JP6968768B2 - Electric valve and refrigeration cycle system - Google Patents

Electric valve and refrigeration cycle system Download PDF

Info

Publication number
JP6968768B2
JP6968768B2 JP2018163361A JP2018163361A JP6968768B2 JP 6968768 B2 JP6968768 B2 JP 6968768B2 JP 2018163361 A JP2018163361 A JP 2018163361A JP 2018163361 A JP2018163361 A JP 2018163361A JP 6968768 B2 JP6968768 B2 JP 6968768B2
Authority
JP
Japan
Prior art keywords
valve
sub
flow rate
main
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018163361A
Other languages
Japanese (ja)
Other versions
JP2020034141A (en
Inventor
大樹 中川
雄希 北見
亮司 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2018163361A priority Critical patent/JP6968768B2/en
Priority to CN201910745593.7A priority patent/CN110873225A/en
Publication of JP2020034141A publication Critical patent/JP2020034141A/en
Application granted granted Critical
Publication of JP6968768B2 publication Critical patent/JP6968768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Details Of Valves (AREA)

Description

本発明は、冷凍サイクルシステムなどに使用する電動弁及び冷凍サイクルシステムに関する。 The present invention relates to an electric valve and a refrigeration cycle system used for a refrigeration cycle system or the like.

従来、空気調和機の冷凍サイクルに設けられる電動弁として、小流量制御域と大流量制御域とで流量制御する電動弁がある。このような電動弁は、室内機に搭載される用途(例えば除湿弁)があり、小流量の制御時に流体(冷媒)が流れる音を低減する必要がある。このため、静音性を考慮した電動弁が例えば特開2017−211032号公報(特許文献1)及び例えば特開2017−211034号公報(特許文献2)に開示されている。 Conventionally, as an electric valve provided in a refrigeration cycle of an air conditioner, there is an electric valve that controls the flow rate in a small flow rate control range and a large flow rate control range. Such an electric valve has an application to be mounted on an indoor unit (for example, a dehumidifying valve), and it is necessary to reduce the noise of fluid (refrigerant) flowing when controlling a small flow rate. Therefore, an electric valve in consideration of quietness is disclosed in, for example, Japanese Patent Application Laid-Open No. 2017-211032 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2017-21134 (Patent Document 2).

特開2017−211032号公報Japanese Unexamined Patent Publication No. 2017-211032 特開2017−211034号公報Japanese Unexamined Patent Publication No. 2017-21134

特許文献1及び2の従来の技術では、消音部材が冷媒の流れの流束(フラックス)と交差するように配置し、冷媒をこの消音部材中を透過させるような構造となっている。この従来の技術のように、冷媒を透過させる構造では、冷媒中の塵等の異物により消音部材が目詰まりを起こす恐れがあり、適正な流量制御が困難になる。 In the conventional techniques of Patent Documents 1 and 2, the muffling member is arranged so as to intersect the flux of the flow of the refrigerant, and the structure is such that the refrigerant is transmitted through the muffling member. In a structure that allows the refrigerant to permeate as in this conventional technique, the sound deadening member may be clogged by foreign matter such as dust in the refrigerant, which makes it difficult to properly control the flow rate.

本発明は、小流量制御域と大流量制御域とで流量制御する電動弁において、小流量制御域での小流量の流体に対して流体の流れを確保するとともに、流体の気泡の破裂等による通過音を低減して静音性を高めることを課題とする。 The present invention is an electric valve that controls the flow rate in the small flow rate control range and the large flow rate control range. The task is to reduce the passing sound and improve the quietness.

請求項1の電動弁は、主弁室の主弁ポートの開度を変更する主弁体と、前記主弁体に設けられた副弁室の副弁ポートの開度を変更する副弁体と、前記副弁体を軸線方向に進退駆動する駆動部と、を備え、前記主弁体が前記主弁ポートを閉とした状態で、前記副弁体が前記副弁ポートの開度を変更する小流量制御域と、前記主弁体が前記主弁ポートの開度を変更する大流量制御域と、の二段の流量制御域で流体の流量を制御する電動弁であって、前記小流量制御域において前記副弁室と前記副弁ポートとを流れる流体に対して露出され、該流体の流路の側壁の一部を構成し、当該流路を塞がないように設けられた消泡部材、を備えたことを特徴とする。 The electric valve according to claim 1 is a main valve body that changes the opening degree of the main valve port of the main valve chamber and a sub-valve body that changes the opening degree of the sub-valve port of the sub-valve chamber provided in the main valve body. And a drive unit that drives the sub-valve body to move forward and backward in the axial direction, and the sub-valve body changes the opening degree of the sub-valve port while the main valve body closes the main valve port. It is an electric valve that controls the flow rate of the fluid in two stages of a small flow rate control area and a large flow rate control area in which the main valve body changes the opening degree of the main valve port. Exposed to the fluid flowing through the sub-valve chamber and the sub-valve port in the flow control area, it constitutes a part of the side wall of the flow path of the fluid, and is provided so as not to block the flow path. It is characterized by having a foam member.

請求項2の電動弁は、請求項1に記載の電動弁であって、前記副弁室内にて、前記流体を透過させない壁面に前記流路を塞がないように前記消泡部材が配置されていることを特徴とする。 The electric valve according to claim 2 is the electric valve according to claim 1, and the defoaming member is arranged in the auxiliary valve chamber so as not to block the flow path on the wall surface that does not allow the fluid to permeate. It is characterized by being.

請求項3の電動弁は、請求項2に記載の電動弁であって、前記消泡部材が、前記副弁体の一部に設けられていることを特徴とする。 The electric valve according to claim 3 is the electric valve according to claim 2, wherein the defoaming member is provided in a part of the auxiliary valve body.

請求項4の電動弁は、請求項2に記載の電動弁であって、前記消泡部材が、前記副弁ポートの周囲の前記副弁室側に設けられていることを特徴とする。 The electric valve according to claim 4 is the electric valve according to claim 2, wherein the defoaming member is provided on the auxiliary valve chamber side around the auxiliary valve port.

請求項5の電動弁は、請求項1に記載の電動弁であって、前記消泡部材が、前記副弁ポートの周囲の前記副弁室とは反対側に設けられていることを特徴とする。 The electric valve according to claim 5 is the electric valve according to claim 1, wherein the defoaming member is provided on the side opposite to the auxiliary valve chamber around the auxiliary valve port. do.

請求項6の冷凍サイクルシステムは、圧縮機と、室内熱交換器と、室外熱交換器と、前記室内熱交換器と前記室外熱交換器との間に設けられた電子膨張弁と、前記室内熱交換器に設けられる除湿弁とを含む冷凍サイクルシステムであって、請求項1乃至5のいずれか一項に記載の電動弁が、前記除湿弁として用いられていることを特徴とする。 The refrigeration cycle system according to claim 6 includes a compressor, an indoor heat exchanger, an outdoor heat exchanger, an electronic expansion valve provided between the indoor heat exchanger and the outdoor heat exchanger, and the indoor heat exchanger. A refrigeration cycle system including a dehumidifying valve provided in a heat exchanger, wherein the electric valve according to any one of claims 1 to 5 is used as the dehumidifying valve.

請求項1乃至5の電動弁によれば、小流量制御域での小流量の流体に対して、消泡部材が流体の流路の側壁の一部を構成しているので、この流体が消泡部材に衝突して、気泡を細分化する。しかし、消泡部材は流路の側壁の一部であるから消泡部材は流路を塞がず、流体の流れを阻害しない。したがって、小流量制御域での流体の流れを確保できるとともに、流体の気泡の破裂等による通過音を低減して静音性を高めることができる。 According to the electric valves of claims 1 to 5, since the defoaming member constitutes a part of the side wall of the flow path of the fluid with respect to the fluid having a small flow rate in the small flow rate control range, this fluid is extinguished. It collides with the foam member and breaks up the bubbles. However, since the defoaming member is a part of the side wall of the flow path, the defoaming member does not block the flow path and does not obstruct the flow of fluid. Therefore, it is possible to secure the flow of the fluid in the small flow rate control range, reduce the passing noise due to the bursting of the bubbles of the fluid, and improve the quietness.

請求項6の冷凍サイクルシステムによれば、請求項1乃至5と同様な効果が得られる。 According to the refrigeration cycle system of claim 6, the same effect as that of claims 1 to 5 can be obtained.

本発明の第1実施形態の電動弁の縦断面図である。It is a vertical sectional view of the electric valve of 1st Embodiment of this invention. 第1実施形態の電動弁の小流量制御域状態の要部拡大断面図である。It is an enlarged sectional view of the main part of the small flow rate control range state of the electric valve of 1st Embodiment. 第1実施形態の電動弁の大流量制御域状態の要部拡大断面図である。It is an enlarged sectional view of the main part of the large flow rate control range state of the electric valve of 1st Embodiment. 本発明の第2実施形態の電動弁の小流量制御域状態の要部拡大断面図である。It is an enlarged sectional view of the main part of the small flow rate control range state of the electric valve of the 2nd Embodiment of this invention. 本発明の第3実施形態の電動弁の小流量制御域状態の要部拡大断面図である。It is an enlarged sectional view of the main part of the small flow rate control range state of the electric valve of the 3rd Embodiment of this invention. 本発明の参考例の電動弁の小流量制御域状態の要部拡大断面図である。It is an enlarged sectional view of the main part of the small flow rate control range state of the electric valve of the reference example of this invention. 本発明の実施形態の電動弁における弁リフト量と流量の関係を示すグラフである。It is a graph which shows the relationship between the valve lift amount and the flow rate in the electric valve of embodiment of this invention. 実施形態の冷凍サイクルシステムを示す図である。It is a figure which shows the refrigeration cycle system of an embodiment.

次に、本発明の電動弁及び冷凍サイクルシステムの実施形態について図面を参照して説明する。図1は第1実施形態の電動弁の小流量制御域状態の縦断面図、図2は第1実施形態の電動弁の小流量制御域状態の要部拡大断面図、図3は第1実施形態の電動弁の大流量制御域状態の要部拡大断面図である。なお、以下の説明における「上下」の概念は図1乃至図3の図面における上下に対応する。この電動弁100は、弁ハウジング1と、ガイド部材2と、主弁体3と、「副弁体」としてのニードル弁4と、駆動部5と、を備えている。 Next, an embodiment of the electric valve and the refrigeration cycle system of the present invention will be described with reference to the drawings. FIG. 1 is a vertical cross-sectional view of the small flow rate control range state of the electric valve of the first embodiment, FIG. 2 is an enlarged cross-sectional view of a main part of the small flow rate control range state of the electric valve of the first embodiment, and FIG. 3 is the first embodiment. It is an enlarged sectional view of the main part of the large flow rate control range state of the electric valve of the form. The concept of "upper and lower" in the following description corresponds to the upper and lower parts in the drawings of FIGS. 1 to 3. The electric valve 100 includes a valve housing 1, a guide member 2, a main valve body 3, a needle valve 4 as a "secondary valve body", and a drive unit 5.

弁ハウジング1は例えば、黄銅、ステンレス等で略円筒形状に形成されており、その内側に主弁室1Rを有している。弁ハウジング1の外周片側には主弁室1Rに導通される第1継手管11が接続されるとともに、下端から下方に延びる筒状部に第2継手管12が接続されている。また、第2継手管12の主弁室1R側には円筒状の主弁座13が形成され、この主弁座13の内側は主弁ポート13aとなっており、第2継手管12は主弁ポート13aを介して主弁室1Rに導通される。主弁ポート13aは軸線Lを中心とする円柱形状の透孔である。なお、第1継手管11及び第2継手管12は、弁ハウジング1に対してろう付け等により固着されている。 The valve housing 1 is formed of, for example, brass, stainless steel, or the like in a substantially cylindrical shape, and has a main valve chamber 1R inside thereof. A first joint pipe 11 conducting to the main valve chamber 1R is connected to one side of the outer circumference of the valve housing 1, and a second joint pipe 12 is connected to a cylindrical portion extending downward from the lower end. Further, a cylindrical main valve seat 13 is formed on the main valve chamber 1R side of the second joint pipe 12, and the inside of the main valve seat 13 is a main valve port 13a, and the second joint pipe 12 is the main valve seat 13. It is conducted to the main valve chamber 1R via the valve port 13a. The main valve port 13a is a cylindrical through hole centered on the axis L. The first joint pipe 11 and the second joint pipe 12 are fixed to the valve housing 1 by brazing or the like.

弁ハウジング1の上端の開口部には、ガイド部材2が取り付けられている。ガイド部材2は、弁ハウジング1の内周面内に圧入される圧入部21と、圧入部21の内側に位置する略円柱状のガイド部22と、ガイド部22の上部に延設されたホルダ部23と、ガイド部22の外周に位置するリング状のフランジ部24とを有している。圧入部21、ガイド部22,ホルダ部23は樹脂製の一体品として構成されている。また、フランジ部24は、例えば、黄銅、ステンレス等の金属板であり、このフランジ部24は、インサート成形により樹脂製の圧入部21及びホルダ部22と共に一体に設けられている。 A guide member 2 is attached to the opening at the upper end of the valve housing 1. The guide member 2 includes a press-fitting portion 21 to be press-fitted into the inner peripheral surface of the valve housing 1, a substantially columnar guide portion 22 located inside the press-fitting portion 21, and a holder extending above the guide portion 22. It has a portion 23 and a ring-shaped flange portion 24 located on the outer periphery of the guide portion 22. The press-fitting portion 21, the guide portion 22, and the holder portion 23 are configured as an integral product made of resin. Further, the flange portion 24 is, for example, a metal plate such as brass or stainless steel, and the flange portion 24 is integrally provided together with the resin press-fitting portion 21 and the holder portion 22 by insert molding.

そして、ガイド部材2は、弁ハウジング1に組み付けられ、フランジ部24を介して弁ハウジング1の上端部に溶接により固定されている。また、ガイド部材2において、ガイド部22には軸線Lと同軸の円筒形状のガイド孔22aが形成されるとともに、ホルダ部23の中心には、ガイド孔22aと同軸の雌ねじ部23aとそのねじ孔が形成されている。ホルダ部23のガイド孔22a内に主弁体3が配設されている。 The guide member 2 is assembled to the valve housing 1 and fixed to the upper end of the valve housing 1 via the flange portion 24 by welding. Further, in the guide member 2, a cylindrical guide hole 22a coaxial with the axis L is formed in the guide portion 22, and a female screw portion 23a coaxial with the guide hole 22a and a screw hole thereof are formed in the center of the holder portion 23. Is formed. The main valve body 3 is arranged in the guide hole 22a of the holder portion 23.

主弁体3は、主弁座13に対して着座及び離座する主弁部31と、円柱状のニードルガイド孔32aを有する保持部32と、副弁座33と、を有している。なお、ニードルガイド孔32aの下側一部は副弁室3Rとなっている。保持部32のニードルガイド孔32a内には、後述の弁軸41に取り付けられたワッシャ43とガイド用ボス部44とが挿通されるとともに、この保持部32の上端にはリング状のリテーナ321が嵌合固着または溶接等により固着されている。また、保持部32の上端外周部は縮径されており、この保持部32の上端外周部とガイド孔22aの上端部との間には、主弁ばね3aが配設されており、この主弁ばね3aにより主弁体3は主弁座13の方向(閉方向)に付勢されている。副弁座33はニードルガイド孔32aの下端部に位置しており、その中心には副弁ポート33aが形成されている。この副弁ポート33aは、軸線Lを中心とする円筒形の形状である。また、保持部32の側面の少なくとも一箇所には、副弁室3Rと主弁室1Rとを導通する導通孔32bが形成されており、後述のように副弁体としてのニードル弁4が副弁ポート33aを開状態としたとき、主弁室1R、副弁室3R、副弁ポート33a及び主弁ポート13aが導通する。 The main valve body 3 has a main valve portion 31 that is seated and separated from the main valve seat 13, a holding portion 32 having a columnar needle guide hole 32a, and a sub valve seat 33. The lower part of the needle guide hole 32a is the auxiliary valve chamber 3R. A washer 43 attached to a valve shaft 41 and a guide boss portion 44, which will be described later, are inserted into the needle guide hole 32a of the holding portion 32, and a ring-shaped retainer 321 is provided at the upper end of the holding portion 32. It is fixed by fitting or welding. Further, the outer peripheral portion of the upper end of the holding portion 32 has a reduced diameter, and a main valve spring 3a is disposed between the outer peripheral portion of the upper end of the holding portion 32 and the upper end portion of the guide hole 22a. The main valve body 3 is urged in the direction (closed direction) of the main valve seat 13 by the valve spring 3a. The auxiliary valve seat 33 is located at the lower end of the needle guide hole 32a, and the auxiliary valve port 33a is formed in the center thereof. The auxiliary valve port 33a has a cylindrical shape centered on the axis L. Further, a conduction hole 32b that conducts the sub-valve chamber 3R and the main valve chamber 1R is formed at at least one position on the side surface of the holding portion 32, and the needle valve 4 as the sub-valve body is subordinate as described later. When the valve port 33a is opened, the main valve chamber 1R, the sub-valve chamber 3R, the sub-valve port 33a, and the main valve port 13a are electrically connected.

ニードル弁4は、後述のロータ軸51の下端部にこのロータ軸51と一体に形成されてロータ軸51側に連なる弁軸41と、弁軸41の下端に連なるニードル部42とを一体に形成して備えている。ニードル部42は、ストレート部42aと円錐台部42bとで構成されている。ストレート部42aは、副弁ポート33aに整合してこの副弁ポート33a内に挿通可能な径であり、その側面は軸線L方向で同径となっている。円錐台部42bは先端に向かって徐々に径が小さくなる円錐台状の形状である。また、ニードル弁4は、弁軸41に配設された円環状のワッシャ43と、弁軸41に固着されたガイド用ボス部44と、を有している。ガイド用ボス部44は弁軸41と別体として固着されているが、ガイド用ボス部44は弁軸41と一体に形成されたものでもよい。そして、ワッシャ43とガイド用ボス部44は、ニードルガイド孔32a内に摺動可能に挿通されている。 The needle valve 4 integrally forms a valve shaft 41 integrally formed with the rotor shaft 51 at the lower end of the rotor shaft 51, which will be described later, and is connected to the rotor shaft 51 side, and a needle portion 42 connected to the lower end of the valve shaft 41. And prepare. The needle portion 42 is composed of a straight portion 42a and a truncated cone portion 42b. The straight portion 42a has a diameter that matches the sub-valve port 33a and can be inserted into the sub-valve port 33a, and its side surface has the same diameter in the axis L direction. The truncated cone portion 42b has a truncated cone shape whose diameter gradually decreases toward the tip. Further, the needle valve 4 has an annular washer 43 arranged on the valve shaft 41 and a guide boss portion 44 fixed to the valve shaft 41. Although the guide boss portion 44 is fixed separately from the valve shaft 41, the guide boss portion 44 may be integrally formed with the valve shaft 41. The washer 43 and the guide boss portion 44 are slidably inserted into the needle guide hole 32a.

弁ハウジング1の上端にはケース14が溶接等によって気密に固定され、このケース14の内外に駆動部5が構成されている。駆動部5は、ステッピングモータ5Aと、ステッピングモータ5Aの回転によりニードル弁4を進退させるねじ送り機構5Bと、ステッピングモータ5Aの回転を規制するストッパ機構5Cと、を備えている。 A case 14 is airtightly fixed to the upper end of the valve housing 1 by welding or the like, and a drive unit 5 is configured inside and outside the case 14. The drive unit 5 includes a stepping motor 5A, a screw feed mechanism 5B for advancing and retreating the needle valve 4 by the rotation of the stepping motor 5A, and a stopper mechanism 5C for restricting the rotation of the stepping motor 5A.

ステッピングモータ5Aは、ロータ軸51と、ケース14の内部に回転可能に配設されたマグネットロータ52と、ケース14の外周においてマグネットロータ52に対して対向配置されたステータコイル53と、その他、図示しないヨークや外装部材等により構成されている。ロータ軸51はブッシュを介してマグネットロータ52の中心に取り付けられ、このロータ軸51のガイド部材2側の外周には雄ねじ部51aが形成されている。この雄ねじ部51aはガイド部材2の雌ねじ部23aに螺合されており、これにより、ガイド部材2はロータ軸51を軸線L上に支持している。そして、ガイド部材2の雌ねじ部23aとロータ軸51の雄ねじ部51aはねじ送り機構5Bを構成している。 The stepping motor 5A includes a rotor shaft 51, a magnet rotor 52 rotatably arranged inside the case 14, a stator coil 53 arranged to face the magnet rotor 52 on the outer circumference of the case 14, and others shown in the figure. It is composed of a yoke and exterior members that do not. The rotor shaft 51 is attached to the center of the magnet rotor 52 via a bush, and a male screw portion 51a is formed on the outer periphery of the rotor shaft 51 on the guide member 2 side. The male threaded portion 51a is screwed into the female threaded portion 23a of the guide member 2, whereby the guide member 2 supports the rotor shaft 51 on the axis L. The female screw portion 23a of the guide member 2 and the male screw portion 51a of the rotor shaft 51 constitute the screw feed mechanism 5B.

以上の構成により、ステッピングモータ5Aの駆動により、マグネットロータ52及びロータ軸51が回転し、ロータ軸51の雄ねじ部51aとガイド部材2の雌ねじ部23aとのねじ送り機構5Bにより、ロータ軸51が軸線L方向に移動する。そして、ニードル弁4が軸線L方向に進退移動してニードル弁4が副弁ポート33aに対して近接又は離間する。これにより、副弁ポート33aの開度が制御される。また、ニードル弁4(ワッシャ43)が主弁体3(リテーナ321)に係合し、主弁体3はニードル弁4と共に移動して、主弁座13に対して着座及び離座する。これにより、第1継手管11から第2継手管12へ、あるいは第2継手管12から第1継手管11へ流れる冷媒の流量が制御される。マグネットロータ52には突起部52aが形成されており、マグネットロータ52の回転に伴って突起部52aが回転ストッパ機構5Cを作動させ、ロータ軸51(及びマグネットロータ52)の最下端位置及び最上端位置が規制される。図1及び図2はロータ軸51(及びマグネットロータ52)が最下端位置にある状態である。 With the above configuration, the magnet rotor 52 and the rotor shaft 51 are rotated by driving the stepping motor 5A, and the rotor shaft 51 is rotated by the screw feed mechanism 5B between the male screw portion 51a of the rotor shaft 51 and the female screw portion 23a of the guide member 2. Move in the L direction of the axis. Then, the needle valve 4 moves back and forth in the axis L direction, and the needle valve 4 approaches or separates from the auxiliary valve port 33a. Thereby, the opening degree of the auxiliary valve port 33a is controlled. Further, the needle valve 4 (washer 43) engages with the main valve body 3 (retainer 321), and the main valve body 3 moves together with the needle valve 4 to sit and leave the main valve seat 13. As a result, the flow rate of the refrigerant flowing from the first joint pipe 11 to the second joint pipe 12 or from the second joint pipe 12 to the first joint pipe 11 is controlled. A protrusion 52a is formed on the magnet rotor 52, and the protrusion 52a operates the rotation stopper mechanism 5C as the magnet rotor 52 rotates, so that the lowermost position and the uppermost end of the rotor shaft 51 (and the magnet rotor 52) are formed. The position is regulated. 1 and 2 show a state in which the rotor shaft 51 (and the magnet rotor 52) is at the lowermost position.

図7はステッピングモータ5Aにおける駆動パルスのパルス量(=弁開度)と流量の関係を示すグラフであり、以上の電動弁100は、以下のように動作する。まず、図2(及び図1)の状態では、主弁体3の主弁部31が主弁座13に着座し、主弁ポート13aが閉じられた弁閉状態である。一方、副弁ポート33aに最も近づいた第一位置にあるニードル弁4は、ストレート部42aが副弁ポート33a内に挿通されているが、このニードル弁4は副弁座33に着座せず、ストレート部42aの外周面と副弁ポート33aとの隙間を冷媒が僅かに流れる。すなわち、図7に示すように、駆動パルスが基準点(ゼロ点)であっても微少な流量が生じることとなる。 FIG. 7 is a graph showing the relationship between the pulse amount (= valve opening degree) of the drive pulse in the stepping motor 5A and the flow rate, and the above electric valve 100 operates as follows. First, in the state of FIG. 2 (and FIG. 1), the main valve portion 31 of the main valve body 3 is seated on the main valve seat 13, and the main valve port 13a is closed. On the other hand, in the needle valve 4 at the first position closest to the sub-valve port 33a, the straight portion 42a is inserted into the sub-valve port 33a, but the needle valve 4 does not sit on the sub-valve seat 33. The refrigerant slightly flows through the gap between the outer peripheral surface of the straight portion 42a and the auxiliary valve port 33a. That is, as shown in FIG. 7, even if the drive pulse is at the reference point (zero point), a minute flow rate is generated.

次に、ステッピングモータ5Aの駆動によりマグネットロータ52を回転させてニードル弁4を上昇させることで、ニードル弁4のストレート部42aが副弁ポート33aから抜け出し、ニードル弁4の円錐台部42bと副弁ポート33aとの隙間によって流路が形成される。ここで、円錐台部42bは徐々に直径が小さくなることから副弁ポート33aとの隙間が大きくなり、流路が拡大されることとなり、図7に示すように、流量が徐々に増加する。この際、主弁体3の主弁部31が主弁座13に着座したままであるため、ニードル弁4が主弁体3に係合する第二位置までは、流量の増加は微少である。このようにニードル弁4を第一位置と第二位置との間で移動させて開度を変更する制御域が小流量制御域である。 Next, by driving the stepping motor 5A to rotate the magnet rotor 52 to raise the needle valve 4, the straight portion 42a of the needle valve 4 comes out of the auxiliary valve port 33a, and the conical base portion 42b of the needle valve 4 and the sub A flow path is formed by the gap with the valve port 33a. Here, since the diameter of the truncated cone portion 42b gradually decreases, the gap with the auxiliary valve port 33a becomes large, the flow path expands, and the flow rate gradually increases as shown in FIG. 7. At this time, since the main valve portion 31 of the main valve body 3 remains seated on the main valve seat 13, the increase in the flow rate is slight until the second position where the needle valve 4 engages with the main valve body 3. .. The control range in which the needle valve 4 is moved between the first position and the second position to change the opening degree is the small flow rate control range.

次に、ニードル弁4を第二位置まで上昇させてワッシャ43を主弁体3に係合させると、主弁体3はニードル弁4と共に上昇する。そして、さらに上昇させると、図3に示すように、弁軸41(及びワッシャ43)によって主弁体3が引き上げられ、主弁部31が主弁座13から離間して弁開する。このように主弁体3を着座位置(閉位置)から弁開位置(開位置)に向かって上昇させる制御域が大流量制御域である。 Next, when the needle valve 4 is raised to the second position and the washer 43 is engaged with the main valve body 3, the main valve body 3 is raised together with the needle valve 4. Then, when it is further raised, as shown in FIG. 3, the main valve body 3 is pulled up by the valve shaft 41 (and washer 43), and the main valve portion 31 is separated from the main valve seat 13 to open the valve. The control range for raising the main valve body 3 from the seated position (closed position) toward the valve open position (open position) in this way is the large flow rate control range.

ニードル弁4の弁軸41には、ガイド用ボス部44とニードル部42との間に消泡部材10が取り付けられている。図2に示す小流量制御域状態では、冷媒(流体)は、導通孔32bから副弁室3Rに流入し、ニードル部42(ストレート部42a)と副弁ポート33aとの隙間を通って、第2継手管12へと流れる。このとき、導通孔32bから副弁室3Rに流入する冷媒は、消泡部材10に衝突して副弁ポート33aへと流れる。すなわち、消泡部材10は、この冷媒の流れに対して流路の側壁の一部を構成している。さらに、消泡部材10は流路を塞いでおらず、円筒状の消泡部材10の内側に冷媒を透過させない「壁面」をなす弁軸41が有るので、冷媒が消泡部材10を透過することがなく、冷媒中に異物が有った場合でも、消泡部材10が目詰まりを起こすことが抑制されるので、小流量制御域での流れを確保することができる。そして、冷媒が消泡部材10に衝突することにより冷媒中の気泡が細分化され、気泡の破裂による振動や騒音を低減することができる。 A defoaming member 10 is attached to the valve shaft 41 of the needle valve 4 between the guide boss portion 44 and the needle portion 42. In the small flow rate control range state shown in FIG. 2, the refrigerant (fluid) flows into the auxiliary valve chamber 3R from the conduction hole 32b, passes through the gap between the needle portion 42 (straight portion 42a) and the auxiliary valve port 33a, and is the first. 2 Flows to the joint pipe 12. At this time, the refrigerant flowing into the auxiliary valve chamber 3R from the conduction hole 32b collides with the defoaming member 10 and flows to the auxiliary valve port 33a. That is, the defoaming member 10 constitutes a part of the side wall of the flow path with respect to the flow of the refrigerant. Further, since the defoaming member 10 does not block the flow path and the valve shaft 41 forming a "wall surface" that does not allow the refrigerant to permeate inside the cylindrical defoaming member 10, the refrigerant permeates the defoaming member 10. Even if there is a foreign substance in the refrigerant, the defoaming member 10 is prevented from being clogged, so that the flow in the small flow rate control range can be ensured. Then, when the refrigerant collides with the defoaming member 10, the bubbles in the refrigerant are subdivided, and vibration and noise due to the bursting of the bubbles can be reduced.

図4は本発明の第2実施形態の電動弁の小流量制御域状態の要部拡大断面図であり、以下の各実施形態において図1乃至3の第1実施形態と同様な要素には図1と同符号を付記して重複する説明は適宜省略する。この第2実施形態では、副弁ポート33aの周囲の副弁室3R側に円環状の消泡部材20が設けられている。この消泡部材20は中心に、副弁ポート33aより径の大きな通路20aを有している。したがって、小流量制御域状態で導通孔32bから副弁室3Rに流入した冷媒は、消泡部材20の通路20aを通して、ニードル部42(ストレート部42a)と副弁ポート33aとの隙間を通って、第2継手管12へと流れる。このとき、導通孔32bから副弁室3Rに流入する冷媒は、消泡部材20に衝突して通路20aから副弁ポート33aへと流れる。すなわち、消泡部材20は、通路20aを通る冷媒の流れに対して流路の側壁の一部を構成している。さらに、消泡部材20は流路を塞いでおらず、円環状の消泡部材20の副弁座33側に冷媒を透過させない「壁面」をなす副弁座33が有るので、冷媒が消泡部材20を透過することがなく、冷媒中に異物が有った場合でも、消泡部材20が目詰まりを起こすことが抑制されるので、小流量制御域での流れを確保することができる。そして、冷媒が消泡部材20に衝突することにより冷媒中の気泡が細分化され、気泡の破裂による振動や騒音を低減することができる。 FIG. 4 is an enlarged cross-sectional view of a main part of the small flow rate control range state of the electric valve of the second embodiment of the present invention, and in each of the following embodiments, the same elements as those of the first embodiment of FIGS. The same reference numerals as 1 and duplicated description will be omitted as appropriate. In this second embodiment, an annular defoaming member 20 is provided on the side of the auxiliary valve chamber 3R around the auxiliary valve port 33a. The defoaming member 20 has a passage 20a having a diameter larger than that of the auxiliary valve port 33a at the center. Therefore, the refrigerant flowing into the sub-valve chamber 3R from the conduction hole 32b in the small flow rate control range state passes through the passage 20a of the defoaming member 20 and through the gap between the needle portion 42 (straight portion 42a) and the sub-valve port 33a. , Flows to the second joint pipe 12. At this time, the refrigerant flowing into the auxiliary valve chamber 3R from the conduction hole 32b collides with the defoaming member 20 and flows from the passage 20a to the auxiliary valve port 33a. That is, the defoaming member 20 constitutes a part of the side wall of the flow path with respect to the flow of the refrigerant passing through the passage 20a. Further, since the defoaming member 20 does not block the flow path and there is a sub-valve seat 33 forming a "wall surface" on the sub-valve seat 33 side of the annular defoaming member 20 that does not allow the refrigerant to permeate, the refrigerant defoams. Even if there is a foreign substance in the refrigerant without penetrating the member 20, the defoaming member 20 is prevented from being clogged, so that the flow in the small flow rate control range can be ensured. Then, when the refrigerant collides with the defoaming member 20, the bubbles in the refrigerant are subdivided, and vibration and noise due to the bursting of the bubbles can be reduced.

図5は本発明の第3実施形態の電動弁の小流量制御域状態の要部拡大断面図である。この第3実施形態では、副弁ポート33aの周囲で副弁室3Rとは反対側に円環状の消泡部材30が設けられている。この消泡部材30は中心に、副弁ポート33aより径の大きな通路30aを有している。したがって、小流量制御域状態で、副弁室3Rからニードル部42と副弁ポート33aとの隙間を通って流出する冷媒、すなわち、絞られた冷媒は、消泡部材30の通路30aを通して第2継手管12へと流れる。このとき、絞られた冷媒は、通路30a内で消泡部材30に衝突して第2継手管12へと流れる。すなわち、消泡部材30は、この冷媒の流れに対して流路の側壁の一部を構成している。このように、冷媒が消泡部材30に衝突することにより冷媒中の気泡が細分化され、気泡の破裂による振動や騒音を低減することができる。また、消泡部材30は通路30が流路を構成しているので、小流量制御域での流れを確保することができる。 FIG. 5 is an enlarged cross-sectional view of a main part of the small flow rate control range state of the electric valve according to the third embodiment of the present invention. In this third embodiment, an annular defoaming member 30 is provided around the auxiliary valve port 33a on the side opposite to the auxiliary valve chamber 3R. The defoaming member 30 has a passage 30a having a diameter larger than that of the auxiliary valve port 33a at the center. Therefore, in the small flow rate control range state, the refrigerant flowing out from the auxiliary valve chamber 3R through the gap between the needle portion 42 and the auxiliary valve port 33a, that is, the squeezed refrigerant is the second through the passage 30a of the defoaming member 30. It flows to the joint pipe 12. At this time, the squeezed refrigerant collides with the defoaming member 30 in the passage 30a and flows to the second joint pipe 12. That is, the defoaming member 30 constitutes a part of the side wall of the flow path with respect to the flow of the refrigerant. In this way, when the refrigerant collides with the defoaming member 30, the bubbles in the refrigerant are subdivided, and vibration and noise due to the bursting of the bubbles can be reduced. Further, since the passage 30 constitutes the flow path of the defoaming member 30, it is possible to secure the flow in the small flow rate control range.

図6は本発明の参考例の電動弁の小流量制御域状態の要部拡大断面図である。この参考例では、ガイド部材2の圧入部21の下部に円環状の消泡部材40が設けられている。この消泡部材40の一部が第1継手管11の出口を臨むように設けられている。そして、小流量制御域状態で、第1継手管11から導通孔32bへ流入する冷媒の一部が消泡部材40に衝突する。すなわち、消泡部材40は、この冷媒の流れに対して流路の側壁の一部を構成し、壁面をなす主弁体3の保持部33の外周面に向かって、冷媒は透過しない。このように、冷媒が消泡部材40に衝突することにより冷媒中の気泡が細分化され、気泡の破裂による振動や騒音を低減することができる。 FIG. 6 is an enlarged cross-sectional view of a main part of the electric valve of the reference example of the present invention in the small flow rate control range state. In this reference example, an annular defoaming member 40 is provided below the press-fitting portion 21 of the guide member 2. A part of the defoaming member 40 is provided so as to face the outlet of the first joint pipe 11. Then, in the small flow rate control range state, a part of the refrigerant flowing from the first joint pipe 11 into the conduction hole 32b collides with the defoaming member 40. That is, the defoaming member 40 forms a part of the side wall of the flow path with respect to the flow of the refrigerant, and the refrigerant does not permeate toward the outer peripheral surface of the holding portion 33 of the main valve body 3 forming the wall surface. In this way, when the refrigerant collides with the defoaming member 40, the bubbles in the refrigerant are subdivided, and vibration and noise due to the bursting of the bubbles can be reduced.

以上の各実施形態及び参考例における消泡部材10,20,30,40は、冷媒が衝突することによりこの冷媒中の気泡を細分化できる部材であり、例えば、焼結フィルタ、デミスタフィルタ、発泡金属を含む発泡部材、金属メッシュ、又は多数の小さい穴が開いたパンチングメタル等の部材を用いることができる。また、これらの消泡部材10,20,30,40の固定方法としては、圧入固定、かしめ固定、他の部品による挟持等、各種の手段を適用することができる。 The defoaming members 10, 20, 30, and 40 in each of the above embodiments and reference examples are members capable of subdividing the bubbles in the refrigerant when the refrigerant collides with each other, and are, for example, a sintered filter, a demister filter, and foaming. Members such as foamed members containing metal, metal mesh, or punching metal with a large number of small holes can be used. Further, as a method for fixing these defoaming members 10, 20, 30, 40, various means such as press-fit fixing, caulking fixing, and pinching by other parts can be applied.

次に、図8に基づいて本発明の冷凍サイクルシステムについて説明する。この冷凍サイクルシステムは、例えば、家庭用エアコン等の空気調和機に用いられる。前記各実施形態の電動弁100は、「除湿制御弁」として第1室内熱交換器91(除湿時冷却器として作動)と第2室内熱交換器92(除湿時加熱器として作動)との間に設けられている。そして、電動弁100、第1室内熱交換器91、第2室内熱交換器92、電子膨張弁93、室外熱交換器94、圧縮機95及び四方弁96は、ヒ−トポンプ式冷凍サイクルを構成している。第1室内熱交換器91と第2室内熱交換器92及び電動弁100は室内に設置され、電子膨張弁93、室外熱交換器94、圧縮機95及び四方弁96は室外に設置されていて冷暖房装置を構成している。 Next, the refrigeration cycle system of the present invention will be described with reference to FIG. This refrigeration cycle system is used, for example, in an air conditioner such as a home air conditioner. The electric valve 100 of each of the above embodiments is a "dehumidification control valve" between the first indoor heat exchanger 91 (acting as a dehumidifying cooler) and the second indoor heat exchanger 92 (operating as a dehumidifying heater). It is provided in. The electric valve 100, the first indoor heat exchanger 91, the second indoor heat exchanger 92, the electronic expansion valve 93, the outdoor heat exchanger 94, the compressor 95 and the four-way valve 96 constitute a heat pump type refrigeration cycle. doing. The first indoor heat exchanger 91, the second indoor heat exchanger 92, and the electric valve 100 are installed indoors, and the electronic expansion valve 93, the outdoor heat exchanger 94, the compressor 95, and the four-way valve 96 are installed outdoors. It constitutes a heating and cooling system.

除湿弁としての実施形態の電動弁100は、除湿時以外の冷房時または暖房時には、図3に示すように大流量制御域の状態で全開状態とされて、第1室内熱交換器91と第2室内熱交換器92は一つの室内熱交換器とされる。そして、この一体の室内熱交換器と室外熱交換器94は、「蒸発器」及び「凝縮器」として択一的に機能する。 The electric valve 100 of the embodiment as a dehumidifying valve is fully opened in a state of a large flow control range as shown in FIG. 3 during cooling or heating other than dehumidification, and the first indoor heat exchanger 91 and the first chamber heat exchanger 91 and the first. 2 The indoor heat exchanger 92 is regarded as one indoor heat exchanger. The integrated indoor heat exchanger and outdoor heat exchanger 94 alternately function as an "evaporator" and a "condenser".

以上、本発明の実施の形態について図面を参照して詳述し、その他の実施形態についても詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 The embodiments of the present invention have been described in detail with reference to the drawings, and other embodiments have also been described in detail. However, the specific configuration is not limited to these embodiments, and the present invention is not limited to these embodiments. It is included in the present invention even if there is a design change or the like within a range that does not deviate from the gist.

1 弁ハウジング
1R 主弁室
11 第1継手管
12 第2継手管
13 主弁座
13a 主弁ポート
L 軸線
2 ガイド部材
21 圧入部
22 ガイド部
22a ガイド孔
23 ホルダ部
23a 雌ねじ部
24 フランジ部
3 主弁体
3a 主弁ばね
31 主弁部
32 保持部
33 副弁座
33a 副弁ポート
4 ニードル弁(副弁体)
41 弁軸
42 ニードル部
42a ストレート部
42b 円錐台部
43 ワッシャ
44 ガイド用ボス部
5 駆動部
5A ステッピングモータ
51 ロータ軸
51a 雄ねじ部
52 マグネットロータ
52a 突起部
53 ステータコイル
5B ねじ送り機構
5C ストッパ機構
10 消泡部材
20 消泡部材
30 消泡部材
40 消泡部材
91 第1室内熱交換器
92 第2室内熱交換器
93 電子膨張弁
94 室外熱交換器
95 圧縮機
96 四方弁
100 電動弁
1 Valve housing 1R Main valve chamber 11 1st joint pipe 12 2nd joint pipe 13 Main valve seat 13a Main valve port L Axis line 2 Guide member 21 Press-fitting part 22 Guide part 22a Guide hole 23 Holder part 23a Female thread part 24 Flange part 3 Main Valve body 3a Main valve spring 31 Main valve part 32 Holding part 33 Sub valve seat 33a Sub valve port 4 Needle valve (secondary valve body)
41 Valve shaft 42 Needle part 42a Straight part 42b Conical base part 43 Washer 44 Guide boss part 5 Drive part 5A Stepping motor 51 Rotor shaft 51a Male thread part 52 Magnet rotor 52a Protrusion part 53 Stator coil 5B Screw feed mechanism 5C Stopper mechanism 10 Foam member 20 Defoaming member 30 Defoaming member 40 Defoaming member 91 First indoor heat exchanger 92 Second indoor heat exchanger 93 Electronic expansion valve 94 Outdoor heat exchanger 95 Compressor 96 Four-way valve 100 Electric valve

Claims (6)

主弁室の主弁ポートの開度を変更する主弁体と、前記主弁体に設けられた副弁室の副弁ポートの開度を変更する副弁体と、前記副弁体を軸線方向に進退駆動する駆動部と、を備え、前記主弁体が前記主弁ポートを閉とした状態で、前記副弁体が前記副弁ポートの開度を変更する小流量制御域と、前記主弁体が前記主弁ポートの開度を変更する大流量制御域と、の二段の流量制御域で流体の流量を制御する電動弁であって、
前記小流量制御域において前記副弁室と前記副弁ポートとを流れる流体に対して露出され、該流体の流路の側壁の一部を構成し、当該流路を塞がないように設けられた消泡部材、を備えたことを特徴とする電動弁。
The axis line is the main valve body that changes the opening degree of the main valve port of the main valve chamber, the sub-valve body that changes the opening degree of the sub-valve port of the sub-valve chamber provided in the main valve body, and the sub-valve body. A small flow rate control range in which the sub-valve body changes the opening degree of the sub-valve port in a state where the main valve body is closed and the sub-valve port is provided with a drive unit that drives forward and backward in the direction, and the above-mentioned It is an electric valve that controls the flow rate of fluid in a large flow rate control range in which the main valve body changes the opening degree of the main valve port and a two-stage flow rate control range.
In the small flow rate control area, it is exposed to the fluid flowing through the sub-valve chamber and the sub-valve port, forms a part of the side wall of the flow path of the fluid, and is provided so as not to block the flow path. An electric valve characterized by being equipped with a defoaming member.
前記副弁室内にて、前記流体を透過させない壁面に前記流路を塞がないように前記消泡部材が配置されていることを特徴とする請求項1に記載の電動弁。 The electric valve according to claim 1, wherein the defoaming member is arranged in the sub-valve chamber so as not to block the flow path on the wall surface that does not allow the fluid to permeate. 前記消泡部材が、前記副弁体の一部に設けられていることを特徴とする請求項2に記載の電動弁。 The electric valve according to claim 2, wherein the defoaming member is provided in a part of the auxiliary valve body. 前記消泡部材が、前記副弁ポートの周囲の前記副弁室側に設けられていることを特徴とする請求項2に記載の電動弁。 The electric valve according to claim 2, wherein the defoaming member is provided on the side of the auxiliary valve chamber around the auxiliary valve port. 前記消泡部材が、前記副弁ポートの周囲の前記副弁室とは反対側に設けられていることを特徴とする請求項1に記載の電動弁。 The electric valve according to claim 1, wherein the defoaming member is provided around the sub-valve port on the side opposite to the sub-valve chamber. 圧縮機と、室内熱交換器と、室外熱交換器と、前記室内熱交換器と前記室外熱交換器との間に設けられた電子膨張弁と、前記室内熱交換器に設けられる除湿弁とを含む冷凍サイクルシステムであって、請求項1乃至5のいずれか一項に記載の電動弁が、前記除湿弁として用いられていることを特徴とする冷凍サイクルシステム。 A compressor, an indoor heat exchanger, an outdoor heat exchanger, an electronic expansion valve provided between the indoor heat exchanger and the outdoor heat exchanger, and a dehumidifying valve provided in the indoor heat exchanger. A refrigeration cycle system comprising the above, wherein the electric valve according to any one of claims 1 to 5 is used as the dehumidifying valve.
JP2018163361A 2018-08-31 2018-08-31 Electric valve and refrigeration cycle system Active JP6968768B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018163361A JP6968768B2 (en) 2018-08-31 2018-08-31 Electric valve and refrigeration cycle system
CN201910745593.7A CN110873225A (en) 2018-08-31 2019-08-13 Electric valve and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018163361A JP6968768B2 (en) 2018-08-31 2018-08-31 Electric valve and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2020034141A JP2020034141A (en) 2020-03-05
JP6968768B2 true JP6968768B2 (en) 2021-11-17

Family

ID=69669163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018163361A Active JP6968768B2 (en) 2018-08-31 2018-08-31 Electric valve and refrigeration cycle system

Country Status (2)

Country Link
JP (1) JP6968768B2 (en)
CN (1) CN110873225A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7267970B2 (en) * 2020-04-07 2023-05-02 株式会社鷺宮製作所 Two-stage electric valve and refrigeration cycle system
JP7349963B2 (en) * 2020-07-01 2023-09-25 株式会社鷺宮製作所 Flow control valve and refrigeration cycle system
JP7409982B2 (en) * 2020-07-02 2024-01-09 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7349415B2 (en) * 2020-07-09 2023-09-22 株式会社鷺宮製作所 Two-stage electric valve and refrigeration cycle system
JP7372885B2 (en) * 2020-08-07 2023-11-01 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7391003B2 (en) * 2020-10-23 2023-12-04 株式会社鷺宮製作所 electric valve
CN114635975B (en) * 2020-12-15 2024-04-16 株式会社鹭宫制作所 Electric valve
JP2023005492A (en) * 2021-06-29 2023-01-18 株式会社デンソー Evaporation pressure regulation valve

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3997077B2 (en) * 2001-11-14 2007-10-24 株式会社鷺宮製作所 Motorized valve
JP2006284088A (en) * 2005-03-31 2006-10-19 Daikin Ind Ltd Expansion valve and refrigerating device
CN101466986A (en) * 2006-06-29 2009-06-24 大金工业株式会社 Expansion valve with refrigerant flow dividing structure and refrigeration unit utilizing the same
EP3064869B1 (en) * 2013-10-30 2020-12-02 Mitsubishi Electric Corporation Expansion valve and refrigeration cycle device having same mounted therein
JP6518910B2 (en) * 2015-02-16 2019-05-29 株式会社テージーケー Motorized valve
CN105588239B (en) * 2015-03-06 2018-08-03 海信(山东)空调有限公司 A kind of air-conditioning system
CN106855128A (en) * 2015-12-09 2017-06-16 浙江三花智能控制股份有限公司 Two-period form electric expansion valve
CN105402937B (en) * 2015-12-22 2019-01-15 广东志高暖通设备股份有限公司 A kind of air-conditioning system
JP6676432B2 (en) * 2016-03-28 2020-04-08 株式会社不二工機 Electric valve and method of assembling the same
JP6692215B2 (en) * 2016-05-26 2020-05-13 株式会社不二工機 Flow control valve

Also Published As

Publication number Publication date
JP2020034141A (en) 2020-03-05
CN110873225A (en) 2020-03-10

Similar Documents

Publication Publication Date Title
JP6968768B2 (en) Electric valve and refrigeration cycle system
JP6978391B2 (en) Electric valve and refrigeration cycle system
JP7383774B2 (en) Electric valve and refrigeration cycle system
JP7179708B2 (en) Valve gear and refrigeration cycle system
JP2024096870A (en) Motor-operated valve and refrigeration cycle system
JP2022095807A (en) Motor-operated valve and refrigerating cycle system
CN113883284B (en) Electric valve and refrigeration cycle system
JP6966416B2 (en) Valve device and refrigeration cycle system
JP2024010029A (en) Motor-operated valve and refrigeration cycle system
JP7509961B2 (en) Motor-operated valve and refrigeration cycle system
JP7107881B2 (en) Electric valve and refrigeration cycle system
JP7361628B2 (en) Electric valve and refrigeration cycle system
JP7242511B2 (en) Electric valve and refrigeration cycle system
JP7349963B2 (en) Flow control valve and refrigeration cycle system
JP7509962B2 (en) Motor-operated valve and refrigeration cycle system
JP2022015461A (en) Two-stage motor-operated valve and refrigeration cycle system
JP2022024038A (en) Electric valve and refrigeration cycle system
JP2021165574A (en) Two-stage type motor-operated valve and refrigeration cycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211027

R150 Certificate of patent or registration of utility model

Ref document number: 6968768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150