JP2017026191A - Temperature expansion valve and refrigeration cycle - Google Patents

Temperature expansion valve and refrigeration cycle Download PDF

Info

Publication number
JP2017026191A
JP2017026191A JP2015143220A JP2015143220A JP2017026191A JP 2017026191 A JP2017026191 A JP 2017026191A JP 2015143220 A JP2015143220 A JP 2015143220A JP 2015143220 A JP2015143220 A JP 2015143220A JP 2017026191 A JP2017026191 A JP 2017026191A
Authority
JP
Japan
Prior art keywords
valve
temperature expansion
valve member
valve port
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015143220A
Other languages
Japanese (ja)
Inventor
裕正 高田
Hiromasa Takada
裕正 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2015143220A priority Critical patent/JP2017026191A/en
Priority to CN201610557544.7A priority patent/CN106352616A/en
Publication of JP2017026191A publication Critical patent/JP2017026191A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/13Vibrations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature expansion valve capable of suppressing vibration of a valve member 2 to prevent a needle valve 21 from repeatedly colliding with a valve port 13 or prevent noise, and provide a refrigeration cycle.SOLUTION: A valve member 2 is arranged oppositely to a valve port 13 and a valve seat 13a. A temperature expansion valve causes a diaphragm device 6 to drive the valve member 2 through an operational shaft 4, to open/close the valve port 13. At least a part of the valve member 2 is arranged on a downstream side with respect to a throttle part of the valve port 13 and valve member 2. The temperature expansion valve includes energization means of energizing the valve member 2 to one side with respect to axial line L by force of fluid flowing from the valve port 12. The energization means is a flange part 22 having a D cut surface 221 of the valve member 2. On the D cut surface 221 side of the valve member 2, a flow rate of refrigerant is increased.SELECTED DRAWING: Figure 1

Description

本発明は、ヒートポンプ式の冷凍サイクルの凝縮器と蒸発器との間に接続される温度膨張弁及び冷凍サイクルに関する。   The present invention relates to a temperature expansion valve connected between a condenser and an evaporator of a heat pump refrigeration cycle and a refrigeration cycle.

従来、温度膨張弁として、例えば特開平11−270929号公報(特許文献1)に開示されたものがある。この温度膨張弁は、エアコン等の空気調和機の冷凍サイクルにおいて凝縮器と蒸発器との間に設けられる。また、この温度膨張弁は、蒸発器の出口温度を感知する感温筒を備え、この感温筒で感知した温度に応じてダイヤフラムを変位させる。そして、このダイヤフラムの動きを作動軸を介して弁部材に伝達し、弁部材で弁ポートの開度を制御する。これにより、蒸発器の出口温度に応じて冷凍サイクルを循環する冷媒(流体)の流量を制御する。   Conventionally, as a temperature expansion valve, for example, there is one disclosed in JP-A-11-270929 (Patent Document 1). This temperature expansion valve is provided between the condenser and the evaporator in the refrigeration cycle of an air conditioner such as an air conditioner. The temperature expansion valve includes a temperature sensing cylinder that senses the outlet temperature of the evaporator, and displaces the diaphragm according to the temperature sensed by the temperature sensing cylinder. The movement of the diaphragm is transmitted to the valve member via the operating shaft, and the opening degree of the valve port is controlled by the valve member. Thereby, the flow rate of the refrigerant (fluid) circulating through the refrigeration cycle is controlled according to the outlet temperature of the evaporator.

特開平11−270929号公報JP 11-270929 A

温度膨張弁では、弁ポートと弁部材との間の絞り部で冷媒を絞る作用をするが、この絞り部を通過した後の冷媒にはキャビテーションが生じ、このキャビテーションの破裂により弁部材が微振動し、この振動が作動軸等に伝達され異音を発生することがある。また、特に弁部材がニードル弁の場合、この微振動によって、ニードル弁が弁ポートに繰り返し衝突し、弁ポート(弁座)が摩耗することがある。このような弁部材の振動は、冷媒の流れによっても生じる。   In the temperature expansion valve, the refrigerant is throttled at the throttle part between the valve port and the valve member. Cavitation occurs in the refrigerant after passing through the throttle part, and the valve member slightly vibrates due to the burst of this cavitation. However, this vibration may be transmitted to the operating shaft or the like to generate abnormal noise. In particular, when the valve member is a needle valve, this fine vibration may cause the needle valve to repeatedly collide with the valve port and wear the valve port (valve seat). Such vibration of the valve member is also caused by the flow of the refrigerant.

本発明は、弁部材の振動を抑制して、弁部材が弁ポートに繰り返し衝突したり異音が発生するのを防止できる温度膨張弁及び冷凍サイクルを提供することを課題とする。   It is an object of the present invention to provide a temperature expansion valve and a refrigeration cycle that can suppress vibration of a valve member and prevent the valve member from repeatedly colliding with a valve port and generating abnormal noise.

請求項1の温度膨張弁は、冷凍サイクルの蒸発器の出口側配管の温度に感応して該冷凍サイクルの流体の循環流量を制御する温度膨張弁であって、前記流体を流す弁ポートを開閉する弁部材の少なくとも一部が、該弁ポートと該弁部材との絞り部よりも下流側に位置し、該弁部材を、前記弁ポートから流れる流体の力で該弁ポートの軸線に対して片側に付勢する付勢手段を備えたことを特徴とする。   The temperature expansion valve according to claim 1 is a temperature expansion valve that controls the circulation flow rate of the fluid in the refrigeration cycle in response to the temperature of the outlet side piping of the evaporator of the refrigeration cycle, and opens and closes the valve port through which the fluid flows At least a portion of the valve member that is positioned downstream of the throttle portion between the valve port and the valve member, and the valve member is moved with respect to the axis of the valve port by the force of fluid flowing from the valve port. An urging means for urging to one side is provided.

請求項2の温度膨張弁は、請求項1に記載の温度膨張弁であって、前記付勢手段が、前記弁部材の前記軸線回りに非回転対称な非対称形状部で構成されていることを特徴とする。   The temperature expansion valve according to claim 2 is the temperature expansion valve according to claim 1, wherein the biasing means is configured by an asymmetric shape portion that is non-rotationally symmetric about the axis of the valve member. Features.

請求項3の温度膨張弁は、請求項1に記載の温度膨張弁であって、前記付勢手段が、前記弁ポートの周囲の弁座に形成された前記軸線回りに非回転対称な非対称形状部で構成されていることを特徴とする。   The temperature expansion valve according to claim 3 is the temperature expansion valve according to claim 1, wherein the biasing means is a non-rotationally symmetric asymmetric shape formed around a valve seat formed around the valve port. It is comprised by the part.

請求項4の温度膨張弁は、請求項2に記載の温度膨張弁であって、前記弁部材が、前記弁ポートに対向して前記下流側から上流側にかけて縮径するニードル部と、該ニードル部の下流側で前記軸線と交差する面方向に拡がるフランジ部と、を有し、前記非対称形状部が前記フランジ部に形成されていることを特徴とする。   The temperature expansion valve according to claim 4 is the temperature expansion valve according to claim 2, wherein the valve member has a needle portion whose diameter decreases from the downstream side to the upstream side facing the valve port, and the needle A flange portion extending in a plane direction intersecting with the axis on the downstream side of the portion, and the asymmetrical shape portion is formed in the flange portion.

請求項5の温度膨張弁は、請求項2に記載の温度膨張弁であって、前記弁部材が、前記弁ポートに対向して前記下流側から上流側にかけて縮径するニードル部と、該ニードル部の下流側で該ニードル部とは別部材で前記軸線と交差する面方向に拡がる板部材とで構成され、前記非対称形状部が前記板部材に形成されていることを特徴とする。   A temperature expansion valve according to claim 5 is the temperature expansion valve according to claim 2, wherein the valve member is opposed to the valve port and has a diameter that decreases from the downstream side to the upstream side, and the needle It is comprised by the plate member which spreads in the surface direction which cross | intersects the said axis line by a member different from this needle part in the downstream of a part, The said asymmetrical shape part is formed in the said plate member, It is characterized by the above-mentioned.

請求項6の温度膨張弁は、請求項3に記載の温度膨張弁であって、前記非対称形状部が、前記弁ポートの前記下流側に形成されたブリード溝であることを特徴とする。   A temperature expansion valve according to a sixth aspect is the temperature expansion valve according to the third aspect, wherein the asymmetrical shape portion is a bleed groove formed on the downstream side of the valve port.

請求項7の温度膨張弁は、請求項3に記載の温度膨張弁であって、前記非対称形状部が、前記弁ポートの前記下流側で前記軸線に対して片側に偏った位置に形成された縦壁部と切り欠き部であることを特徴とする。   The temperature expansion valve according to claim 7 is the temperature expansion valve according to claim 3, wherein the asymmetrical shape portion is formed at a position biased to one side with respect to the axis on the downstream side of the valve port. It is a vertical wall part and a notch part, It is characterized by the above-mentioned.

請求項8の冷凍サイクルは、流体である冷媒を圧縮する圧縮機と、凝縮器、蒸発器と、前記凝縮器と前記蒸発器との間にて冷媒を膨張させて減圧する請求項1乃至7のいずれか一項に記載の温度膨張弁と、を備えたことを特徴とする。   The refrigeration cycle according to claim 8 decompresses the refrigerant by expanding the refrigerant between the compressor that compresses the refrigerant that is a fluid, the condenser and the evaporator, and the condenser and the evaporator. And a temperature expansion valve according to any one of the above.

請求項1の温度膨張弁によれば、付勢手段が、弁ポート通過後の流体の流れによる力を、弁部材に対して弁ポートの軸線の両側に対して非対称に作用させるので、弁部材が弁ポートの軸線と交差する方向に付勢され、弁部材の振動を抑制することができる。その結果、弁部材が弁ポート(あるいは弁座)に繰り返し衝突するのを防止でき、異音(衝突音)が生じることがなくなり静音性が得られる。また、弁ポートが摩耗して流量特性が変化してしまうことを防止できる。   According to the temperature expansion valve of claim 1, the biasing means causes the force due to the flow of the fluid after passing through the valve port to act asymmetrically on both sides of the valve port axis with respect to the valve member. Is urged in a direction crossing the axis of the valve port, and vibration of the valve member can be suppressed. As a result, it is possible to prevent the valve member from repeatedly colliding with the valve port (or the valve seat), so that no abnormal noise (collision noise) is generated and quietness is obtained. Further, it is possible to prevent the flow rate characteristic from being changed due to wear of the valve port.

請求項2、4,5の温度膨張弁によれば、弁部座の形状を設定することにより、請求項1と同様な効果が得られる。   According to the temperature expansion valve of claims 2, 4 and 5, the same effect as in claim 1 can be obtained by setting the shape of the valve seat.

請求項3、6,7の温度膨張弁によれば、弁座の形状を設定することにより、請求項1と同様な効果が得られる。   According to the temperature expansion valve of claims 3, 6 and 7, the same effect as in claim 1 can be obtained by setting the shape of the valve seat.

請求項8の冷凍サイクルシステムによれば、請求項1乃至7と同様な効果が得られる。   According to the refrigeration cycle system of the eighth aspect, the same effects as those of the first to seventh aspects can be obtained.

本発明の第1実施形態の温度膨張弁の縦断面図である。It is a longitudinal cross-sectional view of the temperature expansion valve of 1st Embodiment of this invention. 第1実施形態における弁部材を示す図である。It is a figure which shows the valve member in 1st Embodiment. 第1実施形態における弁部材の変形例1を示す上面図及び断面図である。It is the top view and sectional drawing which show the modification 1 of the valve member in 1st Embodiment. 第1実施形態における弁部材の変形例2を示す上面図及び断面図である。It is the top view and sectional drawing which show the modification 2 of the valve member in 1st Embodiment. 本発明の第2実施形態の温度膨張弁の縦断面図である。It is a longitudinal cross-sectional view of the temperature expansion valve of 2nd Embodiment of this invention. 第2実施形態における弁部材を示す図である。It is a figure which shows the valve member in 2nd Embodiment. 本発明の第3実施形態の温度膨張弁の縦断面図である。It is a longitudinal cross-sectional view of the temperature expansion valve of 3rd Embodiment of this invention. 第3実施形態の温度膨張弁の要部拡大断面図である。It is a principal part expanded sectional view of the temperature expansion valve of 3rd Embodiment. 本発明の第4実施形態の温度膨張弁の要部拡大断面図及び弁座部の底面図である。It is the principal part expanded sectional view of the temperature expansion valve of 4th Embodiment of this invention, and the bottom view of a valve seat part. 本発明の実施形態に係る冷凍サイクルの概略構成図である。It is a schematic block diagram of the refrigerating cycle which concerns on embodiment of this invention.

次に、本発明の温度膨張弁の実施形態を図面を参照して説明する。図1は第1実施形態の温度膨張弁の縦断面図、図2は第1実施形態における弁部材を示す図である。図2(A)は弁部材の上面図、図2(B)は弁部材の縦断面図である。   Next, an embodiment of the temperature expansion valve of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a temperature expansion valve according to the first embodiment, and FIG. 2 is a view showing a valve member according to the first embodiment. 2A is a top view of the valve member, and FIG. 2B is a longitudinal sectional view of the valve member.

この実施形態に係る温度膨張弁10は金属製の弁本体1を有している。弁本体1には、配管接続孔11と、配管接続孔12と、弁ポート13と、弁室14と、ガイド孔15と、軸受け孔16と、ねじ孔17とが形成されている。配管接続孔11には矢印のように流体が流入する一次側継手11aが取り付けられ、配管接続孔12には矢印のように流体が流出する二次側継手12aが取り付けられている。一次側継手11aは弁室14に連通され、二次側継手12aは弁ポート13を介して弁室14に連通されている。なお、一次側継手11aと二次側継手12aは、ろう付け等により弁本体1と一体に組み付けられている。   The temperature expansion valve 10 according to this embodiment has a metal valve body 1. In the valve body 1, a pipe connection hole 11, a pipe connection hole 12, a valve port 13, a valve chamber 14, a guide hole 15, a bearing hole 16, and a screw hole 17 are formed. A primary side joint 11a into which a fluid flows is attached to the pipe connection hole 11 as shown by an arrow, and a secondary side joint 12a from which a fluid flows out is attached to the pipe connection hole 12 as shown by an arrow. The primary side joint 11 a communicates with the valve chamber 14, and the secondary side joint 12 a communicates with the valve chamber 14 via the valve port 13. The primary side joint 11a and the secondary side joint 12a are assembled integrally with the valve body 1 by brazing or the like.

弁ポート13の周囲は弁座13aとなっており、弁座13aの内部には、弁ポート13に対向する弁部材2が配設されている。弁部材2は、ニードル部21と、フランジ部22と、ボス部23とで構成されている。ニードル部21は弁ポート13に対向して下流側から上流側にかけて縮径する形状となっている。そして、後述のダイヤフラム装置6の作用により弁部材2のニードル部21が弁ポート13内に進退され、弁ポート13の軸線L方向の位置に応じて弁ポート13を流れる「流体」としての冷媒の流量が制御される。このように、弁ポート13とニードル部21の間隙は冷媒を絞る「絞り部」を構成している。そして、弁部材2は少なくともその一部が、この弁ポート13と弁部材2との絞り部よりも下流側に位置している。   The periphery of the valve port 13 is a valve seat 13a, and the valve member 2 facing the valve port 13 is disposed inside the valve seat 13a. The valve member 2 includes a needle part 21, a flange part 22, and a boss part 23. The needle portion 21 has a shape that is opposed to the valve port 13 and is reduced in diameter from the downstream side to the upstream side. The needle portion 21 of the valve member 2 is advanced and retracted into the valve port 13 by the action of a diaphragm device 6 described later, and the refrigerant as “fluid” flowing through the valve port 13 according to the position of the valve port 13 in the axis L direction. The flow rate is controlled. Thus, the gap between the valve port 13 and the needle portion 21 constitutes a “throttle portion” that throttles the refrigerant. At least a part of the valve member 2 is located downstream of the throttle portion between the valve port 13 and the valve member 2.

二次側継手12a内にはリング状のストッパ管12bが配設され、このストッパ管12bと弁部材2との間に弁ばね3が圧縮して配設されている。これにより、弁部材2は弁座13aに着座するように付勢されている。なお、ストッパ管12bは中央に導通路12b1を有するとともに外周にかしめ溝12b2を有し、二次継手12aをかしめ溝12b2の部分でかしめることにより、ストッパ管12bが二次側継手12a内に固着されている。   A ring-shaped stopper tube 12b is disposed in the secondary joint 12a, and the valve spring 3 is disposed between the stopper tube 12b and the valve member 2 in a compressed manner. Thereby, the valve member 2 is biased so as to be seated on the valve seat 13a. The stopper pipe 12b has a conduction path 12b1 in the center and a caulking groove 12b2 on the outer periphery. By caulking the secondary joint 12a at the caulking groove 12b2, the stopper pipe 12b is placed in the secondary side joint 12a. It is fixed.

弁部材2のニードル部21の中央には固定孔21aが形成され、弁部材2は固定孔21aにて作動軸4の下端部に固定されている。作動軸4は、弁ポート13とガイド孔15を貫通するとともに、軸受け孔16とねじ孔17内に設けられた軸受け部5で支持されている。そして、この作動軸4はダイヤフラム装置6の動作を弁部材2に伝達する。   A fixed hole 21 a is formed at the center of the needle portion 21 of the valve member 2, and the valve member 2 is fixed to the lower end portion of the operating shaft 4 through the fixed hole 21 a. The operating shaft 4 penetrates the valve port 13 and the guide hole 15 and is supported by a bearing portion 5 provided in the bearing hole 16 and the screw hole 17. The operating shaft 4 transmits the operation of the diaphragm device 6 to the valve member 2.

軸受け部5は、フッ素樹脂(例えばPTFE)等で形成されたパッキン51と、コイルばね52と、ばね受け53とで構成されている。パッキン51は下端にテーパ面51aを有するとともに中心に作動軸4を通す挿通孔51bを有している。軸受け孔16の底部はすり鉢状のテーパ面16aとなっており、パッキン51のテーパ面51aの角度は、軸受け孔16のテーパ面16aの開角より角度が小さくなっている。また、コイルばね52はパッキン51とばね受け53との間に圧縮して配設されており、ばね受け53はねじ孔17にねじ込まれて固定されている。   The bearing portion 5 includes a packing 51 made of a fluororesin (for example, PTFE), a coil spring 52, and a spring bearing 53. The packing 51 has a tapered surface 51a at the lower end and an insertion hole 51b through which the operating shaft 4 passes at the center. The bottom of the bearing hole 16 is a mortar-shaped tapered surface 16a, and the angle of the tapered surface 51a of the packing 51 is smaller than the opening angle of the tapered surface 16a of the bearing hole 16. The coil spring 52 is compressed and disposed between the packing 51 and the spring receiver 53, and the spring receiver 53 is screwed into the screw hole 17 and fixed.

これにより、パッキン51は軸受け孔16のテーパ面16aに押しつけられ、このテーパ面16aの傾斜により、パッキン51のテーパ面51aの先端は半径方向に縮径するように付勢される。これにより、弁室14と均圧室65とを気密に分離することができる。また、パッキン51と作動軸4との間に適度な摺動抵抗が生じ、弁部材2のハンチング(弁部材2の軸線L方向の振動)を防止できる。   As a result, the packing 51 is pressed against the tapered surface 16a of the bearing hole 16, and the tip of the tapered surface 51a of the packing 51 is urged so as to be radially reduced by the inclination of the tapered surface 16a. Thereby, the valve chamber 14 and the pressure equalizing chamber 65 can be separated in an airtight manner. Moreover, moderate sliding resistance arises between the packing 51 and the action | operation axis | shaft 4, and the hunting of the valve member 2 (vibration of the valve member 2 in the axis L direction) can be prevented.

弁本体1の上部にはダイヤフラム装置6が取り付けられている。ダイヤフラム装置6は、薄型円盤状の上蓋61と下蓋62とによりケース体を構成しており、このケース体が下蓋62の取り付け孔62aにて弁本体1の上部の円環状リブ1aに嵌合され、ろう付けが施されることにより、弁本体1に固定されている。また、上蓋61と下蓋62の間にはダイヤフラム63を備えており、このダイヤフラム63によってダイヤフラム室64と均圧室65が区画されている。下蓋62内には当金66が配設されており、この当金66に作動軸4が当接されている。作動軸4と、ガイド孔15及び軸受け部5の各部材との間にはクリアランスが設けられている。均圧室65は、図示しない継手にて後述の均圧導管6Cに連通され、この均圧導管6Cを介して室内熱交換器20の出口側配管20aに連通されている。これにより、均圧室65の圧力は蒸発器出口の冷媒の圧力となる。   A diaphragm device 6 is attached to the upper portion of the valve body 1. In the diaphragm device 6, a thin disc-shaped upper lid 61 and a lower lid 62 constitute a case body, and this case body is fitted into an annular rib 1 a on the upper portion of the valve body 1 through an attachment hole 62 a of the lower lid 62. And fixed to the valve body 1 by brazing. Further, a diaphragm 63 is provided between the upper lid 61 and the lower lid 62, and the diaphragm chamber 64 and the pressure equalizing chamber 65 are partitioned by the diaphragm 63. An abutment 66 is disposed in the lower lid 62, and the operating shaft 4 is in contact with the abutment 66. A clearance is provided between the operating shaft 4 and each member of the guide hole 15 and the bearing portion 5. The pressure equalizing chamber 65 is communicated with a pressure equalizing conduit 6C described later by a joint (not shown), and is communicated with the outlet side pipe 20a of the indoor heat exchanger 20 via the pressure equalizing conduit 6C. Thereby, the pressure in the pressure equalizing chamber 65 becomes the pressure of the refrigerant at the outlet of the evaporator.

ダイヤフラム室64は、キャピラリチューブ6Aによって感温筒6Bと連通接続されている。感温筒6Bには例えば冷凍サイクルの冷媒と同じガス(及び液)が封入されており、後述のよぅに冷凍サイクルにおける室内熱交換器(蒸発器)の出口側配管に取り付けられる。また、一次側継手11aは冷凍サイクルの凝縮器の出口側配管に接続され、二次側継手12aは蒸発器の入口側配管に接続される。   The diaphragm chamber 64 is connected to the temperature sensing cylinder 6B through a capillary tube 6A. The temperature sensing cylinder 6B is filled with, for example, the same gas (and liquid) as the refrigerant of the refrigeration cycle, and is attached to the outlet side pipe of the indoor heat exchanger (evaporator) in the refrigeration cycle as described later. Further, the primary side joint 11a is connected to the outlet side pipe of the condenser of the refrigeration cycle, and the secondary side joint 12a is connected to the inlet side pipe of the evaporator.

これにより、ダイヤフラム室64の内圧は、感温筒6Bによる蒸発器の出口側配管の感知温度に応じて変化する。また、均圧室65は蒸発器の出口圧力が加えられる。そして、弁部材2は、感温筒6Bによる感知温度に応じて変位するダイヤフラム63及び当金66による弁開方向の力と、弁ばね3による弁閉力と、均圧室65の圧力との平衡関係により、図1において上下方向に移動し、弁ポート13の実効開口面積(弁開度)を増減する。これにより温度膨張弁10は蒸発器に供給する冷媒の流量を制御する。   Thereby, the internal pressure of the diaphragm chamber 64 changes according to the sensed temperature of the outlet side piping of the evaporator by the temperature sensing cylinder 6B. Further, the pressure equalizing chamber 65 is applied with the outlet pressure of the evaporator. Then, the valve member 2 includes a force in the valve opening direction by the diaphragm 63 and the metal plate 66 displaced according to the temperature sensed by the temperature sensing cylinder 6B, a valve closing force by the valve spring 3, and a pressure in the pressure equalizing chamber 65. Due to the equilibrium relationship, the valve moves up and down in FIG. 1 to increase or decrease the effective opening area (valve opening) of the valve port 13. Thereby, the temperature expansion valve 10 controls the flow rate of the refrigerant supplied to the evaporator.

弁部材2のフランジ部22は、その一部に軸線Lと平行な面で切断したDカット面221が形成されている。すなわち、弁部材2のこのDカット面221の部分は、軸線L回りに非回転対称な非対称形状部となっている。これにより、弁ポート13を通過した冷媒の流れによる力は、弁部材2に対して弁ポート13の軸線Lの両側(図1では左右側)に対して非対称に作用させる。このように、フランジ部22は「付勢手段」を構成している。   The flange portion 22 of the valve member 2 has a D-cut surface 221 cut at a part thereof in a plane parallel to the axis L. That is, the portion of the D-cut surface 221 of the valve member 2 is a non-rotationally symmetric asymmetric shape portion around the axis L. Thereby, the force by the flow of the refrigerant that has passed through the valve port 13 causes the valve member 2 to act asymmetrically on both sides of the axis L of the valve port 13 (left and right sides in FIG. 1). Thus, the flange portion 22 constitutes an “urging means”.

この実施形態では、Dカット面221側を通過する冷媒の流量が多くなり、弁部材2の非対称となる部分での左右方向で流体圧力に圧力差が生じ、弁部材2に対して一方側(軸線Lと交差する方向)に力が作用する。これにより、弁部材2の振動を抑制することができる。その結果、弁部材2が弁座13aに繰り返し衝突するのを防止でき、異音が生じることがなくなり静音性が得られる。また、弁ポート13が摩耗して流量特性が変化してしまうことも防止できる。   In this embodiment, the flow rate of the refrigerant passing through the D-cut surface 221 increases, and a pressure difference occurs in the fluid pressure in the left-right direction at the asymmetrical portion of the valve member 2, so that one side ( A force acts in the direction intersecting the axis L). Thereby, the vibration of the valve member 2 can be suppressed. As a result, it is possible to prevent the valve member 2 from repeatedly colliding with the valve seat 13a, so that no abnormal noise is generated and quietness is obtained. Further, it is possible to prevent the flow rate characteristic from being changed due to wear of the valve port 13.

図3は弁部材2の変形例1を示す図であり、図3(A)は弁部材の上面図、図3(B)は弁部材の縦断面図である。この変形例1の弁部材2は、図3(A)に示すように平面視の形状が円形のフランジ部24を有しており、このフランジ部24は、図3(B)の断面に示すように、軸線Lの両側の厚みが異なっている。すなわち、弁部材2のフランジ部24は軸線L回りに非回転対称な非対称形状部となっている。   FIG. 3 is a view showing a first modification of the valve member 2. FIG. 3 (A) is a top view of the valve member, and FIG. 3 (B) is a longitudinal sectional view of the valve member. As shown in FIG. 3A, the valve member 2 of the first modification has a flange portion 24 having a circular shape in plan view, and the flange portion 24 is shown in the cross section of FIG. As described above, the thicknesses on both sides of the axis L are different. That is, the flange portion 24 of the valve member 2 is a non-rotationally symmetric asymmetric shape portion around the axis L.

これにより、弁ポート13を通過した冷媒の流れによる力は、弁部材2に対して弁ポート13の軸線Lの両側(図3(B)では左右側)に対して非対称に作用させる。このように、フランジ部24は「付勢手段」を構成している。この変形例1では、フランジ部24の厚みの薄い方が冷媒の流量が多くなるので、弁部材2の非対称となる部分での左右方向で流体圧力に圧力差が生じ、弁部材2に対して一方側(軸線Lと交差する方向)に力が作用する。これにより、第1実施形態と同様に弁部材2の振動を抑制することができ、第1実施形態と同様な効果が得られる。   Thereby, the force by the flow of the refrigerant that has passed through the valve port 13 causes the valve member 2 to act asymmetrically on both sides of the axis L of the valve port 13 (left and right sides in FIG. 3B). Thus, the flange portion 24 constitutes an “urging means”. In the first modification, the thinner the flange portion 24, the larger the refrigerant flow rate. Therefore, a pressure difference occurs in the fluid pressure in the left-right direction at the asymmetrical portion of the valve member 2, and the valve member 2 A force acts on one side (direction intersecting the axis L). Thereby, the vibration of the valve member 2 can be suppressed similarly to 1st Embodiment, and the effect similar to 1st Embodiment is acquired.

図4は弁部材2の変形例2を示す図であり、図4(A)は弁部材の上面図、図4(B)は弁部材の縦断面図である。この変形例2の弁部材2は、図4(A)に示すように平面視の形状が円形のフランジ部25を有しており、このフランジ部25の一部に孔251が形成されている。すなわち、弁部材2のフランジ部25は軸線L回りに非回転対称な非対称形状部となる。   4A and 4B are diagrams showing a second modification of the valve member 2. FIG. 4A is a top view of the valve member, and FIG. 4B is a longitudinal sectional view of the valve member. As shown in FIG. 4A, the valve member 2 of Modification 2 has a flange portion 25 having a circular shape in plan view, and a hole 251 is formed in a part of the flange portion 25. . That is, the flange portion 25 of the valve member 2 is a non-rotationally symmetric asymmetric shape portion around the axis L.

これにより、弁ポート13を通過した冷媒の流れによる力は、弁部材2に対して弁ポート13の軸線Lの両側(図4(B)では左右側)に対して非対称に作用させる。このように、フランジ部25は「付勢手段」を構成している。この変形例2では、フランジ部25の孔251が有る側が冷媒の流量が多くなるので、弁部材2の非対称となる部分での左右方向で流体圧力に圧力差が生じ、弁部材2に対して一方側(軸線Lと交差する方向)に力が作用する。これにより、第1実施形態と同様に弁部材2の振動を抑制することができ、第1実施形態と同様な効果が得られる。   Thereby, the force by the flow of the refrigerant that has passed through the valve port 13 causes the valve member 2 to act asymmetrically on both sides of the axis L of the valve port 13 (left and right sides in FIG. 4B). Thus, the flange portion 25 constitutes an “urging means”. In the second modified example, since the flow rate of the refrigerant increases on the side of the flange portion 25 where the hole 251 is present, a pressure difference is generated in the fluid pressure in the left-right direction at the asymmetrical portion of the valve member 2, A force acts on one side (direction intersecting the axis L). Thereby, the vibration of the valve member 2 can be suppressed similarly to 1st Embodiment, and the effect similar to 1st Embodiment is acquired.

図5は第2実施形態の温度膨張弁の縦断面図、図6は第2実施形態における弁部材を示す図である。図6(A)は弁部材を構成する弁体の上面図、図6(B)は同弁体の縦断面図、図6(C)は弁部材を構成する板部材の上面図、図6(D)は同板部材の縦断面図、図6(E)は弁部材の縦断面図である。この第2実施形態において第1実施形態との大きな違いは、弁部材の構成である。以下、第2乃至第4実施形態において、第1実施形態と同じ要素及び対応する要素には同符号を付記して重複する説明は省略する。   FIG. 5 is a longitudinal sectional view of a temperature expansion valve according to the second embodiment, and FIG. 6 is a view showing a valve member according to the second embodiment. 6A is a top view of the valve body constituting the valve member, FIG. 6B is a longitudinal sectional view of the valve body, FIG. 6C is a top view of the plate member constituting the valve member, FIG. (D) is a longitudinal sectional view of the plate member, and FIG. 6 (E) is a longitudinal sectional view of the valve member. The major difference between the second embodiment and the first embodiment is the configuration of the valve member. Hereinafter, in the second to fourth embodiments, the same elements as those in the first embodiment and corresponding elements are denoted by the same reference numerals, and redundant description is omitted.

この第2実施形態に係る弁部材7は、第1実施形態の弁部材2と略同形状の弁体7Aと、板部材7Bとで構成されている。弁体7Aは、ニードル部71と、フランジ部72と、ボス部73とで構成されている。また、ニードル部71には作動軸4の下端部に固定するための固定孔71aが形成されている。板部材7Bは薄板のプレス部品で皿形の形状をしており、その一部に軸線Lと平行な面で切断したDカット部741が形成され、さらに、中央に嵌合孔75が形成されている。そして、嵌合孔75内に弁体7Aのボス部73を挿入することにより、弁体7Aと板部材7Bが一体に組み付けられている。   The valve member 7 according to the second embodiment includes a valve body 7A having substantially the same shape as the valve member 2 of the first embodiment, and a plate member 7B. The valve body 7 </ b> A includes a needle portion 71, a flange portion 72, and a boss portion 73. The needle portion 71 is formed with a fixing hole 71 a for fixing to the lower end portion of the operating shaft 4. The plate member 7B is a thin plate press part and has a dish shape. A D-cut portion 741 cut along a plane parallel to the axis L is formed in a part thereof, and a fitting hole 75 is formed in the center. ing. Then, by inserting the boss portion 73 of the valve body 7A into the fitting hole 75, the valve body 7A and the plate member 7B are assembled together.

この第2実施形態でも、作動軸4の作用により弁部材7のニードル部71が弁ポート13内に進退され、弁ポート13の軸線L方向の位置に応じて弁ポート13を流れる冷媒の流量が制御される。また、弁ポート13とニードル部71の間隙は冷媒を絞る「絞り部」を構成している。そして、弁部材7は少なくともその一部が、この絞り部よりも下流側に位置している。   Also in the second embodiment, the needle portion 71 of the valve member 7 is advanced and retracted into the valve port 13 by the action of the operating shaft 4, and the flow rate of the refrigerant flowing through the valve port 13 is changed according to the position of the valve port 13 in the axis L direction. Be controlled. In addition, the gap between the valve port 13 and the needle portion 71 constitutes a “throttle portion” that throttles the refrigerant. And at least a part of the valve member 7 is located downstream of the throttle portion.

この第2実施形態では、図6(C)に示すように、弁部材7における板部材7BのDカット部741の部分は、軸線L回りに非回転対称な非対称形状部となっている。これにより、弁ポート13を通過した冷媒の流れによる力は、弁部材7に対して弁ポート13の軸線Lの両側(図5では左右側)に対して非対称に作用させる。このように、板部材7Bは「付勢手段」を構成している。そして、Dカット部741側を通過する冷媒の流量が多くなるので、弁部材7の非対称となる部分での左右方向で流体圧力に圧力差が生じ、弁部材7に対して一方側(軸線Lと交差する方向)に力が作用する。これにより、弁部材7の振動を抑制することができ、第1実施形態と同様な効果が得られる。また、この第2実施形態の板部材7Bは薄板のプレス部品であり、弁部材や弁座等の加工費も抑制できる。   In the second embodiment, as shown in FIG. 6C, the portion of the D-cut portion 741 of the plate member 7 </ b> B in the valve member 7 is a non-rotationally symmetric asymmetric shape portion around the axis L. Thereby, the force by the flow of the refrigerant that has passed through the valve port 13 causes the valve member 7 to act asymmetrically on both sides of the axis L of the valve port 13 (left and right sides in FIG. 5). In this way, the plate member 7B constitutes an “urging means”. Then, since the flow rate of the refrigerant passing through the D-cut portion 741 side increases, a pressure difference is generated in the fluid pressure in the left-right direction at the asymmetrical portion of the valve member 7, and one side (axis L Force in the direction intersecting Thereby, the vibration of the valve member 7 can be suppressed and the same effect as 1st Embodiment is acquired. Further, the plate member 7B of the second embodiment is a thin press part, and the processing costs of the valve member and the valve seat can be suppressed.

図7は第3実施形態の温度膨張弁の縦断面図、図8は第3実施形態の温度膨張弁の要部拡大断面図である。この第3実施形態において第1実施形態との大きな違いは、弁座13aの形状であり、この第3実施形態における弁部材2は、図4の変形例2におけるフランジ部25の孔251を無くした形状である。   FIG. 7 is a longitudinal sectional view of a temperature expansion valve according to the third embodiment, and FIG. 8 is an enlarged sectional view of a main part of the temperature expansion valve according to the third embodiment. The major difference between the third embodiment and the first embodiment is the shape of the valve seat 13a, and the valve member 2 according to the third embodiment eliminates the hole 251 of the flange portion 25 in the modified example 2 of FIG. Shape.

弁座13aには、図8に示すように、弁ポート13の二次継手12a側の端部の一箇所にブリード溝13a1が形成されている。すなわち、この第3実施形態では、弁ポート13とニードル部21の間隙及びブリード溝13aは、冷媒を絞る「絞り部」を構成している。そして、弁部材2は少なくともその一部が、この絞り部よりも下流側に位置している。   As shown in FIG. 8, a bleed groove 13a1 is formed in the valve seat 13a at one location on the end of the valve port 13 on the secondary joint 12a side. That is, in the third embodiment, the gap between the valve port 13 and the needle portion 21 and the bleed groove 13a constitute a “throttle portion” that squeezes the refrigerant. And at least a part of the valve member 2 is located downstream of the throttle portion.

この第3実施形態では、弁座13aのブリード溝13a1の部分は、軸線L回りに非回転対称な非対称形状部となっている。これにより、弁ポート13を通過した冷媒の流れによる力は、弁部材2に対して弁ポート13の軸線Lの両側(図7では左右側)に対して非対称に作用させる。このように、ブリード溝13a1は「付勢手段」を構成している。そして、この第3実施形態では、ブリード溝13a1側を通過する冷媒の流量が多くなるので、弁部材2の非対称となる部分での左右方向で流体圧力に圧力差が生じ、弁部材2に対して一方側(軸線Lと交差する方向)に力が作用する。これにより、弁部材2の振動を抑制することができ、第1実施形態と同様な効果が得られる。   In this third embodiment, the portion of the bleed groove 13a1 of the valve seat 13a is a non-rotationally symmetric asymmetric shape portion around the axis L. Thereby, the force by the flow of the refrigerant that has passed through the valve port 13 causes the valve member 2 to act asymmetrically on both sides of the axis L of the valve port 13 (left and right sides in FIG. 7). Thus, the bleed groove 13a1 constitutes an “urging means”. And in this 3rd Embodiment, since the flow volume of the refrigerant | coolant which passes the bleed groove | channel 13a1 side increases, a pressure difference arises in the fluid pressure in the left-right direction in the asymmetric part of the valve member 2, and with respect to the valve member 2 The force acts on one side (direction intersecting the axis L). Thereby, the vibration of the valve member 2 can be suppressed and the effect similar to 1st Embodiment is acquired.

図9は第4実施形態の温度膨張弁の要部拡大断面図(図9(A))及び弁座部の底面図(図9(B))である。この第4実施形態において第1実施形態との大きな違いは、弁座13aの形状であり、この第4実施形態における弁部材2は第3実施形態と同様である。弁座13aには弁ポート13の周囲で二次継手12a側(下流側)に延びる円弧状の縦壁部13a2と、この縦壁部13a2の一部を低くした切り欠き部13a3が形成されている。すなわち、縦壁部13a2と切り欠き部13a3は、弁ポート13の下流側で軸線Lに対してそれぞれ片側に偏った位置に形成されている。   FIG. 9 is an enlarged sectional view (FIG. 9 (A)) of a main part of the temperature expansion valve of the fourth embodiment and a bottom view (FIG. 9 (B)) of the valve seat part. In this 4th Embodiment, the big difference with 1st Embodiment is the shape of the valve seat 13a, and the valve member 2 in this 4th Embodiment is the same as that of 3rd Embodiment. The valve seat 13a is formed with an arcuate vertical wall portion 13a2 extending to the secondary joint 12a side (downstream side) around the valve port 13 and a notch portion 13a3 in which a part of the vertical wall portion 13a2 is lowered. Yes. That is, the vertical wall portion 13a2 and the cutout portion 13a3 are formed at positions that are offset to one side with respect to the axis L on the downstream side of the valve port 13.

この第4実施形態では、縦壁部13a2と切り欠き部13a3は、軸線L回りに非回転対称な非対称形状部となっている。これにより、弁ポート13を通過した冷媒の流れによる力は、弁部材2に対して弁ポート13の軸線Lの両側(図9(A))では左右側)に対して非対称に作用させる。このように、縦壁部13a2と切り欠き部13a3は「付勢手段」を構成している。そして、この第4実施形態では、切り欠き部13a3側を通過する冷媒の流量が多くなるので、弁部材2の非対称となる部分での左右方向で流体圧力に圧力差が生じ、弁部材2に対して一方側(軸線Lと交差する方向)に力が作用する。これにより、弁部材2の振動を抑制することができ、第1実施形態と同様な効果が得られる。   In the fourth embodiment, the vertical wall portion 13a2 and the notch portion 13a3 are non-rotationally symmetric asymmetrical shape portions around the axis L. Thereby, the force by the flow of the refrigerant that has passed through the valve port 13 acts on the valve member 2 asymmetrically with respect to both sides of the axis L of the valve port 13 (left and right sides in FIG. 9A). Thus, the vertical wall portion 13a2 and the notch portion 13a3 constitute “biasing means”. And in this 4th Embodiment, since the flow volume of the refrigerant | coolant which passes the notch part 13a3 side increases, a pressure difference arises in the fluid pressure in the left-right direction in the asymmetric part of the valve member 2, and the valve member 2 On the other hand, a force acts on one side (direction intersecting the axis L). Thereby, the vibration of the valve member 2 can be suppressed and the effect similar to 1st Embodiment is acquired.

図10は実施形態に係る冷凍サイクルの概略構成図である。この冷凍サイクル100は、ルームエアコン等の空気調和機に利用されるものである。図10において、10は各実施形態の温度膨張弁、20は蒸発器である室内熱交換器、30は凝縮器である室外熱交換器、40は圧縮機である。圧縮機40で圧縮された冷媒は、室外熱交換器30に流入され、温度膨張弁10で絞られ、室内熱交換器20を介して圧縮機40の順に循環される。そして、室外熱交換器30が凝縮器として機能し、室内熱交換器20が蒸発器として機能し、室内等の冷房がなされる。   FIG. 10 is a schematic configuration diagram of a refrigeration cycle according to the embodiment. The refrigeration cycle 100 is used for an air conditioner such as a room air conditioner. In FIG. 10, 10 is a temperature expansion valve of each embodiment, 20 is an indoor heat exchanger that is an evaporator, 30 is an outdoor heat exchanger that is a condenser, and 40 is a compressor. The refrigerant compressed by the compressor 40 flows into the outdoor heat exchanger 30, is throttled by the temperature expansion valve 10, and is circulated in the order of the compressor 40 through the indoor heat exchanger 20. The outdoor heat exchanger 30 functions as a condenser, and the indoor heat exchanger 20 functions as an evaporator, thereby cooling the room or the like.

室内熱交換器20(蒸発器)の出口側配管20aには、温度膨張弁10から延びるキャピラリ6Aを介して感温筒6Bが取り付けられている。そして、感温筒6Aは出口配管20aの温度を感知して、その温度に応じた圧力を前記ダイヤフラム装置6に加え、前記のように温度膨張弁10の弁開度を変化させる。   A temperature sensing cylinder 6B is attached to an outlet side pipe 20a of the indoor heat exchanger 20 (evaporator) via a capillary 6A extending from the temperature expansion valve 10. The temperature sensing cylinder 6A senses the temperature of the outlet pipe 20a, applies a pressure corresponding to the temperature to the diaphragm device 6, and changes the valve opening of the temperature expansion valve 10 as described above.

なお、温度式膨張弁には内部均圧式と外部均圧式とがあり、蒸発器内部の圧力損失の大小により使い分けされている。圧力損失が一定や小さい場合には内部均圧式が用いられ、圧力損失が大きい場合には外部均圧式が用いられる。実施形態では均圧室65内に蒸発器の出口圧力を導入する外部均圧式の例について説明したが、本発明は、均圧導管を備えず、弁室の圧力を均圧室に導入する内部均圧式にも適用できる。   There are two types of temperature type expansion valves, an internal pressure equalizing type and an external pressure equalizing type, which are selectively used depending on the pressure loss inside the evaporator. When the pressure loss is constant or small, the internal pressure equalization method is used, and when the pressure loss is large, the external pressure equalization method is used. In the embodiment, the example of the external pressure equalization type in which the outlet pressure of the evaporator is introduced into the pressure equalizing chamber 65 has been described. Applicable to pressure equalization.

また、以上の説明では、一次側継手11aから流入する冷媒を膨張させて二次側継手12aから流出させる場合について説明したが、実施形態の温度膨張弁10は、二次側継手12aから流入する冷媒を膨張させて一次側継手11aから流出させる場合にも用いることができる。例えば、図10で説明した冷凍サイクルにおいて流路切換弁を設け、冷媒の流路を切り換えることで、冷房モードと暖房モードとを切り換えるような場合にも実施形態の温度膨張弁10を適用することができる。この場合の暖房モードでは室内熱交換器20が凝縮器、室外熱交換器30が蒸発器として機能するため、例えば感温筒6Bと均圧導管6Cとを、圧縮機40の吸入側と流路切換弁との間に取り付けて温度膨張弁10を使用する。   Moreover, although the above description demonstrated the case where the refrigerant | coolant which flows in from the primary side coupling 11a was expanded and was made to flow out from the secondary side coupling 12a, the temperature expansion valve 10 of embodiment flows in from the secondary side coupling 12a. It can also be used when the refrigerant is expanded to flow out of the primary side joint 11a. For example, the temperature expansion valve 10 of the embodiment is applied even when the cooling mode and the heating mode are switched by providing a flow path switching valve in the refrigeration cycle described in FIG. 10 and switching the flow path of the refrigerant. Can do. In the heating mode in this case, since the indoor heat exchanger 20 functions as a condenser and the outdoor heat exchanger 30 functions as an evaporator, for example, the temperature sensing cylinder 6B and the pressure equalizing conduit 6C are connected to the suction side and the flow path of the compressor 40. The temperature expansion valve 10 is used by being mounted between the switching valve.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。   As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention.

1 弁本体
11 配管接続孔
12 配管接続孔
13 弁ポート
13a 弁座
13a1 ブリード溝(付勢手段)
13a2 縦壁部(付勢手段)
13a3 切り欠き部(付勢手段)
14 弁室
15 ガイド孔
16 軸受け孔
17 ねじ孔
2 弁部材
21 ニードル部
22 フランジ部(付勢手段)
221 Dカット面
23 ボス部
24 フランジ部(付勢手段)
25 フランジ部(付勢手段)
251 孔
3 弁ばね
4 作動軸
5 軸受け部
6 ダイヤフラム装置
6A キャピラリチューブ
6B 感温筒
61 上蓋
62 下蓋
63 ダイヤフラム
64 ダイヤフラム室
65 均圧室
66 当金
7 弁部材
7A 弁体
7B 板部材(付勢手段)
71 ニードル部
72 フランジ部
73 ボス部
741 Dカット部
75 嵌合孔
10 温度膨張弁
20 室内熱交換器(蒸発器)
20a 出口側配管
30 室外熱交換器(凝縮器)
40 圧縮機
100 冷凍サイクル
L 軸線
1 Valve body 11 Piping connection hole 12 Piping connection hole 13 Valve port 13a Valve seat 13a1 Bleed groove (urging means)
13a2 Vertical wall (biasing means)
13a3 Notch (biasing means)
14 Valve chamber 15 Guide hole 16 Bearing hole 17 Screw hole 2 Valve member 21 Needle portion 22 Flange portion (biasing means)
221 D-cut surface 23 Boss part 24 Flange part (biasing means)
25 Flange part (biasing means)
251 Hole 3 Valve spring 4 Actuation shaft 5 Bearing portion 6 Diaphragm device 6A Capillary tube 6B Temperature sensing tube 61 Upper lid 62 Lower lid 63 Diaphragm 64 Diaphragm chamber 65 Pressure equalizing chamber 66 Metal 7 Valve member 7A Valve body 7B Plate member means)
71 Needle part 72 Flange part 73 Boss part 741 D cut part 75 Fitting hole 10 Thermal expansion valve 20 Indoor heat exchanger (evaporator)
20a Outlet side piping 30 Outdoor heat exchanger (condenser)
40 Compressor 100 Refrigeration cycle L axis

Claims (8)

冷凍サイクルの蒸発器の出口側配管の温度に感応して該冷凍サイクルの流体の循環流量を制御する温度膨張弁であって、
前記流体を流す弁ポートを開閉する弁部材の少なくとも一部が、該弁ポートと該弁部材との絞り部よりも下流側に位置し、該弁部材を、前記弁ポートから流れる流体の力で該弁ポートの軸線に対して片側に付勢する付勢手段を備えたことを特徴とする温度膨張弁。
A temperature expansion valve that controls the circulating flow rate of the fluid in the refrigeration cycle in response to the temperature of the outlet side piping of the evaporator of the refrigeration cycle,
At least a part of the valve member that opens and closes the valve port through which the fluid flows is located downstream of the throttle portion between the valve port and the valve member, and the valve member is moved by the force of the fluid flowing from the valve port. A temperature expansion valve comprising urging means for urging one side with respect to the axis of the valve port.
前記付勢手段が、前記弁部材の前記軸線回りに非回転対称な非対称形状部で構成されていることを特徴とする請求項1に記載の温度膨張弁。   2. The temperature expansion valve according to claim 1, wherein the biasing means is configured by an asymmetrical shape portion that is non-rotationally symmetric about the axis of the valve member. 前記付勢手段が、前記弁ポートの周囲の弁座に形成された前記軸線回りに非回転対称な非対称形状部で構成されていることを特徴とする請求項1に記載の温度膨張弁。   2. The temperature expansion valve according to claim 1, wherein the biasing means is formed of an asymmetrical shape portion that is non-rotationally symmetric about the axis formed in a valve seat around the valve port. 前記弁部材が、前記弁ポートに対向して前記下流側から上流側にかけて縮径するニードル部と、該ニードル部の下流側で前記軸線と交差する面方向に拡がるフランジ部と、を有し、前記非対称形状部が前記フランジ部に形成されていることを特徴とする請求項2に記載の温度膨張弁。   The valve member has a needle portion that is diameter-reduced from the downstream side to the upstream side facing the valve port, and a flange portion that extends in a plane direction intersecting the axis on the downstream side of the needle portion, The temperature expansion valve according to claim 2, wherein the asymmetric shape portion is formed in the flange portion. 前記弁部材が、前記弁ポートに対向して前記下流側から上流側にかけて縮径するニードル部と、該ニードル部の下流側で該ニードル部とは別部材で前記軸線と交差する面方向に拡がる板部材とで構成され、前記非対称形状部が前記板部材に形成されていることを特徴とする請求項2に記載の温度膨張弁。   The valve member is opposed to the valve port and has a needle portion whose diameter is reduced from the downstream side to the upstream side, and the needle portion is separated from the needle portion on the downstream side of the needle portion and extends in a plane direction intersecting the axis. The temperature expansion valve according to claim 2, wherein the asymmetric shape portion is formed in the plate member. 前記非対称形状部が、前記弁ポートの前記下流側に形成されたブリード溝であることを特徴とする請求項3に記載の温度膨張弁。   4. The temperature expansion valve according to claim 3, wherein the asymmetric shape portion is a bleed groove formed on the downstream side of the valve port. 前記非対称形状部が、前記弁ポートの前記下流側で前記軸線に対して片側に偏った位置に形成された縦壁部と切り欠き部であることを特徴とする請求項3に記載の温度膨張弁。   4. The temperature expansion according to claim 3, wherein the asymmetrical shape portion is a vertical wall portion and a notch portion formed at a position offset to one side with respect to the axis on the downstream side of the valve port. valve. 流体である冷媒を圧縮する圧縮機と、凝縮器、蒸発器と、前記凝縮器と前記蒸発器との間にて冷媒を膨張させて減圧する請求項1乃至7のいずれか一項に記載の温度膨張弁と、を備えたことを特徴とする冷凍サイクル。   The compressor which compresses the refrigerant | coolant which is a fluid, a condenser, an evaporator, and expands a refrigerant | coolant between the said condenser and the said evaporator, and decompresses it as described in any one of Claim 1 thru | or 7. A refrigeration cycle comprising a temperature expansion valve.
JP2015143220A 2015-07-17 2015-07-17 Temperature expansion valve and refrigeration cycle Pending JP2017026191A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015143220A JP2017026191A (en) 2015-07-17 2015-07-17 Temperature expansion valve and refrigeration cycle
CN201610557544.7A CN106352616A (en) 2015-07-17 2016-07-15 Temperature expansion valve and freezing circulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015143220A JP2017026191A (en) 2015-07-17 2015-07-17 Temperature expansion valve and refrigeration cycle

Publications (1)

Publication Number Publication Date
JP2017026191A true JP2017026191A (en) 2017-02-02

Family

ID=57843284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015143220A Pending JP2017026191A (en) 2015-07-17 2015-07-17 Temperature expansion valve and refrigeration cycle

Country Status (2)

Country Link
JP (1) JP2017026191A (en)
CN (1) CN106352616A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060356A (en) * 2018-10-12 2020-04-16 株式会社鷺宮製作所 Temperature type expansion valve, and refrigeration cycle system
CN111734883A (en) * 2019-03-25 2020-10-02 株式会社鹭宫制作所 Temperature type expansion valve and refrigeration cycle system provided with same
KR102171577B1 (en) * 2019-12-11 2020-10-29 최창균 Refrigerant compressor suction gas temperature control in according climate temperature of Refrigerant cycle Heat pump
CN112236632A (en) * 2018-06-07 2021-01-15 株式会社电装 Valve device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6799024B2 (en) * 2018-03-06 2020-12-09 株式会社鷺宮製作所 Solenoid valve and refrigeration cycle system
JP7017482B2 (en) * 2018-07-10 2022-02-08 株式会社鷺宮製作所 Temperature sensitive control valve
CN111365911B (en) * 2020-03-23 2021-10-29 浙江农林大学暨阳学院 Expansion valve and automobile air conditioning system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111208A (en) * 1998-10-02 2000-04-18 Denso Corp Temperature system of expansion valve
JP2010048509A (en) * 2008-08-25 2010-03-04 Tgk Co Ltd Expansion valve
JP2011047483A (en) * 2009-08-27 2011-03-10 Toyota Motor Corp Solenoid valve
JP2013170622A (en) * 2012-02-21 2013-09-02 Rinnai Corp Flow control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484656B2 (en) * 2004-10-01 2010-06-16 株式会社鷺宮製作所 Temperature-sensitive control valve and refrigeration cycle device
CN103388694B (en) * 2012-05-11 2016-07-27 浙江三花股份有限公司 A kind of electric expansion valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111208A (en) * 1998-10-02 2000-04-18 Denso Corp Temperature system of expansion valve
JP2010048509A (en) * 2008-08-25 2010-03-04 Tgk Co Ltd Expansion valve
JP2011047483A (en) * 2009-08-27 2011-03-10 Toyota Motor Corp Solenoid valve
JP2013170622A (en) * 2012-02-21 2013-09-02 Rinnai Corp Flow control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112236632A (en) * 2018-06-07 2021-01-15 株式会社电装 Valve device
JP2020060356A (en) * 2018-10-12 2020-04-16 株式会社鷺宮製作所 Temperature type expansion valve, and refrigeration cycle system
JP7015769B2 (en) 2018-10-12 2022-02-03 株式会社鷺宮製作所 Thermal expansion valve and refrigeration cycle system equipped with it
CN111734883A (en) * 2019-03-25 2020-10-02 株式会社鹭宫制作所 Temperature type expansion valve and refrigeration cycle system provided with same
CN111734883B (en) * 2019-03-25 2022-03-18 株式会社鹭宫制作所 Temperature type expansion valve and refrigeration cycle system provided with same
KR102171577B1 (en) * 2019-12-11 2020-10-29 최창균 Refrigerant compressor suction gas temperature control in according climate temperature of Refrigerant cycle Heat pump
WO2021118153A1 (en) * 2019-12-11 2021-06-17 최창균 Device for controlling flow rate of circulating refrigerant of refrigerant circuit heat pump, and heat pump capable of efficient flow rate control of circulating refrigerant by using same

Also Published As

Publication number Publication date
CN106352616A (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP2017026191A (en) Temperature expansion valve and refrigeration cycle
JP6370269B2 (en) Motorized valve and refrigeration cycle
JP6182363B2 (en) Expansion valve
JP6367164B2 (en) Pressure operated valve and refrigeration cycle
JP6968768B2 (en) Electric valve and refrigeration cycle system
JP6327401B2 (en) Pressure reducing valve
JP6356644B2 (en) Throttle device and refrigeration cycle
JP7256225B2 (en) Flow control valve and refrigeration cycle system
JP7026979B2 (en) Expansion valve
JP2024096870A (en) Motor-operated valve and refrigeration cycle system
JP2021038802A (en) Electric valve and refrigeration cycle system
JP6447906B2 (en) Expansion valve
JP6007369B2 (en) Control valve
JP6356645B2 (en) Throttle device and refrigeration cycle
KR20140040039A (en) Complex valve
JP6446636B2 (en) Expansion valve and its piping mounting structure
JP6811479B2 (en) Expansion valve
JP2008051147A (en) Flow control valve and air conditioner incorporating this
WO2018030364A1 (en) Expansion valve
JP7027367B2 (en) Thermal expansion valve and refrigeration cycle system equipped with it
JP7074321B2 (en) Expansion valve
JP2017044357A (en) Expansion valve
JP2020060308A (en) Expansion valve
JP2014066376A (en) Control valve
JP2009109040A (en) Thermostatic expansion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180403