JP2006349274A - Throttle device, flow control valve and air conditioner incorporating them - Google Patents

Throttle device, flow control valve and air conditioner incorporating them Download PDF

Info

Publication number
JP2006349274A
JP2006349274A JP2005176840A JP2005176840A JP2006349274A JP 2006349274 A JP2006349274 A JP 2006349274A JP 2005176840 A JP2005176840 A JP 2005176840A JP 2005176840 A JP2005176840 A JP 2005176840A JP 2006349274 A JP2006349274 A JP 2006349274A
Authority
JP
Japan
Prior art keywords
valve
opening
control valve
port
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005176840A
Other languages
Japanese (ja)
Inventor
Hisayuki Ashizawa
久幸 芦澤
Taiichiro Kenmochi
大一郎 剱持
Takayuki Iriko
隆之 入子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2005176840A priority Critical patent/JP2006349274A/en
Publication of JP2006349274A publication Critical patent/JP2006349274A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of high costs of parts of conventional flow control valves that incorporate porous members in order to subdivide air bubbles contained in fluid. <P>SOLUTION: The flow control valve includes a valve housing 26 formed with a valve chamber 25; a first opening 27 facing the valve chamber 25; a second opening 29 formed with a valve seat 28 facing the valve chamber 25; a valve element 30 caused to abut against the valve seat 28 and movably held in such a manner as to close the second opening 29; and a drive means connected to the valve housing 26 for driving the valve element 30. The valve element 30 has an inner gap part 50 being cylindrical about the axis of the valve element and being in communication with the second opening 29 at one end along the axis; a cylindrical outer gap part 51 concentrically surrounding the inner gap part 50; a port 52 extending radially outward from the outer gap part 50 and being open to the valve chamber 25; and a throttle passage 53 disposed 180 degrees away from the port 52 and communicating the inner gap part 50 with the outer gap part 51. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、絞り装置および同じ絞り機能を持つ流量制御弁ならびにこの流量制御弁を冷媒の循環通路に組み込んだ空気調和装置に関する。   The present invention relates to a throttling device, a flow control valve having the same throttling function, and an air conditioner in which the flow control valve is incorporated in a refrigerant circulation passage.

除湿機能を具えた空気調和装置においては、一対の室内熱交換器を用いて除湿運転中に上流側の室内熱交換器を凝縮器として機能させると共に下流側の室内熱交換器を蒸発器として機能させたものが知られている。このような空気調和装置にて除湿運転を行う場合、上流側の熱交換器によって室内空気を加熱する一方、下流側の熱交換器により室内空気の冷却および除湿を行うことにより、室内空気温度を低下させずに除湿を行うことができるように配慮している。この一対の室内熱交換器を組み込んだ空気調和装置においては、上流側の室内熱交換器と下流側の熱交換器とをつなぐ冷媒の通路に絞り機能を持った流量制御弁を組み付け、除湿運転を行う場合には冷媒の通路を絞った状態に保持しておく必要がある。   In an air conditioner having a dehumidifying function, the upstream indoor heat exchanger functions as a condenser and the downstream indoor heat exchanger functions as an evaporator during a dehumidifying operation using a pair of indoor heat exchangers. What was made known is known. When performing a dehumidifying operation with such an air conditioner, the indoor air is heated by the upstream heat exchanger, while the indoor air is cooled and dehumidified by the downstream heat exchanger, thereby reducing the indoor air temperature. Consideration can be given to dehumidification without lowering. In the air conditioner incorporating this pair of indoor heat exchangers, a flow control valve having a throttling function is assembled in the refrigerant passage connecting the upstream indoor heat exchanger and the downstream heat exchanger, and dehumidifying operation is performed. When performing the above, it is necessary to keep the refrigerant passage in a narrowed state.

除湿運転を行う場合、流量制御弁の上流側の冷媒通路内では液相および気相の冷媒が混在した状態となっており、気相状態の冷媒が絞り部を通過する際にその圧力の急変に伴って耳障りな騒音が発生する。このような騒音を低減するための技術が例えば特許文献1や特許文献2に開示されている。特許文献1では、絞り部の出口側に多孔質透過材を組み込み、気泡の爆発的な膨張を抑えて細分化させるようにしている。特許文献2では、複数枚のオリフィスを空間を介して重ね合わせ、オリフィスを通過する際に発生する騒音を空間にて緩衝させ、静音化させるようにしている。   When dehumidifying operation is performed, a liquid phase and a gas phase refrigerant are mixed in the refrigerant passage on the upstream side of the flow control valve, and the pressure suddenly changes when the gas phase refrigerant passes through the throttle. As a result, annoying noise is generated. For example, Patent Literature 1 and Patent Literature 2 disclose techniques for reducing such noise. In Patent Document 1, a porous permeable material is incorporated on the outlet side of the throttle portion so as to subdivide by suppressing explosive expansion of bubbles. In Patent Document 2, a plurality of orifices are overlapped with each other through a space, and noise generated when passing through the orifice is buffered in the space so as to be silenced.

特開2003−202167号公報JP 2003-202167 A 特開2003−065632号公報JP 2003-065632 A

特許文献1に開示された従来の流量制御弁の場合、所定の静音効果を得るためには冷媒の流れ方向に沿った多孔質透過材の厚みをある程度厚く設定する必要がある。このため、入口ポートと出口ポートとを直交させた流量制御弁において出口ポート側を開閉する弁体に多孔質透過材を組み込んだものでは、弁体により出口ポート側を閉じた状態で冷媒を絞り部および多孔質透過材に導くため、流量制御弁内における冷媒の流路を入口ポートから出口ポートと反対側に大きく曲げなければならず、圧損が生じたり、流量制御弁自体の寸法が大きくなってしまう。しかも、多孔質透過材は材料コストが嵩むため、流量制御弁自体のコストを増大させる一因ともなっている。   In the case of the conventional flow control valve disclosed in Patent Document 1, in order to obtain a predetermined silent effect, it is necessary to set the thickness of the porous permeable material along the refrigerant flow direction to a certain degree. For this reason, in a flow control valve in which the inlet port and the outlet port are orthogonal to each other and a porous permeable material is incorporated in the valve body that opens and closes the outlet port side, the refrigerant is throttled while the outlet port side is closed by the valve body. Therefore, the refrigerant flow path in the flow control valve must be bent greatly from the inlet port to the opposite side of the outlet port, resulting in pressure loss or an increase in the size of the flow control valve itself. End up. In addition, since the material cost of the porous permeation material increases, it also contributes to increase the cost of the flow control valve itself.

また、特許文献2に開示された減圧装置においては、冷媒の流れ方向に沿って複数枚のオリフィスと、空間とを直列に配置する必要があり、充分な静音効果を得るためには、大きな容積の空間を多段にすることが望まれるため、減圧装置の寸法が大型化してしまう欠点がある。しかも、この減圧装置においては、冷媒が下流側の最終段のオリフィスを通過する際に発生する騒音を低減させることが基本的に不可能である。   Further, in the decompression device disclosed in Patent Document 2, it is necessary to arrange a plurality of orifices and a space in series along the flow direction of the refrigerant, and in order to obtain a sufficient silent effect, a large volume is required. Therefore, there is a disadvantage that the size of the decompression device is increased. In addition, in this decompression device, it is basically impossible to reduce the noise generated when the refrigerant passes through the downstream orifice of the last stage.

本発明の目的は、低コストにて高い静音効果が得られる絞り装置およびこの絞り装置を組み込んだ流量制御弁ならびにこの流量制御弁が組み込まれた空気調和装置を提供することにある。   An object of the present invention is to provide a throttle device that can obtain a low noise effect at low cost, a flow control valve incorporating the throttle device, and an air conditioner incorporating the flow control valve.

本発明の第1の形態は、円筒状をなし、その軸線に沿った一端側が外部に連通する内側空隙部と、この内側空隙部を同心状に囲むように形成された円筒状をなす外側空隙部と、この外側空隙部から径方向外側に延在し、当該外側空隙部に連通するポートと、このポートに対し180度隔てて配され、前記内側空隙部と前記外側空隙部とを連通する絞り通路とを具えたことを特徴とする絞り装置にある。   The first embodiment of the present invention has a cylindrical shape, and an inner space portion whose one end side along the axis communicates with the outside, and an outer space having a cylindrical shape formed so as to concentrically surround the inner space portion. And a port extending radially outward from the outer gap and communicating with the outer gap, and spaced apart from the port by 180 degrees to communicate the inner gap and the outer gap. A throttling device comprising a throttling passage.

本発明においては、ポートから外側空隙部に流体が導入された場合、その180度隔てた絞り通路を介して内側空隙部へと流体が導かれ、この内側空隙部の一端側から流体が流出する。逆に、内側空隙部の一端側から内側空隙部に流体が導入された場合、絞り通路を通って外側空隙部へと流体が導かれ、さらに絞り通路の180度反対側に位置するポートから流体が流出する。何れの場合においても、絞り通路を通過する際の絞り効果によって流体の流速の上昇および圧力の低下が起こる。そして、ポートから外側空隙部に流体が導入された場合には、絞り通路を通過直後に流体の流速が徐々に低下すると共に低下した圧力の安定化が内側空隙部内にて起こる。これに対し、内側空隙部の一端側から内側空隙部へと流体が導入された場合には、絞り通路を通過直後の流体の流速が徐々に低下すると共に低下した圧力の安定化が外側空隙部にて起こることとなる。   In the present invention, when a fluid is introduced from the port into the outer gap, the fluid is guided to the inner gap through the throttle passage separated by 180 degrees, and the fluid flows out from one end side of the inner gap. . Conversely, when fluid is introduced from one end side of the inner gap portion into the inner gap portion, the fluid is guided to the outer gap portion through the throttle passage, and further from the port located 180 degrees opposite to the throttle passage. Leaks. In any case, the flow velocity of the fluid and the pressure decrease due to the throttling effect when passing through the throttling passage. When the fluid is introduced from the port into the outer gap, the fluid flow rate gradually decreases immediately after passing through the throttle passage, and the reduced pressure stabilizes in the inner gap. On the other hand, when the fluid is introduced from one end side of the inner gap to the inner gap, the flow rate of the fluid immediately after passing through the throttle passage gradually decreases and the reduced pressure stabilizes. Will happen.

本発明の第1の形態による絞り装置において、内側空隙部および外側空隙部の少なくとも一方の半径方向に沿った厚みが絞り通路の内径よりも小さく設定されていることが好ましい。   In the throttling device according to the first aspect of the present invention, it is preferable that the thickness along the radial direction of at least one of the inner gap and the outer gap is set smaller than the inner diameter of the throttling passage.

また、この絞り装置はポートを覆うフィルタをさらに具えることができる。   The diaphragm device may further include a filter that covers the port.

外部と内側空隙部の一端側とを連通する第2のポートをさらに具え、この第2のポートを内側空隙部の軸線に関して軸対称に配することができる。この場合、第2のポートは内側空隙部の一端側から半径方向外側に放射状に複数開口しているものであってよい。   A second port that communicates between the outside and one end of the inner space can further be provided, and the second port can be arranged symmetrically with respect to the axis of the inner space. In this case, a plurality of second ports may be opened radially from one end side of the inner space to the radially outer side.

本発明の第2の形態は、内側に弁室が形成された弁ハウジングと、第1の方向に延在して前記弁ハウジングの弁室に臨む第1の開口部と、前記第1の方向と交差するように第2の方向に延在して前記弁ハウジングの弁室に臨む弁座が形成された第2の開口部と、この第2の開口部の弁座に当接して当該第2の開口部を閉止するように、前記第2の方向に移動可能に保持された弁体と、前記弁ハウジングに連結されて前記弁体を前記第2の方向に沿って駆動する駆動手段とを具え、前記弁体は、前記第2の方向と平行な軸線を中心とする円筒状をなし、かつ前記軸線に沿った一端側が前記第2の開口部に連通する内側空隙部と、この内側空隙部を同心状に囲むように形成された円筒状をなす外側空隙部と、この外側空隙部から径方向外側に延在して前記弁室側に開口するポートと、このポートに対し180度隔てて配され、前記内側空隙部と前記外側空隙部とを連通する絞り通路とを有することを特徴とする流量制御弁にある。   According to a second aspect of the present invention, a valve housing having a valve chamber formed therein, a first opening extending in a first direction and facing the valve chamber of the valve housing, and the first direction A second opening in which a valve seat extending in the second direction so as to cross the valve chamber and facing the valve chamber of the valve housing is formed, and the valve seat of the second opening abuts on the second seat A valve body movably held in the second direction so as to close the two openings, and a driving means connected to the valve housing for driving the valve body in the second direction. The valve body has a cylindrical shape centering on an axis parallel to the second direction, and an inner gap portion whose one end side along the axis communicates with the second opening, and an inner side thereof A cylindrical outer cavity formed concentrically surrounding the cavity, and extending radially outward from the outer cavity A flow control valve having a port that opens to the valve chamber side, and a throttle passage that is disposed 180 degrees apart from the port and communicates the inner gap and the outer gap. .

本発明においては、ポートから外側空隙部に流体が導入される場合、その180度隔てた絞り通路から内側空隙部へと流体が導かれ、この内側空隙部の一端側から流体が流出する。逆に、内側空隙部の一端側から内側空隙部に流体が導入される場合、絞り通路を介して外側空隙部へと流体が導かれ、さらに絞り通路の反対側に位置するポートから流体が流出する。何れの場合においても、絞り通路を通過する際の絞り効果によって流体の流速の上昇および圧力の低下が起こる。そして、ポートから外側空隙部に流体が導入された場合には、絞り通路を通過直後の流体の流速の低下および圧力の安定化が内側空隙部内にて徐々に起こる。これに対し、内側空隙部の一端側から内側空隙部へと流体が導入された場合には、絞り通路を通過直後の流体の流速が徐々に低下すると共に低下した圧力が安定化する。   In the present invention, when the fluid is introduced from the port into the outer gap, the fluid is guided from the throttle passage separated by 180 degrees to the inner gap, and the fluid flows out from one end side of the inner gap. Conversely, when fluid is introduced from one end side of the inner gap portion into the inner gap portion, the fluid is guided to the outer gap portion via the throttle passage, and further, the fluid flows out from the port located on the opposite side of the throttle passage. To do. In any case, the flow velocity of the fluid and the pressure decrease due to the throttling effect when passing through the throttling passage. When the fluid is introduced from the port into the outer gap, the flow velocity of the fluid immediately after passing through the throttle passage and the pressure stabilization gradually occur in the inner gap. On the other hand, when the fluid is introduced from the one end side of the inner gap to the inner gap, the flow velocity of the fluid immediately after passing through the throttle passage gradually decreases and the reduced pressure is stabilized.

本発明の第2の形態による流量制御弁において、弁体の半径方向に沿った内側空隙部および外側空隙部の少なくとも一方の半径方向に沿った厚みを絞り通路の内径よりも小さく設定することが好ましい。   In the flow control valve according to the second aspect of the present invention, the thickness along the radial direction of at least one of the inner gap portion and the outer gap portion along the radial direction of the valve body may be set smaller than the inner diameter of the throttle passage. preferable.

また、この流量制御弁はポートを覆う円筒状のフィルタをさらに具えることができる。   The flow control valve can further include a cylindrical filter covering the port.

弁体が前記第2の開口部の弁座に当接した状態において、第1の開口部によって画成される流体通路の第1の方向に沿った延在領域にポートを位置させることができる。   In a state in which the valve body is in contact with the valve seat of the second opening, the port can be positioned in the extending region along the first direction of the fluid passage defined by the first opening. .

第2の開口部と内側空隙部の一端側とを連通する第2のポートをさらに具え、この第2のポートを内側空隙部の軸線に関して軸対称に配することができる。この場合、第2のポートが内側空隙部の一端側から半径方向外側に放射状に複数開口しているものであってよい。   A second port communicating with the second opening and the one end side of the inner space can further be provided, and the second port can be arranged axisymmetrically with respect to the axis of the inner space. In this case, a plurality of second ports may be opened radially from one end side of the inner space to the outer side in the radial direction.

弁体が第2の開口部の弁座に当接した状態において、内側空隙部の一端側が第2の開口部の弁座の内壁に近接して開口していることが好ましい。   In a state where the valve body is in contact with the valve seat of the second opening, it is preferable that one end side of the inner gap portion is opened close to the inner wall of the valve seat of the second opening.

本発明の第3の形態は、圧縮機と、室外熱交換器と、一対の室内熱交換器と、これら圧縮機,室外熱交換器,一対の室内熱交換器を順に通る冷媒の循環通路と、前記一対の室内熱交換器をつなぐ循環通路に組み込まれる本発明の第2の形態による流量制御弁とを具え、この流量制御弁の第1の開口部が前記室外熱交換器に続く一方の室内熱交換器側に接続すると共に第2の開口部が前記圧縮機に続く他方の室内熱交換器側に接続していることを特徴とする空気調和装置にある。   The third aspect of the present invention includes a compressor, an outdoor heat exchanger, a pair of indoor heat exchangers, a refrigerant circulation passage that sequentially passes through the compressor, the outdoor heat exchanger, and the pair of indoor heat exchangers. And a flow control valve according to a second embodiment of the present invention incorporated in a circulation passage connecting the pair of indoor heat exchangers, wherein the first opening of the flow control valve continues to the outdoor heat exchanger. The air conditioner is characterized in that it is connected to the indoor heat exchanger side and the second opening is connected to the other indoor heat exchanger side following the compressor.

本発明において、通常の冷房運転中は流量制御弁が開弁状態にあり、圧縮機により圧縮された冷媒が室外熱交換器,一方の室内熱交換器,流量制御弁,他方の室内熱交換器を通って再び圧縮機に戻り、一対の室内熱交換器によって室内の冷房が行われる。これに対し、除湿運転中は流量制御弁が閉弁状態にあり、一方の室内熱交換器から他方の室内熱交換器への冷媒の流れが抑制された状態となり、室内に存在する水分を一対の室内熱交換器に析出させてこれを室外に排出する。   In the present invention, the flow control valve is open during normal cooling operation, and the refrigerant compressed by the compressor is the outdoor heat exchanger, one indoor heat exchanger, the flow control valve, and the other indoor heat exchanger. Then, it returns to the compressor again, and the room is cooled by a pair of indoor heat exchangers. In contrast, during the dehumidifying operation, the flow control valve is in a closed state, the refrigerant flow from one indoor heat exchanger to the other indoor heat exchanger is suppressed, and a pair of moisture present in the room is removed. This is deposited on the indoor heat exchanger and discharged outside the room.

本発明の絞り装置によると、円筒状をなし、その軸線に沿った一端側が外部に連通する内側空隙部と、この内側空隙部を同心状に囲むように形成された円筒状をなす外側空隙部と、この外側空隙部から径方向外側に延在し、当該外側空隙部に連通するポートと、このポートに対し180度隔てて配され、内側空隙部と外側空隙部とを連通する絞り通路とを具えているので、外側空隙部から絞り通路を介して内側空隙部へと流体を流した場合、絞り通路を通過する際の絞り効果によって流体の流速の上昇および圧力の低下が起こり、さらにこの絞り通路を通過直後の流体の流速の低下および圧力の安定化が内側空隙部内で徐々に起こることとなる。この結果、特に気化しやすい流体を用いた場合でも、通路の通過直後に気化に伴う膨張音が瞬時に発生せず、絞り通路を通過後の内側空隙部内を流動中に順次発生するため、従来のものよりも静音化させることができる。逆に、内側空隙部の一端側から絞り通路を介して内側空隙部へと流体を流した場合、外側空隙部内で流体の流速を徐々に上昇させつつ圧力を安定化させた状態でポートへと導くことができる。また、静音化のために高価な多孔質部材を使用する必要がなくなり、その部品コストおよび製造コストを抑制することが可能である。   According to the throttle device of the present invention, an inner cavity that is cylindrical and has one end along the axis communicating with the outside, and a cylindrical outer cavity formed so as to concentrically surround the inner cavity. And a port that extends radially outward from the outer space and communicates with the outer space, and a throttle passage that is disposed 180 degrees away from the port and communicates the inner space and the outer space. Therefore, when fluid flows from the outer gap to the inner gap via the throttle passage, the fluid flow rate increases and the pressure decreases due to the throttle effect when passing through the throttle passage. A decrease in fluid flow rate and pressure stabilization immediately after passing through the throttle passage will gradually occur in the inner gap. As a result, even in the case of using a particularly easily vaporized fluid, the expansion sound accompanying vaporization does not occur instantaneously immediately after passing through the passage, and the inside void after passing through the throttle passage is sequentially generated during the flow. It can be made quieter than those. Conversely, when fluid flows from one end of the inner cavity to the inner cavity via the throttle passage, the fluid is gradually increased in the outer cavity and the pressure is stabilized and the port is stabilized. Can lead. Moreover, it is not necessary to use an expensive porous member for noise reduction, and it is possible to suppress the component cost and the manufacturing cost.

外側空隙部の半径方向に沿った厚みを絞り通路の内径よりも小さく設定した場合、流体が外側空隙部から絞り通路に流入する際に、流体に含まれる気泡を通路の内径よりも細分化させることができ、気泡が絞り通路を通過する際に発生する圧力変動の幅を小さくすることが可能となる。逆に、流体が絞り通路を通って外側空隙部に流入する際に、この絞り通路での絞り効果によって上昇した流体の流速をゆっくりと低下させると共に低下した圧力を安定化させることができる。   When the thickness along the radial direction of the outer gap is set smaller than the inner diameter of the throttle passage, bubbles contained in the fluid are subdivided from the inner diameter of the passage when the fluid flows into the throttle passage from the outer gap. It is possible to reduce the width of the pressure fluctuation generated when the bubbles pass through the throttle passage. On the contrary, when the fluid flows into the outer gap through the throttle passage, the flow velocity of the fluid raised by the throttling effect in the throttle passage can be lowered slowly and the lowered pressure can be stabilized.

同様に、内側空隙部の半径方向に沿った厚みを絞り通路の内径よりも小さく設定した場合、流体が絞り通路を通って内側空隙部に流入する際に、この絞り通路での絞り効果によって上昇した流体の流速を緩慢に低下させると共に低下した圧力を安定化させることができる。逆に、流体が内側空隙部から絞り通路に流入する際に、流体に含まれる気泡を通路の内径よりも細分化させることができ、気泡が絞り通路を通過する際に発生する圧力変動の幅を小さくすることが可能となる。   Similarly, when the thickness along the radial direction of the inner gap is set smaller than the inner diameter of the throttle passage, when the fluid flows into the inner gap through the throttle passage, it increases due to the throttle effect in the throttle passage. The flow rate of the fluid can be lowered slowly and the reduced pressure can be stabilized. On the contrary, when the fluid flows into the throttle passage from the inner gap, the bubbles contained in the fluid can be subdivided from the inner diameter of the passage, and the width of the pressure fluctuation generated when the bubbles pass through the throttle passage Can be reduced.

本発明の流量制御弁によると、弁室が形成された弁ハウジングと、弁ハウジングの弁室に臨む第1の開口部と、弁ハウジングの弁室に臨む弁座が形成された第2の開口部と、この第2の開口部の弁座に当接してここを閉止するように移動可能に保持された弁体とを具え、この弁体が、その軸線を中心とする円筒状をなし、かつ当該軸線に沿った一端側が第2の開口部に連通する内側空隙部と、この内側空隙部を同心状に囲むように形成された円筒状をなす外側空隙部と、この外側空隙部から径方向外側に延在して弁室側に開口するポートと、このポートに対し180度隔てて配され、内側空隙部と外側空隙部とを連通する絞り通路とを有しているので、絞り通路を介さずに第1の開口部と第2の開口部とを連通させた状態と、絞り通路を介して第1の開口部と第2の開口部とを連通させた状態とに切り替えることができる。また、絞り通路を介して第1および第2の開口部を連通させた場合、絞り通路を通過する際に流体の流速の上昇および圧力の低下が起こるが、この絞り通路を通過直後の流体の流速が徐々に低下すると共にその圧力の安定化が内側空隙部または外側空隙部内で起こることとなる。この結果、特に気化しやすい流体を用いた場合でも、絞り通路の通過直後に気化に伴う膨張音が瞬時に発生せず、絞り通路を通過後の内側空隙部または外側空隙部内を流動中に順次発生するため、静音化のために高価な多孔質部材を使用せずとも静音化させることができる。しかも、静音化のため多孔質部材を使用する必要がなくなり、その部品コストおよび製造コストを抑制することが可能となる。   According to the flow control valve of the present invention, the valve housing formed with the valve chamber, the first opening facing the valve chamber of the valve housing, and the second opening formed with the valve seat facing the valve chamber of the valve housing. And a valve body movably held so as to abut against the valve seat of the second opening and close the valve seat, the valve body having a cylindrical shape centered on the axis thereof, And an inner cavity whose one end along the axis communicates with the second opening, a cylindrical outer cavity formed so as to concentrically surround the inner cavity, and a diameter from the outer cavity. A throttle passage that extends outward in the direction and opens to the valve chamber side, and a throttle passage that is disposed 180 degrees away from the port and communicates the inner gap portion and the outer gap portion. A state in which the first opening and the second opening are communicated with each other without using A first opening and a second opening can be switched between a state of communicated. In addition, when the first and second openings communicate with each other through the throttle passage, the flow velocity of the fluid increases and the pressure decreases when passing through the throttle passage. As the flow rate gradually decreases, the pressure stabilizes in the inner or outer gap. As a result, even when using a fluid that is particularly easy to vaporize, an expansion sound accompanying vaporization does not instantaneously occur immediately after passing through the throttle passage, and the inside or outside gap after passing through the throttle passage is sequentially flowing. Therefore, the noise can be reduced without using an expensive porous member for noise reduction. In addition, it is not necessary to use a porous member for noise reduction, and it is possible to suppress the component cost and the manufacturing cost.

弁体の半径方向に沿った外側空隙部の厚みを絞り通路の内径よりも小さく設定した場合、流体が外側空隙部から絞り通路に流入する際に、流体に含まれる気泡を絞り通路の内径よりも細分化させることができ、気泡が絞り通路を通過する際に発生する圧力変動の幅を小さくすることが可能となる。逆に、流体が絞り通路を通って外側空隙部に流入する際に、絞り通路によって上昇した流体の流速を緩慢に低下させると共に低下した圧力を安定化させることができる。   When the thickness of the outer gap along the radial direction of the valve body is set to be smaller than the inner diameter of the throttle passage, when the fluid flows into the throttle passage from the outer gap, bubbles contained in the fluid are removed from the inner diameter of the throttle passage. Can be subdivided, and the width of the pressure fluctuation generated when the bubbles pass through the throttle passage can be reduced. Conversely, when the fluid flows into the outer gap through the throttle passage, the flow rate of the fluid raised by the throttle passage can be lowered slowly and the reduced pressure can be stabilized.

同様に、弁体の半径方向に沿った内側空隙部の厚みを絞り通路の内径よりも小さく設定した場合、流体が絞り通路を通って内側空隙部に流入する際に、絞り通路により上昇した流体の流速をゆっくりと低下させると共に低下した圧力を安定化させることができる。逆に、流体が内側空隙部から絞り通路に流入する際に、流体に含まれる気泡を絞り通路の内径よりも細分化させることができ、気泡が絞り通路を通過する際に発生する圧力変動の幅を小さくすることが可能となる。   Similarly, when the thickness of the inner gap along the radial direction of the valve body is set smaller than the inner diameter of the throttle passage, the fluid that has risen by the throttle passage when the fluid flows into the inner gap through the throttle passage The flow rate of the gas can be slowly reduced and the reduced pressure can be stabilized. Conversely, when the fluid flows into the throttle passage from the inner gap, the bubbles contained in the fluid can be subdivided from the inner diameter of the throttle passage, and pressure fluctuations that occur when the bubbles pass through the throttle passage can be reduced. The width can be reduced.

弁体が第2の開口部の弁座に当接した状態において、ポートを第1の開口部によって画成される流体通路の第1の方向に沿った延在領域に位置させた場合、ポートと第1の開口部によって形成される流体通路との間を流体が第1の方向に沿って円滑に流れることとなり、流体の流動方向の変化に伴って発生する騒音を解消することができる。   In a state where the valve body is in contact with the valve seat of the second opening, when the port is positioned in the extending region along the first direction of the fluid passage defined by the first opening, the port And the fluid passage formed by the first opening, the fluid smoothly flows along the first direction, and noise generated with a change in the fluid flow direction can be eliminated.

弁体が第2の開口部の弁座に当接した状態において、内側空隙部の一端側を第2の開口部の弁座の内壁に近接して開口させた場合、流体が内側空隙部の一端側から第2の開口部側に流出する際に第2の開口部の弁座の内壁に沿って流体を流すことが可能となり、内周側の液体と外周側の気体との2相に分離しやすい流体の混和を企図することができる。   In a state where the valve body is in contact with the valve seat of the second opening, when one end side of the inner gap is opened close to the inner wall of the valve seat of the second opening, the fluid is in the inner gap. When flowing out from the one end side to the second opening side, it becomes possible to flow the fluid along the inner wall of the valve seat of the second opening, and the two phases of the liquid on the inner peripheral side and the gas on the outer peripheral side Mixing of fluids that are easy to separate can be contemplated.

本発明の空気調和装置によると、一対の室内熱交換器をつなぐ循環通路に組み込まれる本発明の第2の形態による流量制御弁の第1の開口部が室外熱交換器に続く一方の室内熱交換器側に接続し、第2の開口部が圧縮機に続く他方の室内熱交換器側に接続しているので、除湿運転などの際に流量制御弁を通過する冷媒の通過音を簡単かつ安価な構成にて低減させることができる。   According to the air conditioner of the present invention, one indoor heat in which the first opening of the flow control valve according to the second embodiment of the present invention incorporated in the circulation passage connecting the pair of indoor heat exchangers follows the outdoor heat exchanger. Since it is connected to the exchanger side and the second opening is connected to the other indoor heat exchanger side following the compressor, the passage sound of the refrigerant passing through the flow rate control valve during dehumidifying operation can be easily and It can be reduced with an inexpensive configuration.

本発明による流量制御弁を空気調和装置の除湿用絞り弁として応用した実施形態について、図1〜図5を参照しながら詳細に説明するが、本発明はこれらの実施形態のみに限らず、これらをさらに組み合わせたり、特許請求の範囲に記載された本発明の概念に包含されるあらゆる変更や修正が可能であり、従って本発明の精神に帰属する他の任意の技術にも当然応用することができる。   Embodiments in which the flow control valve according to the present invention is applied as a throttle valve for dehumidification of an air conditioner will be described in detail with reference to FIGS. 1 to 5, but the present invention is not limited to these embodiments. Can be combined, or any change or modification included in the concept of the present invention described in the claims can be applied, so that it can be applied to any other technology belonging to the spirit of the present invention. it can.

本実施形態における空気調和装置の概念を図1に示す。すなわち、本実施形態における空気調和装置10は、気相の冷媒を高圧に圧縮する圧縮機11と、この圧縮機11に冷媒供給管12および冷媒戻り管13を介して連通する4ポート2位置切換弁(以下、方向制御弁と記述する)14と、この方向制御弁14に冷媒循環配管15を介して連通する室外熱交換器16と、この室外熱交換器16に冷媒循環配管17を介して連通する第1の室内熱交換器18と、この第1の室内熱交換器18と室外熱交換器16とを接続する冷媒循環配管17の途中に組み込まれる膨張弁19と、第1の室内熱交換器18と先の方向制御弁14とにそれぞれ冷媒循環配管20,21を介して連通する第2の室内熱交換器22と、第1の室内熱交換器18と第2の室内熱交換器22とを接続する冷媒循環配管20の途中に組み込まれる本発明の流量制御弁としての除湿用絞り弁23と、室内の空気を前述した一対の室内熱交換器18,22に導いて再び室内に送り出すための送風ファン24とを具えている。さらに、図示しない温度センサからの検出信号や操作スイッチからの指令に基づき、これら圧縮機11,方向制御弁14,室外熱交換器16,一対の室内熱交換器18,22,膨張弁19,除湿用絞り弁23の作動を制御する図示しない制御装置なども具えている。   The concept of the air conditioner in this embodiment is shown in FIG. That is, the air conditioning apparatus 10 in this embodiment includes a compressor 11 that compresses a gas-phase refrigerant to a high pressure, and a 4-port 2-position switching that communicates with the compressor 11 via a refrigerant supply pipe 12 and a refrigerant return pipe 13. A valve (hereinafter referred to as a directional control valve) 14, an outdoor heat exchanger 16 communicating with the directional control valve 14 via a refrigerant circulation pipe 15, and a refrigerant circulation pipe 17 connected to the outdoor heat exchanger 16. A first indoor heat exchanger 18 that communicates, an expansion valve 19 incorporated in the refrigerant circulation pipe 17 that connects the first indoor heat exchanger 18 and the outdoor heat exchanger 16, and a first indoor heat A second indoor heat exchanger 22, a first indoor heat exchanger 18, and a second indoor heat exchanger that communicate with the exchanger 18 and the previous direction control valve 14 via refrigerant circulation pipes 20 and 21, respectively. The refrigerant circulation pipe 20 connecting the And a dehumidifying throttle valve 23 as a flow rate control valve of the present invention incorporated in the above, and a blower fan 24 for guiding the indoor air to the pair of indoor heat exchangers 18 and 22 and sending them out into the room again. . Further, based on a detection signal from a temperature sensor (not shown) and a command from an operation switch, the compressor 11, the direction control valve 14, the outdoor heat exchanger 16, a pair of indoor heat exchangers 18, 22, an expansion valve 19, and a dehumidifier. A control device (not shown) for controlling the operation of the throttle valve 23 is also provided.

方向制御弁14は、冷房運転と暖房運転とで冷媒の循環流方向を切り替えるためのものである。このため、冷媒供給管12を室外熱交換器16が接続する冷媒循環配管15に連通させると共に冷媒戻り管13を第2の室内熱交換器22が接続する冷媒循環配管21に連通させる冷房運転位置と、冷媒供給管12を第2の室内熱交換器22が接続する冷媒循環配管21に連通させると共に冷媒戻り管13を室外熱交換器16が接続する冷媒循環配管15に連通させる暖房運転位置とに切換可能である。   The direction control valve 14 is for switching the circulating flow direction of the refrigerant between the cooling operation and the heating operation. For this reason, the cooling operation position where the refrigerant supply pipe 12 is communicated with the refrigerant circulation pipe 15 connected to the outdoor heat exchanger 16 and the refrigerant return pipe 13 is communicated with the refrigerant circulation pipe 21 connected with the second indoor heat exchanger 22. And a heating operation position where the refrigerant supply pipe 12 communicates with the refrigerant circulation pipe 21 connected to the second indoor heat exchanger 22 and the refrigerant return pipe 13 communicates with the refrigerant circulation pipe 15 connected with the outdoor heat exchanger 16; Can be switched to.

また、膨張弁19は、冷暖房運転時にここを通過する冷媒の相変化をもたらすことなく断熱膨張させて低温低圧の状態に変える弁開度可変位置と、除湿運転時に冷媒に対して何ら作用せずにこれを単に通過させるだけの開弁位置とを有する。   The expansion valve 19 has a variable valve opening position for adiabatically expanding to a low temperature and low pressure state without causing a phase change of the refrigerant passing therethrough during the cooling / heating operation, and does not act on the refrigerant during the dehumidifying operation. And a valve-opening position for simply passing it through.

除湿用絞り弁23は、冷暖房運転時に一対の室内熱交換器18,22の間の冷媒の流れを規制しない開弁位置と、除湿運転中に第1の室内熱交換器18と第2の室内熱交換器22との間の冷媒の流れを絞る閉弁位置とに切換可能である。   The dehumidifying throttle valve 23 has an open position that does not restrict the flow of refrigerant between the pair of indoor heat exchangers 18 and 22 during the cooling and heating operation, and the first indoor heat exchanger 18 and the second indoor heat exchanger 18 during the dehumidifying operation. It is possible to switch to a valve closing position that restricts the flow of refrigerant to and from the heat exchanger 22.

通常の冷房運転モードでは、除湿用絞り弁23が開弁位置にあり、図1中、矢印方向に冷媒が循環して一対の室内熱交換器18,22を通過する低温低圧の冷媒と室内空気との間で熱交換が行われ、室内を冷房する。   In the normal cooling operation mode, the dehumidifying throttle valve 23 is in the open position, and in FIG. 1, the refrigerant circulates in the direction of the arrow and passes through the pair of indoor heat exchangers 18 and 22. Heat exchange is performed between the room and the room.

冷房除湿運転モードでは、方向制御弁14が冷房運転位置のまま膨張弁19が開弁位置,除湿用絞り弁23が閉弁位置にそれぞれ切り換わり、先の冷房運転モードの場合と同様に、図1中、矢印方向に冷媒が循環する。この場合、膨張弁19が開弁位置にあるので、室外熱交換器16を通過した比較的高温かつ高圧の冷媒がそのまま第1の室内熱交換器18に導かれ、この第1の室内熱交換器18と室内空気との間で室内空気の加熱をもたらす熱交換が行われる。一方、閉弁状態にある除湿用絞り弁23の下流側に位置する第2の室内熱交換器22には低温低圧の冷媒が導かれることとなるため、この第2の室内熱交換器22との間で熱交換が行われる室内空気の冷却がなされる。従って、第2の室内熱交換器22による室内空気の除湿がなされると共に第1の室内熱交換器18による室内空気の加熱がなされ、除湿運転中の室内空気温度の低下が防止される。   In the cooling and dehumidifying operation mode, the expansion valve 19 is switched to the open position and the dehumidifying throttle valve 23 is switched to the closed position while the direction control valve 14 is in the cooling operation position. 1, the refrigerant circulates in the direction of the arrow. In this case, since the expansion valve 19 is in the open position, the relatively high-temperature and high-pressure refrigerant that has passed through the outdoor heat exchanger 16 is directly introduced to the first indoor heat exchanger 18, and this first indoor heat exchange is performed. Heat exchange is performed between the vessel 18 and the room air to cause heating of the room air. On the other hand, since the low-temperature and low-pressure refrigerant is guided to the second indoor heat exchanger 22 located on the downstream side of the dehumidifying throttle valve 23 in the closed state, the second indoor heat exchanger 22 and The indoor air that is heat-exchanged between the two is cooled. Accordingly, the indoor air is dehumidified by the second indoor heat exchanger 22, and the indoor air is heated by the first indoor heat exchanger 18, thereby preventing a decrease in the indoor air temperature during the dehumidifying operation.

暖房運転モードでは、除湿用絞り弁23が開弁位置にあり、冷媒供給管12および冷媒戻り管13内の冷媒の流れを除き、図1中、矢印方向と逆方向に冷媒が循環し、一対の室内熱交換器18,22を通過する高温高圧の冷媒と室内空気との間で熱交換が行われる。   In the heating operation mode, the dehumidifying throttle valve 23 is in the open position, and the refrigerant circulates in the direction opposite to the arrow direction in FIG. 1 except for the refrigerant flow in the refrigerant supply pipe 12 and the refrigerant return pipe 13. The heat exchange is performed between the high-temperature and high-pressure refrigerant passing through the indoor heat exchangers 18 and 22 and the room air.

本実施形態における除湿用絞り弁23の断面構造を図2に開弁状態にて示し、その主要部を抽出拡大して図3に閉弁状態で示し、そのIV−IV矢視断面形状を図4に示す。すなわち、本実施形態における除湿用絞り弁23は、非通電時に開弁状態となる、いわゆるノーマルオープンタイプの電磁駆動式のものであり、内側に弁室25が形成された弁ハウジング26と、第1の方向(図2中、左右方向)に延在して弁ハウジング26の弁室25に臨む第1の開口部27と、この第1の方向と交差するように第2の方向(図2中、上下方向)に延在し、弁ハウジング26の弁室25に臨む弁座28が形成された第2の開口部29と、この第2の開口部29の弁座28に当接して当該第2の開口部29を閉止するように、第2の方向に移動可能に保持された弁体30と、弁ハウジング26に連結されて弁体30を第2の方向に駆動する駆動手段31とを具えている。弁体30が弁座28から離れた図2に示す開弁位置においては、第1の開口部27と第2の開口部29とは弁ハウジング26の弁室25を介して連通状態にあり、逆に弁体30が弁座28に押し当たる図3に示す閉弁位置においては、第1の開口部27と第2の開口部29とは、弁体30内に組み込まれた後述する絞り装置を介して連通する。   A sectional structure of the dehumidifying throttle valve 23 in this embodiment is shown in FIG. 2 in an open state, and its main part is extracted and enlarged and shown in a closed state in FIG. 4 shows. That is, the dehumidifying throttle valve 23 in the present embodiment is a so-called normally open electromagnetic drive type that is opened when no power is supplied, and includes a valve housing 26 having a valve chamber 25 formed therein, A first opening 27 extending in one direction (left-right direction in FIG. 2) and facing the valve chamber 25 of the valve housing 26, and a second direction (FIG. 2) crossing the first direction. And a second opening 29 formed with a valve seat 28 facing the valve chamber 25 of the valve housing 26, and the valve seat 28 of the second opening 29 in contact with the second seat 29. A valve body 30 held so as to be movable in the second direction so as to close the second opening 29, and a driving means 31 connected to the valve housing 26 to drive the valve body 30 in the second direction; It has. In the valve opening position shown in FIG. 2 in which the valve body 30 is separated from the valve seat 28, the first opening 27 and the second opening 29 are in communication with each other via the valve chamber 25 of the valve housing 26. On the contrary, in the valve closing position shown in FIG. 3 where the valve body 30 presses against the valve seat 28, the first opening 27 and the second opening 29 are the throttle device described later incorporated in the valve body 30. Communicate via

弁ハウジング26の第1および第2の開口部27,29には、一対の室内熱交換器18,22を連通する冷媒循環配管20がそれぞれ配管継手32,33を介して連結され、第1の開口部27が第1の室内熱交換器18側に連通し、第2の開口部29が第2の室内熱交換器22側に連通した状態となっている。弁ハウジング26の弁室25を挟んで第2の開口部29の反対側には、第2の方向に延在する案内筒34の基端部が接合され、この案内筒34の基端部の内側には、開弁状態における弁体30の先端部に形成された弁部35の基部を囲む円筒状のカラー36が収容されている。このカラー36は、弁ハウジング26に形成された内フランジ37に係止した状態となっており、その先端部が弁室25内に臨んでいる。第2の配管継手33と反対方向に弁ハウジング26から突出する案内筒34の末端部には、この案内筒34内を塞ぐプラグ38が緊密に嵌め込まれている。   Refrigerant circulation pipes 20 communicating with the pair of indoor heat exchangers 18 and 22 are connected to the first and second openings 27 and 29 of the valve housing 26 via pipe joints 32 and 33, respectively. The opening 27 communicates with the first indoor heat exchanger 18 side, and the second opening 29 communicates with the second indoor heat exchanger 22 side. A base end portion of a guide tube 34 extending in the second direction is joined to the opposite side of the second opening 29 across the valve chamber 25 of the valve housing 26. A cylindrical collar 36 surrounding the base portion of the valve portion 35 formed at the distal end portion of the valve body 30 in the valve open state is accommodated inside. The collar 36 is in a state of being locked to an inner flange 37 formed in the valve housing 26, and a tip portion thereof faces the valve chamber 25. A plug 38 that closes the inside of the guide tube 34 is tightly fitted at the end of the guide tube 34 that protrudes from the valve housing 26 in the direction opposite to the second pipe joint 33.

弁体30は、案内筒34内に摺動自在に収容されてプラグ38の先端部が貫入し得るカップ形断面のプランジャ39と、プラグ38の先端部が当接し得る環状の緩衝部材40を収容したプランジャ39の底部に基端が一体的にかしめられ、先端部に前述の弁部35が形成された弁棒41と、弁棒41の弁部35に形成されて第2の開口部29側に向けて開口する段部42を具えた凹部43と、この凹部43内に収容されるブシュ44および円筒状の絞り筒45とを具えている。ブシュ44は、凹部43の底面に当接するフランジ部46と、このフランジ部46よりも小径のコア部47とを有する。また、絞り筒45は、先端がブシュ44のフランジ部46に当接する仕切り壁部48と、この仕切り壁部48の基端にあって凹部43の内周に形成された段部42に係止するフランジ部49とを有する。金属または樹脂などから得られるブシュ44および絞り筒45は、外周が第2の開口部29側に向けて先細りとなる円錐面となった弁棒41の弁部35の先端、つまり凹部43の開口端を内周側にかしめることにより、凹部43内に保持される。   The valve body 30 accommodates a plunger 39 having a cup-shaped cross section that is slidably received in the guide tube 34 and into which the tip of the plug 38 can penetrate, and an annular buffer member 40 that can contact the tip of the plug 38. The base end is caulked integrally with the bottom of the plunger 39, the valve stem 41 is formed with the valve portion 35 at the tip, and the valve portion 35 of the valve stem 41 is formed on the second opening 29 side. A recess 43 having a stepped portion 42 that opens toward the top, a bush 44 accommodated in the recess 43, and a cylindrical throttle tube 45. The bush 44 includes a flange portion 46 that abuts against the bottom surface of the recess 43, and a core portion 47 having a smaller diameter than the flange portion 46. Further, the throttle cylinder 45 is locked to a partition wall portion 48 whose tip abuts against the flange portion 46 of the bush 44 and a step portion 42 formed at the base end of the partition wall portion 48 and formed on the inner periphery of the recess 43. And a flange portion 49. The bush 44 and the throttle cylinder 45 obtained from metal or resin or the like have a distal end of the valve portion 35 of the valve stem 41 whose outer periphery is tapered toward the second opening 29 side, that is, an opening of the recess 43. The end is caulked to the inner peripheral side to be held in the recess 43.

絞り筒45の仕切り壁部48は、ブシュ44のコア部47の外周面との間に円筒状の内側空隙部50を画成すると共に凹部43の内周面との間に外側空隙部51を画成する。本実施形態では、ブシュ44のフランジ部46の外径よりも大きな内径の段部42を凹部43の開口端側に形成し、この段部42に絞り筒45のフランジ部49を嵌合することによって、ブシュ44と凹部43との間に2つの空隙部50,51を同時に形成している。弁棒41の凹部43の部分には、第1の開口部27と外側空隙部51とを連通する第1ポート52が形成されている。また、この第1ポート52の反対側に位置する絞り筒45の仕切り壁部48には、外側空隙部51と内側空隙部50とを連通する絞り通路53が形成されており、この絞り通路53を含めてその前後が本実施形態における絞り装置を構成する。第2の開口部29側に臨む内側空隙部50の環状をなす開口端54は、この除湿用絞り弁23の閉弁中におけるポート(以下、便宜的に第2ポートと記述する)として機能する。   The partition wall portion 48 of the throttle tube 45 defines a cylindrical inner space portion 50 between the outer peripheral surface of the core portion 47 of the bush 44 and an outer space portion 51 between the inner peripheral surface of the recess portion 43. Define. In the present embodiment, a step portion 42 having an inner diameter larger than the outer diameter of the flange portion 46 of the bush 44 is formed on the opening end side of the concave portion 43, and the flange portion 49 of the throttle tube 45 is fitted to the step portion 42. Thus, two gaps 50 and 51 are simultaneously formed between the bush 44 and the recess 43. A first port 52 that connects the first opening 27 and the outer gap 51 is formed in the concave portion 43 of the valve stem 41. In addition, a throttle passage 53 that connects the outer gap 51 and the inner gap 50 is formed in the partition wall 48 of the throttle cylinder 45 located on the opposite side of the first port 52. The front and rear of the aperture stop device in the present embodiment constitute the diaphragm device. An opening end 54 forming an annular shape of the inner gap 50 facing the second opening 29 side functions as a port (hereinafter referred to as a second port for convenience) during closing of the dehumidifying throttle valve 23. .

内側空隙部50の半径方向に沿った厚み、つまりブシュ44のコア部47の外周面と絞り筒45の仕切り壁部48の内周面との間隔は、絞り通路53の内径よりも狭く設定されている。同様に、外側空隙部51の半径方向に沿った厚み、つまり絞り筒45の仕切り壁部48の外周面と凹部43の内周面との間隔も絞り通路53の内径より狭く設定されている。通常、これら空隙部50,51の半径方向に沿った厚みは、絞り通路53の内径の1/4程度にまで狭く設定することが一般的に好ましく、その理由は絞り通路53と内側および外側空隙部50,51との間での流路断面積の変化が最も滑らかとなるためである。静音化の観点からは、これらの間隔をできるだけ狭く設定することが好ましいと言える。絞り通路53の両側に連通する2つの空隙部50,51は、絞り通路53の軸線に対して直交方向に延在するスリット状の冷媒通路を画成するため、絞り通路53にて発生する騒音が2つの空隙部50,51から外側へは伝わりにくく、良好な静音性を得ることができる。   The thickness along the radial direction of the inner gap 50, that is, the distance between the outer peripheral surface of the core portion 47 of the bush 44 and the inner peripheral surface of the partition wall portion 48 of the throttle cylinder 45 is set to be narrower than the inner diameter of the throttle passage 53. ing. Similarly, the thickness of the outer space 51 along the radial direction, that is, the distance between the outer peripheral surface of the partition wall 48 of the throttle cylinder 45 and the inner peripheral surface of the recess 43 is also set narrower than the inner diameter of the throttle passage 53. In general, it is generally preferable that the thickness of the gaps 50 and 51 along the radial direction is set to be narrow to about ¼ of the inner diameter of the throttle passage 53 because the throttle passage 53 and the inner and outer gaps are narrow. This is because the change in the cross-sectional area of the flow path between the portions 50 and 51 is the smoothest. From the viewpoint of noise reduction, it can be said that it is preferable to set these intervals as narrow as possible. Since the two gaps 50 and 51 communicating with both sides of the throttle passage 53 define a slit-like refrigerant passage extending in a direction orthogonal to the axis of the throttle passage 53, noise generated in the throttle passage 53 However, it is difficult to be transmitted from the two gaps 50 and 51 to the outside, and good silence can be obtained.

ところで、冷媒循環通路20内の冷媒中に微小な異物などが混在していると、このような異物が絞り筒45に形成された絞り通路53を塞いでしまい、除湿用絞り弁23の正常な機能を果たすことができなくなる虞が生ずる。このような不具合を回避するためには、この絞り装置の上流側に異物を捕捉するための多孔質部材などにて形成されたフィルタを設けておくことが好ましい。このような観点から、弁部35の基端面に当接するように金属メッシュにて形成された円筒状のフィルタ55が弁棒41の弁部35の基部側に嵌め込まれている。フィルタ55の内周面側が隙間を隔てて第1ポート52を完全に覆うことができるように、フィルタ55の他端面は弁棒41の外周にばね力を利用して取り外し可能に嵌着されるスナップリング56により、弁部35に対して一体的に固定されている。   By the way, if a minute foreign matter or the like is mixed in the refrigerant in the refrigerant circulation passage 20, such a foreign matter blocks the throttle passage 53 formed in the throttle cylinder 45, and the dehumidifying throttle valve 23 is normal. There is a possibility that the function cannot be performed. In order to avoid such a problem, it is preferable to provide a filter formed of a porous member or the like for capturing foreign matter on the upstream side of the expansion device. From such a viewpoint, a cylindrical filter 55 formed of a metal mesh so as to come into contact with the base end surface of the valve portion 35 is fitted on the base portion side of the valve portion 35 of the valve rod 41. The other end surface of the filter 55 is detachably fitted to the outer periphery of the valve stem 41 using a spring force so that the inner peripheral surface side of the filter 55 can completely cover the first port 52 with a gap. The snap ring 56 is integrally fixed to the valve portion 35.

また、本実施形態では第2の開口部29の弁座28に弁棒41の弁部35の円錐状外周面が当接する図3に示すような閉弁位置において、第1ポート52の外周側の開口端が、第1の開口部27により画成される冷媒通路の第1の方向に沿った延在領域Zに位置するように設定されているため、第1ポート52と第1の開口部27との間を流れる流体の流れ方向を強く屈曲させることなく、ほぼ直線状に維持することができ、これによる静音化が可能となる。   In the present embodiment, the outer peripheral side of the first port 52 is in the closed position as shown in FIG. 3 where the conical outer peripheral surface of the valve portion 35 of the valve rod 41 contacts the valve seat 28 of the second opening 29. Are set so as to be located in the extending region Z along the first direction of the refrigerant passage defined by the first opening 27, so that the first port 52 and the first opening The flow direction of the fluid flowing between the portions 27 can be maintained substantially linear without being strongly bent, and noise can be reduced by this.

本実施形態における弁体30の駆動手段31は、電磁コイル57を用いたものであり、この電磁コイル57を収容するボビン58と、このボビン58が電磁コイル57と共に封止樹脂59を介して埋設され、ボルト60を介してプラグ38に固定される枠状のケーシング61とを具えている。電磁コイル57から封止樹脂59を介して外部に引き出されたケーブル62が図示しないオン/オフ回路を介して電源に接続している。ボビン58は、案内筒34を介してプランジャ39を囲むように配され、通電時にプランジャ39を弁ハウジング26側へ移動させるような電磁力を発生する。   The driving means 31 of the valve body 30 in the present embodiment uses an electromagnetic coil 57, and a bobbin 58 that accommodates the electromagnetic coil 57, and the bobbin 58 is embedded together with the electromagnetic coil 57 via a sealing resin 59. And a frame-like casing 61 fixed to the plug 38 via a bolt 60. A cable 62 drawn out from the electromagnetic coil 57 through the sealing resin 59 is connected to a power source through an unillustrated on / off circuit. The bobbin 58 is disposed so as to surround the plunger 39 via the guide cylinder 34, and generates an electromagnetic force that moves the plunger 39 toward the valve housing 26 when energized.

前記カラー36とプランジャ39の底部との間の案内筒34内には、弁体30を弁座28から離れるように付勢する圧縮コイルばね63が組み込まれており、従って電磁コイル57に対する非通電時には第1の開口部27と第2の開口部29とが弁体30を介さずに弁ハウジング26の弁室25を介して連通状態となる。   A compression coil spring 63 that urges the valve body 30 away from the valve seat 28 is incorporated in the guide tube 34 between the collar 36 and the bottom of the plunger 39. Sometimes, the first opening 27 and the second opening 29 are in communication with each other via the valve chamber 25 of the valve housing 26 without the valve body 30.

上述したように、除湿運転時には電磁コイル57が導通し、圧縮コイルばね63のばね力に抗して弁体30が第2の開口部29側へ付勢され、その弁部35が弁座28に当接して図3に示す閉弁状態となる。これに伴い、第1の開口部27から弁ハウジング26の弁室25内に流入する気液2相の冷媒は、フィルタ55を通って第1ポート52から外側空隙部51内に流入し、ここから絞り筒45の仕切り壁部48の外周面に沿ってその180度反対側の絞り通路53側へと流動するに連れて次第に圧縮され、大きな気泡が細分化されて絞り通路53内に流入し、ここでさらに圧縮を受け、所定流量の冷媒が第2の開口部29側へ導かれることとなる。絞り通路53から内側空隙部50に導かれる冷媒は、ブシュ44のコア部47の外周面に沿って放射状に拡がるが、内側空隙部50の厚みが薄いため、その急激な膨張が抑制されてゆるやかに膨張し、その開口端である第2ポート54から第2の開口部29へと流出する。この結果、気泡の膨張に伴って発生する騒音を低レベルに抑えることができる。   As described above, the electromagnetic coil 57 is conducted during the dehumidifying operation, the valve body 30 is urged toward the second opening 29 against the spring force of the compression coil spring 63, and the valve portion 35 is moved to the valve seat 28. Is brought into a closed state as shown in FIG. Accordingly, the gas-liquid two-phase refrigerant flowing from the first opening 27 into the valve chamber 25 of the valve housing 26 flows through the filter 55 from the first port 52 into the outer gap 51. Is compressed gradually as it flows along the outer peripheral surface of the partition wall 48 of the throttle cylinder 45 toward the throttle passage 53 on the opposite side by 180 degrees, and large bubbles are subdivided and flow into the throttle passage 53. Here, the refrigerant is further compressed, and the refrigerant having a predetermined flow rate is guided to the second opening 29 side. The refrigerant guided from the throttle passage 53 to the inner gap portion 50 spreads radially along the outer peripheral surface of the core portion 47 of the bush 44, but since the inner gap portion 50 is thin, its rapid expansion is suppressed and the refrigerant is loose. It flows out to the second opening 29 from the second port 54 that is the opening end. As a result, noise generated with the expansion of the bubbles can be suppressed to a low level.

なお、気液2相が混在する流路中では、流路の内壁に気泡が固着状態となって流路断面積が実質的に狭められ、冷媒の円滑な流動を損なう虞があるが、本実施形態では第2の開口部29側に臨む第2ポート54の開口端が第2の開口部29の内壁に近接して開口しているため、第2ポート54から第2の開口部29に流出する冷媒が第2の開口部29の内壁に付着した気泡を流動させる効果をもたらす。   Note that, in a flow path in which two phases of gas and liquid are mixed, there is a possibility that bubbles are fixed to the inner wall of the flow path and the cross-sectional area of the flow path is substantially narrowed, thereby impairing the smooth flow of refrigerant. In the embodiment, since the opening end of the second port 54 facing the second opening 29 side is opened close to the inner wall of the second opening 29, the second port 54 extends to the second opening 29. The refrigerant that flows out brings about the effect of causing the bubbles attached to the inner wall of the second opening 29 to flow.

上述した実施形態では、本発明の流量制御弁を除湿用絞り弁23として用いたが、膨張弁19に適用することも可能であり、冷凍サイクルにおける冷媒流路の絞り装置として特に有用である。   In the above-described embodiment, the flow control valve of the present invention is used as the dehumidifying throttle valve 23, but it can also be applied to the expansion valve 19 and is particularly useful as a refrigerant passage throttle device in a refrigeration cycle.

上述した実施形態では、内側空隙部50の開口端54をそのまま第2の開口部29に臨む第2ポートとして利用したが、第2の開口部29の内周面に向けて開口させることも可能であり、このような本発明による流量制御弁の別な実施形態の主要部の断面構造を図5に示すが、先の実施形態と同一機能の要素にはこれと同一符号を記すに止め、重複する説明は省略するものとする。すなわち、この実施形態では絞り筒45をカップ型断面の底付きとし、この絞り筒45の仕切り壁部48内にブシュ44のコア部47を収納した状態で、そのフランジ部49を凹部43の段部42に嵌合し、弁部35の先端を内側にかしめることにより、これらを一体的に固定している。弁部35の先端から突出する絞り筒45の仕切り壁部48の基端部には、複数の第2ポート54が放射状に形成され、内側空隙部50と第2の開口部29とに連通している。このように、複数の第2ポート54を第2の開口部29の内壁に向けて絞り筒45の仕切り壁部48の基端部に開口させることにより、ここから流出する冷媒が第2の開口部29の内壁に向けて吹き出すこととなり、第2の開口部29に付着した気泡をさらに効率よく剥離させることができる。   In the embodiment described above, the opening end 54 of the inner gap 50 is used as it is as the second port facing the second opening 29, but it can also be opened toward the inner peripheral surface of the second opening 29. FIG. 5 shows a cross-sectional structure of the main part of another embodiment of the flow control valve according to the present invention. However, the same reference numerals are used for elements having the same functions as those of the previous embodiment, The overlapping description will be omitted. That is, in this embodiment, the throttle cylinder 45 has a bottom with a cup-shaped cross section, and the flange portion 49 is formed in the step of the recess 43 in a state where the core portion 47 of the bush 44 is accommodated in the partition wall portion 48 of the throttle cylinder 45. These are fixed integrally by fitting to the part 42 and caulking the tip of the valve part 35 inward. A plurality of second ports 54 are formed radially at the proximal end portion of the partition wall portion 48 of the throttle tube 45 protruding from the distal end of the valve portion 35, and communicate with the inner gap portion 50 and the second opening portion 29. ing. In this way, by opening the plurality of second ports 54 toward the inner wall of the second opening 29 at the base end portion of the partition wall portion 48 of the throttle tube 45, the refrigerant flowing out of the second port 54 is opened to the second opening. It blows out toward the inner wall of the part 29, and the bubbles adhering to the second opening 29 can be more efficiently separated.

本実施形態においても、冷媒は第1ポート52から絞り筒45の仕切り壁部48の外周面に沿って半円弧状に流れ、絞り通路53を通過した後、再び内側空隙部50にてブシュ44のコア部47の外周面に沿って流れ、最終的に第2ポート54から第2の開口部29の内壁に沿って流出することとなる。フィルタ55は、異物を捕捉する以外に冷媒の整流効果にも寄与することは言うまでもない。   Also in the present embodiment, the refrigerant flows in a semicircular arc shape from the first port 52 along the outer peripheral surface of the partition wall portion 48 of the throttle cylinder 45, passes through the throttle passage 53, and then passes through the bush 44 in the inner gap portion 50 again. It flows along the outer peripheral surface of the core portion 47 and finally flows out from the second port 54 along the inner wall of the second opening 29. Needless to say, the filter 55 contributes to the rectification effect of the refrigerant in addition to capturing foreign matter.

本発明による空気調和装置の一実施形態の概念図である。It is a conceptual diagram of one Embodiment of the air conditioning apparatus by this invention. 図1に示した空気調和装置に除湿用絞り弁として組み込まれた流量制御弁の一実施形態の概略構造を表す断面図である。It is sectional drawing showing the schematic structure of one Embodiment of the flow control valve integrated as a throttle valve for dehumidification in the air conditioning apparatus shown in FIG. 図2に示した除湿用絞り弁の主要部の抽出拡大断面図である。FIG. 3 is an extracted enlarged cross-sectional view of a main part of the dehumidifying throttle valve shown in FIG. 2. 図3中のIV−IV矢視断面図である。FIG. 4 is a cross-sectional view taken along arrow IV-IV in FIG. 3. 本発明による流量制御弁の他の実施形態の概略構造を表す断面図である。It is sectional drawing showing the schematic structure of other embodiment of the flow control valve by this invention.

符号の説明Explanation of symbols

10 空気調和装置
11 圧縮機
12 冷媒供給管
13 冷媒戻り管
14 方向制御弁(4ポート2位置切換弁)
15 冷媒循環配管
16 室外熱交換器
17 冷媒循環配管
18 第1の室内熱交換器
19 膨張弁
20,21 冷媒循環配管
22 第2の室内熱交換器
23 除湿用絞り弁
24 送風ファン
25 弁室
26 弁ハウジング
27 第1の開口部
28 弁座
29 第2の開口部
30 弁体
31 駆動手段
32,33 配管継手
34 案内筒
35 弁部
36 カラー
37 内フランジ
38 プラグ
39 プランジャ
40 緩衝部材
41 弁棒
42 段部
43 凹部
44 ブシュ
45 絞り筒
46 フランジ部
47 コア部
48 仕切り壁部
49 フランジ部
50 内側空隙部
51 外側空隙部
52 第1ポート
53 絞り通路
54 内側空隙部の開口端(第2ポート)
55 フィルタ
56 スナップリング
57 電磁コイル
58 ボビン
59 封止樹脂
60 ボルト
61 ケーシング
62 ケーブル
63 圧縮コイルばね
Z 第1の開口部により画成される冷媒通路の第1の方向に沿った延在領域
DESCRIPTION OF SYMBOLS 10 Air conditioning apparatus 11 Compressor 12 Refrigerant supply pipe 13 Refrigerant return pipe 14 Direction control valve (4 port 2 position switching valve)
DESCRIPTION OF SYMBOLS 15 Refrigerant circulation piping 16 Outdoor heat exchanger 17 Refrigerant circulation piping 18 1st indoor heat exchanger 19 Expansion valve 20, 21 Refrigerant circulation piping 22 2nd indoor heat exchanger 23 Dehumidification throttle valve 24 Blower fan 25 Valve chamber 26 Valve housing 27 First opening 28 Valve seat 29 Second opening 30 Valve body 31 Driving means 32, 33 Pipe joint 34 Guide tube 35 Valve portion 36 Collar 37 Inner flange 38 Plug 39 Plunger 40 Buffer member 41 Valve rod 42 Stepped portion 43 Recessed portion 44 Bushing 45 Blowing tube 46 Flange portion 47 Core portion 48 Partition wall portion 49 Flange portion 50 Inner gap portion 51 Outer gap portion 52 First port 53 Throttle passage 54 Open end of the inner gap portion (second port)
55 Filter 56 Snap Ring 57 Electromagnetic Coil 58 Bobbin 59 Sealing Resin 60 Bolt 61 Casing 62 Cable 63 Compression Coil Spring Z Extension region of the refrigerant passage defined by the first opening along the first direction

Claims (7)

円筒状をなし、その軸線に沿った一端側が外部に連通する内側空隙部と、
この内側空隙部を同心状に囲むように形成された円筒状をなす外側空隙部と、
この外側空隙部から径方向外側に延在し、当該外側空隙部に連通するポートと、
このポートに対し180度隔てて配され、前記内側空隙部と前記外側空隙部とを連通する絞り通路と
を具えたことを特徴とする絞り装置。
An inner cavity that is cylindrical and has one end along the axis communicating with the outside;
A cylindrical outer cavity formed concentrically surrounding the inner cavity,
A port extending radially outward from the outer gap, and communicating with the outer gap,
A throttling device comprising: a throttling passage arranged 180 degrees apart from the port and communicating the inner gap and the outer gap.
前記内側空隙部および外側空隙部の少なくとも一方の半径方向に沿った厚みは、前記絞り通路の内径よりも小さく設定されていることを特徴とする請求項1に記載の絞り装置。   2. The diaphragm device according to claim 1, wherein a thickness of at least one of the inner gap section and the outer gap section along a radial direction is set smaller than an inner diameter of the throttle passage. 内側に弁室が形成された弁ハウジングと、第1の方向に延在して前記弁ハウジングの弁室に臨む第1の開口部と、前記第1の方向と交差するように第2の方向に延在して前記弁ハウジングの弁室に臨む弁座が形成された第2の開口部と、この第2の開口部の弁座に当接して当該第2の開口部を閉止するように、前記第2の方向に移動可能に保持された弁体と、前記弁ハウジングに連結されて前記弁体を前記第2の方向に沿って駆動する駆動手段とを具え、前記弁体は、
前記第2の方向と平行な軸線を中心とする円筒状をなし、かつ前記軸線に沿った一端側が前記第2の開口部に連通する内側空隙部と、
この内側空隙部を同心状に囲むように形成された円筒状をなす外側空隙部と、
この外側空隙部から径方向外側に延在して前記弁室側に開口するポートと、
このポートに対し180度隔てて配され、前記内側空隙部と前記外側空隙部とを連通する絞り通路と
を有することを特徴とする流量制御弁。
A valve housing having a valve chamber formed therein; a first opening extending in the first direction and facing the valve chamber of the valve housing; and a second direction intersecting the first direction A second opening formed with a valve seat extending toward the valve chamber of the valve housing and contacting the valve seat of the second opening to close the second opening A valve body held movably in the second direction, and a driving means connected to the valve housing for driving the valve body in the second direction,
An inner void portion having a cylindrical shape centering on an axis parallel to the second direction and having one end side along the axis communicating with the second opening;
A cylindrical outer cavity formed concentrically surrounding the inner cavity,
A port extending radially outward from the outer gap and opening to the valve chamber side,
A flow control valve characterized by having a throttle passage that is arranged 180 degrees apart from the port and communicates the inner gap and the outer gap.
弁体の半径方向に沿った前記内側空隙部および前記外側空隙部の少なくとも一方の厚みが前記絞り通路の内径よりも小さく設定されていることを特徴とする請求項3に記載の流量制御弁。   The flow control valve according to claim 3, wherein a thickness of at least one of the inner gap and the outer gap along the radial direction of the valve body is set smaller than an inner diameter of the throttle passage. 前記弁体が前記第2の開口部の弁座に当接した状態において、前記ポートは前記第1の開口部によって画成される流体通路の前記第1の方向に沿った延在領域に位置していることを特徴とする請求項3または請求項4に記載の流量制御弁。   In a state where the valve body is in contact with the valve seat of the second opening, the port is located in an extending region along the first direction of the fluid passage defined by the first opening. The flow control valve according to claim 3 or 4, wherein the flow control valve is provided. 前記弁体が前記第2の開口部の弁座に当接した状態において、前記第2の開口部の一端側が前記第2の開口部の弁座の内壁に近接して開口していることを特徴とする請求項3から請求項5の何れかに記載の流量制御弁。   In a state where the valve body is in contact with the valve seat of the second opening, one end side of the second opening is opened close to the inner wall of the valve seat of the second opening. 6. The flow control valve according to claim 3, wherein the flow control valve is characterized in that 圧縮機と、
室外熱交換器と、
一対の室内熱交換器と、
これら圧縮機,室外熱交換器,一対の室内熱交換器を順に通る冷媒の循環通路と、
前記一対の室内熱交換器をつなぐ循環通路に組み込まれる請求項6から請求項12の何れかに記載の流量制御弁と
を具え、この流量制御弁の第1の開口部が前記室外熱交換器に続く一方の室内熱交換器側に接続すると共に第2の開口部が前記圧縮機に続く他方の室内熱交換器側に接続していることを特徴とする空気調和装置。
A compressor,
An outdoor heat exchanger,
A pair of indoor heat exchangers;
A refrigerant circulation passage that sequentially passes through the compressor, the outdoor heat exchanger, and the pair of indoor heat exchangers;
The flow rate control valve according to any one of claims 6 to 12, wherein the flow rate control valve is incorporated in a circulation passage connecting the pair of indoor heat exchangers, and a first opening of the flow rate control valve is the outdoor heat exchanger. And the second opening is connected to the other indoor heat exchanger side following the compressor, and is connected to one indoor heat exchanger side.
JP2005176840A 2005-06-16 2005-06-16 Throttle device, flow control valve and air conditioner incorporating them Withdrawn JP2006349274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005176840A JP2006349274A (en) 2005-06-16 2005-06-16 Throttle device, flow control valve and air conditioner incorporating them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005176840A JP2006349274A (en) 2005-06-16 2005-06-16 Throttle device, flow control valve and air conditioner incorporating them

Publications (1)

Publication Number Publication Date
JP2006349274A true JP2006349274A (en) 2006-12-28

Family

ID=37645310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005176840A Withdrawn JP2006349274A (en) 2005-06-16 2005-06-16 Throttle device, flow control valve and air conditioner incorporating them

Country Status (1)

Country Link
JP (1) JP2006349274A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103104746A (en) * 2011-11-10 2013-05-15 株式会社鹭宫制作所 Dehumidification valve
CN107401940A (en) * 2016-05-20 2017-11-28 杭州三花研究院有限公司 Heat-exchanger rig
JP2017211034A (en) * 2016-05-26 2017-11-30 株式会社不二工機 Flow rate regulating valve
JP2020056472A (en) * 2018-10-03 2020-04-09 株式会社鷺宮製作所 Valve device, motor-operated valve and refrigeration cycle system
WO2023074327A1 (en) * 2021-10-25 2023-05-04 ダイキン工業株式会社 Pressure-reducing valve, heat exchanger, air conditioning device, and method for manufacturing heat exchanger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103104746A (en) * 2011-11-10 2013-05-15 株式会社鹭宫制作所 Dehumidification valve
CN107401940A (en) * 2016-05-20 2017-11-28 杭州三花研究院有限公司 Heat-exchanger rig
JP2017211034A (en) * 2016-05-26 2017-11-30 株式会社不二工機 Flow rate regulating valve
CN107435757A (en) * 2016-05-26 2017-12-05 株式会社不二工机 Flow control valve
CN107435757B (en) * 2016-05-26 2020-12-15 株式会社不二工机 Flow regulating valve
JP2020056472A (en) * 2018-10-03 2020-04-09 株式会社鷺宮製作所 Valve device, motor-operated valve and refrigeration cycle system
WO2023074327A1 (en) * 2021-10-25 2023-05-04 ダイキン工業株式会社 Pressure-reducing valve, heat exchanger, air conditioning device, and method for manufacturing heat exchanger
JP7315864B2 (en) 2021-10-25 2023-07-27 ダイキン工業株式会社 Pressure reducing valve, heat exchanger, air conditioner, and method for manufacturing heat exchanger

Similar Documents

Publication Publication Date Title
EP3018434B1 (en) Electromagnetic valve
JP5038105B2 (en) Valve device and air conditioner having the same
JP5544459B2 (en) Pilot operated solenoid valve
JP2006349274A (en) Throttle device, flow control valve and air conditioner incorporating them
JP4769036B2 (en) Throttle device, flow control valve, and air conditioner incorporating the same
JP2017026191A (en) Temperature expansion valve and refrigeration cycle
JP4608395B2 (en) Valve device and manufacturing method thereof
JP3410197B2 (en) Solenoid valve with built-in throttle
CN102192358B (en) Solenoid valve
JP2002310540A (en) Restrictor and air conditioner
JP4465122B2 (en) Air conditioner
JP2008051147A (en) Flow control valve and air conditioner incorporating this
EP1437561A1 (en) Air conditioner
JP2001050616A (en) Refrigeration cycle device and air conditioner
JP2008157305A (en) Pressure control valve and supercritical refrigeration cycle
JP3951983B2 (en) Refrigerant control valve
JP2000283606A (en) Refrigeration cycled apparatus
JP2002350003A (en) Air conditioner
JP2005156146A (en) Expansion valve
JPH08159616A (en) Cooling cycle
JP2003156268A (en) Electromagnetic expansion device and its control method
JP2002107008A (en) Air conditioner
JP7361628B2 (en) Electric valve and refrigeration cycle system
JP4446628B2 (en) Bypass valve and air conditioner using the same
JP2002366231A (en) Flow rate controller and air conditioning system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902