を通過する際の冷媒圧力損失はほとんどなく、圧力損失による冷房能力や効率面での低下もない。第2室内熱交換器7を出た低圧の蒸気冷媒は、四方弁2を通って再び圧縮機1に戻る。この通常冷房運転時の第1流量制御弁4の開度は、例えば第2室内熱交換器7の出口冷媒の過熱度が5℃となるように制御されている。   Next, the operation | movement at the time of the cooling operation of the air conditioning apparatus by this embodiment is demonstrated. In FIG. 1, the flow of the refrigerant during cooling is indicated by solid line arrows. The cooling operation is a normal cooling operation that corresponds to the case where the air conditioning sensible heat load and the latent heat load of the room are both large at the time of start-up and summer, and the sensible heat load is small although the air conditioning latent heat load is small as in the intermediate period and the rainy season. It is divided into cooling and dehumidifying operation corresponding to a large case. In the normal cooling operation, the electromagnetic coil 25 of the second flow control valve 6 is in a non-energized state. At this time, the high-temperature and high-pressure refrigerant vapor exiting the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2, and is condensed and liquefied by exchanging heat with the outside air. The high-pressure liquid refrigerant is decompressed to a low pressure by the first flow control valve 4 and becomes a gas-liquid two-phase refrigerant, and the sensible heat and latent heat of the indoor air are obtained by the first indoor heat exchanger 5 and the second indoor heat exchanger 7. Take away and evaporate. In the second flow rate control valve 6, since the first flow path 21 and the second flow path 22 are connected with a large opening area as shown in FIG. 2A, the refrigerant pressure loss when passing through this valve is There is almost no decrease in cooling capacity and efficiency due to pressure loss. The low-pressure vapor refrigerant that has exited the second indoor heat exchanger 7 returns to the compressor 1 again through the four-way valve 2. The opening degree of the first flow control valve 4 during the normal cooling operation is controlled such that the degree of superheat of the outlet refrigerant of the second indoor heat exchanger 7 becomes 5 ° C., for example.

次に冷房除湿運転時の動作について説明する。この除湿運転時は、第2流量制御弁6の電磁コイル25に通電し、図2(b)に示すように弁体24を弁座23に密着させ、弁体24の内部に設けた貫通流路を介して第1流路21である第1室内熱交換器5の出口と第2流路22である第2室内熱交換器7の入口を接続する。この時、圧縮機1を出た高温高圧の冷媒蒸気は、四方弁2を通って室外熱交換器3に流入し、外気と熱交換して凝縮する。この高圧の液冷媒あるいは気液二相冷媒は、第1流量制御弁4で若干減圧され、中間圧の気液二相冷媒となって第1室内熱交換器5に流入する。この第1室内熱交換器5に流入した冷媒は、室内空気と熱交換してさらに凝縮する。第1室内熱交換器5を出た中間圧の液冷媒あるいは気液二相冷媒は、第2流量制御弁6に流入する。第2流量制御弁6では、図2(b)に示すように弁体24が弁座23に密着しているため、この弁室26に流入した冷媒は、弁体24の側面に設けた連通孔28から弁体24内部の空洞部29に流入する。さらに空洞部29内に設けた発泡金属30の通気孔を流通して第2室内熱交換器7に流入する。この発泡金属30の気孔径は1000マイクロメートルよりも小さく100マイクロメートル以上とし、ここでは例えばストレーナーのメッシュと同程度の100マイクロメートルであり、空隙率は97%であり、この通気孔を通る冷媒は絞り手段である発泡金属30によって減圧され、低圧の気液二相冷媒となって、第2室内熱交換器7に流入する。この第2室内熱交換器7に流入した冷媒は、室内空気の顕熱および潜熱を奪って蒸発する。第2室内熱交換器7を出た低圧の蒸気冷媒は、四方弁2を通って再び圧縮機1に戻る。室内空気は、第1室内熱交換器5で加熱され、第2室内熱交換器7で冷却除湿されるため、部屋の室温低下を防ぎながら除湿を行うことができる。   Next, the operation during the cooling and dehumidifying operation will be described. During this dehumidifying operation, the electromagnetic coil 25 of the second flow control valve 6 is energized, and the valve body 24 is brought into close contact with the valve seat 23 as shown in FIG. The outlet of the first indoor heat exchanger 5 that is the first flow path 21 and the inlet of the second indoor heat exchanger 7 that is the second flow path 22 are connected via a path. At this time, the high-temperature and high-pressure refrigerant vapor exiting the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2, and is condensed by exchanging heat with the outside air. This high-pressure liquid refrigerant or gas-liquid two-phase refrigerant is slightly depressurized by the first flow control valve 4 and flows into the first indoor heat exchanger 5 as an intermediate-pressure gas-liquid two-phase refrigerant. The refrigerant flowing into the first indoor heat exchanger 5 is further condensed by exchanging heat with room air. The intermediate-pressure liquid refrigerant or gas-liquid two-phase refrigerant that has exited the first indoor heat exchanger 5 flows into the second flow control valve 6. In the second flow rate control valve 6, as shown in FIG. 2B, the valve body 24 is in close contact with the valve seat 23, so that the refrigerant flowing into the valve chamber 26 communicates with the side surface of the valve body 24. It flows from the hole 28 into the cavity 29 inside the valve body 24. Further, the air flows into the second indoor heat exchanger 7 through the vent hole of the metal foam 30 provided in the hollow portion 29. The pore diameter of the metal foam 30 is smaller than 1000 micrometers and 100 micrometers or more. Here, for example, the pore diameter is 100 micrometers, which is about the same as the mesh of the strainer, and the void ratio is 97%. Is reduced in pressure by the metal foam 30 which is the throttle means, becomes a low-pressure gas-liquid two-phase refrigerant and flows into the second indoor heat exchanger 7. The refrigerant flowing into the second indoor heat exchanger 7 takes away sensible heat and latent heat of the room air and evaporates. The low-pressure vapor refrigerant that has exited the second indoor heat exchanger 7 returns to the compressor 1 again through the four-way valve 2. The room air is heated by the first indoor heat exchanger 5 and cooled and dehumidified by the second indoor heat exchanger 7, so that the room air can be dehumidified while preventing the room temperature from lowering.

なお、この冷房除湿運転では、圧縮機1の回転周波数や室外熱交換器3のファン回転数を調整して、室外熱交換器3の熱交換量を制御することで、第1室内熱交換器5による室内空気の加熱量を制御して、吹出し温度を広範囲に制御できる。また第1流量制御弁4の開度や室内ファン回転数を調整して、第1室内熱交換器5の凝縮温度を制御することで、第1室内熱交換器5による室内空気の加熱量を制御することもできる。また第2流量制御弁6の開度は、例えば第2室内熱交換器7の出口冷媒の過熱度が5℃となるように制御されている。   In this cooling and dehumidifying operation, the first indoor heat exchanger is controlled by adjusting the rotational frequency of the compressor 1 and the fan rotational speed of the outdoor heat exchanger 3 to control the heat exchange amount of the outdoor heat exchanger 3. By controlling the heating amount of the indoor air by 5, the blowing temperature can be controlled in a wide range. In addition, the amount of heating of the indoor air by the first indoor heat exchanger 5 is controlled by controlling the condensation temperature of the first indoor heat exchanger 5 by adjusting the opening degree of the first flow control valve 4 and the rotational speed of the indoor fan. It can also be controlled. Further, the opening degree of the second flow rate control valve 6 is controlled such that the degree of superheat of the outlet refrigerant of the second indoor heat exchanger 7 becomes 5 ° C., for example.

この発明では、発泡金属30を弁体24の内部に設けた第2流量制御弁6を第1室内熱交換器5と第2室内熱交換器7の間に配置し、発泡金属30を冷房除湿運転時の絞り手段として用いているので、第2流量制御弁6を液冷媒あるいは気液二相冷媒が通過する際の冷媒流動音を大幅に低減することができる。なお個々では発泡金属の場合気孔径がそろいやすいので発泡金属で説明するが気孔径のばらつきがある積層金網や金属たわし状のものでも液冷媒と蒸気冷媒の両方が同時に通過し、減圧するものであれば冷媒流動音が大幅に低減されることは同一である。図18の(a)および(b)に従来オリフィスと本発明の発泡金属絞りにおける気液二相流動様式をそれぞれ示す。(a)に示す、従来装置のようなオリフィスのみの絞り手段32を気液二相冷媒が通過する際には、大きな冷媒流動音が発生する。特に気液二相冷媒の流動様式がスラグ流となる場合に、大きな冷媒流動音が発生することが知られている。この冷媒流動音の発生要因としては、絞り手段内のオリフィス部などの冷媒が流れる小孔31をスラグ流が通過する際に、小孔31よりも大きな冷媒蒸気スラグあるいは冷媒気泡が破壊される。この冷媒蒸気スラグあるいは冷媒気泡の崩壊により振動が発生することや、小孔31を蒸気冷媒と液冷媒が交互に通過するため、この小孔31を冷媒が通過する際に発生する圧力損失が大きく変動することが考えられる。またオリフィス部出口では、速度が大きく、また乱れも大きな気液二相噴流が形成され、この気液二相噴流による圧力変動も冷媒流動音の発生要因である。一方、図18(b)に示す本発明の発泡金属絞りでは、蒸気スラグが絞り部に流入しても、液冷媒と蒸気冷媒を同時に通過させることができるため、流動抵抗の違いにより発生する圧力変動が発生しないため、騒音は発生しない。更に、冷媒流出部も無数に存在するため、絞り部下流に、大きな流れの乱れを発生させることがないため冷媒流動音の騒音レベルを低減させることが可能となる。   In this invention, the second flow rate control valve 6 in which the foam metal 30 is provided inside the valve body 24 is disposed between the first indoor heat exchanger 5 and the second indoor heat exchanger 7, and the foam metal 30 is cooled and dehumidified. Since it is used as a throttle means during operation, it is possible to significantly reduce refrigerant flow noise when liquid refrigerant or gas-liquid two-phase refrigerant passes through the second flow control valve 6. In the case of foam metal, since the pore diameter is easy to align, explanation will be given for foam metal. If it exists, it is the same that a refrigerant | coolant flow noise is reduced significantly. FIGS. 18A and 18B show gas-liquid two-phase flow patterns in the conventional orifice and the foam metal throttle of the present invention, respectively. When the gas-liquid two-phase refrigerant passes through the orifice-only throttling means 32 shown in (a), a large refrigerant flow noise is generated. In particular, it is known that a large refrigerant flow noise is generated when the flow mode of the gas-liquid two-phase refrigerant is a slag flow. As a generation factor of the refrigerant flow noise, when the slag flow passes through the small hole 31 through which the refrigerant such as the orifice portion in the throttle means flows, the refrigerant vapor slag or refrigerant bubbles larger than the small hole 31 are destroyed. Vibration occurs due to the collapse of the refrigerant vapor slag or refrigerant bubbles, and the vapor refrigerant and the liquid refrigerant alternately pass through the small holes 31, so that the pressure loss generated when the refrigerant passes through the small holes 31 is large. It can be fluctuated. Further, a gas-liquid two-phase jet having a high speed and large turbulence is formed at the outlet of the orifice, and pressure fluctuation due to this gas-liquid two-phase jet is also a cause of generation of refrigerant flow noise. On the other hand, in the foam metal throttle of the present invention shown in FIG. 18 (b), even if the steam slag flows into the throttle part, the liquid refrigerant and the vapor refrigerant can pass through simultaneously, so the pressure generated due to the difference in flow resistance Since no fluctuation occurs, no noise is generated. Furthermore, since there are an infinite number of refrigerant outflow portions, large flow turbulence is not generated downstream of the throttle portion, so that the noise level of the refrigerant flow noise can be reduced.

これに対し、図2に示したこの実施の形態による第2流量制御弁6では、冷房除湿運転時に第1室内熱交換器5を出た気液二相冷媒あるいは液冷媒は、弁体24内部に設けられた発泡金属30の微細な通気孔を同時に通り、この際に減圧されて第2室内熱交換器7に流入するため、騒音発生がほとんどない。これは、蒸気冷媒と液冷媒は同時に発泡金属30の通気孔内を通過し、流動抵抗の差が生じないため圧力損失の大きな変動も発生せず、冷媒流動音を大幅に低減して低騒音な環境を実現することができる。特に通気孔の気孔径を1000マイクロメートル以下としているので、冷媒流路が多数存在し、冷媒蒸気スラグや冷媒気泡と液冷媒がそれぞれ減圧される構成である。このため従来装置で必要であった遮音材や制振材を弁の外周に巻きつけるなどの低騒音化手段が不要となり、コストの低減ができ、さらに空気調和装置のリサイクル性も向上する。   On the other hand, in the second flow rate control valve 6 according to this embodiment shown in FIG. 2, the gas-liquid two-phase refrigerant or the liquid refrigerant exiting the first indoor heat exchanger 5 during the cooling and dehumidifying operation is At the same time, the pressure is reduced and flows into the second indoor heat exchanger 7, so that there is almost no noise generation. This is because the vapor refrigerant and liquid refrigerant pass through the vent of the metal foam 30 at the same time, and there is no difference in flow resistance, so there is no significant fluctuation in pressure loss, and the refrigerant flow noise is greatly reduced, resulting in low noise. Environment can be realized. In particular, since the pore diameter of the air holes is 1000 micrometers or less, there are a large number of refrigerant flow paths, and the refrigerant vapor slag, the refrigerant bubbles and the liquid refrigerant are each decompressed. This eliminates the need for noise reduction means such as wrapping a sound insulation material or vibration damping material around the outer periphery of the valve, which can be reduced in cost, and improves the recyclability of the air conditioner.

なお、上述した気液二相冷媒に起因する冷媒流動音の課題に関しては、空気調和装置に限定されることなく、冷蔵庫等の冷凍サイクル一般についての課題であり、この実施の形態における第2流量制御弁6は冷凍サイクルを用いた冷凍空調装置一般に広く適用でき、同様の作用効果が得られる。即ち、冷媒流動音の発生がなく静かな除湿運転が可能となると共に、冷凍サイクル内を冷媒と共に循環する固形異物が発泡金属内部に捕捉されて堆積することなく、また除湿能力が変動したり、除湿運転に必要な電気入力が増大することなく、長期的に信頼性の高い冷凍空調装置が得られる。   Note that the problem of the refrigerant flow noise caused by the gas-liquid two-phase refrigerant described above is not limited to the air conditioner and is a general problem of a refrigeration cycle such as a refrigerator. The second flow rate in this embodiment The control valve 6 can be widely applied to a general refrigeration air conditioner using a refrigeration cycle, and the same effect can be obtained. That is, there is no generation of refrigerant flow noise and quiet dehumidification operation is possible, solid foreign matter circulating with the refrigerant in the refrigeration cycle is not trapped and deposited in the foam metal, and the dehumidification capacity fluctuates, A long-term reliable refrigeration air conditioner can be obtained without increasing the electrical input required for the dehumidifying operation.

冷房除湿運転時の第2流量制御弁6の流量特性(冷媒流量と圧力損失の関係)は、弁体24に用いる発泡金属30の通気孔の径や冷媒が通過する流路長さを調整することによって調整できる。即ち、通気孔のばらつきを大きくしても良いし均一にしたものを汲み合わせても良い。また、ある冷媒流量を小さな圧力損失で流す場合には、発泡金属30の通気孔を1000マイクロメータ程度まで大きくしたり、発泡金属30の冷媒が通る全体の面積である径を大きくしたり、あるいは発泡金属30を通過する流路長さを短くしても良い。また逆に、ある冷媒流量を大きな圧力損失で流す場合には、発泡金属30の通気孔を冷凍サイクル内のストレーナーとマッチングする径のようにを小さくし冷凍サイクル内を流れる固体異物のほとんどを通す大きさまでにしたり、流路である発泡金属30の径を小さくしたり、あるいは発泡金属30を通過する流路長さを長くしても良い。このような弁体24に用いる発泡金属30の通気孔の径や流路長さは、機器設計時に最適に設計される。   The flow rate characteristics (relationship between the refrigerant flow rate and the pressure loss) of the second flow control valve 6 during the cooling and dehumidifying operation adjust the diameter of the vent hole of the foam metal 30 used for the valve body 24 and the flow path length through which the refrigerant passes. Can be adjusted. That is, the variation in the air holes may be increased or a uniform one may be pumped. In addition, when flowing a certain refrigerant flow rate with a small pressure loss, the vent hole of the foam metal 30 is increased to about 1000 micrometers, the diameter of the entire area through which the coolant of the foam metal 30 passes, or The length of the flow path that passes through the foam metal 30 may be shortened. Conversely, when a certain flow rate of refrigerant is caused to flow with a large pressure loss, the diameter of the vent hole of the metal foam 30 is made small so as to match the strainer in the refrigeration cycle, and most of the solid foreign substances flowing in the refrigeration cycle are allowed to pass through. The size may be increased, the diameter of the foam metal 30 that is the flow path may be reduced, or the length of the flow path that passes through the foam metal 30 may be increased. The diameter and flow path length of the vent hole of the foam metal 30 used for such a valve body 24 are optimally designed at the time of device design.

なお、弁体24内部に発泡金属30を固定する方法としては、以下のように形成すれば良い。例えば発泡金属30の外形を弁体24の内部空間径よりも若干大きくしておき、発泡金属30を弁体24の内部に圧入すれば、発泡金属30を確実に弁体24内部に固定できる。さらにこの方法によると、弁の製造コストを安価にすることができる。またこの発泡金属30の固定法は圧入だけではなく、ロー付けや高周波溶接などによって、発泡金属30を弁体24の内部に固定してもよい。なお圧入固定方法等を採用する場合は金属でなくとも化学的に安定なセラミックのようなものでも良いことは明らかである。   In addition, what is necessary is just to form as follows as a method of fixing the metal foam 30 inside the valve body 24. FIG. For example, when the outer shape of the foam metal 30 is made slightly larger than the inner space diameter of the valve body 24 and the foam metal 30 is press-fitted into the valve body 24, the foam metal 30 can be reliably fixed inside the valve body 24. Furthermore, according to this method, the manufacturing cost of the valve can be reduced. Further, the fixing method of the foam metal 30 is not limited to press fitting, but the foam metal 30 may be fixed to the inside of the valve body 24 by brazing, high frequency welding or the like. Obviously, when a press-fitting method or the like is employed, a chemically stable ceramic may be used instead of a metal.

このようにこの実施の形態では、冷房除湿運転時の第2流量制御弁6の絞り手段として、弁体24内部に設けた発泡金属30を使用しているので、絞り手段を通過する冷媒が気液二相状態であっても気泡の崩壊や圧力変動を抑制することができ、冷媒流動音の発生を低減し、低騒音な室内環境を実現することができる。この発泡金属30による冷媒流動音の低減効果は、発泡金属の気孔径が小さいほど効果的であることを実験により確認した。しかし空気調和装置の冷凍サイクル内には、鉄や銅などの金属紛や冷凍機油の劣化物であるスラッジなどの固形異物が冷媒とともに循環している。このため、発泡金属30の気孔径をこれらの異物を捕捉するストレーナーよりも小さくしすぎると、この固形異物が発泡金属30の気孔内部に捕捉されて堆積し、発泡金属30の流動抵抗が増加する可能性がある。発泡金属30の流動抵抗が増加すると、冷房除湿運転時の第2室内熱交換器7の蒸発温度が低下し、除湿能力が変化してしまう。この時、蒸発温度が0℃以下に低下すると、熱交換器表面で凝縮した結露水が凍結することになる。さらに発泡金属30の内部の通気孔が金属紛やスラッジなどで埋め尽くされると、冷房除湿運転時の冷媒流量が大幅に低下し、除湿能力の低下や電気入力の増大などが発生する。従って発泡金属30の仕様選定に際しては、冷凍サイクル内を冷媒と共に循環する金属紛やスラッジなどの固形異物が発泡金属内部に堆積しない、あるいは堆積しても流動抵抗変化が小さくなるように平均径を配慮することが必要となる。   As described above, in this embodiment, the metal foam 30 provided in the valve body 24 is used as the throttle means of the second flow rate control valve 6 during the cooling and dehumidifying operation. Even in the liquid two-phase state, bubble collapse and pressure fluctuation can be suppressed, generation of refrigerant flow noise can be reduced, and a low-noise indoor environment can be realized. It was confirmed by experiments that the effect of reducing the refrigerant flow noise by the foam metal 30 is more effective as the pore diameter of the foam metal is smaller. However, in the refrigeration cycle of the air conditioner, solid foreign matters such as metal powder such as iron and copper and sludge that is a deteriorated product of refrigeration oil circulate with the refrigerant. For this reason, if the pore diameter of the foam metal 30 is made too smaller than the strainer that captures these foreign substances, the solid foreign substances are trapped and deposited inside the pores of the foam metal 30 and the flow resistance of the foam metal 30 increases. there is a possibility. When the flow resistance of the metal foam 30 increases, the evaporation temperature of the second indoor heat exchanger 7 during the cooling and dehumidifying operation decreases, and the dehumidifying capacity changes. At this time, if the evaporation temperature falls to 0 ° C. or lower, the condensed water condensed on the surface of the heat exchanger will freeze. Further, when the air holes in the foam metal 30 are filled with metal powder or sludge, the flow rate of the refrigerant during the cooling and dehumidifying operation is greatly reduced, resulting in a decrease in dehumidifying capacity and an increase in electric input. Therefore, when selecting the specifications of the metal foam 30, the average diameter should be selected so that solid foreign matter such as metal powder or sludge circulating with the refrigerant in the refrigeration cycle does not accumulate inside the metal foam, or even if it accumulates, the flow resistance change is small. It is necessary to consider.

冷凍サイクルには一般にストレーナーと呼ばれる濾過手段が、冷凍サイクル内を冷媒と共に循環する鉄や銅などの金属紛や冷凍機油の劣化物であるスラッジなどの固形異物を捕捉するため、サイクル数箇所に設置されている。このストレーナーは、図17(a)(b)に示すように、細線がメッシュ状に編み込まれたものであり、この細線の平均間隔は100マイクロメートル程度である。このストレーナーよりも目の粗い気孔径の発泡金属30を絞り手段として用いれば、ストレーナーよりも大きな固形異物はストレーナーで捕捉される。即ち、冷凍サイクルに細線の平均間隔は100マイクロメートル程度の濾過手段が設けられている場合には、気孔径が100マイクロメートル以上の発泡金属30を用いれば、冷凍サイクル内を循環する固形異物が発泡金属30に流入し、その内部に堆積するのを防止できる。またこの濾過手段よりも小さな径、即ち100マイクロメートルよりも小さい固形異物は、濾過手段を通過して発泡金属30にも流入するが、この固形異物の径は発泡金属30の気孔径よりも小さいため、発泡金属30によって捕捉されることなく、発泡金属30を通過する。従って、気孔径が100マイクロメートル以上の発泡金属30を弁体24内部の絞り手段に設けることにより、冷凍サイクル内を冷媒と共に循環する金属紛やスラッジなどの固形異物が発泡金属内部に堆積することなく、信頼性の高い流量制御弁および冷凍空調装置を得ることができる。   In the refrigeration cycle, filtration means commonly called strainers are installed in several places in order to capture solid foreign substances such as metal powder such as iron and copper circulating in the refrigeration cycle with refrigerant and sludge that is a deterioration product of refrigeration oil. Has been. In this strainer, as shown in FIGS. 17A and 17B, fine lines are knitted in a mesh shape, and the average interval between the fine lines is about 100 micrometers. If the foam metal 30 having a pore size coarser than that of the strainer is used as the squeezing means, solid foreign matters larger than the strainer are captured by the strainer. That is, when the refrigeration cycle is provided with a filtering means having an average interval of fine lines of about 100 micrometers, if a foamed metal 30 having a pore diameter of 100 micrometers or more is used, solid foreign matters circulating in the refrigeration cycle can be prevented. It is possible to prevent the metal from flowing into the foam metal 30 and depositing inside the metal. Further, a solid foreign matter having a diameter smaller than that of the filtering means, that is, a solid foreign matter smaller than 100 micrometers passes through the filtering means and flows into the foamed metal 30. The diameter of the solid foreign matter is smaller than the pore diameter of the foamed metal 30. Therefore, it passes through the foam metal 30 without being captured by the foam metal 30. Therefore, by providing the foam metal 30 having a pore diameter of 100 micrometers or more in the throttle means inside the valve body 24, solid foreign matters such as metal powder and sludge circulating with the refrigerant in the refrigeration cycle are accumulated inside the foam metal. And a highly reliable flow control valve and refrigeration air conditioner can be obtained.

また、発泡金属の空隙率を50%以上とすることにより発泡金属の異物詰りによる信頼性を向上させることができる。ストレーナーの粗さが約100マイクロメートルであるため、直径が100マイクロメートル以下の固形異物しか発泡金属30に流入しない。そこで発泡金属30の気孔径を平均100マイクロメートル以上とすることにより、ストレーナーを通過した100マイクロメートルよりも小さな固形異物の大部分は、発泡金属30の気孔内を通過するはずである。ところが、その一部は発泡金属30と衝突し、発泡金属30内に堆積する可能性がある。多孔質透過材の場合完全に均一な孔径や形状は難しく、しかも気泡を細分化させる程度の厚みのある3次元構造のため、一部の固形異物が発泡金属30内に衝突堆積すると、その部分の通過面積が小さくなり、さらにその部分に固形異物が堆積する。この発明ではこのような場合に対し、発泡金属30の空隙率を50%以上確保することで、発泡金属30内部の隙間容積を大きくしている。発泡金属30の空隙率を50%以上確保すれば、発泡金属30の内部には多くの微少流路数が確保でき、万一、発泡金属30の内部の一部の微少流路が固形異物によって閉塞されても、発泡金属30全体の流動抵抗はほとんど変化せず、安定した流量制御が可能となる。   Moreover, the reliability by the foreign material clogging of a foam metal can be improved by making the porosity of a foam metal 50% or more. Since the strainer has a roughness of about 100 micrometers, only solid foreign substances having a diameter of 100 micrometers or less flow into the foam metal 30. Therefore, by setting the pore diameter of the foam metal 30 to an average of 100 micrometers or more, most of the solid foreign matters smaller than 100 micrometers that have passed through the strainer should pass through the pores of the foam metal 30. However, some of them may collide with the foam metal 30 and be deposited in the foam metal 30. In the case of a porous permeation material, a completely uniform pore diameter and shape are difficult, and because of a three-dimensional structure thick enough to subdivide the bubbles, when some solid foreign matter collides and accumulates in the foam metal 30, the portion The passage area is reduced, and solid foreign substances are further deposited on the area. In the present invention, the void volume in the foam metal 30 is increased by securing the porosity of the foam metal 30 to 50% or more in such a case. If the porosity of the foam metal 30 is ensured to be 50% or more, a large number of micro flow paths can be secured inside the foam metal 30, and in the unlikely event that some of the micro flow paths inside the foam metal 30 are caused by solid foreign matter. Even if closed, the flow resistance of the entire foam metal 30 is hardly changed, and stable flow rate control is possible.

図3は発泡金属30の内部に固形異物を付着堆積させた時の発泡金属の流動抵抗の変化を実験により調べた結果である。この実験では、図4に示すように、内径20ミリメートルのパイプ51内に外径20ミリメートル、厚さ2ミリメートルの発泡金属30を設置し、固形異物を模擬したJIS紛体(Iの2種)を混合した水をタンク52に格納しておき、水ポンプ53によって循環させて、所定の時間経過後の発泡金属30前後の圧力差を差圧計54で測定したものである。なお図3の縦軸は、固形異物を付着堆積させる前の発泡金属の圧力差に対し、固形異物を付着堆積させた後の発泡金属の圧力差の増加率(%)、横軸は空隙率(%)を示す。この結果によると、発泡金属の空隙率が50%以上では、固形異物の付着堆積による圧力差の増加率は急激に低下する。このため空隙率が50%以上の発泡金属を使用することで、発泡金属内部の異物詰りに対す圧力差の増大を回避でき、信頼性の高い第2流量制御弁6を実現できる。また、図3の結果から判るように、この固形異物の付着堆積による圧力差の増加は、空隙率を70%以上とすることにより大幅に小さくすることができるので、好ましくは空隙率が70%以上の発泡金属を用いることにより、異物詰りに対する信頼性を大幅に向上させることができる。さらに最も良いのは空隙率を90%以上とすることによりこの固形異物の付着堆積による圧力差はほとんど増加しないことが図3より判る。このため空隙率が90%以上の発泡金属を用いることにより、異物詰りに対する信頼性を確実に確保することができる。   FIG. 3 is a result of examining the change in flow resistance of the foam metal when solid foreign substances are deposited and deposited inside the foam metal 30 by experiments. In this experiment, as shown in FIG. 4, a foam metal 30 having an outer diameter of 20 millimeters and a thickness of 2 millimeters is installed in a pipe 51 having an inner diameter of 20 millimeters, and JIS powder (two types of I) simulating solid foreign matters is installed. The mixed water is stored in a tank 52, circulated by a water pump 53, and the pressure difference before and after the foam metal 30 after a predetermined time has passed is measured by a differential pressure gauge 54. Note that the vertical axis in FIG. 3 indicates the increase rate (%) of the pressure difference of the foam metal after depositing and depositing solid foreign matter relative to the pressure difference of the foam metal before depositing and depositing solid foreign matter, and the horizontal axis is the porosity. (%). According to this result, when the porosity of the foam metal is 50% or more, the increase rate of the pressure difference due to the adhesion and deposition of solid foreign matters decreases rapidly. For this reason, by using a foam metal having a porosity of 50% or more, it is possible to avoid an increase in the pressure difference due to foreign matter clogging inside the foam metal, and to realize the highly reliable second flow rate control valve 6. Further, as can be seen from the results of FIG. 3, the increase in the pressure difference due to the adhesion and deposition of the solid foreign matter can be greatly reduced by setting the porosity to 70% or more. Therefore, the porosity is preferably 70%. By using the above foam metal, the reliability against foreign matter clogging can be greatly improved. Furthermore, it is best from FIG. 3 that the pressure difference due to the adhesion and deposition of solid foreign matters hardly increases when the porosity is 90% or more. For this reason, the reliability with respect to clogging of foreign substances can be reliably ensured by using a foam metal having a porosity of 90% or more.

上記の実験結果から、図2に示した流量制御弁では、弁体24の内部に貫通流路を設け、この貫通流路内に発泡金属30を固定して除湿運転時の絞り手段として動作させているので、冷媒流動音の発生が低減でき静かな運転が可能となる。特に、その発泡金属30の気孔径を、冷凍サイクルに設けられている濾過手段の細線の平均間隔である100マイクロメートル以上とすることで、冷凍サイクル内を冷媒と共に循環する鉄や銅などの金属紛や冷凍機油の劣化物であるスラッジなどの固形異物が発泡金属30の内部に捕捉して堆積することなく、信頼性の高い流量制御弁を実現できる。さらに、その発泡金属30を空隙率50%以上とすることで、万一、冷凍サイクル内を冷媒と共に循環する固形異物が発泡金属30の内部に捕捉して堆積しても、流動抵抗変化を小さくでき、長期的にも信頼性の高い流量制御弁が得られる。   From the above experimental results, in the flow control valve shown in FIG. 2, a through passage is provided in the valve body 24, and the foam metal 30 is fixed in the through passage so as to operate as a throttle means during the dehumidifying operation. As a result, the generation of refrigerant flow noise can be reduced and quiet operation is possible. In particular, by setting the pore diameter of the foam metal 30 to 100 micrometers or more, which is the average interval of the fine lines of the filtering means provided in the refrigeration cycle, a metal such as iron or copper that circulates with the refrigerant in the refrigeration cycle A highly reliable flow control valve can be realized without trapping and depositing solid foreign matter such as sludge, which is a deteriorated product of powder and refrigerating machine oil, inside the foam metal 30. Furthermore, by setting the foam metal 30 to a porosity of 50% or more, even if solid foreign substances circulating with the refrigerant in the refrigeration cycle are trapped and deposited inside the foam metal 30, the flow resistance change is reduced. And a flow control valve with high reliability can be obtained even in the long term.

次に、騒音特性について説明する。図22に示すように暗騒音20dBの無響箱64の中に絞り部がオリフィスのみで構成された試験用流量制御弁67を設置し、この弁に飽和温度40゜C、冷媒乾き度0.1の気液2相冷媒を図示しない冷凍サイクルから供給し、出口圧力が飽和温度10゜C程度になるように調整した状態で、弁から10cmの位置に設置したマイクロフォン65により騒音計66にて冷媒流動音を多孔質体の気孔径をパラメーターとして測定した。実験結果を図24に示す。図24の横軸は気孔径を縦軸は騒音レベルをそれぞれ示す。実験結果によれば、気孔径が1000マイクロメートル以下であれば騒音レベルは中程度であり、問題ないレベルである。また、600マイクロメートル以下であれば騒音レベルはより低くなる。気孔径が小さくなるほど騒音レベルは低下するが、固形異物の付着堆積を考慮すると多孔質体の気孔径は100マイクロメートルから1000マイクロメートル以下が騒音低減と高信頼性を両立する気孔径であると言える。 Next, noise characteristics will be described. As shown in FIG. 22, a test flow control valve 67 whose throttle part is composed only of an orifice is installed in an anechoic box 64 with a background noise of 20 dB, and this valve has a saturation temperature of 40 ° C., a refrigerant dryness of 0. A gas-liquid two-phase refrigerant of 1 is supplied from a refrigeration cycle (not shown), and the outlet pressure is adjusted so that the saturation temperature is about 10 ° C., and the sound level meter 66 uses a microphone 65 installed at a position 10 cm from the valve. The refrigerant flow sound was measured using the pore size of the porous body as a parameter. The experimental results are shown in FIG. In FIG. 24, the horizontal axis represents the pore diameter, and the vertical axis represents the noise level. According to the experimental results, if the pore diameter is 1000 micrometers or less, the noise level is moderate and there is no problem. Moreover, if it is 600 micrometers or less, a noise level will become lower. The noise level decreases as the pore size decreases, but considering the adhesion and deposition of solid foreign matter, the pore size of the porous body is from 100 micrometers to 1000 micrometers or less, which is a pore diameter that achieves both noise reduction and high reliability. I can say that.

また弁体24の内部に発泡金属30を固定しているので、弁体24と弁座23を電磁力により密着させても発泡金属30が変形することなく、確実に弁体24と弁座23を密着させることができ、弁座23からの冷媒の漏洩流量を安定して最小化することができる。さらにこの低騒音かつ信頼性の高い流量制御弁を第2流量制御弁6として用いることにより、温度と湿度の制御性が高く、しかも低騒音で信頼性を向上できる冷凍空調装置を実現できる。また、除湿能力が変動を防ぐことができ、除湿運転に必要な電気入力の増大を防ぐことができる冷凍空調装置が得られる。   Further, since the foam metal 30 is fixed inside the valve body 24, even if the valve body 24 and the valve seat 23 are brought into close contact with each other by electromagnetic force, the foam metal 30 is not deformed and the valve body 24 and the valve seat 23 are surely formed. And the leakage flow rate of the refrigerant from the valve seat 23 can be stably minimized. Furthermore, by using this low-noise and highly reliable flow control valve as the second flow control valve 6, it is possible to realize a refrigeration air conditioner that has high controllability of temperature and humidity, and that can improve reliability with low noise. In addition, it is possible to obtain a refrigerating and air-conditioning apparatus that can prevent fluctuations in the dehumidifying capacity and prevent an increase in electric input necessary for the dehumidifying operation.

なお、図2に示したこの発明では、1つの円柱状の発泡金属30を弁体24内部に固定した構成例について説明したが、これに限ることはなく、2つの気孔径が異なる2種類の円柱状の発泡金属30a、30bを、流路に直列になるように弁体24内部に固定して、絞り手段としてもよい。流量制御弁において、気孔径が200マイクロメートルの発泡金属30aを上流側に、気孔径が100マイクロメートルの発泡金属30bを下流側に設けている。このように上流側の発泡金属30aの気孔径を下流側の発泡金属30bの気孔径よりも大きくすることにより、比較的直径の大きな固形異物は上流側の発泡金属30aに捕捉され、比較的直径の小さな固形異物は下流側の発泡金属30bに捕捉される。このように、発泡金属30の内部に固形異物が堆積する個所を分散できるため、万一、固形異物が発泡金属30の内部に堆積しても、発泡金属30の流動抵抗変化を小さくすることができる。この場合1つの多孔質透過材、たとえば金属線をより合わせたようなもので上流側にバラけた方とし中流より下流に密なものとしても良い。   In the present invention shown in FIG. 2, the configuration example in which one columnar foam metal 30 is fixed inside the valve body 24 has been described. However, the present invention is not limited to this, and two types of two different pore sizes are provided. Cylindrical metal foams 30a and 30b may be fixed inside the valve body 24 so as to be in series with the flow path, and may be used as a throttle means. In the flow control valve, a foam metal 30a having a pore diameter of 200 micrometers is provided on the upstream side, and a foam metal 30b having a pore diameter of 100 micrometers is provided on the downstream side. In this way, by making the pore diameter of the upstream foam metal 30a larger than the pore diameter of the downstream foam metal 30b, a solid foreign substance having a relatively large diameter is captured by the upstream foam metal 30a and has a relatively large diameter. Small solid foreign matters are captured by the foam metal 30b on the downstream side. As described above, the location where the solid foreign matter accumulates inside the foam metal 30 can be dispersed. Therefore, even if the solid foreign matter accumulates inside the foam metal 30, the flow resistance change of the foam metal 30 can be reduced. it can. In this case, one porous permeation material, for example, a metal wire more closely combined, may be separated upstream and may be denser downstream than the middle stream.

また、発泡金属30a、30b間は、密着させても、あるいはさせなくとも気相と液相を同じに気泡を崩壊せずに減圧させることが出来る。また発泡金属30a、30b間に空間があっても、同様の作用効果を奏する。また、2つの発泡金属30a、30bに限るものではなく、もっと多くの異なる種類の多孔質透過材で絞り手段を構成してもよい。   In addition, the foam metal 30a and 30b can be decompressed without collapsing the bubbles in the same gas phase and liquid phase, whether or not they are in close contact with each other. Moreover, even if there is a space between the metal foams 30a and 30b, the same effect can be obtained. Further, the drawing means is not limited to the two foam metals 30a and 30b, and the squeezing means may be constituted by many different types of porous permeable materials.

また図5はこの発明に係わる第2流量制御弁6の他の構成例を示す断面図であり、弁体24内部に設けた多孔質透過材である発泡金属30の上部の形状を円錐状としている。この構成では、図2に示した円柱状の発泡金属を用いるよりも、冷媒が流れる発泡金属上流側の通過面積を大きくできる。このため、発泡金属30の上流側で固形異物が堆積する個所を分散できる。万一、固形異物が発泡金属30の上流側に堆積しても、発泡金属の流動抵抗変化を小さくすることができ、異物詰りに対してより信頼性の高い流量制御弁を得ることができる。この構成は、絞り手段に設ける発泡金属上流側の通過面積を大きくできればよく、発泡金属の上流側の面形状を円錐状とすることに限るものではない。例えば、1つまたは複数の波形の面や、傾斜した平面、複数の凹凸が形成された面、球表面の一部の面で構成しても、流路に垂直な平面にするよりも通過面積を大きくできる。   FIG. 5 is a cross-sectional view showing another configuration example of the second flow control valve 6 according to the present invention. The shape of the upper part of the foam metal 30 which is a porous permeable material provided in the valve body 24 is conical. Yes. In this configuration, it is possible to increase the passage area on the upstream side of the foam metal through which the refrigerant flows, rather than using the columnar foam metal shown in FIG. For this reason, it is possible to disperse the places where solid foreign substances are deposited on the upstream side of the foam metal 30. Even if solid foreign matter accumulates on the upstream side of the foam metal 30, the flow resistance change of the foam metal can be reduced, and a flow control valve with higher reliability against foreign matter clogging can be obtained. This configuration is not limited to making the surface shape of the upstream side of the foam metal conical, as long as the passage area on the upstream side of the foam metal provided in the throttle means can be increased. For example, even if it is composed of one or more corrugated surfaces, an inclined plane, a surface with a plurality of irregularities, or a part of a spherical surface, the passage area is more than a plane perpendicular to the flow path. Can be increased.

図6は、この発明の別の第2流量制御弁6を示す断面図であり、図2に示したものと同一または同様の構成部品には同一符号を付して、その重複する説明を省略する。この構造の例では、第1多孔質透過材、例えば気孔径500マイクロメートル、空隙率95%の第1発泡金属30aと、オリフィス板32と、第2多孔質透過材、例えば気孔径500マイクロメートル、厚さ2mm、空隙率95%の第2発泡金属30bとが、弁体24内の貫通流路を構成する空洞部29に内設されている。またオリフィス板32の中央部には、例えば直径1ミリメートル程度の小孔31で構成されるオリフィス部が設けられている。第1発泡金属30a、小孔31、第2発泡金属30bが流路に直列に並設されて絞り手段を形成し、弁体24内の貫通流路を流通する流体を減圧する。   FIG. 6 is a cross-sectional view showing another second flow control valve 6 of the present invention, in which the same or similar components as those shown in FIG. To do. In this structure example, a first porous permeable material, for example, a first foam metal 30a having a pore diameter of 500 micrometers and a porosity of 95%, an orifice plate 32, and a second porous permeable material, for example, a pore diameter of 500 micrometers. A second foamed metal 30b having a thickness of 2 mm and a porosity of 95% is provided in the cavity 29 constituting the through flow passage in the valve body 24. In addition, an orifice portion composed of a small hole 31 having a diameter of about 1 millimeter, for example, is provided at the central portion of the orifice plate 32. The first foam metal 30a, the small hole 31, and the second foam metal 30b are arranged in series in the flow path to form a throttle means, and the fluid flowing through the through flow path in the valve body 24 is decompressed.

通常冷房運転時には図2と同様に、電磁コイル25に非通電とすることにより、バネ27のバネ力により弁体24を上方に稼動し、弁体24を弁座23から引き離す。このとき弁座23の開口は開となり、第1流路21と第2流路22はほとんど圧力損失なしに連通される。このため、第1室内熱交換器5と第2室内熱交換器7の間で圧力損失はなく、冷房能力や効率面で低下することもない。冷房除湿運転時には電磁コイル25に通電することにより、バネ力よりも電磁力の方が大きいため、弁体24を下方へ稼動し、弁体24を弁座23に密着させる。このとき開口は閉となり、第1室内熱交換器5を出た気液二相冷媒は、第1流路21から弁室26に流入し、図6に示すように、貫通孔28を通って弁体24内の貫通流路に流れ、弁体24の内部に設けた第1発泡金属30aの通気孔、オリフィス板32の小孔31、および第2発泡金属30bの通気孔の順に流通して減圧され、弁座23の開口から第2流路22へ流出して第2室内熱交換器7に流入する。   In the normal cooling operation, similarly to FIG. 2, by deenergizing the electromagnetic coil 25, the valve body 24 is operated upward by the spring force of the spring 27, and the valve body 24 is pulled away from the valve seat 23. At this time, the opening of the valve seat 23 is opened, and the first flow path 21 and the second flow path 22 are communicated with almost no pressure loss. For this reason, there is no pressure loss between the 1st indoor heat exchanger 5 and the 2nd indoor heat exchanger 7, and it does not fall in terms of cooling capacity or efficiency. By energizing the electromagnetic coil 25 during the cooling and dehumidifying operation, the electromagnetic force is greater than the spring force, so that the valve body 24 is operated downward and the valve body 24 is brought into close contact with the valve seat 23. At this time, the opening is closed, and the gas-liquid two-phase refrigerant exiting the first indoor heat exchanger 5 flows into the valve chamber 26 from the first flow path 21 and passes through the through hole 28 as shown in FIG. It flows through the through flow passage in the valve body 24, and flows through the vent hole of the first foam metal 30a provided in the valve body 24, the small hole 31 of the orifice plate 32, and the vent hole of the second foam metal 30b in this order. The pressure is reduced, and the gas flows out from the opening of the valve seat 23 to the second flow path 22 and flows into the second indoor heat exchanger 7.

図19は冷媒の流を説明する図であって、図19の(a)は従来のオリフィスのみの場合の気液二相流の流動様式を示し、図19の(b)は本発明のオリフィスの上流側に発泡金属絞りを設けた場合における気液二相流の流動様式を示す。図19(a)に示す、従来のオリフィスのみの絞り手段を気液二相冷媒が通過する際には、大きな冷媒流動音が発生する。特に気液二相冷媒の流動様式がスラグ流となる場合に、大きな冷媒流動音が発生することが知られている。この冷媒流動音の発生要因としては、絞り手段内のオリフィス部などの小孔をスラグ流が通過する際に、小孔よりも大きな冷媒蒸気スラグあるいは冷媒気泡が破壊される。この冷媒蒸気スラグあるいは冷媒気泡の崩壊により振動が発生することや、小孔を蒸気冷媒と液冷媒が交互に通過するため、この小孔を冷媒が通過する際に発生する圧力損失が大きく変動することが考えられる。またオリフィス部出口では、速度が大きく、また乱れも大きな気液二相噴流が形成され、この気液二相噴流による圧力変動も冷媒流動音の発生要因である。   FIG. 19 is a diagram for explaining the flow of the refrigerant. FIG. 19A shows the flow mode of the gas-liquid two-phase flow in the case of only the conventional orifice, and FIG. 19B shows the orifice of the present invention. The flow mode of the gas-liquid two-phase flow in the case where a metal foam restriction is provided on the upstream side of FIG. When the gas-liquid two-phase refrigerant passes through the conventional orifice-only throttling means shown in FIG. 19 (a), a large refrigerant flow noise is generated. In particular, it is known that a large refrigerant flow noise is generated when the flow mode of the gas-liquid two-phase refrigerant is a slag flow. As a generation factor of the refrigerant flow noise, when the slag flow passes through a small hole such as an orifice portion in the throttle means, the refrigerant vapor slag or refrigerant bubbles larger than the small hole are destroyed. Since vibration occurs due to the collapse of the refrigerant vapor slag or refrigerant bubbles, and the vapor refrigerant and the liquid refrigerant alternately pass through the small holes, the pressure loss generated when the refrigerant passes through the small holes greatly fluctuates. It is possible. Further, a gas-liquid two-phase jet having a high speed and large turbulence is formed at the outlet of the orifice, and pressure fluctuation due to this gas-liquid two-phase jet is also a cause of generation of refrigerant flow noise.

次に、本発明の絞り部における気液二相冷媒の流動について説明する。図19(b)に示すように液冷媒と蒸気冷媒に分離した気液二相冷媒が第1発泡金属30aを通過する際に、蒸気冷媒は小さな気泡に分割される。この小さな気泡となった蒸気冷媒が、液冷媒と共にオリフィス板32の小孔31を通過するため、小孔31を通過する気液二相冷媒は気液が十分混合された状態となり、圧力損失の大きな変動も発生しない。このため、「ジュルジュル」、「ボコボコ」といった聴感となる不連続な冷媒流動音が生じるのを防止できる。また小孔31を通過した速度および乱れの大きな気液二相噴流は、第2発泡金属30bを通過する際に、減速されて整流される。このため、「シャー」といった聴感となる連続的な冷媒流動音の発生を大幅に抑制することができる。これにより、冷媒流動音の発生を低減でき、快適な環境を実現できる。さらに、発泡金属の厚さについて、図20を用いて説明する。発泡金属の厚さが0.5ミリメートル、オリフィス内径は1ミリメートルのように発泡金属の厚さよりオリフィス内径が小さい場合は、図20の(a)の如く、蒸気泡62を長さ方向に対して、十分に分割することができずに、長い気泡を形成させてしまうため、オリフィス内に蒸気冷媒が多い気液二相流を通過させることになる。その結果、圧力変動が大きくなる。一方、発泡金属の厚さが2ミリメートル、オリフィス内径は1ミリメートルのように発泡金属の厚さがオリフィス内径より大きい場合は、図20の(b)の如く、蒸気泡を長さ方向に対して、流路は3次元的に構成されており、ストレートではなく複雑に折り曲がって形成されているために、十分に分割することができるため、より均質な気液二相冷媒をオリフィスに通過させることが可能となり、圧力変動を抑制させることが可能となる。このようにオリフィス近傍に設置する多孔質透過材の厚さはオリフィスの孔径以上の厚さとすることにより、確実にオリフィス孔径以下の蒸気泡を形成でき冷媒流動音を低減できる。   Next, the flow of the gas-liquid two-phase refrigerant in the throttle part of the present invention will be described. As shown in FIG. 19 (b), when the gas-liquid two-phase refrigerant separated into the liquid refrigerant and the vapor refrigerant passes through the first metal foam 30a, the vapor refrigerant is divided into small bubbles. Since the vapor refrigerant that has become small bubbles passes through the small holes 31 of the orifice plate 32 together with the liquid refrigerant, the gas-liquid two-phase refrigerant that passes through the small holes 31 is in a state where the gas and liquid are sufficiently mixed, and the pressure loss is reduced. No major fluctuations occur. For this reason, it is possible to prevent the generation of a discontinuous refrigerant flow sound that is audible, such as “jurujuru” and “bumpy”. Further, the gas-liquid two-phase jet flow having a large velocity and turbulence passing through the small hole 31 is decelerated and rectified when passing through the second foam metal 30b. For this reason, generation | occurrence | production of the continuous refrigerant | coolant flow sound used as an auditory sense, such as "shear", can be suppressed significantly. Thereby, generation | occurrence | production of a refrigerant | coolant flow noise can be reduced and a comfortable environment is realizable. Further, the thickness of the foam metal will be described with reference to FIG. When the foam metal thickness is 0.5 millimeters and the orifice inner diameter is 1 millimeter, such as when the orifice inner diameter is smaller than the foam metal thickness, as shown in FIG. Since it cannot be sufficiently divided and long bubbles are formed, a gas-liquid two-phase flow with a large amount of vapor refrigerant is passed through the orifice. As a result, pressure fluctuation increases. On the other hand, when the thickness of the foam metal is larger than the inner diameter of the orifice, such as the thickness of the foam metal is 2 millimeters and the inner diameter of the orifice is 1 millimeter, as shown in FIG. The flow path is three-dimensionally configured and is not bent straight but is bent in a complicated manner, so that it can be sufficiently divided, so that a more homogeneous gas-liquid two-phase refrigerant is passed through the orifice. It becomes possible to suppress pressure fluctuation. Thus, by setting the thickness of the porous permeable material near the orifice to be equal to or larger than the orifice diameter, vapor bubbles having an orifice diameter smaller than that can be formed reliably, and the refrigerant flow noise can be reduced.

なお、図6に示したこの構造の例では、2つの円柱状の発泡金属とオリフィス板32をそれぞれ隙間が生じないように密着して固定し、弁体24に内接した例について説明した。しかし、これに限ることはなく、図7に示すように、第1発泡金属30aとオリフィス板32の間、およびオリフィス板32と第2発泡金属30bの間に、1〜2ミリメートル程度の空間33a、33bを設けて固定してもよい。図8はこの図7に示した第1発泡金属30a、オリフィス板32、および第2発泡金属30bで構成される絞り手段を分解して示す斜視図であり、オリフィス板32の発泡金属と接する上面および下面には空間部33a、33bが設けられており、またオリフィス板32の中心部には1ミリメートル程度の小孔31が設けられている。   In the example of this structure shown in FIG. 6, the example in which two columnar foam metals and the orifice plate 32 are fixed in close contact with each other so as not to generate a gap and inscribed in the valve body 24 has been described. However, the present invention is not limited to this, and as shown in FIG. 7, a space 33a of about 1 to 2 millimeters is provided between the first foam metal 30a and the orifice plate 32 and between the orifice plate 32 and the second foam metal 30b. 33b may be provided and fixed. FIG. 8 is an exploded perspective view showing the diaphragm means composed of the first foam metal 30a, the orifice plate 32, and the second foam metal 30b shown in FIG. 7, and the upper surface of the orifice plate 32 in contact with the foam metal. Space portions 33a and 33b are provided on the lower surface, and a small hole 31 of about 1 millimeter is provided in the central portion of the orifice plate 32.

この図7および図8に示した第2流量制御弁6では、第1発泡金属30aとオリフィス板32の間に空間部33aを設けているので、第1発泡金属30aにより小さな気泡に分割された蒸気冷媒は、空間部33aに流入し、ここで空間部33aに滞留する液冷媒と混合される。このため、オリフィス板32の小孔31を通過する冷媒は、より確実に気液冷媒が混合された状態となり、「ジュルジュル」、「ボコボコ」といった聴感となる不連続な冷媒流動音の発生を確実に抑制することができる。また、オリフィス板32と第2発泡金属30bの間にも空間部33bを設けているので、第2発泡金属30bを通過する気液二相噴流の通過面積を大きくできる。このため、より確実に気液二相噴流の減速および整流が可能となり、「シャー」といった聴感となる連続的な冷媒流動音の発生を確実に抑制することができる。なお、図8に示した絞り手段は、第1発泡金属30aとオリフィス板32の間、およびオリフィス板32と第2発泡金属30bの間の両方に1〜2ミリメートル程度の空間を設ける例について説明したが、これに限ることはなく、第1発泡金属30aとオリフィス板32の間のみに空間部を設けてもよい。また、オリフィス板32と第2発泡金属30bの間のみに空間部を設けてもよい。   In the second flow rate control valve 6 shown in FIGS. 7 and 8, since the space portion 33a is provided between the first foam metal 30a and the orifice plate 32, it is divided into small bubbles by the first foam metal 30a. The vapor refrigerant flows into the space portion 33a and is mixed with the liquid refrigerant staying in the space portion 33a. For this reason, the refrigerant passing through the small hole 31 of the orifice plate 32 is more reliably mixed with the gas-liquid refrigerant, and the generation of a discontinuous refrigerant flow sound such as “jurugur” and “bumpy” is surely generated. Can be suppressed. Moreover, since the space 33b is also provided between the orifice plate 32 and the second foam metal 30b, the passage area of the gas-liquid two-phase jet passing through the second foam metal 30b can be increased. For this reason, the gas-liquid two-phase jet can be decelerated and rectified more reliably, and the generation of a continuous refrigerant flow noise such as “shear” can be reliably suppressed. The throttling means shown in FIG. 8 describes an example in which a space of about 1 to 2 millimeters is provided both between the first foam metal 30a and the orifice plate 32 and between the orifice plate 32 and the second foam metal 30b. However, the present invention is not limited to this, and a space may be provided only between the first foam metal 30a and the orifice plate 32. Moreover, you may provide a space part only between the orifice board 32 and the 2nd foam metal 30b.

このように、図6あるいは図7に示した構成の第2流量制御弁6では、弁体24の内部に貫通流路を設け、この貫通流路に絞り手段として、気孔径500マイクロメートル、空隙率95%の第1発泡金属30aと、直径1mmの小孔31を設けたオリフィス板32、および気孔径500マイクロメートル、空隙率95%の第2発泡金属30bが流れに直列に設けられているので、小孔31に流入する気液二相冷媒を確実に混合することで、また小孔31から流出する気液二相噴流を確実に減速および整流することで、冷媒流動音の発生を低減でき、静かな除湿運転が可能となる。   As described above, in the second flow rate control valve 6 having the configuration shown in FIG. 6 or FIG. 7, a through passage is provided in the valve body 24, and a pore diameter of 500 μm, a gap is provided as a throttling means in the through passage. A first foam metal 30a having a 95% rate, an orifice plate 32 having a small hole 31 having a diameter of 1 mm, and a second foam metal 30b having a pore diameter of 500 micrometers and a porosity of 95% are provided in series with the flow. Therefore, generation of refrigerant flow noise is reduced by reliably mixing the gas-liquid two-phase refrigerant flowing into the small holes 31 and by reliably decelerating and rectifying the gas-liquid two-phase jet flowing out from the small holes 31. And quiet dehumidification operation is possible.

また、図2の構造のようなものでは、除湿運転時の絞り手段として、発泡金属30の通気孔によって循環する冷媒を減圧していたので、発泡金属30の気孔径をそれほど大きくすることができなかった。これに対し、オリフィスを多孔質透過材とは別に設けた除湿運転時の絞り手段としては、第1発泡金属30aと小孔31および第2発泡金属30bを備えているので、小孔31の径を0.5から1.0ミリメートルとして、この小孔31を通過する際に生じる圧力損失を大きくすることにより、第1発泡金属30aおよび第2発泡金属30bの気孔径を500マイクロメートル程度に大きくできる。このため、冷凍サイクル内を冷媒と共に循環する鉄や銅などの金属紛や冷凍機油の劣化物であるスラッジなどの固形異物が発泡金属30a、30bの内部に捕捉されて堆積するのを防止でき、長期的にも信頼性を向上することができる。   In the structure of FIG. 2, since the refrigerant circulating through the vent hole of the foam metal 30 is decompressed as a throttling means during the dehumidifying operation, the pore diameter of the foam metal 30 can be made so large. There wasn't. On the other hand, as the throttling means in the dehumidifying operation in which the orifice is provided separately from the porous permeable material, the first foam metal 30a, the small hole 31 and the second foam metal 30b are provided. Is set to 0.5 to 1.0 mm, and the pressure loss generated when passing through the small hole 31 is increased to increase the pore diameter of the first foam metal 30a and the second foam metal 30b to about 500 micrometers. it can. Therefore, it is possible to prevent solid foreign matters such as metal powder such as iron and copper circulating in the refrigeration cycle together with the refrigerant and sludge that is a deteriorated product of the refrigeration oil from being trapped and deposited inside the foam metal 30a, 30b, Reliability can be improved in the long term.

また、第1発泡金属30aおよび第2発泡金属30bの気孔径や空隙率を同一仕様のものを用いる例で説明したが、これに限ることはなく、気孔径や空隙率の異なる発泡金属を使用してもよい。例えば第1発泡金属30aの気孔径を500マイクロメートル、第2発泡金属30bの気孔径を100マイクロメートルとし、上流側の発泡金属の気孔径を下流側の発泡金属よりも大きくすることにより、比較的直径の大きな固形異物は上流側の発泡金属30aに捕捉され、比較的直径の小さな固形異物は下流側の発泡金属30bに捕捉される。このように、発泡金属30a、30bの内部に固形異物が堆積する個所を分散できるため、万一、通気孔に固形異物があたって発泡金属内部に堆積しても、発泡金属30a、30bの流動抵抗変化を小さくすることができる。   Moreover, although the pore diameter and the porosity of the first foam metal 30a and the second foam metal 30b have been described by using the same specification, the present invention is not limited to this, and foam metals having different pore diameters and porosity are used. May be. For example, the first foam metal 30a has a pore diameter of 500 micrometers, the second foam metal 30b has a pore diameter of 100 micrometers, and the upstream foam metal has a pore diameter larger than that of the downstream foam metal. Solid foreign matters having a large target diameter are captured by the upstream metal foam 30a, and solid foreign materials having a relatively small diameter are captured by the downstream metal foam 30b. In this way, the location where the solid foreign matter accumulates inside the foam metal 30a, 30b can be dispersed. Therefore, even if the solid foreign matter hits the vent and deposits inside the foam metal, the flow of the foam metal 30a, 30b Resistance change can be reduced.

また、ここでは小孔31の上流側及び下流側に発泡金属30a、30bを設けたが、どちらか一方に発泡金属を備えた構成でもよい。この場合には、発泡金属を備えていない場合に比べて冷媒流動音を低減することができる。また、小孔31を流路の中央部に1つ備えたものを示したが、複数の小孔を流路に並列に設けてもよい。この場合には、オリフィス板32に複数の小孔を設けておくことで、簡単に製造できる。   Moreover, although the foam metal 30a, 30b was provided in the upstream and downstream of the small hole 31 here, the structure provided with the foam metal in either one may be sufficient. In this case, the refrigerant flow noise can be reduced compared to the case where no foam metal is provided. Moreover, although the thing provided with one small hole 31 in the center part of the flow path was shown, you may provide a some small hole in parallel with a flow path. In this case, the orifice plate 32 can be easily manufactured by providing a plurality of small holes.

また、小孔31の上流側に発泡金属30aを備えた構成の場合、図5に示した発泡金属30と同様、発泡金属30aの上流側の面形状を、流路に垂直な平面とした時の面積よりも大きな面積になるように構成してもよい。例えばこの面を円錐形、波形、山形等で構成して流体の通過面積を大きくすることで、発泡金属30の上流側で固形異物が堆積する箇所を分散できる。万一、固形異物が発泡金属30a上流側に堆積しても、発泡金属30aでの流動抵抗変化を小さくすることができ、信頼性の高い流量制御弁を得ることができる。   Further, in the case of the configuration provided with the foam metal 30a on the upstream side of the small hole 31, when the surface shape on the upstream side of the foam metal 30a is a plane perpendicular to the flow path, like the foam metal 30 shown in FIG. You may comprise so that it may become an area larger than this area. For example, by forming this surface in a conical shape, a corrugated shape, a chevron shape, etc., and increasing the passage area of the fluid, it is possible to disperse the places where solid foreign substances accumulate on the upstream side of the foam metal 30. Even if solid foreign matter accumulates on the upstream side of the foam metal 30a, the flow resistance change in the foam metal 30a can be reduced, and a highly reliable flow control valve can be obtained.

図9は、この発明の別の第2流量制御弁6を示す断面図で、図2に示したものと同一または同様の構成部品には同一符号を付して、その重複する説明を省略する。図において、34は、弁座23と多孔質透過材である発泡金属30を保持する弁座ブロック、35、36は弁室26と第2流路22を接続する第1、第2の開口である。37は第1の開口35と第2の開口36とを接続する貫通孔、38は弁座ブロック34の弁座23が設けられていない底面部と第2の開口36が設けられた弁室26の壁面との間に設けた空間である。   FIG. 9 is a sectional view showing another second flow control valve 6 of the present invention. The same or similar components as those shown in FIG. . In the figure, 34 is a valve seat block that holds the valve seat 23 and the foamed metal 30 that is a porous permeable material, and 35 and 36 are first and second openings that connect the valve chamber 26 and the second flow path 22. is there. 37 is a through hole connecting the first opening 35 and the second opening 36, 38 is a bottom surface portion of the valve seat block 34 where the valve seat 23 is not provided, and the valve chamber 26 where the second opening 36 is provided. It is the space provided between the walls.

円筒形状の弁座ブロック34には底面部間を貫通して、第1、第2流路21、22と同程度の径の貫通孔37が設けられ、一方の底面部の貫通孔37の開口が第1の開口35となり、その第1の開口35に弁座23が、例えば弁座ブロック34と一体に設けられている。また、弁座23の周囲に発泡金属30が環状に固定される。発泡金属30は、例えば気孔径が100マイクロメートル、空隙率が97%である。発泡金属30の内周側と外周側の弁座ブロック34は、例えばどちらか一方の底面部における半径方向の数カ所で、発泡金属30を通過する流体の流れをさえぎらないように結合され、一体に構成されている。   The cylindrical valve seat block 34 is provided with a through hole 37 having a diameter similar to that of the first and second flow paths 21 and 22 through the bottom surface portion. The opening of the through hole 37 on one bottom surface portion is provided. Becomes the first opening 35, and the valve seat 23 is provided in the first opening 35 integrally with the valve seat block 34, for example. Further, the foam metal 30 is fixed in an annular shape around the valve seat 23. The metal foam 30 has, for example, a pore diameter of 100 micrometers and a porosity of 97%. The valve seat blocks 34 on the inner peripheral side and the outer peripheral side of the metal foam 30 are coupled so as not to interrupt the flow of fluid passing through the metal foam 30 at, for example, several radial positions on one bottom surface. It is configured.

通常冷房運転時には、制御機構(図示せず)によって電磁コイル25に非通電とすることにより、バネ27のバネ力により弁体24を上方に稼動し、弁体24を弁座23から引き離す。図9(a)に示すように、このとき弁座23の第1の開口35は開となり、第1流路21から流入した液冷媒又は気液二相冷媒である流体のほとんどが第1の開口35、貫通孔37を通過して第2の流路22に流れ、第1、第2流路21、22間はほとんど圧力損失なしに連通される。このため、第1室内熱交換器5と第2室内熱交換器7の間で圧力損失はなく、冷房能力や効率面で低下することもない。   During normal cooling operation, the electromagnetic coil 25 is de-energized by a control mechanism (not shown), so that the valve body 24 is operated upward by the spring force of the spring 27 and the valve body 24 is pulled away from the valve seat 23. As shown in FIG. 9A, at this time, the first opening 35 of the valve seat 23 is opened, and most of the fluid that is liquid refrigerant or gas-liquid two-phase refrigerant flowing from the first flow path 21 is the first. It flows through the opening 35 and the through-hole 37 to the second flow path 22, and the first and second flow paths 21 and 22 are communicated with almost no pressure loss. For this reason, there is no pressure loss between the 1st indoor heat exchanger 5 and the 2nd indoor heat exchanger 7, and it does not fall in terms of cooling capacity or efficiency.

また冷房除湿運転時には、制御機構(図示せず)によって電磁コイル25に通電することにより、バネ力よりも電磁力の方が大きいため、弁体24を下方へ稼動し、弁体24を弁座23に密着させる。このとき第1の開口35は閉となり、図9(b)に示すように、第1の開口35の周囲に第1の開口35を迂回して、発泡金属30を通って第2の開口36から第2流路22に流れる迂回流路を構成する。このとき気液二相冷媒は発泡金属30の通気孔を通ることで減圧されると共に、均質化されるので、冷媒流動音は低減される。また、発泡金属30の気孔径を、冷凍サイクルに通常設けられている濾過手段の大きさである100マイクロメートル以上とすることで、冷凍サイクル内を冷媒と共に循環する鉄や銅などの金属紛や冷凍機油の劣化物であるスラッジなどの固形異物が発泡金属30の内部に捕捉されて堆積することなく、長期的に信頼性の高い流量制御弁を実現できる。   Also, during the cooling and dehumidifying operation, the electromagnetic coil 25 is energized by a control mechanism (not shown) so that the electromagnetic force is greater than the spring force, so that the valve body 24 is operated downward, and the valve body 24 is moved to the valve seat. 23. At this time, the first opening 35 is closed, and as shown in FIG. 9B, the first opening 35 is bypassed around the first opening 35, passes through the foam metal 30, and the second opening 36. To the second flow path 22 is formed. At this time, the gas-liquid two-phase refrigerant is decompressed and homogenized by passing through the vent hole of the foam metal 30, so that the refrigerant flow noise is reduced. Further, by setting the pore diameter of the foam metal 30 to 100 micrometers or more, which is the size of the filtering means usually provided in the refrigeration cycle, metal powder such as iron and copper circulating with the refrigerant in the refrigeration cycle A solid foreign substance such as sludge, which is a deteriorated product of refrigerating machine oil, is not trapped and deposited inside the foam metal 30, and a highly reliable flow control valve can be realized in the long term.

さらに、この第2流量制御弁6の構成では、先に示した弁体24内部に貫通流路を設け、この貫通流路内に発泡金属30を内設したものに比べ、発泡金属30表面積の大きくできる。このため、より冷媒流動音の低減効果が高い。また、発泡金属30の表面積の大きくできることで、万一スラッジなどの固形異物が発泡金属30内部に捕捉され堆積しても、発泡金属30の圧力損失の増加を抑制することができ、信頼性をより向上できる。   Further, in the configuration of the second flow rate control valve 6, the surface area of the foam metal 30 is larger than that in which the through-flow path is provided in the valve body 24 and the foam metal 30 is provided in the through-flow path. Can be big. For this reason, the effect of reducing refrigerant flow noise is higher. In addition, since the surface area of the metal foam 30 can be increased, even if solid foreign matters such as sludge are trapped and deposited inside the metal foam 30, an increase in pressure loss of the metal foam 30 can be suppressed, and reliability can be improved. It can be improved.

また、弁座ブロック34の下流側底面は空間38を介して第2の開口36に接続されている。発泡金属30の下流側に空間があることで、発泡金属30から第2の開口36へ流体がスムーズに流れ、さらに発泡金属30内を流体が均一に流れるように作用している。なお、この空間38に発泡金属30を弁座ブロック34から突出させてもよい。この場合には、環状の発泡金属30の内周側面より冷媒が第2の開口36、第2流路22へ流出する。発泡金属30を通過した気液二相噴流は、発泡金属30内部の通気孔を通過することで減速され、さらに整流されるが、まだある程度の流速を持った噴流状態となっている。この噴流が弁本体の外壁などに衝突すると、外壁が振動し、騒音の発生源となる場合がある。そこで、発泡金属30を通過した冷媒を、環状の発泡金属30の内周側面よりその内側に流出させることで、流体が第2弁本体の外壁などに衝突するのを低減でき、より一層冷媒流動音の発生を抑制し、低騒音な除湿運転が実現できる。   The downstream bottom surface of the valve seat block 34 is connected to the second opening 36 through a space 38. Since there is a space on the downstream side of the foam metal 30, the fluid flows smoothly from the foam metal 30 to the second opening 36, and further, the fluid acts uniformly in the foam metal 30. Note that the foam metal 30 may protrude from the valve seat block 34 into the space 38. In this case, the refrigerant flows out from the inner peripheral side surface of the annular metal foam 30 to the second opening 36 and the second flow path 22. The gas-liquid two-phase jet that has passed through the foam metal 30 is decelerated and further rectified by passing through the vent hole inside the foam metal 30, but is still in a jet state having a certain flow velocity. When this jet collides with the outer wall of the valve body, the outer wall may vibrate and become a noise source. Therefore, by causing the refrigerant that has passed through the foam metal 30 to flow from the inner peripheral side surface of the annular foam metal 30 to the inside thereof, it is possible to reduce the collision of the fluid with the outer wall of the second valve body, and the refrigerant flow further. Noise generation is suppressed, and low noise dehumidifying operation can be realized.

なお、図9に示したこの例では、1つの環状の発泡金属30を弁座ブロック34内部に配設した例について説明したが、これに限るものではない。例えば、図10に示すように2つの気孔径が異なる円柱状の発泡金属30a、30bを弁座ブロック34の内部に、流路に直列に並設してもよい。図10では気孔径が200マイクロメートルの発泡金属30aを上流側に設け、気孔径が100マイクロメートルの発泡金属30bを下流側に設けている。このように上流側の発泡金属30aの気孔径を下流側の発泡金属30bよりも大きくすることにより、100マイクロメートルから200マイクロメートルの比較的直径の大きな固形異物は下流側の発泡金属30bに捕捉され、100マイクロメートル以下の比較的直径の小さな固形異物は上流側の発泡金属30aに捕捉される。このように、発泡金属30a、30bの内部に固形異物が堆積する個所を分散できるため、万一、固形異物が発泡金属30a、30bの内部に堆積しても、発泡金属30a、30bの流動抵抗変化を小さくすることができる。   In the example shown in FIG. 9, the example in which one annular foam metal 30 is disposed inside the valve seat block 34 has been described, but the present invention is not limited to this. For example, as shown in FIG. 10, two cylindrical foam metals 30 a and 30 b having different pore diameters may be arranged in series in the flow path inside the valve seat block 34. In FIG. 10, a foam metal 30a having a pore diameter of 200 micrometers is provided on the upstream side, and a foam metal 30b having a pore diameter of 100 micrometers is provided on the downstream side. Thus, by making the pore diameter of the foam metal 30a on the upstream side larger than that of the foam metal 30b on the downstream side, a solid foreign substance having a relatively large diameter of 100 to 200 micrometers is captured by the foam metal 30b on the downstream side. The solid foreign matter having a relatively small diameter of 100 micrometers or less is captured by the foam metal 30a on the upstream side. As described above, since the places where the solid foreign matters are deposited inside the foamed metals 30a and 30b can be dispersed, even if the solid foreign matters are deposited inside the foamed metals 30a and 30b, the flow resistance of the foamed metals 30a and 30b Change can be reduced.

また、図11はこの例の第2流量制御弁6の他の構成例を示す断面図であり、弁室26内部に設けた発泡金属30の上流側の断面形状を山形状としている。この構成では、図9に示したような流路に垂直な平面形状の発泡金属30としたときよりも、冷媒が流れる発泡金属30の上流側の通過面積を大きくできる。このため、発泡金属30の上流側に固形異物が堆積する個所が分散できる。万一、固形異物が発泡金属30の上流側に堆積しても、発泡金属30の流動抵抗変化を低減することができ、異物詰りに対してより信頼性の高い流量制御弁を得ることができる。   FIG. 11 is a cross-sectional view showing another configuration example of the second flow control valve 6 of this example, and the upstream cross-sectional shape of the foam metal 30 provided in the valve chamber 26 is a mountain shape. In this configuration, the passage area on the upstream side of the foam metal 30 through which the refrigerant flows can be made larger than when the foam metal 30 has a planar shape perpendicular to the flow path as shown in FIG. For this reason, the location where a solid foreign material accumulates on the upstream side of the foam metal 30 can be dispersed. Even if solid foreign matter accumulates on the upstream side of the foam metal 30, the flow resistance change of the foam metal 30 can be reduced, and a more reliable flow control valve can be obtained against foreign matter clogging. .

なお、発泡金属30の上流側の面形状は、1つの山形状に限るものではなく、例えば、1つまたは複数の波形の面や、傾斜した平面、複数の凹凸が形成された面、球表面の一部の面で構成しても、水平な平面にするよりも通過面積を大きくできる。いずれの形状に構成しても、図9における発泡金属30の形状に比べ、冷媒が流れる発泡金属30の上流側の通過面積を大きくでき、発泡金属30の上流側に固形異物が堆積する個所が分散できる。ただし、流体がスムーズに流れる形状にするのが望ましい。   In addition, the surface shape of the upstream side of the foam metal 30 is not limited to one mountain shape. Even if it is constituted by a part of the surface, the passage area can be made larger than a horizontal plane. Regardless of the shape, the passage area on the upstream side of the foam metal 30 through which the refrigerant flows can be increased compared to the shape of the foam metal 30 in FIG. Can be distributed. However, it is desirable that the fluid flow smoothly.

また、この例では、弁座ブロック34を設けて、弁座23の周囲に発泡金属30を備えた構成としたが、これに限るものではなく、第1流路21の位置によっては、弁室26内で弁体24の周囲に設けてもよい。弁体24で開閉する開口、ここでは第1の開口23を閉じた時に、第1流路21からその開口を迂回して第2流路22へ流れる迂回流路を構成し、この迂回流路を流れる気液二相冷媒が通過するように発泡金属の位置を決めればよい。   In this example, the valve seat block 34 is provided and the foam metal 30 is provided around the valve seat 23. However, the present invention is not limited to this, and depending on the position of the first flow path 21, the valve chamber 26 may be provided around the valve body 24. An opening that opens and closes by the valve body 24, here, when the first opening 23 is closed, a bypass channel that bypasses the opening from the first channel 21 and flows to the second channel 22 is configured, and this bypass channel What is necessary is just to determine the position of a metal foam so that the gas-liquid two-phase refrigerant | coolant which flows through may pass.

また、弁座ブロック34で弁座23と発泡金属30を保持するので、第2流量制御弁6が製造しやすい。例えば円筒形状の底面間に貫通するように、弁室が接続する第1、第2流路21、22と同程度の径で一端が弁座23となる貫通孔37を有する弁座ブロック34を形成する。次に、弁座23の周囲に環状の発泡金属30を固定する。次に、発泡金属30が固定された弁座ブロック34を弁室26内に挿設した後、第1流路21と第2流路22を接続するように弁室26を密閉する。このように、弁座23と発泡金属30を同時に形成でき、簡単に組み立てることができる。弁座ブロック34内への発泡金属30の固定方法や、弁室26内の弁座ブロック34の固定方法は、それぞれ圧入やロー付けや高周波溶接など、確実に固定できる加工法ならば、どのような方法を用いてもよい。   Further, since the valve seat 23 and the foam metal 30 are held by the valve seat block 34, the second flow control valve 6 is easy to manufacture. For example, a valve seat block 34 having a diameter approximately the same as the first and second flow paths 21 and 22 to which the valve chambers are connected and having a through hole 37 with one end serving as the valve seat 23 so as to penetrate between the cylindrical bottom surfaces. Form. Next, an annular foam metal 30 is fixed around the valve seat 23. Next, after the valve seat block 34 to which the foam metal 30 is fixed is inserted into the valve chamber 26, the valve chamber 26 is sealed so as to connect the first flow path 21 and the second flow path 22. Thus, the valve seat 23 and the foam metal 30 can be formed simultaneously, and can be easily assembled. As for the method for fixing the metal foam 30 in the valve seat block 34 and the method for fixing the valve seat block 34 in the valve chamber 26, any method can be used as long as it can be fixed securely, such as press-fitting, brazing or high-frequency welding. Various methods may be used.

図21はこの発明の別の第2流量制御弁6を示す断面図で、図7に示したものと同一または同様の構成部品には同一符号を付して、その重複する説明を省略する。図22において、40は弁室26には位置された円筒状の多孔質透過材であり、気孔径700マイクロメートル、空隙率95パーセントの発泡金属で構成されている。また図7と同様に第1多孔質透過材、例えば気孔径500マイクロメートル、空隙率95パーセントの第1発泡金属30aと、第2多孔質透過材、例えば気孔径500マイクロメートル、空隙率95パーセントの第2発泡金属30bが、弁体24内の貫通流路を構成する空洞部29に内設されている。またオリフィス板32の中央部には例えば直径1ミリメートル程度の小孔31で構成されるオリフィス部が設けられている。第1発泡金属30a、小孔31、第2発泡金属30bが流路に直列に併設されて絞り手段を形成し、弁体24内の貫通流路を流通する冷媒を減圧する。   FIG. 21 is a cross-sectional view showing another second flow rate control valve 6 of the present invention. The same or similar components as those shown in FIG. In FIG. 22, reference numeral 40 denotes a cylindrical porous permeable material positioned in the valve chamber 26, and is made of a foam metal having a pore diameter of 700 micrometers and a porosity of 95%. Similarly to FIG. 7, the first porous permeable material, for example, a first foamed metal 30a having a pore diameter of 500 micrometers and a porosity of 95%, and the second porous permeable material, for example, a pore diameter of 500 micrometers, and a porosity of 95%. The second foam metal 30b is provided in a hollow portion 29 constituting a through flow passage in the valve body 24. In addition, an orifice portion constituted by a small hole 31 having a diameter of about 1 millimeter, for example, is provided in the central portion of the orifice plate 32. The first foam metal 30a, the small hole 31, and the second foam metal 30b are provided in series with the flow path to form a throttle means, and the refrigerant flowing through the through flow path in the valve body 24 is decompressed.

冷房除湿運転時には電磁コイル25に通電することにより、バネ力よりも電磁力の方が大きいため、弁体24を下方へ稼動し、弁体24を弁座23に密着させる。この時開口は閉となり、第1室内熱交換器5を出た気液2相冷媒は第1流路21から弁室26に流入し、図21に示すように円筒状の発泡金属40を通過し、貫通孔28を通って弁体24内の貫通流路に流れ、弁体24の内部に設けた第1発泡金属30aの通気孔、オリフィス板32の小孔31、及び第2発泡金属30bの通気孔の順に流通してこの絞り手段により冷媒が減圧され、弁座23の開口から第2流路22へ流出して第2室内熱交換器7に流入する。この構造では第1流路21から弁室26に流入した気液2相冷媒の蒸気は、先ず円筒状の多孔質透過材40の通気孔を通過する際に細分化され、気液が混合された状態で弁体24の内部に設けた第1発泡金属30aの通気孔に流入する。このためオリフィス板32の小孔31に流入する気液2相冷媒は図7の構造のものより気相と液相の混合が一層促進され、より均一の状態となるため、圧力損失の大きな変動も発生せず耳障りな異常な音や不連続な冷媒流動音が生ずるのを防止できる。   By energizing the electromagnetic coil 25 during the cooling and dehumidifying operation, the electromagnetic force is greater than the spring force, so that the valve body 24 is operated downward and the valve body 24 is brought into close contact with the valve seat 23. At this time, the opening is closed, and the gas-liquid two-phase refrigerant exiting the first indoor heat exchanger 5 flows into the valve chamber 26 from the first flow path 21 and passes through the cylindrical foam metal 40 as shown in FIG. Then, the gas flows through the through hole 28 to the through flow passage in the valve body 24, and the air hole of the first foam metal 30a provided in the valve body 24, the small hole 31 of the orifice plate 32, and the second foam metal 30b. The refrigerant is depressurized by this throttling means, flows out from the opening of the valve seat 23 to the second flow path 22 and flows into the second indoor heat exchanger 7. In this structure, the vapor of the gas-liquid two-phase refrigerant flowing into the valve chamber 26 from the first flow path 21 is first subdivided when passing through the vent of the cylindrical porous permeable material 40, and the gas-liquid is mixed. In this state, the air flows into the vent hole of the first metal foam 30a provided inside the valve body 24. For this reason, the gas-liquid two-phase refrigerant flowing into the small hole 31 of the orifice plate 32 is further promoted in the mixing of the gas phase and the liquid phase than the structure of FIG. Therefore, it is possible to prevent annoying abnormal noise and discontinuous refrigerant flow noise.

この構造では弁室26内に設けた円筒状の多孔質透過材40の空隙率は95パーセントの空隙率の大きなものをもちいているので、万一冷凍サイクル内を冷媒と共に循環する固形異物が円筒状の多孔質透過材40の内部に捕捉し堆積したとしても流動抵抗変化を小さく出来、冷媒流動音低減の効果が安定的に発揮できると共に、長期的にも信頼性の高い流量制御弁が得られる。更にこの構造では円筒状の多孔質透過材40の気孔径を700マイクロメートル、弁体24内の貫通流路を構成する空洞部29に内設した第1多孔質透過材である第1発泡金属30aの気孔径を500マイクロメートルとしているので、およそ700マイクロメートル以上の比較的大きな固形異物は弁室26内に設けた円筒状発泡金属の多孔質透過材40に捕捉され、これよりる小さな固形異物は下流側の第1発泡金属30aに捕捉される。このように弁体24内に設けた発泡金属30aの上流に気孔径の大きな円筒状発泡金属40を設置することにより、発泡金属の内部に固形異物が堆積する個所を分散できるため、冷媒音低減の効果が長期的、安定的に維持できる。また万一固形異物が発泡金属内に堆積しても流動抵抗変化を小さくすることが出来、長期的に信頼性が高い、いいかえれば寿命の長い流量制御弁が得られ、すなわち信頼性の高い冷凍空調装置が得られる。   In this structure, since the porosity of the cylindrical porous permeable material 40 provided in the valve chamber 26 is 95%, the solid foreign matter circulating in the refrigeration cycle together with the refrigerant is cylindrical. The flow resistance change can be reduced even if trapped and deposited inside the porous porous permeable material 40, the effect of reducing refrigerant flow noise can be stably exhibited, and a highly reliable flow control valve can be obtained over the long term. It is done. Further, in this structure, the first porous metal which is the first porous permeable material provided in the hollow portion 29 constituting the through passage in the valve body 24 with the pore diameter of the cylindrical porous permeable material 40 being 700 micrometers. Since the pore diameter of 30a is 500 micrometers, relatively large solid foreign matters of about 700 micrometers or more are trapped by the cylindrical metal foam porous permeable material 40 provided in the valve chamber 26, and solids smaller than this are captured. The foreign matter is captured by the first metal foam 30a on the downstream side. In this way, by installing the cylindrical foam metal 40 having a large pore diameter upstream of the foam metal 30a provided in the valve body 24, it is possible to disperse the places where solid foreign substances accumulate inside the foam metal, thereby reducing the refrigerant noise. Can be maintained stably over the long term. In addition, even if solid foreign matter accumulates in the foam metal, the flow resistance change can be reduced, and a long-term reliable flow rate control valve can be obtained, that is, a highly reliable refrigeration. An air conditioner is obtained.

またこの構造では弁室26内に設けた多孔質透過材40として円筒状の発泡金属を用い、また弁体24内に設けた多孔質透過材30a、30bとして円盤状の発泡金属を用いているので、弁を大きくせずに円筒状の発泡金属40の冷媒通過面積を円盤状の多孔質透過材30a、30bの冷媒通過面積より大きくすることが出来る。冷媒回路内を流れる固形異物は、冷房除湿運転時に冷媒流方向の上流となる円筒状の発泡金属40に堆積しやすいが、この円筒状の発泡金属40の冷媒通過面積を下流側より大きくしているので固形異物が下流側の円盤状の多孔質透過材30a、30bに堆積するのを抑制でき、冷媒音の低減と固形異物詰まりに対する信頼性の両立が一層向上する。   In this structure, a cylindrical foam metal is used as the porous permeable material 40 provided in the valve chamber 26, and a disk-shaped foam metal is used as the porous permeable materials 30a and 30b provided in the valve body 24. Therefore, the refrigerant passage area of the cylindrical foam metal 40 can be made larger than the refrigerant passage areas of the disk-shaped porous permeators 30a and 30b without enlarging the valve. Solid foreign substances flowing in the refrigerant circuit are likely to accumulate on the cylindrical foam metal 40 upstream in the refrigerant flow direction during the cooling and dehumidifying operation. However, the refrigerant passage area of the cylindrical foam metal 40 is made larger than the downstream side. Therefore, it is possible to suppress the solid foreign matter from accumulating on the downstream disk-shaped porous transmission materials 30a and 30b, and the compatibility between the reduction of the refrigerant sound and the reliability against the solid foreign matter clogging is further improved.

なおこの構造では弁室26内に設けた多孔質透過材40及び弁室24内の貫通流路を構成する空洞部29に内設した多孔質透過材30a、30bとして発泡金属を用いた例を説明したが、これに限るものでなく、金属細線を3次元的に編み込んだ金属メッシュなどを用いても同様な効果を低いコストで発揮することが出来る。この金属メッシュの場合には、発泡金属よりも内部の気孔径の大きさのばらつきは大きくなるが、この気孔径の平均値が100マイクロメートル以上、好ましくは500マイクロメートル程度に設計し、更にメッシュ内部の空隙率を50パーセント以上、好ましくは70パーセント以上とすることにより冷媒流動音の低減とスラッジなどの固形異物詰まりに対する信頼性確保を両立することが出来る。また金属線を3次元的に編み込んだメッシュ以外でも、金属細線を3次元的に不規則に絡め合わせたものなどでも同様な効果を発揮する。   In this structure, an example in which foam metal is used as the porous permeation material 40 provided in the valve chamber 26 and the porous permeation materials 30a and 30b provided in the hollow portion 29 constituting the through flow passage in the valve chamber 24 is used. Although described, the present invention is not limited to this, and the same effect can be exhibited at a low cost by using a metal mesh or the like in which metal fine wires are three-dimensionally knitted. In the case of this metal mesh, the variation in the internal pore diameter is larger than that of the foam metal, but the average pore diameter is designed to be 100 micrometers or more, preferably about 500 micrometers. By setting the internal porosity to 50% or more, preferably 70% or more, it is possible to achieve both reduction of refrigerant flow noise and ensuring of reliability against clogging of solid foreign matters such as sludge. The same effect can be achieved with a mesh other than a mesh in which metal wires are knitted three-dimensionally, or with a metal wire entangled irregularly in three dimensions.

またこの構造では通常の冷房運転や暖房運転では、弁体24と弁室26に流入した冷媒は発泡金属30a、30bを通過しないが、円筒状発泡金属40は必ず通過する。このため円筒状発泡金属40は、通常の冷房運転や暖房運転では、冷媒回路内を冷媒と共に循環する固形異物を捕捉する濾過フィルターとして作用し、冷凍サイクルの回路閉塞に対する信頼性を向上させることが出来る。この時円筒状発泡金属40を通過する冷媒流方向は冷房運転と暖房運転では逆になる。すなわち通常冷房運転では、第1流路21、円筒状発泡金属40、第2流路22の順で冷媒は流れ、通常暖房運転では、第2流路22、円筒状発泡金属40、第1流路21の順で冷媒は流れる。このため例えば通常冷房運転では固形異物は円筒状発泡金属40の外周面側表面に堆積しやすいが、運転が通常暖房運転に切り替わることにより、この円筒状発泡金属40の外周面側に堆積した固形異物は第1流路へ流出する。同様に通常暖房運転では固形異物は円筒状発泡金属40の内周面側表面に堆積しやすいが、運転が通常冷房運転に切り替わることにより、この円筒状発泡金属40に堆積した固形異物は第1流路へ流出する。このように弁室26に設けた円筒状発泡金属40は、通常暖房運転及び通常暖房運転時には、冷媒回路内を冷媒と共に循環する固形異物を捕捉する濾過フィルターとして作用させることが出来ると共に、通常冷房運転と通常暖房運転の切換えにより円筒状発泡金属40の表面に堆積した固形異物を離脱させるため円筒状発泡金属40の流動抵抗を過度に増加することを防止でき、長期的にも信頼性の高いものにすることが出来る。   In this structure, in normal cooling operation or heating operation, the refrigerant flowing into the valve body 24 and the valve chamber 26 does not pass through the foamed metals 30a and 30b, but the cylindrical foamed metal 40 necessarily passes through. For this reason, the cylindrical metal foam 40 acts as a filtration filter for capturing solid foreign matters circulating in the refrigerant circuit together with the refrigerant in the normal cooling operation or heating operation, and can improve the reliability against the circuit blockage of the refrigeration cycle. I can do it. At this time, the flow direction of the refrigerant passing through the cylindrical metal foam 40 is reversed between the cooling operation and the heating operation. That is, in the normal cooling operation, the refrigerant flows in the order of the first flow path 21, the cylindrical foam metal 40, and the second flow path 22, and in the normal heating operation, the second flow path 22, the cylindrical foam metal 40, and the first flow. The refrigerant flows in the order of the path 21. For this reason, for example, in the normal cooling operation, solid foreign matters are likely to accumulate on the outer peripheral surface side surface of the cylindrical foam metal 40, but the solid deposited on the outer peripheral surface side of the cylindrical foam metal 40 by switching to the normal heating operation. The foreign matter flows out to the first flow path. Similarly, in the normal heating operation, solid foreign matters are likely to be deposited on the inner peripheral surface of the cylindrical foam metal 40. However, when the operation is switched to the normal cooling operation, the solid foreign matters deposited on the cylindrical foam metal 40 are the first. It flows out to the flow path. In this way, the cylindrical metal foam 40 provided in the valve chamber 26 can act as a filter for capturing solid foreign substances circulating in the refrigerant circuit together with the refrigerant in the normal heating operation and the normal heating operation, and is normally cooled. By switching between operation and normal heating operation, solid foreign substances accumulated on the surface of the cylindrical metal foam 40 are released, so that it is possible to prevent the flow resistance of the cylindrical metal foam 40 from being excessively increased and highly reliable over the long term. Can be made.

図12は、この発明の構造による別の第2流量制御弁6を示す断面図であり、図9に示したものと同一または同様の構成部品には同一符号を付して、その重複する説明を省略する。図9では迂回流路に発泡金属30を設けて絞り手段としたが、この構造では、発泡金属を設けると共に確実に流体を減圧するオリフィス部となる小孔31を迂回流路に設けたものである。弁座ブロック34の内部には、例えば気孔径500マイクロメートル、空隙率95%の第1発泡金属30aと、例えば気孔径500マイクロメートル、空隙率95%の第2発泡金属30bが嵌合されている。また第1発泡金属30aと第2発泡金属30bの間には、直径0.5ミリメートル程度の小孔31が2個設けられている。   FIG. 12 is a cross-sectional view showing another second flow control valve 6 according to the structure of the present invention. The same or similar components as those shown in FIG. Is omitted. In FIG. 9, the metal foam 30 is provided in the bypass channel and used as the throttle means. is there. In the valve seat block 34, for example, a first foam metal 30a having a pore diameter of 500 micrometers and a porosity of 95% and a second foam metal 30b having a pore diameter of 500 micrometers and a porosity of 95% are fitted. Yes. Two small holes 31 having a diameter of about 0.5 millimeters are provided between the first foam metal 30a and the second foam metal 30b.

通常冷房運転時には、制御機構(図示せず)によって電磁コイル25に非通電とすることにより、バネ27のバネ力により弁体24を上方に稼動し、弁体24を弁座23から引き離す。このとき弁座23の第1の開口35は開となり、第1流路21から流入した液冷媒又は気液二相冷媒である流体のほとんどが第1の開口35、貫通孔37を通過して第2の流路22に流れ、第1、第2流路21、22間はほとんど圧力損失なしに連通される。このため、第1室内熱交換器5と第2室内熱交換器7の間で圧力損失はなく、冷房能力や効率面で低下することもない。   During normal cooling operation, the electromagnetic coil 25 is de-energized by a control mechanism (not shown), so that the valve body 24 is operated upward by the spring force of the spring 27 and the valve body 24 is pulled away from the valve seat 23. At this time, the first opening 35 of the valve seat 23 is opened, and most of the fluid that is liquid refrigerant or gas-liquid two-phase refrigerant flowing from the first flow path 21 passes through the first opening 35 and the through hole 37. It flows into the second flow path 22, and the first and second flow paths 21, 22 are communicated with almost no pressure loss. For this reason, there is no pressure loss between the 1st indoor heat exchanger 5 and the 2nd indoor heat exchanger 7, and it does not fall in terms of cooling capacity or efficiency.

また冷房除湿運転時には、制御機構(図示せず)によって電磁コイル25に通電することにより、バネ力よりも電磁力の方が大きいため、弁体24を下方へ稼動し、弁体24を弁座23に密着させる。このとき第1の開口35は閉となり、図12に示すように、第1の開口35の周囲に第1の開口35を迂回して、第1発泡金属30a、小孔31、第2発泡金属30bを通って第2の開口35から第2流路に流れる迂回流路を構成する。第1室内熱交換器5を出た気液二相冷媒は、第1流路21から第2流量制御弁6に流入し、弁座ブロック34内部に設けられた第1発泡金属30a、小孔31、第2発泡金属30bで減圧され、第2流路22を通って第2室内熱交換器7に流入する。この気液二相冷媒が第1発泡金属30aを通過する際には、蒸気冷媒は小さな気泡に分割され、小さな気泡となった蒸気冷媒が液冷媒と共に小孔31を通過する。このため、小孔31を通過する気液二相冷媒は、気液が十分混合された状態となり、圧力損失の大きな変動も発生せず、「ジュルジュル」、「ボコボコ」といった聴感の不連続な冷媒流動音を大幅に低減して低騒音な環境を実現することができる。また小孔31を通過した速度および乱れの大きな気液二相噴流は、第2発泡金属30bを通過する際、減速されて整流されるため、「シャー」といった聴感の連続的な冷媒流動音の発生を大幅に抑制することができる。   Also, during the cooling and dehumidifying operation, the electromagnetic coil 25 is energized by a control mechanism (not shown) so that the electromagnetic force is greater than the spring force, so that the valve body 24 is operated downward, and the valve body 24 is moved to the valve seat. 23. At this time, the first opening 35 is closed, and as shown in FIG. 12, the first opening 35 is bypassed around the first opening 35, and the first foam metal 30a, the small hole 31, and the second foam metal are bypassed. A detour channel that flows from the second opening 35 to the second channel through 30b is configured. The gas-liquid two-phase refrigerant that has exited the first indoor heat exchanger 5 flows into the second flow rate control valve 6 from the first flow path 21, and the first metal foam 30 a provided in the valve seat block 34, small holes 31, the pressure is reduced by the second foam metal 30 b, and flows into the second indoor heat exchanger 7 through the second flow path 22. When this gas-liquid two-phase refrigerant passes through the first metal foam 30a, the vapor refrigerant is divided into small bubbles, and the vapor refrigerant that has become small bubbles passes through the small holes 31 together with the liquid refrigerant. For this reason, the gas-liquid two-phase refrigerant passing through the small hole 31 is in a state where the gas and liquid are sufficiently mixed and does not cause a large fluctuation in pressure loss, and has a discontinuous audible refrigerant such as “Jurujuru” and “Bokoboko”. It is possible to realize a low noise environment by greatly reducing the flow noise. In addition, the gas-liquid two-phase jet flow having a large velocity and turbulence that has passed through the small hole 31 is decelerated and rectified when passing through the second foam metal 30b. Occurrence can be greatly suppressed.

また、発泡金属30a、30bの気孔径を、冷凍サイクルに通常設けられている濾過手段のメッシュの大きさ以上、例えば100マイクロメートル以上とすることで、冷凍サイクル内を冷媒と共に循環する鉄や銅などの金属紛や冷凍機油の劣化物であるスラッジなどの固形異物が発泡金属30a、30bの内部に捕捉されて堆積することなく、長期的に信頼性の高い流量制御弁を実現できる。特に、図12に示した構成では、オリフィス部となる小孔31を発泡金属30a、30bの間に設けているので、この小孔31で流体を確実に減圧でき、発泡金属30a、30bは主に冷媒流動音の低減効果を考慮して気孔径を決めることができる。冷媒流動音の低減効果を奏する気孔径の範囲で、なるべく大きくすることで通気孔への異物詰りを防止できるため、ここでは冷媒流動音の低減効果が十分得られる500マイクロメートル程度の気孔径としている。即ち、オリフィス部31を備えることで第1、第2発泡金属30a、30bの気孔径をより大きく設定でき、固形異物が発泡金属30a、30bに捕捉されて堆積するのを防ぐことができ、信頼性を向上できる。   Further, by setting the pore diameter of the metal foams 30a and 30b to be equal to or larger than the mesh size of the filtering means normally provided in the refrigeration cycle, for example, 100 micrometers or more, iron or copper circulating with the refrigerant in the refrigeration cycle. A solid foreign substance such as metal powder such as sludge that is a deteriorated product of refrigerating machine oil is not trapped and deposited inside the foamed metals 30a and 30b, and a highly reliable flow control valve can be realized in the long term. In particular, in the configuration shown in FIG. 12, since the small hole 31 serving as the orifice portion is provided between the foamed metals 30a and 30b, the fluid can be reliably decompressed by this small hole 31, and the foamed metals 30a and 30b are mainly used. In addition, the pore diameter can be determined in consideration of the effect of reducing the refrigerant flow noise. In order to prevent foreign matter clogging in the air vent by increasing the pore diameter within the range of the pore diameter that exhibits the effect of reducing the refrigerant flow noise, the pore diameter of about 500 micrometers is sufficient here to sufficiently obtain the effect of reducing the refrigerant flow noise. Yes. That is, by providing the orifice portion 31, the pore diameters of the first and second foam metals 30a, 30b can be set larger, and solid foreign substances can be prevented from being trapped and deposited by the foam metals 30a, 30b. Can be improved.

また、図13は弁座ブロックを説明する図で、弁座ブロック34は、図に示すように、第1発泡金属30aと小孔31の間に1〜2ミリメートル程度の空間33aを設け、さらに小孔31と第2発泡金属30bの間に1〜2ミリメートル程度の空間33bを設けている。このため、第1発泡金属30aにより小さな気泡に分割された蒸気冷媒は、空間33aに流入してここで空間33aに滞留する液冷媒と混合されるので、小孔31を通過する冷媒は、より確実に気液冷媒が混合された状態となり、「ジュルジュル」、「ボコボコ」といった聴感の不連続な冷媒流動音の発生を確実に抑制することができる。また小孔31と第2発泡金属30bの間の空間33bにより、第2発泡金属30bを通過する気液二相噴流の通過面積を大きくでき、より確実に気液二相噴流の減速、整流が可能となり、「シャー」といった聴感の連続的な冷媒流動音とくの発生を確実に抑制することができる。なお、図12に示した構成では、発泡金属30aとオリフィス板31の間、およびオリフィス板31と発泡金属30bの間の両方に1〜2ミリメートル程度の空間を設ける例について説明したが、これに限ることはなく、発泡金属30aとオリフィス板31の間のみに空間部を設けてもよく、またオリフィス板32と発泡金属30bの間のみに空間部を設けてもよい。   FIG. 13 is a diagram for explaining the valve seat block. As shown in the figure, the valve seat block 34 is provided with a space 33a of about 1 to 2 millimeters between the first foam metal 30a and the small hole 31, A space 33b of about 1 to 2 millimeters is provided between the small hole 31 and the second foam metal 30b. For this reason, the vapor refrigerant divided into small bubbles by the first metal foam 30a is mixed with the liquid refrigerant that flows into the space 33a and stays in the space 33a. The gas-liquid refrigerant is surely mixed, and the generation of a discontinuous refrigerant flow noise such as “jurujuru” and “bokoboko” can be reliably suppressed. Further, the space 33b between the small hole 31 and the second foam metal 30b can increase the passage area of the gas-liquid two-phase jet passing through the second foam metal 30b, and the gas-liquid two-phase jet can be decelerated and rectified more reliably. It becomes possible, and generation | occurrence | production of the continuous refrigerant | coolant flow noise sound of an auditory sense, such as "shear", can be suppressed reliably. In the configuration shown in FIG. 12, the example in which a space of about 1 to 2 millimeters is provided between the foam metal 30a and the orifice plate 31 and between the orifice plate 31 and the foam metal 30b has been described. The space portion may be provided only between the foam metal 30a and the orifice plate 31, and the space portion may be provided only between the orifice plate 32 and the foam metal 30b.

また図14では、弁座ブロック34内に嵌合する第1発泡金属30aの上部の形状を山形としている。この構成では、図12に示した上流側の形状が平坦な発泡金属を用いるよりも、冷媒が流れる発泡金属上流側の通過面積を大きくできる。このため、発泡金属上流側に固形異物が堆積する個所が分散でき、万一、固形異物が発泡金属上流側に堆積しても、発泡金属の流動抵抗変化を小さくすることができ、異物詰りに対してより信頼性の高い流量制御弁を得ることができる。   Moreover, in FIG. 14, the shape of the upper part of the 1st foam metal 30a fitted in the valve seat block 34 is made into the mountain shape. In this configuration, it is possible to increase the passage area on the upstream side of the foam metal through which the refrigerant flows, rather than using a foam metal having a flat upstream shape as shown in FIG. For this reason, the location where solid foreign matter accumulates on the upstream side of the foam metal can be dispersed, and even if solid foreign matter accumulates on the upstream side of the foam metal, the change in flow resistance of the foam metal can be reduced, and foreign matter can be clogged. On the other hand, a more reliable flow control valve can be obtained.

また図14では、図中矢印で示すように第2発泡金属30bの環状部の内部側面より冷媒が第2流路22へ流出するように構成している。第2発泡金属30bを通過した気液二相噴流は、発泡金属内部の通気孔を通過することで減速され、さらに整流されるが、まだある程度の流速を持った噴流状態となっている。この噴流が装置の外壁などに衝突すると、外壁が振動し、騒音の発生源となる場合がある。そこで図12に示した流量制御弁6では、第2発泡金属30bを通過した冷媒が、弁本体の外壁などに衝突せず、第2流路22へ流出するように構成しているので、より一層冷媒流動音の発生を抑制し、低騒音な除湿運転が実現できる冷凍空調装置を得ることができる。   Further, in FIG. 14, the refrigerant flows out from the inner side surface of the annular portion of the second foam metal 30 b to the second flow path 22 as indicated by an arrow in the drawing. The gas-liquid two-phase jet that has passed through the second foam metal 30b is decelerated and further rectified by passing through the vent hole inside the foam metal, but is still in a jet state having a certain flow velocity. When this jet collides with the outer wall or the like of the apparatus, the outer wall may vibrate and become a noise generation source. Therefore, the flow control valve 6 shown in FIG. 12 is configured such that the refrigerant that has passed through the second foam metal 30b does not collide with the outer wall of the valve main body and flows out into the second flow path 22. It is possible to obtain a refrigerating and air-conditioning apparatus that can further suppress generation of refrigerant flow noise and realize low-noise dehumidifying operation.

このようにこの構造の第2流量制御弁6では、弁体24によって第2流路22に接続する開口を閉じた時に、弁室26内で弁体24または弁座23の外側に、開口を迂回して第1流路21と第2流路22を流通可能な迂回流路を設け、この迂回流路内に気孔径500マイクロメートル、空隙率95%の第1発泡金属30aと、小孔31を設けたオリフィス板34、および気孔径500マイクロメートル、空隙率95%の第2発泡金属30bを設けたので、小孔31に流入する気液二相冷媒を確実に混合でき、また小孔31から流出する気液二相噴流を確実に減速、整流でき、さらに気液二相噴流が弁本体外壁などに衝突せず、冷媒流動音の発生を低減でき静かな除湿運転が可能となる。また除湿運転時の絞り手段としては第1発泡金属30aと小孔31および第2発泡金属30bを用いているので、小孔31の径を小さくして、この小孔31を通過する際に生じる圧力損失を大きくすることにより、発泡金属30aおよび発泡金属30bの気孔径を500マイクロメートル程度に大きくできる。このため、冷凍サイクル内を冷媒と共に循環する鉄や銅などの金属紛や冷凍機油の劣化物であるスラッジなどの固形異物が発泡金属内部に捕捉されて堆積することなく、長期的に信頼性の高い流量制御弁を実現できる。   As described above, in the second flow rate control valve 6 having this structure, when the opening connected to the second flow path 22 is closed by the valve body 24, the opening is formed outside the valve body 24 or the valve seat 23 in the valve chamber 26. A detour channel that can be bypassed to flow through the first channel 21 and the second channel 22 is provided, a first foamed metal 30a having a pore diameter of 500 micrometers and a porosity of 95%, and a small hole are provided in the detour channel. Since the orifice plate 34 provided with 31 and the second foam metal 30b having a pore diameter of 500 micrometers and a porosity of 95% are provided, the gas-liquid two-phase refrigerant flowing into the small holes 31 can be mixed reliably, and the small holes The gas-liquid two-phase jet flowing out of the gas 31 can be surely decelerated and rectified, and the gas-liquid two-phase jet does not collide with the outer wall of the valve body, so that the generation of refrigerant flow noise can be reduced and a quiet dehumidification operation is possible. Further, since the first foam metal 30a, the small hole 31 and the second foam metal 30b are used as the throttling means during the dehumidifying operation, the diameter of the small hole 31 is reduced, and this occurs when passing through the small hole 31. By increasing the pressure loss, the pore diameters of the foam metal 30a and the foam metal 30b can be increased to about 500 micrometers. For this reason, solid foreign substances such as iron and copper circulating in the refrigeration cycle with the refrigerant and solid foreign matters such as sludge, which is a deteriorated product of refrigeration oil, are not trapped and deposited inside the foam metal, providing long-term reliability. A high flow control valve can be realized.

なお、冷房除湿運転時の第2流量制御弁6の流量特性(冷媒流量と圧力損失の関係)は、弁座ブロック34内に配設する第1発泡金属30aや第2発泡金属30bの通気孔の径や冷媒が通過する流路長さを調整することによって調整することができるが、発泡金属の通気孔の径は100マイクロメートル以上、好ましくは500マイクロメートル程度にし、小孔31の径や小孔の数によって調整すれば、発泡金属への固形異物が捕捉されて堆積されることなく、自由に流量特性を設定することができる。すなわち、ある冷媒流量を小さな圧力損失で流す場合には、小孔31の径大きくしたり、あるいは小孔31の数を多くすれば良い。また逆に、ある冷媒流量を大きな圧力損失で流す場合には、小孔31の径を小さくしたり、あるいは小孔31の数を少なくすれば良い。このような弁座ブロック34内に設ける小孔31の径は、機器設計時に最適に設計される。   Note that the flow rate characteristics (relationship between the refrigerant flow rate and the pressure loss) of the second flow rate control valve 6 during the cooling and dehumidifying operation are the vent holes of the first foam metal 30a and the second foam metal 30b disposed in the valve seat block 34. However, the diameter of the vent hole of the foam metal should be 100 micrometers or more, preferably about 500 micrometers, and the diameter of the small hole 31 can be adjusted. By adjusting according to the number of small holes, the flow characteristics can be freely set without trapping and depositing solid foreign matters on the foam metal. That is, when a certain refrigerant flow is caused to flow with a small pressure loss, the diameter of the small holes 31 may be increased or the number of small holes 31 may be increased. Conversely, when a certain refrigerant flow is caused to flow with a large pressure loss, the diameter of the small holes 31 may be reduced or the number of small holes 31 may be reduced. The diameter of the small hole 31 provided in the valve seat block 34 is optimally designed at the time of device design.

以下、図12に示した第2流量制御弁6の絞り手段の部分の製造方法の一例について説明する。この製造方法では、弁座23、オリフィス部である小孔31、発泡金属30を保持する弁座ブロック34を設けており、容易に組み立てることができる構成である。まず、図13に示すような形状に、弁座ブロック34と発泡金属30a、30bを作成する。即ち、円筒形状の底面間に貫通するように、弁室が接続する第1、第2流路21、22と同程度の径で一端が弁座23となる第1の貫通孔37及びこの第1の貫通孔37よりも小さな径の小孔31となる第2の貫通孔を有する弁座ブロック34を形成する。次に、少なくとも第1の貫通孔37を除き第2の貫通孔である小孔31を覆うように弁座ブロック34の底面部に発泡金属30a、30bを固定する。次に、発泡金属30a、30bが固定された弁座ブロック34を弁室26内に挿設する。図12のような構成の場合、弁室26の第2流路22の壁を取り付けずに開いておき、第2流路22側から弁座ブロック34を挿入するとよい。この次に第1流路21と第2流路22を接続するように弁室26を密閉する。   Hereinafter, an example of the manufacturing method of the part of the throttle means of the 2nd flow control valve 6 shown in FIG. 12 is demonstrated. In this manufacturing method, the valve seat 23, the small hole 31 that is the orifice portion, and the valve seat block 34 that holds the foamed metal 30 are provided, and can be easily assembled. First, the valve seat block 34 and the foamed metals 30a and 30b are formed in a shape as shown in FIG. That is, the first through hole 37 having the same diameter as the first and second flow paths 21 and 22 to which the valve chamber is connected and one end serving as the valve seat 23 so as to penetrate between the cylindrical bottom surfaces, and the first through hole 37. A valve seat block 34 having a second through hole that is a small hole 31 having a diameter smaller than that of the first through hole 37 is formed. Next, the metal foams 30a and 30b are fixed to the bottom surface portion of the valve seat block 34 so as to cover the small holes 31 which are the second through holes except at least the first through holes 37. Next, the valve seat block 34 to which the foamed metals 30 a and 30 b are fixed is inserted into the valve chamber 26. In the case of the configuration as shown in FIG. 12, it is preferable to open the valve chamber 26 without attaching the wall of the second flow path 22 and insert the valve seat block 34 from the second flow path 22 side. Next, the valve chamber 26 is sealed so as to connect the first flow path 21 and the second flow path 22.

上記では、弁座ブロック34内への発泡金属30a、30bの固定方法や、弁室26内の弁座ブロック34の固定方法については説明していないが、それぞれ圧入やロー付けや高周波溶接など、確実に固定できる加工法ならば、どのような方法を用いてもよい。このように第2流量制御弁6を製造することで、第1の貫通孔37を閉じた時に第1流路21から流入した流体が第2の貫通孔31と多孔質透過材である発泡金属30a、30bを通って第2流路22に流通可能な構成を有し、冷媒流動音を低減でき、異物詰りが発生しても流動抵抗がほとんど変化しない流量制御弁を、工程を大幅に増やすことなく、安価に製造することができる。ここで、第1の貫通孔37を円筒形状の弁座ブロック34の中央部に形成し、これよりも小さな径の第2の貫通孔31をその周辺に形成したので、発泡金属30a、30bの面積を大きくでき、発泡金属30a、30bを設けることによる冷媒流動音の低減効果を大きくでき、さらに異物詰りが発生に対しての流動抵抗変化を小さくできる。発泡金属30a、30bはオリフィス部である小孔31の上流側及び下流側に設けるのが、冷媒流動音低減に大きな効果を奏するが、これに限るものではなく、どちらか一方に設ければ、ある程度冷媒流動音を低減できる。   In the above, the method for fixing the foam metal 30a, 30b in the valve seat block 34 and the method for fixing the valve seat block 34 in the valve chamber 26 are not described, but press fitting, brazing, high frequency welding, etc. Any processing method can be used as long as it can be reliably fixed. By manufacturing the second flow rate control valve 6 in this manner, the fluid that flows in from the first flow path 21 when the first through hole 37 is closed is the second through hole 31 and the foam metal that is a porous permeable material. The flow control valve has a configuration that can flow through the second flow path 22 through 30a and 30b, can reduce the refrigerant flow noise, and the flow resistance hardly changes even if foreign matter clogging occurs. And can be manufactured inexpensively. Here, the first through hole 37 is formed in the center of the cylindrical valve seat block 34, and the second through hole 31 having a smaller diameter is formed in the periphery thereof. The area can be increased, the effect of reducing the refrigerant flow noise by providing the metal foams 30a and 30b can be increased, and the flow resistance change against the occurrence of clogging can be reduced. The foam metal 30a, 30b is provided on the upstream side and the downstream side of the small hole 31 that is the orifice portion, which has a great effect on reducing the refrigerant flow noise, but is not limited to this, if provided on either side, Refrigerant flow noise can be reduced to some extent.

この構造においても、発泡金属30a、30bの通気孔の径を一般的な冷媒サイクルで使用される濾過手段よりも大きい100マイクロメートル〜1000マイクロメートル、好ましくは500マイクロメートル程度とすることにより、詰まることがなく、安定した動作を行うことができる。   Even in this structure, clogging is achieved by setting the diameter of the vent holes of the metal foams 30a and 30b to 100 micrometers to 1000 micrometers, preferably about 500 micrometers, larger than the filtering means used in a general refrigerant cycle. And stable operation can be performed.

図15はこの発明の別の流量制御弁を示す断面図で、図12に示したものと同一または同様の構成部品には同一符号を付して、その重複する説明を省略する。この構造では、弁体24の内部に空洞部29を設けており、さらに弁体24の側面には連通孔28が設けられ、この連通孔28と空洞部29により弁体24内部に貫通流路を形成している。さらにこの弁体24の空洞部29の内部には、球体であるリリーフ弁41とリリーフ弁41を固定するリリーフバネ42を設けている。このリリーフ弁41はリリーフバネ42のバネ力によって空洞部29の上部空間を閉止するように構成されている。   FIG. 15 is a cross-sectional view showing another flow control valve of the present invention. The same or similar components as those shown in FIG. 12 are denoted by the same reference numerals, and redundant description thereof is omitted. In this structure, a hollow portion 29 is provided inside the valve body 24, and a communication hole 28 is provided on the side surface of the valve body 24, and the through-flow channel is formed inside the valve body 24 by the communication hole 28 and the hollow portion 29. Is forming. Further, a relief valve 41 that is a spherical body and a relief spring 42 that fixes the relief valve 41 are provided inside the hollow portion 29 of the valve body 24. The relief valve 41 is configured to close the upper space of the cavity 29 by the spring force of the relief spring 42.

冷房除湿運転時には、電磁コイル25に通電することにより、弁体24は弁座23と密着し、第1流路21より第2流量制御弁6の弁室26内部に流入した冷媒は、弁座ブロック34の内部に設けた第1発泡金属30aの通気孔、小孔31、および第2発泡金属30bの通気孔を通って減圧され、第2流路22から第2室内熱交換器7に流入する。この第2流量制御弁6を用いた空気調和装置の除湿運転を長期間使用した場合、冷凍サイクル内を冷媒と共に循環する鉄や銅などの金属紛や冷凍機油の劣化物であるスラッジなどの固形異物が発泡金属30a、30b内部や小孔31に捕捉されて堆積する可能性がある。固形異物が発泡金属30a、30bや小孔31内に堆積すると、除湿運転時の第1室内熱交換器5と第2室内熱交換器7の圧力損失は大きくなり、除湿能力が変動したり、除湿運転に必要な電気入力が増大するなどの問題が生じる。そこで図15に示した実施の形態では、第1室内熱交換器5と第2室内熱交換器7間の圧力差、即ち第1流路21と第2流路22間の圧力差がある所定の値よりも大きくなった時に、この圧力差を小さくするようなリリーフ機構を弁体24の内部に設けている。   During the cooling and dehumidifying operation, the solenoid 24 is energized so that the valve body 24 comes into close contact with the valve seat 23 and the refrigerant flowing into the valve chamber 26 of the second flow control valve 6 from the first flow path 21 The pressure is reduced through the vent hole of the first foam metal 30a, the small hole 31 and the vent hole of the second foam metal 30b provided in the block 34, and flows into the second indoor heat exchanger 7 from the second flow path 22. To do. When the dehumidifying operation of the air conditioner using the second flow rate control valve 6 is used for a long period of time, solids such as metal powder such as iron and copper circulating in the refrigeration cycle with refrigerant and sludge that is a deteriorated product of refrigeration oil are used. There is a possibility that foreign substances are trapped and deposited in the foamed metals 30a and 30b or in the small holes 31. When solid foreign matter accumulates in the metal foams 30a, 30b and the small holes 31, the pressure loss of the first indoor heat exchanger 5 and the second indoor heat exchanger 7 during the dehumidifying operation increases, and the dehumidifying capacity fluctuates. Problems such as an increase in electrical input required for dehumidifying operation occur. Therefore, in the embodiment shown in FIG. 15, there is a predetermined pressure difference between the first indoor heat exchanger 5 and the second indoor heat exchanger 7, that is, a pressure difference between the first flow path 21 and the second flow path 22. A relief mechanism is provided in the valve body 24 to reduce the pressure difference when the value becomes larger than the value of.

リリーフバネ42のバネ力を所定の圧力に設定しておく。第1室内熱交換器5に接続される第1流路21と第2室内熱交換器7に接続される第2流路22間の圧力差が所定の値以上となったとき、弁体24内部に設けたリリーフ弁41が下方へ押され、弁体24内部を貫通して漏洩流路が形成される。そして、この圧力差を小さくするように、弁体側面に設けた連通孔28、弁体内部空洞部29を介して、第1流路21と第2流路22が連通する。すなわち通常の差圧状態では、弁体24内部のリリーフ弁41は、リリーフバネ42のバネ力によって弁体空洞部29の上部空間を閉止するように構成されている。このため、弁体側面の連通孔28から弁体空洞部29への冷媒流れは発生しない。ところが発泡金属30a、30bや小孔31内部への固形異物の堆積などにより、第1流路21と第2流路22の圧力差が次第に大きくなり、リリーフ弁41を下方に押し下げようとする力が、リリーフバネ42のバネ力よりも大きくなると、リリーフ弁41は下方へ移動する。そして弁体内部空洞部29は、弁体側面連通孔28を介して第1流路21と連通する。このため第1流路21から流入する一部の高圧冷媒は、弁座ブロック34内を通過せず、弁体側面連通孔28、弁体内部空洞部29を通って、第2流路22へ流出するので、第1流路21と第2流路22の圧力差は小さくなる。このようにリリーフ機構を設けることで、正常な除湿運転が継続され、信頼性の高い流量制御弁およびこれを用いた冷凍空調装置を得ることができる。なお、リリーフ弁41が動作する圧力は、リリーフバネ42の材質や線径、形状などにより、バネ力を調整することによって自由に設定することができる。   The spring force of the relief spring 42 is set to a predetermined pressure. When the pressure difference between the first flow path 21 connected to the first indoor heat exchanger 5 and the second flow path 22 connected to the second indoor heat exchanger 7 becomes a predetermined value or more, the valve body 24 The relief valve 41 provided inside is pushed downward and penetrates the inside of the valve body 24 to form a leakage flow path. And the 1st flow path 21 and the 2nd flow path 22 are connected via the communicating hole 28 provided in the valve body side surface, and the valve body internal cavity part 29 so that this pressure difference may be made small. That is, in a normal differential pressure state, the relief valve 41 inside the valve body 24 is configured to close the upper space of the valve body cavity 29 by the spring force of the relief spring 42. For this reason, the refrigerant | coolant flow from the communicating hole 28 of the valve body side surface to the valve body cavity part 29 does not generate | occur | produce. However, the pressure difference between the first flow path 21 and the second flow path 22 gradually increases due to the accumulation of solid foreign matters inside the metal foams 30a and 30b and the small holes 31, and the force that pushes down the relief valve 41 downward. However, when the spring force of the relief spring 42 becomes larger, the relief valve 41 moves downward. The valve body internal cavity 29 communicates with the first flow path 21 through the valve body side surface communication hole 28. Therefore, a part of the high-pressure refrigerant flowing from the first flow path 21 does not pass through the valve seat block 34, passes through the valve body side surface communication hole 28 and the valve body internal cavity 29, and enters the second flow path 22. Since it flows out, the pressure difference of the 1st flow path 21 and the 2nd flow path 22 becomes small. By providing the relief mechanism in this manner, normal dehumidification operation is continued, and a highly reliable flow control valve and a refrigeration air conditioner using the same can be obtained. The pressure at which the relief valve 41 operates can be freely set by adjusting the spring force according to the material, wire diameter, shape, etc. of the relief spring 42.

このようにこの構造では、第2流量制御弁6の第1流路21と第2流路22の圧力差がある所定の値よりも大きくなった時に、この圧力差を小さくするようなリリーフ機構を弁内部に設けているので、万一スラッジなどの固形異物が弁内に堆積しても、除湿能力が変動したり、除湿運転に必要な電気入力が増大することなく、信頼性の高い流量制御弁および冷凍空調装置を実現することができる。   Thus, in this structure, a relief mechanism that reduces the pressure difference when the pressure difference between the first flow path 21 and the second flow path 22 of the second flow control valve 6 exceeds a predetermined value. A highly reliable flow rate without fluctuations in the dehumidifying capacity or increased electrical input required for dehumidifying operation even if solid foreign matter such as sludge accumulates in the valve. A control valve and a refrigeration air conditioner can be realized.

なお、上記までの説明では、主として多孔質透過材を発泡金属で構成したものであるので、低コストで、冷媒流動音を低減できる流量制御弁が得られる。ただし、発泡金属に限るものではなく、金属の粉末を焼結した焼結金属、またはセラミックスの多孔質透過材、または金網や、金網を数枚重ねたもの、また金網を数枚重ねて焼結した焼結金網や積層金網および金属細線を型に投入し、圧縮成型したステンレスウールや金属細線を任意形状のものに巻きつけて成型し、更に圧縮成型したステンレスウールや金属たわしでも同様の効果を得る。また、上記までの説明では、主として第2流量制御弁6は、電磁コイル25への通電あるいは非通電により開閉動作を行なうものについて説明したが、弁体24をステッピングモータによって連続的に稼動し、弁の開閉を行なうようにしてもよい。   In the above description, since the porous permeable material is mainly made of foam metal, a flow rate control valve capable of reducing refrigerant flow noise can be obtained at low cost. However, it is not limited to foam metal. Sintered metal obtained by sintering metal powder, ceramic porous permeation material, wire mesh, or several layers of wire mesh, or several layers of wire mesh are sintered. Sintered wire mesh, laminated wire mesh, and fine metal wire are put into a mold, and stainless steel wool and metal fine wire that has been compression-molded are wound around an arbitrary shape, and the same effect can be obtained with stainless steel wool and metal wire that has been compression-molded. obtain. In the above description, the second flow rate control valve 6 has mainly been described as performing an opening / closing operation by energizing or de-energizing the electromagnetic coil 25. However, the valve body 24 is continuously operated by a stepping motor, You may make it open and close a valve.

また、図1に示した冷凍サイクルを有する空気調和装置では、第2流量制御弁6の第1流路21を第1室内熱交換器5に接続し、第2流路22を第2室内熱交換器7に接続し、冷房運転時に電磁コイル25への通電、非通電を制御して、通常冷房運転と冷房除湿運転を切換える例について説明した。また、主として冷房運転を例にとって説明した。ここで、例えば図1の接続を逆にして第2流量制御弁6の第1流路21を第2室内熱交換器7に接続し、第2流路22を第1室内熱交換器5に接続し、暖房運転時に電磁コイル25への通電、非通電を制御して、通常暖房運転と暖房除湿運転を切換えるように構成してもよい。暖房除湿運転は冷房除湿運転よりも、室内空気加熱量を大きくすることができるので、より吹出し温度を高くできる除湿運転が可能となる。   In the air conditioner having the refrigeration cycle shown in FIG. 1, the first flow path 21 of the second flow rate control valve 6 is connected to the first indoor heat exchanger 5, and the second flow path 22 is connected to the second indoor heat. An example of switching to the normal cooling operation and the cooling / dehumidifying operation by connecting to the exchanger 7 and controlling the energization / non-energization of the electromagnetic coil 25 during the cooling operation has been described. In addition, the description has been given mainly taking the cooling operation as an example. Here, for example, the connection of FIG. 1 is reversed, the first flow path 21 of the second flow control valve 6 is connected to the second indoor heat exchanger 7, and the second flow path 22 is connected to the first indoor heat exchanger 5. It may be configured to switch between normal heating operation and heating dehumidification operation by controlling the energization and non-energization of the electromagnetic coil 25 during the heating operation. Since the heating and dehumidifying operation can increase the indoor air heating amount as compared with the cooling and dehumidifying operation, it is possible to perform the dehumidifying operation that can increase the blowing temperature.

上記のような多孔質透過材を利用した流量制御弁6の冷媒流動音の低減はR410Aを冷媒として使用した場合に特に大きな効果を発揮する。ここではR410A冷媒とR22冷媒を比較して説明する。図1に示した空気調和装置の冷房除湿運転では、第1室内熱交換器5の凝縮温度は40゜C、第2室内熱交換器7の蒸発温度は10゜C程度が一般的であり、流量制御弁6ではこの凝縮温度40゜Cから蒸発温度10゜C程度まで冷媒を減圧する必要がある。凝縮温度40゜Cに相当する冷媒の飽和圧力は、R410Aが2.41MPa、R22が1.53MPaであり、蒸発温度10゜Cに相当する冷媒の飽和圧力は、R410Aが1.08MPa、R22が0.68MPaとなる。したがって流量制御弁6の前後の圧力差はR410Aが1.33MPa、R22が0.85MPaとなり、この圧力差はR410Aの方がR22よりも約60パーセント大きくなる。また第1室内熱交換器5の出口の冷媒乾き度が0.1とすると流量制御弁6出口の冷媒乾き度はR410Aが0.32、R22が0.28となり、流量制御弁6出口の冷媒乾き度がR410Aの方が大きくなり、弁出口の冷媒蒸気流量もR410Aの方がR22よりも14パーセント程度大きくなる。このように冷房除湿運転の流量制御弁6の前後圧力差はR22よりもR410Aの方が60パーセント程度大きいため、従来使用されていた絞り部がオリフィスのみで構成されている流量制御弁では、絞り部で発生する圧力変動も弁前後圧力差の大きなR410Aの方が大きくなり、発生する冷媒流動音も大きくなる。また流量制御弁6出口の冷媒蒸気流量もR410Aの方が14パーセント大きいため、絞り部がオリフィスのみで構成されている流量制御弁ではオリフィスを出た2相噴流の流速及び流速変動もR410Aの方が大きくなり、弁出口部で発生する冷媒流動音もR22よりR410Aの方が非常に大きくなると予測される。   Reduction of the refrigerant flow noise of the flow control valve 6 using the porous permeable material as described above exhibits a particularly great effect when R410A is used as a refrigerant. Here, R410A refrigerant and R22 refrigerant will be compared and described. In the cooling and dehumidifying operation of the air conditioner shown in FIG. 1, the condensation temperature of the first indoor heat exchanger 5 is generally 40 ° C., and the evaporation temperature of the second indoor heat exchanger 7 is generally about 10 ° C. The flow rate control valve 6 needs to depressurize the refrigerant from the condensation temperature of 40 ° C. to the evaporation temperature of about 10 ° C. The saturation pressure of the refrigerant corresponding to the condensation temperature of 40 ° C is 2.41 MPa for R410A and 1.53 MPa for R22, and the saturation pressure of the refrigerant corresponding to the evaporation temperature of 10 ° C is 1.08 MPa for R410A and R22 0.68 MPa. Therefore, the pressure difference before and after the flow control valve 6 is 1.33 MPa for R410A and 0.85 MPa for R22, and this pressure difference is about 60% larger for R410A than for R22. If the refrigerant dryness at the outlet of the first indoor heat exchanger 5 is 0.1, the refrigerant dryness at the outlet of the flow control valve 6 is 0.32 for R410A and 0.28 for R22. The degree of dryness is greater for R410A, and the refrigerant vapor flow rate at the valve outlet is also about 14 percent greater for R410A than for R22. As described above, the pressure difference between the front and rear of the flow rate control valve 6 in the cooling and dehumidifying operation is about 60% larger in the R410A than in the R22. Therefore, in the flow rate control valve in which the conventionally used throttle portion is configured only by the orifice, As for the pressure fluctuation generated in the section, R410A having a larger pressure difference before and after the valve becomes larger, and the generated refrigerant flow noise also becomes larger. In addition, since the flow rate of the refrigerant vapor at the outlet of the flow control valve 6 is 14% larger in the case of R410A, in the flow control valve in which the restricting portion is configured only by the orifice, the flow velocity and flow velocity fluctuation of the two-phase jet exiting the orifice are also those of R410A And the refrigerant flow noise generated at the valve outlet is predicted to be much larger in R410A than in R22.

このR410A冷媒とR22冷媒の流量制御弁から発生する冷媒流動音の測定結果について図22の計測説明図にて説明する。図22に示すように暗騒音20dBの無響箱64の中に絞り部がオリフィスのみで構成された試験用流量制御弁67を設置し、この弁に飽和温度40゜C、冷媒乾き度0.1の気液2相冷媒を図示しない冷凍サイクルから供給し、出口圧力が飽和温度10゜C程度になるように調整した状態で、弁から10cmの位置に設置したマイクロフォン65により騒音計66にて冷媒流動音を測定した。絞り部がオリフィスのみの場合の冷媒流動音測定結果は、R410Aが46dBA、R22が42dBAとなり、R410Aの方が4dB大きくなった。これは先に説明したように、R410Aの方がオリフィス前後の圧力差が大きく、またオリフィス出口の冷媒蒸気流量もR410Aの方が大きいためである。騒音値4dBの差は、音響エネルギーでは2.5倍に相当し、この結果からR410Aで発生する音響エネルギーはR22よりも2.5倍大きいと考えられる。同様の試験方法にて本発明の流量制御弁を使用し、すなわち気孔径500マイクロメートル、空隙率95パーセントの発泡金属をオリフィス前後に配置した場合の冷媒流動音測定では、R410A、R22とも約35dBAとなり、発泡金属による冷媒流動音の低減効果は、R410Aが11dBA、R22が7dBAとなり、R22よりもR410Aの方が非常に大きな冷媒流動音低減効果が確認された。このような測定結果をまとめた特性説明図を図23に示す。図23に示すようにオリフィス前後の圧力差の大きな冷媒に対し特に有効であり、凝縮温度40゜C、蒸発温度10゜Cとした時の飽和圧力の差が1.0MPa以上となる冷媒に対して非常に大きな効果、すなわち音響エネルギーを1/2程度に低減できる。   The measurement result of the refrigerant flow noise generated from the flow control valves of the R410A refrigerant and the R22 refrigerant will be described with reference to the measurement explanatory diagram of FIG. As shown in FIG. 22, a test flow control valve 67 whose throttle part is composed only of an orifice is installed in an anechoic box 64 with a background noise of 20 dB, and this valve has a saturation temperature of 40 ° C., a refrigerant dryness of 0. 1 with a gas-liquid two-phase refrigerant supplied from a refrigeration cycle (not shown) and adjusted so that the outlet pressure reaches a saturation temperature of about 10 ° C. The refrigerant flow noise was measured. As a result of measuring the refrigerant flow noise when the throttle portion is only the orifice, R410A was 46 dBA, R22 was 42 dBA, and R410A was 4 dB larger. This is because, as described above, R410A has a larger pressure difference before and after the orifice, and the refrigerant vapor flow rate at the outlet of the orifice is larger in R410A. The difference in the noise value of 4 dB corresponds to 2.5 times in the acoustic energy. From this result, it is considered that the acoustic energy generated in R410A is 2.5 times larger than R22. In the same test method, when the flow control valve of the present invention is used, that is, when a foam metal having a pore diameter of 500 micrometers and a porosity of 95% is arranged before and after the orifice, R410A and R22 are both about 35 dBA. Thus, the effect of reducing the flow noise of the refrigerant by the foam metal was 11 dBA for R410A and 7 dBA for R22. It was confirmed that the flow noise reduction effect of R410A was much larger than that of R22. FIG. 23 shows a characteristic explanatory diagram summarizing such measurement results. As shown in FIG. 23, it is particularly effective for a refrigerant having a large pressure difference before and after the orifice. Can be reduced to about 1/2.

また空気調和機の冷媒として、R32やプロパン、ブタン及びこれらの混合冷媒などの可燃性冷媒を使用した場合、より一層空気調和機の安全性を向上することが出来る。すなわちこの発明の流量制御弁は上記に説明したような形状、寸法、材質及び構造の多孔質透過材を配置して使用し、除湿運転時の冷媒流動音の低減と異物詰まりに対する長期運転の信頼性を確保している。ところが例えば流体が通過するメッシュや気孔などの大きさが平均100マイクロメーターより小さければ、また空隙率が50パーセントより小さな多孔質透過剤を使用する場合にはこの多孔質透過材の流動抵抗が増加し、冷凍サイクルの高圧が上昇する。この冷凍サイクルの高圧の上昇により冷凍サイクルの各部品、例えば熱交換器のロー付け部や弁の締付部などや配管の継ぎ目などから可燃性冷媒が漏洩すると、空気調和機の電気品の火花や空気調和機周囲の着火源により冷媒に引火し、危険な状況を発生する。したがって本発明の除湿弁を使用することにより可燃性冷媒が冷凍サイクルから漏洩する確率を大幅に低減でき、地球温暖化係数の小さな可燃性冷媒を使用する冷凍空調装置であっても冷媒漏洩を確実に防止し、高い安全性を維持することが出来る。   Moreover, when combustible refrigerant | coolants, such as R32, propane, butane, and these mixed refrigerants, are used as a refrigerant | coolant of an air conditioner, the safety | security of an air conditioner can be improved further. That is, the flow control valve of the present invention uses the porous permeable material having the shape, size, material and structure as described above, and reduces the refrigerant flow noise during dehumidification operation and the reliability of long-term operation against foreign matter clogging. The sex is secured. However, for example, if the size of the mesh or pores through which the fluid passes is smaller than an average of 100 micrometers, and if a porous permeant having a porosity of less than 50% is used, the flow resistance of the porous permeate increases. And the high pressure of the refrigeration cycle increases. If flammable refrigerant leaks from each part of the refrigeration cycle, such as the brazed part of a heat exchanger, the tightening part of a valve, or the joint of a pipe, due to the increase in the high pressure of the refrigeration cycle, the sparks of the electrical components of the air conditioner Or ignite the refrigerant by the ignition source around the air conditioner, creating a dangerous situation. Therefore, by using the dehumidifying valve of the present invention, the probability of flammable refrigerant leaking from the refrigeration cycle can be greatly reduced, and even in a refrigeration air conditioner using a flammable refrigerant with a small global warming potential, refrigerant leakage can be ensured. Can be prevented and high safety can be maintained.

以上のように、冷凍サイクルを循環する冷媒として主としてR410Aを用いた場合について説明した。R410Aは、HFC系冷媒であり、オゾン層を破壊しない地球環境保全に適した冷媒であるとともに、従来冷媒として用いられてきたR22に比べて、冷媒圧力損失が小さいため、第2流量制御弁6の絞り部に用いる焼結金属の通気孔の径を小さくでき、より一層冷媒流動音の低減効果を得ることができる冷媒である。   As described above, the case where R410A is mainly used as the refrigerant circulating in the refrigeration cycle has been described. R410A is an HFC-based refrigerant, is a refrigerant suitable for global environmental conservation that does not destroy the ozone layer, and has a smaller refrigerant pressure loss than R22, which has been used as a conventional refrigerant. This is a refrigerant capable of reducing the diameter of the sintered metal vent used in the throttle part and further reducing the refrigerant flow noise.

さらにこの冷凍サイクルの冷媒としては、R410Aに限ることはなく、HFC系冷媒であるR407CやR404A、R507Aであっても良い。また地球温暖化防止の観点から、地球温暖化係数の小さなHFC系冷媒であるR32単独R152a単独あるいはR32/R134aなどの混合冷媒であっても良い。またプロパンやブタンなどの炭化水素冷媒やアンモニア、二酸化炭素、エーテルなどの自然系冷媒およびそれらの混合冷媒であってもよい。このように可燃性冷媒単独で使用しても本発明の流量制御弁を使用することにより著しい装置の安全性を高めることが出来る。   Furthermore, the refrigerant of this refrigeration cycle is not limited to R410A, and may be R407C, R404A, and R507A, which are HFC refrigerants. Further, from the viewpoint of preventing global warming, R32 single R152a or a mixed refrigerant such as R32 / R134a, which is an HFC refrigerant having a small global warming potential, may be used. Further, it may be a hydrocarbon refrigerant such as propane or butane, a natural refrigerant such as ammonia, carbon dioxide, ether, or a mixed refrigerant thereof. As described above, even when the flammable refrigerant is used alone, the safety of the apparatus can be remarkably improved by using the flow control valve of the present invention.

また、本発明では、特に圧縮機の潤滑油については言及していないが、潤滑油としては鉱油やアルキルベンゼンなどの合成油であっても良く、また近年、HFC系冷媒用として開発されたエステル油やエーテル油であっても良い事は当然である。   In the present invention, the lubricating oil for the compressor is not particularly mentioned, but the lubricating oil may be a synthetic oil such as mineral oil or alkylbenzene, and has recently been developed as an HFC-based refrigerant. Naturally, it may be ether oil.

以上のように、この発明によれば、2つの流路を接続する弁室内に固設され流路の一方に接続する開口を有する弁座と、弁室内で稼動されて前記弁座の開口を開閉する弁体と、弁体内を貫通し開口と2つの流路の他方とを流通可能とする貫通流路と、貫通流路を流れる流体が通るように弁体内に設けられ気孔径が100マイクロメートル以上の多孔質透過材と、を備え、弁体によって開口を閉じたときに2つの流路間を流れる流体を貫通流路の多孔質透過材を通過させて減圧するので、多孔質透過材の微細な通気孔によって気液二相冷媒は均質化されるため、冷媒流動音の発生を低減できると共に、冷凍サイクル内を冷媒と共に循環する固形異物が多孔質透過材内部に捕捉されて堆積することなく、長期的に信頼性の高い流量制御弁が得られる。   As described above, according to the present invention, the valve seat fixed in the valve chamber connecting the two flow paths and having an opening connected to one of the flow paths, and the opening of the valve seat operated in the valve chamber. A valve body that opens and closes, a through-flow path that passes through the valve body and allows the opening and the other of the two flow paths to circulate, and is provided in the valve body so that a fluid that flows through the through-flow path passes through. A porous permeable material of at least meters, and when the opening is closed by the valve body, the fluid flowing between the two flow paths is reduced in pressure by passing through the porous permeable material in the through flow path. Since the gas-liquid two-phase refrigerant is homogenized by the fine ventilation holes, the generation of refrigerant flow noise can be reduced, and solid foreign substances circulating with the refrigerant in the refrigeration cycle are trapped and accumulated inside the porous permeable material. Without a long-term reliable flow control valve .

また、この発明のによれば、2つの流路を接続する弁室内に固設され流路の一方に接続する開口を有する弁座と、弁室内で稼動されて弁座の開口を開閉する弁体と、弁室内で前記弁体または弁座の外側に配設され、開口を迂回して2つの流路間を流れる流体を流通可能とする迂回流路と、迂回流路を流れる流体が通るように弁室内に設けられた多孔質透過材と、を備え、弁体によって開口を閉じたときに迂回流路を流れる流体を多孔質透過材を通過させて減圧するので、多孔質透過材の表面積を大きくでき、多孔質透過材の微細な通気孔によって気液二相冷媒は均質化され、冷媒流動音の発生をより大幅に低減できると共に、冷凍サイクル内を冷媒と共に循環する固形異物が多孔質透過材内部に捕捉して堆積することなく、長期的により信頼性の高い流量制御弁が得られる。   Further, according to the present invention, a valve seat fixed in a valve chamber connecting two flow paths and having an opening connected to one of the flow paths, and a valve operated in the valve chamber to open and close the opening of the valve seat A body, a detour channel disposed outside the valve body or the valve seat in the valve chamber, allowing a fluid flowing between the two channels to bypass the opening, and a fluid flowing through the detour channel A porous permeable material provided in the valve chamber as described above, and when the opening is closed by the valve body, the fluid flowing through the bypass channel is reduced in pressure through the porous permeable material. The surface area can be increased, and the gas-liquid two-phase refrigerant is homogenized by the fine ventilation holes of the porous permeation material, so that the generation of refrigerant flow noise can be greatly reduced, and solid foreign matters circulating with the refrigerant in the refrigeration cycle are porous. Long term and more reliable without trapping and depositing inside the permeable material High flow control valve of is obtained.

また、この発明によれば、多孔質透過材を、100マイクロメートル以上の気孔径を有するので、多孔質透過材の通気孔を、気液二相冷媒を均質化するのに十分であり、かつ、冷凍サイクル内を冷媒と共に循環する固形異物が多孔質透過材内部に捕捉して堆積することなく構成でき、冷媒流動音の発生を大幅に低減できると共に、長期的に信頼性の高い流量制御弁が得られる。すなわちこの気孔径が冷媒蒸気スラグや冷媒気泡を通過させるときにこれより大きな径の冷媒を崩壊させて微細なスラグや気泡にして冷媒音を発生させないばかりか、スラッジなどの詰まりを抑制するという騒音対策と寿命対策の両立を成り立たせるものである。更に多孔質透過材の厚みはスラグや気泡などの崩壊にある程度の厚みが必要であるがこれは例えば2ミリメートル以上の様に厚みが増えるほど騒音低下に効果があることは実験で確認されている。   Further, according to the present invention, since the porous permeation material has a pore diameter of 100 micrometers or more, the pores of the porous permeation material are sufficient to homogenize the gas-liquid two-phase refrigerant, and , Solid foreign substances circulating in the refrigeration cycle together with the refrigerant can be configured without being trapped and deposited inside the porous permeate, greatly reducing the generation of refrigerant flow noise and a long-term reliable flow control valve Is obtained. In other words, when passing through the refrigerant vapor slag and refrigerant bubbles, the pore diameter is larger than this, causing not only the finer slag and bubbles but also the generation of refrigerant noise, as well as the suppression of sludge and other clogging This makes it possible to achieve both countermeasures and lifespan countermeasures. Furthermore, the thickness of the porous permeable material needs a certain thickness for the collapse of slag, bubbles, etc., but it has been confirmed by experiments that this is effective in reducing noise as the thickness increases, for example, 2 mm or more. .

また、この発明によれば、多孔質透過材の上流側または下流側に設けたオリフィス部を備え、弁体によって開口を閉じたときに2つの流路間を流れる流体を、多孔質透過材とオリフィス部を直列に通過させて減圧することを特徴とするので、オリフィス部の上流側に設けた多孔質透過材によって、オリフィス部に流入する気液二相冷媒を確実に混合でき、またオリフィス部の下流側に設けた多孔質透過材によって、オリフィス部から流出する気液二相噴流を確実に減速、整流でき、冷媒流動音を大幅に低減できる効果がある。また、オリフィス部によって多孔質透過材の通気孔の径を大きくできるため、固体異物がより詰まりにくくなり、長期的により信頼性の高い流量制御弁が得られる。   Further, according to the present invention, an orifice portion provided on the upstream side or the downstream side of the porous permeable material is provided, and the fluid that flows between the two flow paths when the opening is closed by the valve body, Since the pressure is reduced by passing through the orifice part in series, the gas-liquid two-phase refrigerant flowing into the orifice part can be reliably mixed by the porous permeable material provided on the upstream side of the orifice part. The porous permeable material provided on the downstream side of the gas can reliably decelerate and rectify the gas-liquid two-phase jet flowing out from the orifice portion, and can greatly reduce the refrigerant flow noise. In addition, since the diameter of the ventilation hole of the porous permeable material can be increased by the orifice portion, solid foreign substances are less likely to be clogged, and a flow control valve with higher reliability can be obtained in the long term.

この発明の実施の形態1に係る空気調和装置を示す冷媒回路図である。It is a refrigerant circuit figure which shows the air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る第2流量制御弁の構成を示す断面図である。It is sectional drawing which shows the structure of the 2nd flow control valve which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係り、第2流量制御弁に用いる発泡金属の空隙率(%)に対し、発泡金属に固形異物を堆積する前後の圧力差増加率(%)を示すグラフ説明図である。Graph explanatory drawing which shows pressure difference increase rate (%) before and behind depositing a solid foreign material to a foam metal with respect to the porosity (%) of the metal foam used for a 2nd flow control valve concerning Embodiment 1 of this invention. It is. この発明の実施の形態1に係り、発泡金属の空隙率に対する圧力差増加率を調べる実験装置の構成を示す構成図である。It is a block diagram which shows the structure of the experiment apparatus which concerns on Embodiment 1 of this invention and investigates the pressure difference increase rate with respect to the porosity of a foam metal. この発明の実施の形態1に係る第2流量制御弁の他の構成を示す断面図である。It is sectional drawing which shows the other structure of the 2nd flow control valve concerning Embodiment 1 of this invention. この発明の実施の形態1に係る第2流量制御弁の他の構成を示す断面図である。It is sectional drawing which shows the other structure of the 2nd flow control valve concerning Embodiment 1 of this invention. この発明の実施の形態1に係る第2流量制御弁の他の構成を示す断面図である。It is sectional drawing which shows the other structure of the 2nd flow control valve concerning Embodiment 1 of this invention. この発明の実施の形態1に係る絞り手段を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the aperture means which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る第2流量制御弁の別の構成を示す断面図である。It is sectional drawing which shows another structure of the 2nd flow control valve which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る第2流量制御弁の他の構成を示す断面図である。It is sectional drawing which shows the other structure of the 2nd flow control valve concerning Embodiment 1 of this invention. この発明の実施の形態1に係る第2流量制御弁の他の構成を示す断面図である。It is sectional drawing which shows the other structure of the 2nd flow control valve concerning Embodiment 1 of this invention. この発明の実施の形態1に係る第2流量制御弁の別の構成を示す断面図である。It is sectional drawing which shows another structure of the 2nd flow control valve which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る別の絞り手段を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows another aperture means based on Embodiment 1 of this invention. この発明の実施の形態1に係る第2流量制御弁の他の構成を示す断面図である。It is sectional drawing which shows the other structure of the 2nd flow control valve concerning Embodiment 1 of this invention. この発明の実施の形態1に係る第2流量制御弁の他の構成を示す断面図である。It is sectional drawing which shows the other structure of the 2nd flow control valve concerning Embodiment 1 of this invention. この発明の実施の形態1に係るストレーナー取付け説明図である。It is strainer attachment explanatory drawing which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る別のストレーナー構造説明図である。It is another strainer structure explanatory drawing which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るオリフィス及び多孔質透過材に対する冷媒挙動を説明する説明図である。It is explanatory drawing explaining the refrigerant | coolant behavior with respect to the orifice and porous permeable material which concern on Embodiment 1 of this invention. この発明の実施の形態1に係るオリフィス及び多孔質透過材に対する別の冷媒挙動を説明する説明図である。It is explanatory drawing explaining another refrigerant | coolant behavior with respect to the orifice which concerns on Embodiment 1 of this invention, and a porous permeable material. この発明の実施の形態1に係るオリフィス及び多孔質透過材に対する別の冷媒挙動を説明する説明図である。It is explanatory drawing explaining another refrigerant | coolant behavior with respect to the orifice which concerns on Embodiment 1 of this invention, and a porous permeable material. この発明の実施の形態1に係る第2流量制御弁の他の構成を示す断面図である。It is sectional drawing which shows the other structure of the 2nd flow control valve concerning Embodiment 1 of this invention. この発明の実施の形態1に係る第2流量制御弁の騒音計測を説明する説明図である。It is explanatory drawing explaining the noise measurement of the 2nd flow control valve concerning Embodiment 1 of this invention. この発明の実施の形態1に係る第2流量制御弁の冷媒流動音の特性説明図である。It is characteristic explanatory drawing of the refrigerant flow sound of the 2nd flow control valve concerning Embodiment 1 of this invention. この発明の実施の形態1に係る第2流量制御弁の冷媒流動音の特性説明図である。It is characteristic explanatory drawing of the refrigerant flow sound of the 2nd flow control valve concerning Embodiment 1 of this invention. 従来の空気調和装置を示す冷媒回路図である。It is a refrigerant circuit figure which shows the conventional air conditioning apparatus.

符号の説明Explanation of symbols

1 圧縮機、3 室外熱交換器、4 第1流量制御弁、5 第1室内熱交換器、 6 第2流量制御弁、7 第2室内熱交換器、21 第1流路、22 第2流路、23 弁座、24 弁体、26 弁室、28 連通孔、29 空洞部、30 多孔質透過材、31 小孔、32 オリフィス板、34 弁座ブロック、35 第1の開口、36 第2の開口、37 貫通孔、41 リリーフ弁、42 リリーフバネ、43 第1ストレーナ、44 第2ストレーナー、45 第3ストレーナー、 61 マフラー、 62 蒸気冷媒、 63 液冷媒、 64
無響箱、 65 マイクロフォン、 66 騒音計。
DESCRIPTION OF SYMBOLS 1 Compressor, 3 Outdoor heat exchanger, 4 1st flow control valve, 5 1st indoor heat exchanger, 6 2nd flow control valve, 7 2nd indoor heat exchanger, 21 1st flow path, 22 2nd flow Road, 23 Valve seat, 24 Valve body, 26 Valve chamber, 28 Communication hole, 29 Cavity, 30 Porous material, 31 Small hole, 32 Orifice plate, 34 Valve seat block, 35 First opening, 36 Second Opening, 37 through-hole, 41 relief valve, 42 relief spring, 43 first strainer, 44 second strainer, 45 third strainer, 61 muffler, 62 vapor refrigerant, 63 liquid refrigerant, 64
Anechoic box, 65 microphones, 66 sound level meter.

Claims (18)

2つの流路を接続する弁室内に固設され前記流路の一方に接続する開口を有する弁座と、前記弁室内で稼動されて前記弁座の開口を開閉する弁体と、前記弁体内を貫通し前記開口と前記流路の他方とを流通可能とする貫通流路と、前記貫通流路を流れる液冷媒と蒸気冷媒の両方が同時に通るように前記弁体内に設けられこの冷媒が通る平均径が前記冷媒内に含まれ流通する固形異物の多くを通過させる径以上の多孔質透過材と、を備え、前記弁体によって前記開口を閉じたときに前記2つの流路間を流れる流体を前記貫通流路の前記多孔質透過材を通過させて減圧すること特徴とする流量制御弁。 A valve seat fixed in a valve chamber connecting two flow paths and having an opening connected to one of the flow paths; a valve body that operates in the valve chamber to open and close the opening of the valve seat; and Through the opening and the other of the flow path, and the liquid refrigerant and vapor refrigerant flowing through the through flow path pass through the valve body at the same time. A porous permeable material having an average diameter that is larger than a diameter that allows most of the solid foreign substances contained in the refrigerant to pass therethrough, and that flows between the two flow paths when the opening is closed by the valve body The flow rate control valve is characterized in that the pressure is reduced by passing the porous permeable material through the through channel. 2つの流路を接続する弁室内に固設され前記流路の一方に接続する開口を有する弁座と、前記弁室内で稼動されて前記弁座の開口を開閉する弁体と、前記弁室内で前記弁体または前記弁座の外側に配設され、前記開口を迂回して前記2つの流路間を流れる流体を流通可能とする迂回流路と、前記迂回流路を流れる流体が通るように前記弁室内に設けられた多孔質透過材と、を備え、前記弁体によって前記開口を閉じたときに前記迂回流路を流れる流体を前記多孔質透過材を通過させて減圧すること特徴とする流量制御弁。 A valve seat fixed in a valve chamber connecting two flow paths and having an opening connected to one of the flow paths; a valve body operated in the valve chamber to open and close the opening of the valve seat; and And a bypass channel that is disposed outside the valve body or the valve seat and allows the fluid flowing between the two channels bypassing the opening and the fluid flowing through the bypass channel to pass therethrough. A porous permeable material provided in the valve chamber, and when the opening is closed by the valve body, the fluid flowing through the bypass channel is reduced in pressure through the porous permeable material. Flow control valve to do. 2つの流路を接続する弁室内に固設され前記流路の一方に接続する開口を有する弁座と、前記弁室内で稼動されて前記弁座の開口を開閉する弁体と、前記弁体内を貫通し前記開口と前記2つの流路の他方とを流通可能とする貫通流路と、前記貫通流路を流れる液冷媒と蒸気冷媒の両方が同時に通るように前記弁体内に設けられ、この冷媒が通る第1の多孔質透過材と、前記弁室内に設けられ前記2つの流路を仕切るとともに前記冷媒が通る平均径が前記冷媒内に含まれ流通する固形異物の多くを通過させる径以上の第2の多孔質透過材と、を備えたこと特徴とする流量制御弁。 A valve seat fixed in a valve chamber connecting two flow paths and having an opening connected to one of the flow paths; a valve body that operates in the valve chamber to open and close the opening of the valve seat; and Through the opening and the other of the two flow paths, and the liquid refrigerant and the vapor refrigerant flowing through the through flow path are provided in the valve body at the same time. A first porous permeable material through which the refrigerant passes, and an average diameter through which the two passages provided in the valve chamber pass and through which the refrigerant passes are larger than a diameter through which most of the solid foreign substances contained in the refrigerant pass. And a second porous permeable material. 前記多孔質透過材の前記冷媒が流通する径はほぼ均質もしくは複数の異なるサイズ径を有することを特徴とする請求項1ないし請求項3のいずれかに記載の流量制御弁。 The flow control valve according to any one of claims 1 to 3, wherein a diameter of the porous permeable material through which the refrigerant flows is substantially uniform or has a plurality of different size diameters. 前記多孔質透過材の近傍に設けたオリフィスと、を備え、前記多孔質透過材の冷媒が流通する平均径が蒸気冷媒や液冷媒をオリフィスの孔径以下に分割する径以下であることを特徴とする請求項1ないし請求項4のいずれかに記載の流量制御弁。 An orifice provided in the vicinity of the porous permeable material, wherein an average diameter through which the refrigerant of the porous permeable material flows is equal to or smaller than a diameter that divides the vapor refrigerant or the liquid refrigerant into the orifice diameter or less. The flow control valve according to any one of claims 1 to 4. 前記流体が一方方向に流れる多孔質透過材の流路の上流側の前記冷媒が流入する面積を、下流側の前記冷媒が流出する面積よりも大きな面積となるようにしたことを特徴とする請求項1ないし請求項5のいずれかに記載の流量制御弁。 The area into which the refrigerant on the upstream side of the flow path of the porous permeable material in which the fluid flows in one direction is larger than the area from which the refrigerant on the downstream side flows out. The flow control valve according to any one of claims 1 to 5. 前記流体が一方方向に流れる多孔質透過材の流路の上流側の前記流体が流入する面の形状と、下流側の前記流体が流出する面の形状を異なる形状にしたことを特徴とする請求項1ないし請求項6のいずれかに記載の流量制御弁。 The shape of a surface into which the fluid on the upstream side of the flow path of the porous permeable material through which the fluid flows in one direction is different from a shape of the surface from which the fluid flows out on the downstream side. The flow control valve according to any one of claims 1 to 6. 前記多孔質透過材の前記冷媒が通る異なる径を前記流路に直列になるように配置したことを特徴とする請求項1ないし請求項7のいずれかに記載の流量制御弁。 The flow control valve according to any one of claims 1 to 7, wherein different diameters of the porous permeable material through which the refrigerant passes are arranged in series with the flow path. 前記多孔質透過材の前記流路の上流側の前記冷媒が通る径を下流側の前記冷媒が通る径より大きくしたことを特徴とする請求項1ないし請求項8のいずれかに記載の流量制御弁。 The flow rate control according to any one of claims 1 to 8, wherein a diameter of the porous permeable material through which the refrigerant on the upstream side of the flow path passes is larger than a diameter of the refrigerant on the downstream side. valve. 前記第1流路と前記第2流路の間の圧力差が所定の値以上となった時にこの圧力差を小さくするリリーフ機構を備えたことを特徴とする請求項1ないし請求項9のいずれかに記載の流量制御弁。 10. The relief mechanism according to claim 1, further comprising a relief mechanism that reduces the pressure difference when the pressure difference between the first flow path and the second flow path exceeds a predetermined value. The flow control valve according to the above. 前記多孔質透過材を発泡金属で構成したことを特徴とする請求項1ないし請求項10のいずれかに記載の流量制御弁。 The flow control valve according to any one of claims 1 to 10, wherein the porous permeable material is made of a foam metal. 前記多孔質透過材は、平均100マイクロメートル以上の前記流体が通る径を有することを特徴とする請求項1ないし請求項11のいずれかに記載の流量制御弁。 The flow control valve according to any one of claims 1 to 11, wherein the porous permeable material has a diameter through which the fluid having an average of 100 micrometers or more passes. 圧縮機、室外熱交換器、第1流量制御弁、第1室内熱交換器、第2流量制御弁、第2室内熱交換器を順次接続した冷凍サイクルを備え、前記第2流量制御弁は請求項1ないし請求項12のいずれかに記載の流量制御弁であることを特徴とする冷凍空調装置。 A compressor, an outdoor heat exchanger, a first flow control valve, a first indoor heat exchanger, a second flow control valve, and a second indoor heat exchanger are sequentially connected to each other, and the second flow control valve is claimed. A refrigerating and air-conditioning apparatus comprising the flow control valve according to any one of claims 1 to 12. 前記冷凍サイクルの流路内に配置され前記流路内を流れる固形異物を除去するストレーナと、を備え、前記第2流量制御弁の前記冷媒が通る前記多孔質透過材の平均径は前記ストレーナーの前記冷媒が通る平均径と同程度以上であることを特徴とする請求項13記載の冷凍空調装置。 A strainer that is disposed in the flow path of the refrigeration cycle and removes solid foreign substances flowing in the flow path, and the average diameter of the porous permeable material through which the refrigerant of the second flow control valve passes is the strainer's The refrigerating and air-conditioning apparatus according to claim 13, wherein the refrigerating and air-conditioning apparatus is equal to or greater than an average diameter through which the refrigerant passes. 前記冷凍サイクルの冷媒として、凝縮温度40゜C、蒸発温度10゜Cとした時の飽和圧力の差が1.0MPa以上となる冷媒を用いたことを特徴とする請求項13または14記載の冷凍空調装置。 The refrigeration according to claim 13 or 14, wherein a refrigerant having a saturation pressure difference of 1.0 MPa or more when the condensation temperature is 40 ° C and the evaporation temperature is 10 ° C is used as the refrigerant in the refrigeration cycle. Air conditioner. 前記冷凍サイクルの冷媒は、可燃性冷媒であることを特徴とする請求項13または14記載の冷凍空調装置。 The refrigeration air conditioner according to claim 13 or 14, wherein the refrigerant of the refrigeration cycle is a combustible refrigerant. 円筒形状の底面部間を貫通させる、弁室が接続する第1、第2流路と同程度の径の第1の貫通孔及びこの貫通孔よりも小さな径の第2の貫通孔を有し、前記弁室に設けられる弁前記流路の上流側の前記冷媒が通る径座ブロックを形成するステップと、前記第1の貫通孔を除き前記第2の貫通孔を覆うように前記弁座ブロックの前記底面部の少なくとも一方に多孔質透過材を固定するステップと、前記多孔質透過材が固定された前記弁座ブロックを前記弁室内に挿設するステップと、を備え、前記第1の貫通孔を閉じた時に前記第1流路から流入した流体が前記第2の貫通孔と前記多孔質透過材を通って前記第2流路に流通可能な構成を有することを特徴とする流量制御弁の製造方法。 A first through hole having a diameter similar to that of the first and second flow paths connected to the valve chamber, and a second through hole having a diameter smaller than that of the through hole, which penetrate between the cylindrical bottom surfaces. A step of forming a radial seat block through which the refrigerant on the upstream side of the flow path of the valve provided in the valve chamber passes, and the valve seat block so as to cover the second through hole except for the first through hole A step of fixing a porous permeable material to at least one of the bottom surface portions, and a step of inserting the valve seat block to which the porous permeable material is fixed into the valve chamber. A flow control valve having a configuration in which fluid flowing in from the first flow path when the hole is closed can flow to the second flow path through the second through hole and the porous permeable material. Manufacturing method. 前記第1の貫通孔が前記底面部のほぼ中央で前記底面部を貫通し、前記第2の貫通孔が前記第1の貫通孔の周辺で前記底面部を貫通するように前記弁座ブロックを形成したことを特徴とする請求項17記載の流量制御弁の製造方法。 The valve seat block is arranged so that the first through hole penetrates the bottom surface portion at the center of the bottom surface portion, and the second through hole penetrates the bottom surface portion around the first through hole. The flow rate control valve manufacturing method according to claim 17, wherein the flow rate control valve is formed.
JP2005362913A 2001-10-29 2005-12-16 Flow control valve, refrigeration air conditioner, and method of manufacturing flow control valve Pending JP2006097901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005362913A JP2006097901A (en) 2001-10-29 2005-12-16 Flow control valve, refrigeration air conditioner, and method of manufacturing flow control valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001330355 2001-10-29
JP2005362913A JP2006097901A (en) 2001-10-29 2005-12-16 Flow control valve, refrigeration air conditioner, and method of manufacturing flow control valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002032040A Division JP2003202167A (en) 2001-10-29 2002-02-08 Flow rate control valve, refrigerating air conditioning device and method for manufacturing flow rate control valve

Publications (1)

Publication Number Publication Date
JP2006097901A true JP2006097901A (en) 2006-04-13

Family

ID=36237895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005362913A Pending JP2006097901A (en) 2001-10-29 2005-12-16 Flow control valve, refrigeration air conditioner, and method of manufacturing flow control valve

Country Status (1)

Country Link
JP (1) JP2006097901A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881530A (en) * 2010-06-30 2010-11-10 广东美的电器股份有限公司 Air conditioner and control method thereof
CN101893097A (en) * 2009-05-22 2010-11-24 浙江三花股份有限公司 Electromagnetic valve and electromagnetic valve element
WO2013000389A1 (en) * 2011-06-27 2013-01-03 浙江三花股份有限公司 Flow-adjusting valve
JP2016217409A (en) * 2015-05-18 2016-12-22 株式会社不二工機 Motor valve
CN107965952A (en) * 2016-10-20 2018-04-27 浙江三花智能控制股份有限公司 Electric expansion valve and there is its refrigeration system
JP2020159411A (en) * 2019-03-26 2020-10-01 株式会社フジキン Valve and method for adjusting leak flow of fluid
CN113883325A (en) * 2020-07-01 2022-01-04 株式会社鹭宫制作所 Flow control valve and refrigeration cycle system
JP7466485B2 (en) 2021-03-24 2024-04-12 株式会社鷺宮製作所 Motor-operated valve

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893097A (en) * 2009-05-22 2010-11-24 浙江三花股份有限公司 Electromagnetic valve and electromagnetic valve element
CN101881530A (en) * 2010-06-30 2010-11-10 广东美的电器股份有限公司 Air conditioner and control method thereof
WO2013000389A1 (en) * 2011-06-27 2013-01-03 浙江三花股份有限公司 Flow-adjusting valve
JP2016217409A (en) * 2015-05-18 2016-12-22 株式会社不二工機 Motor valve
CN107965952A (en) * 2016-10-20 2018-04-27 浙江三花智能控制股份有限公司 Electric expansion valve and there is its refrigeration system
JP2020159411A (en) * 2019-03-26 2020-10-01 株式会社フジキン Valve and method for adjusting leak flow of fluid
CN113883325A (en) * 2020-07-01 2022-01-04 株式会社鹭宫制作所 Flow control valve and refrigeration cycle system
JP7466485B2 (en) 2021-03-24 2024-04-12 株式会社鷺宮製作所 Motor-operated valve

Similar Documents

Publication Publication Date Title
EP1367341B1 (en) Throttle device
JP2006097901A (en) Flow control valve, refrigeration air conditioner, and method of manufacturing flow control valve
JP5665981B2 (en) Air conditioner
US7849705B2 (en) Noise reduction device and air conditioner having the same
JP2006275452A (en) Expansion valve
JP3901103B2 (en) Air conditioner
JP2001082761A (en) Air conditioner
JP3395761B2 (en) Throttling device, refrigeration cycle device.
JP4465122B2 (en) Air conditioner
JP2002221353A (en) Air conditioner
JP2003202167A (en) Flow rate control valve, refrigerating air conditioning device and method for manufacturing flow rate control valve
JP3817981B2 (en) Refrigeration cycle apparatus and air conditioner
JP4221922B2 (en) Flow control device, throttle device, and air conditioner
JP3870768B2 (en) Air conditioner and method of operating air conditioner
JP3712355B2 (en) Refrigeration cycle equipment
JP3417351B2 (en) Aperture device
JP2008261626A (en) Flow control device, restricting device and air conditioner
WO2013061365A1 (en) Air conditioning device
JP3412602B2 (en) Refrigeration cycle device and air conditioner
JP2002350003A (en) Air conditioner
JP3951983B2 (en) Refrigerant control valve
JP2002366231A (en) Flow rate controller and air conditioning system
JP4306366B2 (en) Refrigerant control valve
AU2004202567B2 (en) Refrigerating cycle apparatus
JP2003294339A (en) Orifice device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080416

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080606