JP6745141B2 - Flow control valve - Google Patents

Flow control valve Download PDF

Info

Publication number
JP6745141B2
JP6745141B2 JP2016104867A JP2016104867A JP6745141B2 JP 6745141 B2 JP6745141 B2 JP 6745141B2 JP 2016104867 A JP2016104867 A JP 2016104867A JP 2016104867 A JP2016104867 A JP 2016104867A JP 6745141 B2 JP6745141 B2 JP 6745141B2
Authority
JP
Japan
Prior art keywords
valve
valve body
shaft
chamber
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016104867A
Other languages
Japanese (ja)
Other versions
JP2017211034A (en
Inventor
原田 貴雄
貴雄 原田
柳澤 秀
秀 柳澤
佑樹 小泉
佑樹 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2016104867A priority Critical patent/JP6745141B2/en
Priority to CN201710296143.5A priority patent/CN107435757B/en
Publication of JP2017211034A publication Critical patent/JP2017211034A/en
Application granted granted Critical
Publication of JP6745141B2 publication Critical patent/JP6745141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/53Mechanical actuating means with toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise

Description

本発明は、例えばヒートポンプ式冷暖房システム等において冷媒流量を調整するのに好適な流量調整弁、特に、流体(冷媒)通過時における騒音を低減し得るようにされた流量調整弁に関する。 The present invention relates to a flow rate adjusting valve suitable for adjusting the flow rate of a refrigerant in, for example, a heat pump type cooling and heating system, and particularly to a flow rate adjusting valve capable of reducing noise when a fluid (refrigerant) passes through.

この種の流量調整弁の一例として、弁室及び弁座付き弁口(オリフィス)が設けられた弁本体と、弁座からのリフト量に応じて弁口を流れる流体の流量を変化させる弁体とを備え、弁体が、例えば特許文献1、2等に所載の如くの、雄ねじが設けられた弁軸、雌ねじが設けられた軸受部材、及びステッピングモータ等で構成されるねじ送り式昇降駆動機構により、弁座に接離又は近接離間するように昇降せしめられる電動弁が知られている。 As an example of this kind of flow rate adjusting valve, a valve body provided with a valve chamber and a valve opening (orifice) with a valve seat, and a valve body that changes the flow rate of the fluid flowing through the valve opening according to the lift amount from the valve seat. And the valve element is a screw feed type up-and-down drive configured by a valve shaft provided with a male screw, a bearing member provided with a female screw, a stepping motor, etc., as disclosed in Patent Documents 1 and 2, for example. A motor-operated valve is known, which is moved up and down by a mechanism so that the valve seat moves toward and away from and closes to a valve seat.

ところで、上記した如くの構成の流量調整弁を、例えばヒートポンプ式冷暖房システムに組み込んだ場合、前記弁口が所定開度まで開かれ、弁室に流れ込んだ冷媒が、弁室から弁体と弁口との間に形成される隙間を介して流出する際、連続的な騒音(流体通過音)が発生しやすいという問題があった。 By the way, when the flow rate adjusting valve having the above-described configuration is incorporated in, for example, a heat pump type cooling and heating system, the valve port is opened to a predetermined opening degree, and the refrigerant flowing into the valve chamber is transferred from the valve chamber to the valve body and the valve port. There is a problem that continuous noise (fluid passing sound) is likely to occur when flowing out through a gap formed between the and.

より詳しくは、弁口に流れ込む流体(冷媒)が気体と液体の混合状態(気液二相流)、つまり、弁室を介して弁口に向かう流体中に気泡が混じっていると、その気泡が弁口を通過する際、その流入側と流出側に急激な圧力変動を発生させ、その圧力変動によって大きな騒音が発生する。特に、小開度領域(弁開度(弁体のリフト量)が小さい領域)においては、一般に、前記弁口における流体の流路(弁体と弁口との間の隙間)が非常に狭いので、流体中の気泡の影響が大きくなり、前述の大きな騒音(流体通過音)が更に発生しやすくなる。 More specifically, when the fluid (refrigerant) flowing into the valve opening is a mixed state of gas and liquid (gas-liquid two-phase flow), that is, when bubbles are mixed in the fluid flowing toward the valve opening through the valve chamber, the bubbles When passing through the valve port, a sudden pressure fluctuation is generated on the inflow side and the outflow side, and a large noise is generated by the pressure fluctuation. In particular, in the small opening area (area where the valve opening (lift amount of the valve body) is small), generally, the flow passage of the fluid at the valve opening (the gap between the valve body and the valve opening) is very narrow. Therefore, the influence of the bubbles in the fluid becomes large, and the above-mentioned loud noise (fluid passing sound) is more likely to occur.

このような問題に対し、特許文献3に所載の従来技術では、弁室内に、流体中の気泡を細分化する部材(消音部材)を介装することが提案されている。 In order to deal with such a problem, in the conventional technique disclosed in Patent Document 3, it is proposed to interpose a member (silencer member) for subdividing air bubbles in the fluid in the valve chamber.

特開2012−172839号公報JP2012-172839A 特開2004−289901号公報JP, 2004-289901, A 特開2001−289538号公報JP 2001-289538 A

ところで、大開度領域(弁開度が大きい領域)においては、前記弁口における流体の流路(弁体と弁口との間の隙間)が広くなるので、前述のような大きな騒音(流体通過音)は発生しにくくなる一方、弁口を通過する流量を十分に確保する必要性が高くなる。 By the way, in the large opening area (area where the valve opening is large), since the fluid passage (gap between the valve body and the valve opening) in the valve opening becomes wide, the above-mentioned large noise (fluid passage) Sound) is less likely to occur, but it becomes more necessary to secure a sufficient flow rate through the valve opening.

特許文献3に所載の従来技術においては、流体中の気泡が、前記消音部材によって分解されて細分化された状態で、弁体と弁口との間の隙間に流入するので、弁口を通過する際、その流入側と流出側に急激な圧力変動は発生せず、前述の騒音を低減できる。しかし、前記消音部材は、弁室における流入口側と流出口側を常時仕切るように弁本体に固定されているので、弁口を通過する流量を確保する必要がある大開度領域において、弁口へ向かう流体の流れを阻害し、圧力損失(圧損)が大きくなり、適正な冷媒流量が得られ難いという問題があった。 In the prior art disclosed in Patent Document 3, bubbles in the fluid are decomposed by the muffling member and subdivided into the gap between the valve body and the valve opening, so that the valve opening When passing, sudden pressure fluctuations do not occur on the inflow side and the outflow side, and the aforementioned noise can be reduced. However, since the sound deadening member is fixed to the valve body so as to always partition the inlet side and the outlet side of the valve chamber, in the large opening area where it is necessary to secure the flow rate passing through the valve opening, There is a problem that the flow of the fluid toward the front is obstructed, the pressure loss (pressure loss) increases, and it is difficult to obtain an appropriate refrigerant flow rate.

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、流体(冷媒)通過時における騒音を効果的に低減できるとともに、大開度領域における圧力損失の低減も図ることのできる流量調整弁を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to effectively reduce noise during passage of a fluid (refrigerant) and also to reduce pressure loss in a large opening range. It is to provide a flow control valve.

前記目的を達成すべく、本発明に係る流量調整弁は、基本的には、弁室及び第1弁口が設けられた弁本体と、前記弁室内に昇降自在に配在された弁軸と、該弁軸を昇降させるための昇降駆動部と、前記弁軸の下端部外周を包囲するように該弁軸に摺動自在に外挿され、該弁軸の昇降動作に連動して駆動される弁体と、を備え、前記弁体に、リフト量に応じて前記第1弁口を流れる流体の流量を変化させる第1弁体部が設けられ、前記弁体により前記弁軸の下端部周りに画成された連通空間を介して前記弁室と前記第1弁口とを連通する小流量通路が形成されるとともに、前記弁軸に、リフト量に応じて前記小流量通路に設けられた第2弁口を流れる流体の流量を変化させる第2弁体部が設けられ、前記第2弁体部のリフト量が所定量以下のときは、前記第1弁体部により前記第1弁口が閉じられ、前記第2弁体部の前記第2弁口に対するリフト量に応じて流量が制御される小流量制御状態をとり、前記第2弁体部のリフト量が前記所定量を超えると、前記弁軸の上昇に伴って前記弁体が上昇せしめられて前記第1弁体部が前記第1弁口を開く大流量制御状態をとるように構成され、前記小流量通路における前記第2弁口より前記弁室側及び前記第1弁口側に、前記小流量通路を流れる流体中の気泡を細分化する消音部材が配在され、前記弁体は、前記弁軸における前記第2弁体部より上側に摺動自在に外挿された筒状の連動部材と、該連動部材の下端開口に連結され、前記第1弁体部が設けられた弁体部材とで構成され、前記小流量通路が、前記弁室と前記連通空間を連通すべく前記弁軸に設けられた上側連通路と、前記連通空間と、該連通空間と前記第1弁口を連通すべく前記弁体部材に設けられた下側連通路とから構成され、前記連通空間における前記弁体部材周りに前記第2弁口が形成されており、前記消音部材が、前記弁軸における前記上側連通路及び前記弁体部材における前記下側連通路に配在され、前記弁軸の下端面に、前記上側連通路に連通する逆凹字状の凹穴が形成され、該凹穴の内周側が前記第2弁口に接離するようにされていることを特徴としている。 In order to achieve the above-mentioned object, a flow rate control valve according to the present invention basically comprises a valve body provided with a valve chamber and a first valve opening, and a valve shaft arranged in the valve chamber so as to be vertically movable. An elevating and lowering drive unit for elevating and lowering the valve shaft, and a slidably inserted externally on the valve shaft so as to surround the outer periphery of the lower end of the valve shaft, and driven in association with the elevating and lowering operation of the valve shaft. A valve body, the first valve body portion changing the flow rate of the fluid flowing through the first valve opening according to the lift amount, and the valve body lower end portion of the valve shaft. A small flow passage that connects the valve chamber and the first valve opening is formed through a communication space defined around the small flow passage, and the valve shaft is provided in the small flow passage according to the lift amount. A second valve body portion that changes the flow rate of the fluid flowing through the second valve opening is provided, and when the lift amount of the second valve body portion is less than or equal to a predetermined amount, the first valve body portion causes the first valve A small flow rate control state in which the mouth is closed and the flow rate is controlled according to the lift amount of the second valve body portion with respect to the second valve mouth, and the lift amount of the second valve body portion exceeds the predetermined amount And the valve body is moved up with the rise of the valve shaft so that the first valve body portion is in a large flow rate control state in which the first valve opening is opened, and the first flow path is opened in the small flow passage. A muffling member for subdividing bubbles in the fluid flowing through the small flow passage is disposed on the valve chamber side and the first valve port side with respect to the second valve port, and the valve element is the second valve of the valve shaft. A cylindrical interlocking member slidably inserted above the valve body and a valve body member provided with the first valve body section connected to a lower end opening of the interlocking member; A small flow passage connects the valve chamber and the communication space with each other. An upper communication passage provided in the valve shaft to communicate with the communication space, the communication space, and the valve body member for communicating the communication space with the first valve opening. And a lower communication passage provided in the communication space, the second valve port is formed around the valve body member in the communication space, and the muffling member includes the upper communication passage in the valve shaft and the valve. An inverted concave recessed hole that is disposed in the lower communication passage of the body member and communicates with the upper communication passage is formed in the lower end surface of the valve shaft, and the inner peripheral side of the recessed hole is the second valve. Characterized by the fact that it is designed to approach and separate from the mouth .

更なる好ましい態様では、前記消音部材は、前記弁軸の前記上側連通路における縦穴、及び/又は、前記弁体部材の前記下側連通路における縦穴に内装される。 In a further preferred aspect, the sound deadening member is installed in a vertical hole in the upper communication passage of the valve shaft and/or in a vertical hole in the lower communication passage of the valve body member.

別の好ましい態様では、前記弁軸に、軸線方向に延びる嵌挿穴が設けられるとともに、該嵌挿穴に、筒状の管状部材が所定の隙間を持って嵌挿固定され、前記管状部材の内部空間と、前記管状部材の上端部に設けられた横向きの貫通口と、前記管状部材と前記嵌挿穴との前記隙間と、前記弁軸における前記管状部材の外側に設けられた横穴とによって、前記弁軸の前記上側連通路が形成されており、前記消音部材が、前記管状部材の内部空間に内装される。 In another preferred aspect, the valve shaft is provided with a fitting insertion hole extending in the axial direction, and a tubular tubular member is fitted and fixed in the fitting insertion hole with a predetermined gap, By an internal space, a lateral through hole provided at the upper end of the tubular member, the gap between the tubular member and the fitting insertion hole, and a lateral hole provided outside the tubular member in the valve shaft. The upper communication path of the valve shaft is formed, and the muffling member is installed in the internal space of the tubular member.

別の好ましい態様では、前記弁体部材の前記下側連通路に固定され、通し穴を持つ支持部材によって、前記消音部材が前記弁体部材の前記下側連通路に支持固定される。 In another preferred aspect, the silencing member is fixed to the lower communication passage of the valve body member, and the silencing member is supported and fixed to the lower communication passage of the valve body member by a support member having a through hole.

他の好ましい態様では、前記第1弁体部により前記第1弁口が閉じられ、かつ、前記第2弁体部により前記第2弁口が閉じられた状態で、前記第1弁口から前記弁室へ向かう流体の流れを許容するが、前記弁室から前記第1弁口へ向かう流体の流れを遮断する逆止弁体が設けられる。 In another preferred aspect, the first valve body portion closes the first valve opening, and the second valve body portion closes the second valve opening, and the first valve opening extends from the first valve opening. A check valve body is provided that allows the flow of fluid toward the valve chamber but blocks the flow of fluid from the valve chamber toward the first valve opening.

更に好ましい態様では、前記弁体に、前記逆止弁体が収納される収納室、該収納室と前記第1弁口とに連通するとともに前記第1弁口側と前記弁室側との差圧に応じて前記逆止弁体により開閉される逆止弁口、及び、該収納室と前記弁室とに常時連通する連通口が設けられる。 In a further preferred aspect, the valve body accommodates a storage chamber in which the check valve body is stored, a communication between the storage chamber and the first valve port, and a difference between the first valve port side and the valve chamber side. A check valve port that is opened and closed by the check valve body according to the pressure and a communication port that is in constant communication with the storage chamber and the valve chamber are provided.

更に好ましい態様では、前記弁軸に、前記逆止弁体が収納される収納室、及び、該収納室と前記第1弁口とに連通するとともに前記第1弁口側と前記弁室側との差圧に応じて前記逆止弁体により開閉される逆止弁口が設けられ、前記収納室は前記弁室と前記連通空間を連通する上側連通路に連続して設けられて、前記収納室と前記弁室とが常時連通せしめられる。 In a further preferred aspect, the valve shaft accommodates a storage chamber in which the check valve body is stored, and communicates with the storage chamber and the first valve port, and the first valve port side and the valve chamber side. A check valve port that is opened and closed by the check valve body according to the differential pressure of the storage chamber, and the storage chamber is continuously provided in an upper communication passage that communicates the valve chamber with the communication space. The chamber and the valve chamber are in continuous communication with each other.

本発明に係る流量調整弁では、連通空間を介して弁室と第1弁口とを連通する小流量通路における第2弁口より弁室側及び第2弁口側に、当該小流量通路を流れる流体中の気泡を細分化する消音部材が配在されているので、流体(冷媒)通過時における騒音を効果的に低減できるとともに、大開度(大流量制御)領域における圧力損失が小さくなり、適正な冷媒流量を得ることができる。 In the flow rate adjusting valve according to the present invention, the small flow passage is provided on the valve chamber side and the second valve mouth side with respect to the second valve opening in the small flow passage that communicates the valve chamber with the first valve opening via the communication space. Since the muffling member for subdividing the bubbles in the flowing fluid is distributed, noise when the fluid (refrigerant) passes can be effectively reduced, and the pressure loss in the large opening (large flow rate control) region becomes small, A proper refrigerant flow rate can be obtained.

また、前記消音部材が、小流量通路を構成する弁軸の上側連通路における縦穴や、弁体部材の下側連通路における縦穴に内装されているので、前記消音部材を長く配置でき、流体(冷媒)通過時における騒音をより効果的に低減することができる。 Further, since the muffling member is internally provided in the vertical hole in the upper communication passage of the valve shaft forming the small flow passage and the vertical hole in the lower communication passage of the valve body member, the muffling member can be arranged for a long time, and the fluid ( It is possible to more effectively reduce noise when passing through (refrigerant).

本発明に係る流量調整弁の一実施形態を示す全体断面図。The whole sectional view showing one embodiment of the flow control valve concerning the present invention. 図1に示される弁体の連動部材を示す斜視図。The perspective view which shows the interlocking member of the valve body shown by FIG. 図1に示される弁体の押さえ板を示す斜視図。The perspective view which shows the presser plate of the valve body shown by FIG. 図1に示される流量調整弁における主要部(正流れ時)を示す要部断面図であり、(A)は全閉状態、(B)はリフト量が小さい状態(小流量制御状態)、(C)は全開状態(大流量制御状態)を示す図。FIG. 2 is a cross-sectional view of a main part showing a main part (during normal flow) of the flow rate control valve shown in FIG. 1, where (A) is a fully closed state, (B) is a small lift amount state (small flow rate control state), FIG. 6C is a diagram showing a fully open state (large flow rate control state). 図1に示される流量調整弁における主要部(逆流れ時)を示す要部断面図であり、(A)は全閉状態、(B)は差圧により逆止弁口が開いた状態、(C)は全開状態を示す図。FIG. 2 is a cross-sectional view of a main part showing a main part (during reverse flow) of the flow rate control valve shown in FIG. 1, where (A) is a fully closed state, (B) is a state where a check valve port is opened due to a differential pressure, ( C) is a diagram showing a fully opened state. 図1に示される流量調整弁の変形形態(その1)を示す全体断面図。The whole sectional view which shows the modification (1) of the flow control valve shown by FIG. 図1に示される流量調整弁の変形形態(その2)を示す全体断面図。The whole sectional view which shows the modification (2) of the flow control valve shown by FIG. 図1に示される流量調整弁の変形形態(その3)を示す全体断面図。The whole sectional view which shows the modification (3) of the flow regulating valve shown in FIG. 図1に示される流量調整弁の変形形態(その4)を示す図であり、(A)は主要部を示す要部断面図、(B)は逆止弁体の一例を示す斜視図、(C)は逆止弁体の他例を示す斜視図。It is a figure which shows the modification (4) of the flow control valve shown in FIG. 1, (A) is a principal part sectional drawing which shows a principal part, (B) is a perspective view which shows an example of a check valve body, ( C) is a perspective view showing another example of the check valve body.

以下、本発明の実施形態を図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る流量調整弁の一実施形態を示す全体断面図、図2は、図1に示される弁体の連動部材を示す斜視図、図3は、図1に示される弁体の押さえ板を示す斜視図である。 1 is an overall sectional view showing an embodiment of a flow rate adjusting valve according to the present invention, FIG. 2 is a perspective view showing an interlocking member of the valve body shown in FIG. 1, and FIG. 3 is a valve shown in FIG. It is a perspective view which shows the press plate of a body.

なお、本明細書において、上下、左右、前後等の位置、方向を表わす記述は、説明が煩瑣になるのを避けるために図面に従って便宜上付けたものであり、実際の使用状態での位置、方向を指すとは限らない。 In this specification, the description of the position, direction such as up and down, left and right, and front and back is added for convenience according to the drawings in order to avoid complicated description, and the position and direction in the actual usage state. Does not necessarily mean.

また、各図において、部材間に形成される隙間や部材間の離隔距離等は、発明の理解を容易にするため、また、作図上の便宜を図るため、各構成部材の寸法に比べて大きくあるいは小さく描かれている場合がある。 Further, in each drawing, the gaps formed between the members and the separation distances between the members are larger than the dimensions of the respective constituent members in order to facilitate understanding of the invention and for convenience in drawing. Or it may be drawn small.

図示実施形態の流量調整弁1は、例えばヒートポンプ式冷暖房システム等において冷媒流量を調整するために使用される電動弁であり、前述した従来の流量調整弁と同様に、流体(冷媒)が導入導出される弁室14及び該弁室14に開口する弁口(第1弁口)16付き弁座(第1弁座)15を有する弁本体10と、リング状のベースプレート31を介して弁本体10に固着された有底円筒状のキャン30と、キャン30に外嵌されるステータ40及びキャン30の内周に回転自在に配在されるロータ50からなるステッピングモータ(昇降駆動部)63と、ロータ50の回転数を減速する不思議遊星歯車減速機構60と、前記弁座15に接離して流体の通過量を制御する(言い換えれば、弁座15からのリフト量に応じて弁口16を流れる流体の流量を変化させる)弁体32が設けられた弁軸20と、不思議遊星歯車減速機構60の出力ギヤ57の回転運動を直線運動に変換して弁軸20を駆動する(昇降させる)ねじ送り機構27と、から構成される。 The flow rate adjusting valve 1 of the illustrated embodiment is an electric valve used for adjusting the flow rate of the refrigerant in, for example, a heat pump type cooling and heating system, and like a conventional flow rate adjusting valve described above, a fluid (refrigerant) is introduced and derived. The valve body 10 having the valve chamber 14 and the valve seat (first valve seat) 15 with the valve port (first valve port) 16 opening to the valve chamber 14, and the valve body 10 via the ring-shaped base plate 31. A bottomed cylindrical can 30, which is fixed to the can 30, a stepping motor (elevating drive unit) 63 including a stator 40 fitted onto the can 30, and a rotor 50 rotatably arranged on the inner periphery of the can 30. A mysterious planetary gear speed reduction mechanism 60 that reduces the rotation speed of the rotor 50, and a passage amount of fluid that is brought into contact with and separated from the valve seat 15 (in other words, flows through the valve port 16 according to the lift amount from the valve seat 15). A screw for driving (moving up and down) the valve shaft 20 provided with the valve body 32 for changing the flow rate of the fluid and the output gear 57 of the mysterious planetary gear reduction mechanism 60 by converting the rotational motion into a linear motion. And a feed mechanism 27.

弁本体10における弁室14の一側部には、管継手11Aが接続される流入口11が設けられ、その底部に、管継手12Aが接続されるとともに、弁座15及び円筒面からなる弁口(オリフィス)16を持つ流出口12が設けられている。また、弁本体10の弁室14の上部には、中心部下半部に雌ねじ部13aが形成された軸受部材13が嵌挿され、かしめにより弁本体10に固定されている(かしめ部17)。弁本体10の外周(の段差部)に固定されたベースプレート31には、有蓋円筒状のキャン30の下端部が突き合わせ溶接等により密封接合されている。 An inlet 11 to which a pipe joint 11A is connected is provided on one side of a valve chamber 14 in the valve body 10, and a pipe joint 12A is connected to the bottom of the valve inlet 11 and a valve having a valve seat 15 and a cylindrical surface. An outlet 12 having a mouth 16 is provided. Further, a bearing member 13 having a female screw portion 13a formed in the lower half portion of the central portion is fitted into the upper portion of the valve chamber 14 of the valve body 10 and fixed to the valve body 10 by caulking (caulking portion 17). A lower end of a cylindrical can 30 having a lid is hermetically joined to the base plate 31 fixed to the outer circumference (stepped portion thereof) of the valve body 10 by butt welding or the like.

キャン30の外周に装着されたステータ40は、ヨーク41、ボビン42、コイル43、樹脂モールドカバー44等からなり、キャン30の内部に(上下動せずに)回転自在に支持されるロータ50は、磁性材料で作製された円筒状のロータ部材51と樹脂材料で作製された太陽ギヤ部材52とが一体に連結されて構成されている。太陽ギヤ部材52の中心部にはシャフト62が挿入され、そのシャフト62の上部は、キャン30の頂部内側に配置された支持部材61により支持されている。 The stator 40 mounted on the outer periphery of the can 30 includes a yoke 41, a bobbin 42, a coil 43, a resin mold cover 44, and the like. The rotor 50 rotatably supported inside the can 30 (without moving up and down) is A cylindrical rotor member 51 made of a magnetic material and a sun gear member 52 made of a resin material are integrally connected to each other. A shaft 62 is inserted in the center of the sun gear member 52, and the upper portion of the shaft 62 is supported by a support member 61 arranged inside the top of the can 30.

太陽ギヤ部材52の太陽ギヤ53は、出力ギヤ57の底面上に載置されたキャリア54に設けられたシャフト56に回転自在に支持される複数の遊星ギヤ55に噛み合う。遊星ギヤ55の上半分は、弁本体10の上部に固定された円筒部材18の上部にかしめにより取り付けられた環状のリングギヤ(内歯固定ギヤ)58に噛み合い、遊星ギヤ55の下半分は、環状の出力ギヤ57の内歯ギヤ57aに噛み合っている。リングギヤ58の歯数と出力ギヤ57の内歯ギヤ57aの歯数とはわずかに異なる歯数とされ、これにより、太陽ギヤ53の回転数が大きな減速比で減速されて出力ギヤ57に伝達される(このような歯車構成を、いわゆる不思議遊星歯車減速機構60という)。 The sun gear 53 of the sun gear member 52 meshes with a plurality of planet gears 55 rotatably supported by a shaft 56 provided on a carrier 54 mounted on the bottom surface of the output gear 57. The upper half of the planetary gear 55 meshes with an annular ring gear (internal tooth fixed gear) 58 attached by caulking to the upper portion of the cylindrical member 18 fixed to the upper portion of the valve body 10, and the lower half of the planetary gear 55 has an annular shape. Is meshed with the internal gear 57a of the output gear 57. The number of teeth of the ring gear 58 and the number of teeth of the internal gear 57a of the output gear 57 are slightly different from each other, whereby the rotation speed of the sun gear 53 is reduced at a large reduction ratio and transmitted to the output gear 57. (This kind of gear configuration is called a so-called mysterious planetary gear reduction mechanism 60).

出力ギヤ57は、筒状の軸受部材13の上面に摺動接触しており、その出力ギヤ57の底部中央には段付き円筒状の出力軸59の上部が圧入され、出力軸59の下部が軸受部材13の中心部上半部に形成された嵌挿穴13bに回転自在に挿入されている。また、出力軸59の上部には、シャフト62の下部が嵌め込まれている。 The output gear 57 is in sliding contact with the upper surface of the tubular bearing member 13, the upper part of the stepped cylindrical output shaft 59 is press-fitted into the center of the bottom part of the output gear 57, and the lower part of the output shaft 59 is located. The bearing member 13 is rotatably inserted into a fitting insertion hole 13b formed in the upper half of the central portion of the bearing member 13. The lower part of the shaft 62 is fitted on the upper part of the output shaft 59.

弁軸20は、上側から、ねじ駆動部材(ドライバともいう)22と、段付き円筒状の推力伝達軸28と、その上部が推力伝達軸28の下部に内嵌固定された段付き軸状の連結軸29とを有し、連結軸29の下端部外周(つまり、弁軸20の下端部外周)を包囲するように該連結軸29に弁体32が摺動自在に外挿されている。 The valve shaft 20 includes a screw drive member (also referred to as a driver) 22, a stepped cylindrical thrust transmission shaft 28, and a stepped shaft-shaped upper portion of which is internally fitted and fixed to a lower portion of the thrust transmission shaft 28. The connecting shaft 29 is provided, and the valve body 32 is slidably fitted on the connecting shaft 29 so as to surround the lower end outer circumference of the connecting shaft 29 (that is, the lower end outer circumference of the valve shaft 20).

前記軸受部材13(の内周)に設けられた雌ねじ部13aには、弁軸20を構成するねじ駆動部材22(の外周)に設けられた雄ねじ部22aが螺合されており、そのねじ駆動部材22は、出力ギヤ57(すなわち、ロータ50)の回転運動を雄ねじ部22aと雌ねじ部13aとからなるねじ送り機構27により軸線O方向(昇降方向)の直線運動に変換する。ここで、出力ギヤ57は軸線O方向の一定位置で上下動せずに回転運動しており、出力ギヤ57に連結された出力軸59の下端部に設けたスリット状の嵌合溝59bにねじ駆動部材22の上端部に設けた平ドライバ形状の板状部22bを挿入して出力ギヤ57の回転運動をねじ駆動部材22側に伝達する。ねじ駆動部材22に設けた板状部22bが出力軸59の嵌合溝59b内で軸線O方向に摺動することにより、出力ギヤ57(ロータ50)が回転すれば該出力ギヤ57はその回転軸方向に移動しないにも関わらず、ねじ駆動部材22は前記ねじ送り機構27で軸線O方向に直線運動する。ねじ駆動部材22の直線運動は、ボール23と推力伝達軸28の上部に設けられた段付き嵌合穴に嵌め込まれたボール受座24とからなるボール状継手25を介して推力伝達軸28に伝達される。推力伝達軸28に連結された連結軸29は弁本体10の内部に固定された段付き円筒状のばねケース19(の下部)に摺動自在に内挿されており、弁軸20は、当該ばねケース19により案内されて軸線O方向に移動する。また、ばねケース19(の上向きの段差面)と推力伝達軸28(の下向きの段差面)との間には、弁軸20を常時開弁方向(上方)に付勢する圧縮コイルばね26が縮装されている。 The male screw portion 22a provided on (the outer periphery of) the screw driving member 22 that constitutes the valve shaft 20 is screwed into the female screw portion 13a provided on (the inner periphery of) the bearing member 13, and the screw driving thereof is performed. The member 22 converts the rotational movement of the output gear 57 (that is, the rotor 50) into a linear movement in the direction of the axis O (elevating direction) by the screw feeding mechanism 27 including the male screw portion 22a and the female screw portion 13a. Here, the output gear 57 is rotating at a fixed position in the direction of the axis O without vertically moving, and is screwed into a slit-shaped fitting groove 59b provided at the lower end of the output shaft 59 connected to the output gear 57. The flat driver-shaped plate-like portion 22b provided at the upper end of the driving member 22 is inserted to transmit the rotational movement of the output gear 57 to the screw driving member 22 side. When the plate-shaped portion 22b provided on the screw drive member 22 slides in the fitting groove 59b of the output shaft 59 in the direction of the axis O, the output gear 57 (rotor 50) rotates, the output gear 57 rotates. The screw driving member 22 linearly moves in the axis O direction by the screw feeding mechanism 27, although it does not move in the axial direction. The linear movement of the screw drive member 22 is transmitted to the thrust transmission shaft 28 via a ball-shaped joint 25 including a ball 23 and a ball seat 24 fitted in a stepped fitting hole provided in the upper portion of the thrust transmission shaft 28. Transmitted. The connecting shaft 29 connected to the thrust transmitting shaft 28 is slidably inserted in (the lower part of) the stepped cylindrical spring case 19 fixed inside the valve body 10, and the valve shaft 20 is It is guided by the spring case 19 and moves in the direction of the axis O. Further, a compression coil spring 26 for constantly urging the valve shaft 20 in the valve opening direction (upward) is provided between the spring case 19 (upward step surface) and the thrust transmission shaft 28 (downward step surface). It is disguised.

連結軸29の下端外周には、後述する連動部材33の天井部33b(の挿通部33c周り)に係合する鍔状係止部29aが(外側に向けて)突設されるとともに、連結軸29の下端面には、逆凹字状の凹穴29cが形成され、その凹穴29cに連続するようにして、弁室14と連通空間34(弁体32によって弁軸20(の連結軸29)の下端部周りに画成された空間)を連通する連通路(上側連通路)29wが設けられている。ここでは、前記連通路29wは、凹穴29cの上面(奥側の面)中央から縦向き(軸線O方向)に形成された比較的大径の縦穴29vと、縦穴29vの中腹部から横向きに形成された複数個の比較的小径の横穴29uとから構成されている。各横穴29uは、弁軸20のリフト量Lが小さいとき(小流量制御状態)には、連結軸29に外挿されたばねケース19の下側で弁室14に開口せしめられるようになっている(後で詳述)。連結軸29の下端面における凹穴29c周りは、後述する弁体32に設けられた弁座35に接離して弁口36を開閉する第2弁体部29bとされる。 A brim-shaped locking portion 29a that engages with (around the insertion portion 33c of) a ceiling portion 33b of the interlocking member 33 described later is provided on the outer periphery of the lower end of the connecting shaft 29 (outward), and the connecting shaft 29b An inverted concave recess 29c is formed on the lower end surface of the valve 29, and the valve chamber 14 and the communication space 34 (the valve shaft 32 (the connecting shaft 29 of the valve shaft 20) are connected to the recess 29c so as to be continuous with the recess 29c. ) Is provided with a communication passage (upper communication passage) 29w that communicates with the space defined around the lower end portion of FIG. Here, the communication passage 29w extends vertically from the center (upper surface) of the concave hole 29c in a vertical direction (axis O direction), and has a relatively large diameter vertical hole 29v, and the vertical hole 29v extends laterally from the middle portion. It is composed of a plurality of formed lateral holes 29u having a relatively small diameter. When the lift amount L of the valve shaft 20 is small (small flow rate control state), each lateral hole 29u is designed to be opened to the valve chamber 14 below the spring case 19 externally fitted to the connecting shaft 29. (Detailed later). Around the recessed hole 29c in the lower end surface of the connecting shaft 29 is a second valve body portion 29b that opens and closes the valve port 36 by coming into contact with and separating from a valve seat 35 provided in a valve body 32 described later.

弁体32は、弁軸20を構成する連結軸29における鍔状係止部29aより上側(かつ、連通路29wを構成する横穴29uより下側)に摺動自在に外挿された天井部付き円筒状の連動部材33と、連動部材33の下端開口に、溶接、圧入、かしめ等により連結された段付きの弁体部材38とで構成され、弁体32(の連動部材33と弁体部材38)によって弁軸20(の連結軸29)の下端部周りに画成された空間が、連通空間34とされている。 The valve body 32 has a ceiling portion slidably inserted above the brim-shaped engaging portion 29a of the connecting shaft 29 of the valve shaft 20 (and below the lateral hole 29u of the communication passage 29w). The valve body 32 includes a cylindrical interlocking member 33 and a stepped valve body member 38 connected to the lower end opening of the interlocking member 33 by welding, press fitting, caulking, or the like. The space defined around the lower end portion of (the connecting shaft 29 of) the valve shaft 20 by 38) is a communication space 34.

連動部材33の天井部33bには、連結軸29が摺動自在に挿通される短円筒面を持つ挿通部33cが設けられている。また、連動部材33の円筒部33aの下端部は、弁体部材38(の下部大径部)の外周部に設けられた鍔状部38aに溶接等により固着されている(特に、図2参照)。 The ceiling portion 33b of the interlocking member 33 is provided with an insertion portion 33c having a short cylindrical surface through which the connecting shaft 29 is slidably inserted. Further, the lower end portion of the cylindrical portion 33a of the interlocking member 33 is fixed by welding or the like to the collar-shaped portion 38a provided on the outer peripheral portion of (the lower large diameter portion of) the valve body member 38 (see particularly FIG. 2). ).

一方、弁体部材38(の下部大径部)の下端面は、弁本体10の弁座15に(上側から)接離して弁口16を開閉する逆円錐台状の第1弁体部(円錐台面部)38bとされるとともに、その弁体部材38には、弁口16と連通空間34を常時連通する連通路(下側連通路)38wが設けられている。ここでは、前記連通路38wは、弁体部材38(の下部大径部)の下端面中央から縦向き(軸線O方向)に(弁体部材38の中間胴部まで)形成された比較的大径の段付きの縦穴38vと、縦穴38vの上部から横向きに形成された複数個の比較的小径の横穴38uとから構成されている。また、弁体部材38の上部(上部小径部)は、前記した弁軸20の連結軸29の凹穴29cに若干の隙間を持って内挿されており、弁体部材38の中間胴部と上部小径部との間に形成された円錐台面部37に、連結軸29の第2弁体部29bが接離する弁座(第2弁座)35が設けられている。すなわち、本例では、連通空間34における弁体部材38(の円錐台面部37)周りに、前記した弁本体10の弁口(第1弁口)16より小径の円筒面からなり、連結軸29の下端面に形成された第2弁体部29bによって開閉される弁口(第2弁口)36が形成さている。 On the other hand, the lower end surface of the valve body member 38 (the lower large diameter portion thereof) comes in contact with (separates from above) the valve seat 15 of the valve body 10 (from the upper side) to open and close the valve opening 16 (first valve body portion in the shape of an inverted truncated cone) ( The truncated conical surface portion) 38b, and the valve body member 38 is provided with a communication passage (lower communication passage) 38w for always communicating the valve opening 16 and the communication space 34. Here, the communication passage 38w is formed in a vertical direction (the direction of the axis O) from the center of the lower end surface of the valve body member 38 (the lower large diameter portion thereof) (to the intermediate body portion of the valve body member 38) and is relatively large. It is composed of a vertical hole 38v having a stepped diameter, and a plurality of horizontal holes 38u having a relatively small diameter formed laterally from the upper portion of the vertical hole 38v. Further, the upper portion (upper small diameter portion) of the valve body member 38 is inserted into the recessed hole 29c of the connecting shaft 29 of the valve shaft 20 with a slight gap, and is formed as an intermediate body portion of the valve body member 38. A valve seat (second valve seat) 35 with which the second valve body portion 29b of the connecting shaft 29 comes in contact with and is separated from is provided on a truncated cone surface portion 37 formed between the upper small diameter portion. That is, in this example, a cylindrical surface having a diameter smaller than that of the valve opening (first valve opening) 16 of the valve body 10 is provided around (the truncated cone surface portion 37 of) the valve member 38 in the communication space 34, and the connecting shaft 29 valve port which is opened and closed by the second valve body portion 29 b (second valve port) 36 is formed which is formed on the lower end face of the.

また、弁体部材38の上部(上部小径部)には、凹状の収納21bが設けられるとともに、その収納21bの底部中央に、前記連通路38wの縦穴38vまで延びる縦穴からなる逆止弁口21vが設けられ、収納21bの側部(の軸線O周りで複数の位置)に、複数個の横穴からなる連通口21uが設けられ、その収納室21bには、流入口11と流出口12との差圧に応じて逆止弁口21vを開閉すべく(後で詳述)、ボールからなる逆止弁体21が収納されている。前記逆止弁体21は、弁体部材38の上端部(における収納21b周り)が内側へ向けてかしめられることにより(かしめ部21a)、前記収納室21b内に、軸線O方向に若干の摺動自在に配在されている。 Further, a concave storage chamber 21b is provided in the upper portion (upper small diameter portion) of the valve body member 38, and a check valve including a vertical hole extending to the vertical hole 38v of the communication passage 38w is provided at the center of the bottom of the storage chamber 21b. mouth 21v is provided on (a plurality of positions around the axis O of) the side of the storage room 21b, the communication port 21u comprising a plurality of lateral holes provided in its housing chamber 21b, the inlet 11 and the outlet A check valve body 21 made of a ball is housed in order to open and close the check valve port 21v according to the pressure difference between the check valve body 12 and the valve 12 (detailed later). The check valve body 21 is slightly swollen in the direction of the axis O in the storage chamber 21b by caulking the upper end portion (around the storage chamber 21b thereof) of the valve body member 38 inward (caulking portion 21a). It is slidably distributed.

ここで、弁軸20の連結軸29に設けられた鍔状係止部29aと連動部材33の天井部33bとは、連結軸29の第2弁体部29bによって弁口36が閉じられたとき(言い換えれば、連結軸29の第2弁体部29bが弁体部材38の円錐台面部37に設けられた弁座(第2弁座)35に着座したとき)に、軸線O方向(上下方向)で所定寸法の隙間Laを持つように設定されている(後で詳述)。 Here, the collar-shaped locking portion 29a provided on the connecting shaft 29 of the valve shaft 20 and the ceiling portion 33b of the interlocking member 33 are used when the valve port 36 is closed by the second valve body portion 29b of the connecting shaft 29. (In other words, when the second valve body portion 29b of the connecting shaft 29 is seated on the valve seat (second valve seat) 35 provided on the truncated cone surface portion 37 of the valve body member 38), the axis O direction (up and down direction) ) Is set so as to have a gap La of a predetermined size (detailed later).

また、ばねケース19(の下向きの段差面)と弁体32を構成する連動部材33(の天井部33bの上面における挿通部33c周り)との間には、弁体32を常時閉弁方向(下方)に付勢する圧縮コイルばね(付勢部材)39が縮装されている。 In addition, the valve body 32 is always closed in the valve closing direction between the spring case 19 (downward step surface) and the interlocking member 33 (around the insertion portion 33c on the upper surface of the ceiling 33b of the valve body 32) forming the valve body 32 ( A compression coil spring (biasing member) 39 that urges downward) is compressed.

上記構成に加えて、本実施形態では、流体中(小流量通路を流れる流体中)の気泡を細分化すべく、前記弁軸20の連結軸29の連通路(上側連通路)29wに、略円柱状の金属メッシュ等からなる消音部材(弁室14側消音部材)71が設けられるとともに、前記弁体32の弁体部材38の連通路(下側連通路)38wにも、略円柱状の金属メッシュ等からなる消音部材(弁口16側消音部材)72が設けられている。 In addition to the above configuration, in the present embodiment, in order to subdivide air bubbles in the fluid (in the fluid flowing through the small flow passage), the communication passage (upper communication passage) 29w of the connecting shaft 29 of the valve shaft 20 has a substantially circular shape. A sound deadening member (a sound deadening member on the valve chamber 14 side) 71 made of a columnar metal mesh or the like is provided, and a substantially columnar metal is also provided in the communication passage (lower communication passage) 38w of the valve body member 38 of the valve body 32. A sound deadening member (a sound deadening member on the valve port 16 side) 72 made of a mesh or the like is provided.

詳しくは、消音部材71は、前記弁軸20の連結軸29の連通路29wにおける縦穴29vに上下方向に亘って内装されるとともに、その連結軸29の連通路29wにおける縦穴29vの下端周りが(内側へ向けて)かしめられることによって、当該縦穴29v内に支持固定されている。また、消音部材72は、前記弁体32の弁体部材38の連通路38wにおける縦穴38vに内装されるとともに、その弁体部材38の連通路38wにおける縦穴38vの段差部に複数個(図示例では、4個)の通し穴73aを持つ押さえ板(支持部材)73がかしめ等により固定されることによって(図3参照)、当該縦穴38v内に支持固定されている。 Specifically, the muffling member 71 is vertically installed in the vertical hole 29v in the communication passage 29w of the connecting shaft 29 of the valve shaft 20, and around the lower end of the vertical hole 29v in the communication passage 29w of the connecting shaft 29 ( It is supported and fixed in the vertical hole 29v by being caulked (toward the inside). Further, the sound deadening member 72 is installed in the vertical hole 38v in the communication passage 38w of the valve body member 38 of the valve body 32, and a plurality of muffling members are provided in the step portion of the vertical hole 38v in the communication passage 38w of the valve body member 38 (illustrated example) In this case, the pressing plate (supporting member) 73 having the four through holes 73a is fixed by caulking or the like (see FIG. 3) to be supported and fixed in the vertical hole 38v.

なお、ここでは、消音部材71、72として、複数の小孔を有する金属メッシュ(網状部材)を円柱状に成形したもの、板状の金属メッシュを積層して円柱状としたもの、あるいは、板状の金属メッシュを巻回して円柱状としたものを採用しているが、流体中の気泡を細分化できれば、例えば、当該消音部材71、72を樹脂製としても良いし、当該消音部材71、72自体を円柱状の多孔体で形成しても良い。 Here, as the sound deadening members 71 and 72, a metal mesh (mesh member) having a plurality of small holes is formed into a cylindrical shape, a plate-shaped metal mesh is laminated into a cylindrical shape, or a plate is used. A cylindrical metal mesh is wound into a cylindrical shape, but if the bubbles in the fluid can be subdivided, the muffling members 71, 72 may be made of resin, or the muffling member 71, 72 itself may be formed of a cylindrical porous body.

また、押さえ板73の通し穴73aの数や穴径や形成位置等は、図示例に限定されないことは当然であるし、各消音部材71、72の固定方法等についても、図示例に限定されないことは勿論である。 Further, it goes without saying that the number of through holes 73a of the pressing plate 73, the hole diameter, the forming position, and the like are not limited to the illustrated examples, and the method of fixing the muffling members 71 and 72 is not limited to the illustrated examples. Of course.

かかる構成の流量調整弁1では、流体(冷媒)は、双方向(流入口11から流出口12に向かう方向(横→下、正流れ)と、流出口12から流入口11に向かう方向(下→横、逆流れ)との双方向)に流されるようになっており、前記ロータ50の回転量を制御して弁軸20のリフト量Lを変化させることにより、流体(冷媒)の通過流量を調整するようになっている。 In the flow rate control valve 1 having such a configuration, the fluid (refrigerant) is bidirectional (the direction from the inflow port 11 to the outflow port 12 (lateral→down, normal flow)) and the direction from the outflow port 12 to the inflow port 11 (downward). The flow rate of the fluid (refrigerant) passes by controlling the rotation amount of the rotor 50 and changing the lift amount L of the valve shaft 20. Is adjusted.

<流量調整弁1の正流れ時の動作>
正流れ時においては、図4(A)に示される如くの全閉状態(弁軸20のリフト量Lが0の状態)において、弁軸20(の連結軸29)の第2弁体部29bが弁体32(の弁体部材38)の弁座35に圧接(着座)されて弁口36が閉じられるとともに、弁体32(の弁体部材38)の第1弁体部38bが弁本体10の弁座15に圧接(着座)されて弁口16が閉じられている。また、流入口11から弁室14に流れ込む流体の圧力(流体圧)により逆止弁体21が付勢されて弁体32(の弁体部材38)の逆止弁口21vが閉じられている(つまり、逆止弁体21により弁室14から弁口16へ向かう流体の流れは遮断されている)。このとき、弁軸20(の連結軸29)の鍔状係止部29a(の上面)と弁体32の連動部材33の天井部33b(の下面)とは、軸線O方向(上下方向)で所定寸法の隙間Laだけ離れて位置せしめられている。
<Operation of flow rate adjusting valve 1 when the flow is normal>
At the time of forward flow, in the fully closed state (the state where the lift amount L of the valve shaft 20 is 0) as shown in FIG. 4A, the second valve body portion 29b of (the connecting shaft 29 of) the valve shaft 20 is. Is pressed against (seats) the valve seat 35 of (the valve body member 38 of) the valve body 32 to close the valve port 36, and the first valve body portion 38b of the (valve body member 38 of) the valve body 32 is the valve body. The valve opening 16 is closed by being pressed (seated) to the valve seat 15 of No. 10. Further, the check valve body 21 is biased by the pressure of the fluid (fluid pressure) flowing from the inflow port 11 into the valve chamber 14 to close the check valve port 21v of (the valve body member 38 of) the valve body 32. (That is, the check valve body 21 blocks the flow of fluid from the valve chamber 14 to the valve port 16). At this time, the flange-shaped locking portion 29a (the upper surface) of the valve shaft 20 (the connecting shaft 29 of the valve shaft 20) and the ceiling portion 33b (the lower surface) of the interlocking member 33 of the valve body 32 are arranged in the direction of the axis O (vertical direction). They are located apart from each other by a gap La having a predetermined dimension.

この全閉状態において、弁軸20を上昇させると、図4(B)に示される如くに、前記所定寸法の隙間(リフト量)Laまでは(小流量制御状態)、弁体32の第1弁体部38bが圧縮コイルばね39(の付勢力)により弁本体10の弁座15に圧接(着座)され、かつ、逆止弁体21が流体圧により付勢されて弁体32の逆止弁口21vが閉じられたままで、弁軸20の連結軸29が弁体32(の連動部材33の天井部33b)の挿通部33c内を摺動するようにして弁軸20が移動(上昇)せしめられ、弁軸20の第2弁体部29bが弁体32の弁座35から離れて弁口36が開口せしめられる。流入口11から弁室14に流れ込んだ流体は、弁軸20の連結軸29の連通路(上側連通路)29w(横穴29u、縦穴29v)→弁軸20の凹穴29c(における弁体32の上部(上部小径部)との隙間)→弁軸20の第2弁体部29bと弁体32の弁座35との隙間(弁口36)→連通空間34→弁体32の弁体部材38の連通路(下側連通路)38w(横穴38u、縦穴38v)(特に、その連通路38wの縦穴38vに固定された押さえ板73の通し穴73a)を介して、その下方に続く弁口16に流れ込み、弁軸20の上昇に伴って、当該弁口16に流れ込む流体の流量が次第に大きくなる。このとき、流入口11から弁室14に流れ込んだ流体は、(弁軸20の連結軸29の連通路29wの縦穴29vを通る際に)連通路29wに配在された消音部材71を通過するとともに、(弁体32の弁体部材38の連通路38wの縦穴38vを通る際に)連通路38wに配在された消音部材72を通過し、弁口36より上流側(弁室14側)及び下流側(弁口16側)に配置された2つの消音部材71、72によって流体中の気泡が分解されて細分化された状態で、弁口16(流出口12)を通過することになる。そのため、小流量制御(小開度)領域(騒音が発生しやすい領域)において、流体(冷媒)通過時の騒音が確実に低減される。 In this fully closed state, when the valve shaft 20 is raised, as shown in FIG. 4B, the first dimension of the valve body 32 is maintained until the clearance (lift amount) La of the predetermined dimension (small flow rate control state). The valve body portion 38b is pressed against (seats against) the valve seat 15 of the valve body 10 by (the biasing force of) the compression coil spring 39, and the check valve body 21 is biased by the fluid pressure to check the valve body 32. The valve shaft 20 moves (raises) such that the connecting shaft 29 of the valve shaft 20 slides in the insertion portion 33c of the valve body 32 (the ceiling 33b of the interlocking member 33) while the valve opening 21v remains closed. The second valve body portion 29b of the valve shaft 20 is separated from the valve seat 35 of the valve body 32, and the valve port 36 is opened. The fluid flowing from the inflow port 11 into the valve chamber 14 has a communication passage (upper communication passage) 29w (lateral hole 29u, vertical hole 29v) of the connecting shaft 29 of the valve shaft 20 →the concave hole 29c of the valve shaft 20 (of the valve element 32 in the Upper part (gap with upper small diameter part)→gap between second valve body part 29b of valve shaft 20 and valve seat 35 of valve body 32 (valve port 36)→communication space 34→valve body member 38 of valve body 32 Through the communication passage (lower communication passage) 38w (horizontal hole 38u, vertical hole 38v) (particularly, the through hole 73a of the pressing plate 73 fixed to the vertical hole 38v of the communication passage 38w), the valve port 16 continuing to the lower side thereof. And the flow rate of the fluid flowing into the valve opening 16 gradually increases as the valve shaft 20 rises. At this time, the fluid flowing from the inflow port 11 into the valve chamber 14 passes through the muffling member 71 arranged in the communication passage 29w (when passing through the vertical hole 29v of the communication passage 29w of the connection shaft 29 of the valve shaft 20). At the same time, (when passing through the vertical hole 38v of the communication passage 38w of the valve body member 38 of the valve body 32) passes through the muffling member 72 arranged in the communication passage 38w, and is upstream of the valve port 36 (the valve chamber 14 side). And, the two muffling members 71, 72 arranged on the downstream side (on the side of the valve opening 16) pass through the valve opening 16 (outlet 12) in a state where air bubbles in the fluid are decomposed and subdivided. .. Therefore, in a small flow rate control (small opening) region (a region where noise is likely to occur), noise when a fluid (refrigerant) passes is reliably reduced.

ここでは、前記した弁軸20の連結軸29の連通路(上側連通路)29w(横穴29u、縦穴29v)→弁軸20の凹穴29c→弁軸20の第2弁体部29bと弁体32の弁座35との隙間(弁口36)→連通空間34→弁体32の弁体部材38の連通路(上側連通路)38w(横穴38u、縦穴38v)を介して弁室14と弁口16とを連通する流路を、小流量通路と称する。 Here, the communication passage (upper communication passage) 29w (lateral hole 29u, vertical hole 29v) of the connection shaft 29 of the valve shaft 20 described above → the concave hole 29c of the valve shaft 20 → the second valve body portion 29b of the valve shaft 20 and the valve body 32 (valve port 36) from the valve seat 35→communication space 34→valve 14 through the communication passage (upper communication passage) 38w (lateral hole 38u, vertical hole 38v) of the valve body member 38 of the valve body 32 The flow path communicating with the port 16 is called a small flow passage.

なお、前記リフト量Laは、流体(冷媒)通過時における騒音(流体通過音)が発生しやすい流量に対応する弁軸20のリフト量Lであり、実験等に基づき予め決めることができる。 The lift amount La is a lift amount L of the valve shaft 20 that corresponds to a flow rate at which noise (fluid passing sound) easily occurs when a fluid (refrigerant) passes, and can be determined in advance based on experiments and the like.

弁軸20を前記リフト量Laまで上昇させた後、さらに上昇させる(つまり、リフト量Lが前記リフト量Laを超える)と、図4(C)に示される如くに、弁軸20(の連結軸29)の鍔状係止部29aが弁体32(の連動部材33の天井部33b)と係合し、弁体32は、圧縮コイルばね39の付勢力に抗して弁軸20とともに(一体に)移動(上昇)せしめられ、弁体32の第1弁体部38bが弁本体10の弁座15から離れ、弁体32の第1弁体部38bと弁本体10の弁座15との間に(軸線O方向の)幅Lb(=L−La)の隙間(円環状の流路)が形成される(大流量制御状態)。流入口11から弁室14に流れ込んだ流体は、弁体32の第1弁体部38bと弁本体10の弁座15との隙間を介して、その下方に続く弁口16に流れ込み、弁軸20の上昇に伴って、当該弁口16に流れ込む流体の流量が次第に大きくなる。このとき、流入口11から弁室14に流れ込んだ流体は、一部は、前述のように弁軸20の連結軸29の連通路29w等を通過し、消音部材71、72によって流体中の気泡が分解されて細分化された状態で、弁口16(流出口12)を通過するものの、その大部分は、弁体32の第1弁体部38bと弁本体10の弁座15との間に形成された隙間(流路)を通過して、弁口16(流出口12)に直接流れ込むことになる。そのため、弁軸20のリフト量Lが比較的大きい大流量制御(大開度)領域(騒音が発生しにくい領域であって、流量を確保したい領域)において、圧力損失(圧損)が小さくなる。 When the valve shaft 20 is raised to the lift amount La and then further raised (that is, the lift amount L exceeds the lift amount La), as shown in FIG. The flange-shaped locking portion 29a of the shaft 29) engages with (the ceiling portion 33b of the interlocking member 33 of) the valve body 32, and the valve body 32 resists the biasing force of the compression coil spring 39 and the valve shaft 20 ( (Moved together), the first valve body portion 38b of the valve body 32 is separated from the valve seat 15 of the valve body 10, and the first valve body portion 38b of the valve body 32 and the valve seat 15 of the valve body 10 are moved. A gap (annular flow path) having a width Lb (=L-La) (in the direction of the axis O) is formed between the two (a large flow rate control state). The fluid flowing from the inflow port 11 into the valve chamber 14 flows into the valve opening 16 continuing below through the gap between the first valve body portion 38b of the valve body 32 and the valve seat 15 of the valve body 10, and the valve shaft As the pressure rises by 20, the flow rate of the fluid flowing into the valve port 16 gradually increases. At this time, a part of the fluid flowing from the inflow port 11 into the valve chamber 14 passes through the communication passage 29w of the connecting shaft 29 of the valve shaft 20 and the like as described above, and the muffling members 71 and 72 cause bubbles in the fluid. Although it passes through the valve opening 16 (outlet 12) in a disassembled and fragmented state, most of it passes between the first valve body portion 38b of the valve body 32 and the valve seat 15 of the valve body 10. It will pass through the gap (flow path) formed in and will flow directly into the valve port 16 (outflow port 12). Therefore, the pressure loss (pressure loss) becomes small in a large flow rate control (large opening) region (a region where noise is unlikely to occur and a flow amount is to be secured) where the lift amount L of the valve shaft 20 is relatively large.

なお、図4(C)に示される如くの全開状態から弁軸20を下降させ、弁口16に流れ込む流体の流量が次第に減少する場合にも、上記と同様の作用効果が得られることは言うまでも無い。 It should be noted that, even when the valve shaft 20 is lowered from the fully opened state as shown in FIG. 4(C) and the flow rate of the fluid flowing into the valve port 16 is gradually reduced, it is said that the same effect as the above can be obtained. There is no limit.

<流量調整弁1の逆流れ時の動作>
逆流れ時においては、図5(A)に示される如くの全閉状態(図4(A)に基づき説明した状態)において、弁口16側(流出口12側)と弁室14側(流入口11)との差圧が所定の差圧より大きくなる(言い換えれば、弁口16側の圧力が弁室14側の圧力より所定圧だけ高くなる)と、図5(B)に示される如くに、弁軸20(の連結軸29)の第2弁体部29bが弁体32(の弁体部材38)の弁座35に圧接(着座)され、弁体32(の弁体部材38)の第1弁体部38bが弁本体10の弁座15に圧接(着座)されたままで、流出口12から流れ込む流体の圧力(流体圧)により逆止弁体21が収納室21b内で移動(上昇)せしめられ、弁体32(の弁体部材38)の逆止弁口21vが開口せしめられる。流出口12(の弁口16)から流れ込んだ流体は、弁体32の弁体部材38の連通路(下側連通路)38w(の縦穴38v)(特に、その連通路38wの縦穴38vに固定された押さえ板73の通し穴73a)→逆止弁口21v→収納室21b→連通口21u→弁軸20の凹穴29c(における弁体32の上部(上部小径部)との隙間)→弁軸20の連結軸29の連通路(上側連通路)29w(縦穴29v、横穴29u)を介して、弁室14に流れ込む。なお、この状態では、当該弁室14に流れ込む流体(つまり、流入口11へ流れ出る流体)が流通する流路の開口面積は一定である。このとき、流出口12から流れ込んだ流体は、(弁体32の弁体部材38の連通路38wの縦穴38vを通る際に)連通路38wに配在された消音部材72を通過するとともに、(弁軸20の連結軸29の連通路29wの縦穴29vを通る際に)連通路29wに配在された消音部材71を通過し、弁口36より上流側(弁口16側)及び下流側(弁室14側)に配置された2つの消音部材72、71によって流体中の気泡が分解されて細分化された状態で、弁室14(流入口11)を通過することになる。そのため、小流量制御領域(騒音が発生しやすい領域)において、流体(冷媒)通過時の騒音が確実に低減される。
<Operation of flow rate adjusting valve 1 at the time of reverse flow>
At the time of reverse flow, in the fully closed state as shown in FIG. 5(A) (the state described based on FIG. 4(A)), the valve port 16 side (outlet port 12 side) and the valve chamber 14 side (flow port). When the pressure difference with the inlet 11) becomes larger than a predetermined pressure difference (in other words, the pressure on the valve port 16 side becomes higher than the pressure on the valve chamber 14 side by a predetermined pressure), as shown in FIG. 5B. The second valve body portion 29b of (the connecting shaft 29 of) the valve shaft 20 is pressed against (seats) the valve seat 35 of (the valve body member 38 of) the valve body 32, and (the valve body member 38 of) the valve body 32. With the first valve body portion 38b of (1) being kept in pressure contact (seated) with the valve seat 15 of the valve body 10, the check valve body 21 moves within the storage chamber 21b by the pressure (fluid pressure) of the fluid flowing from the outlet 12. As a result, the check valve port 21v of (the valve body member 38 of) the valve body 32 is opened. The fluid flowing in from (the valve opening 16 of) the outlet 12 is fixed to the communication passage (lower communication passage) 38w (vertical hole 38v) of the valve body member 38 of the valve body 32 (in particular, to the vertical hole 38v of the communication passage 38w). Through hole 73a of the pressing plate 73) → check valve port 21v → storage chamber 21b → communication port 21u → concave hole 29c of the valve shaft 20 (the gap between the upper part (upper small diameter part) of the valve body 32) → valve It flows into the valve chamber 14 through the communication passage (upper communication passage) 29w (vertical hole 29v, horizontal hole 29u) of the connecting shaft 29 of the shaft 20. In this state, the opening area of the flow path through which the fluid flowing into the valve chamber 14 (that is, the fluid flowing out to the inflow port 11) flows is constant. At this time, the fluid flowing from the outflow port 12 passes through the sound deadening member 72 arranged in the communication passage 38w (when passing through the vertical hole 38v of the communication passage 38w of the valve body member 38 of the valve body 32), and ( (When passing through the vertical hole 29v of the communication passage 29w of the connecting shaft 29 of the valve shaft 20) passes through the muffling member 71 arranged in the communication passage 29w, and upstream (valve opening 16 side) and downstream (the valve opening 16 side) of the valve opening 36. The two muffling members 72, 71 arranged on the valve chamber 14 side pass through the valve chamber 14 (inflow port 11) in a state where air bubbles in the fluid are decomposed and subdivided. Therefore, in the small flow rate control region (a region where noise is likely to occur), noise during passage of the fluid (refrigerant) is reliably reduced.

この逆止弁口21vが開かれた状態において、弁軸20を上昇させると、図5(C)に示される如くに、弁軸20の第2弁体部29bが弁体32の弁座35に圧接(着座)されたままで(つまり、弁軸20の鍔状係止部29aと連動部材33の天井部33bとが軸線O方向で所定寸法の隙間Laだけ離れて位置せしめられたままで)、弁体32は、圧縮コイルばね39の付勢力に抗して(すなわち、弁口16から弁室14に流れ込む流体の圧力が圧縮コイルばね39の付勢力に打ち勝って)弁軸20とともに(一体に)移動(上昇)せしめられ、弁体32の第1弁体部38bが弁本体10の弁座15から離れ、弁体32の第1弁体部38bと弁本体10の弁座15との間に(軸線O方向の)幅Lの隙間(円環状の流路)が形成される。この場合、逆止弁体21に対する流体圧により、弁体32(の弁体部材38)の逆止弁口21vは開かれたままとなっている。流出口12(の弁口16)に流れ込んだ流体は、弁体32の第1弁体部38bと弁本体10の弁座15との隙間を介して、弁室14に流れ込み、弁軸20の上昇に伴って、当該弁室14に流れ込む流体の流量が次第に大きくなる。このとき、流出口12(の弁口16)から流れ込んだ流体(の大部分)は、弁体32の第1弁体部38bと弁本体10の弁座15との間に形成された隙間(流路)を通過して、弁室14(流入口11)に直接流れ込むことになる。そのため、弁軸20のリフト量Lが比較的大きい大流量制御領域(騒音が発生しにくい領域であって、流量を確保したい領域)において、圧力損失(圧損)が小さくなる。 When the valve shaft 20 is raised with the check valve port 21v opened, the second valve body portion 29b of the valve shaft 20 causes the valve seat 35 of the valve body 32 to rise, as shown in FIG. While being pressed against (seated to) (that is, with the flange-shaped locking portion 29a of the valve shaft 20 and the ceiling portion 33b of the interlocking member 33 being positioned apart from each other by a gap La of a predetermined dimension in the axis O direction). The valve body 32 resists the biasing force of the compression coil spring 39 (that is, the pressure of the fluid flowing from the valve opening 16 into the valve chamber 14 overcomes the biasing force of the compression coil spring 39) (integratedly). ) The first valve body portion 38b of the valve body 32 is moved (raised) away from the valve seat 15 of the valve body 10, and the first valve body portion 38b of the valve body 32 and the valve seat 15 of the valve body 10 are separated from each other. A gap (ring-shaped flow path) having a width L (in the direction of the axis O) is formed at. In this case, the check valve port 21v of (the valve body member 38 of) the valve body 32 remains open due to the fluid pressure on the check valve body 21. The fluid that has flown into (the valve port 16 of) the outflow port 12 flows into the valve chamber 14 through the gap between the first valve body portion 38 b of the valve body 32 and the valve seat 15 of the valve body 10, and the fluid of the valve shaft 20 As the temperature rises, the flow rate of the fluid flowing into the valve chamber 14 gradually increases. At this time, the fluid (most of it) that has flowed in from (the valve opening 16 of) the outflow port 12 is a gap formed between the first valve body portion 38 b of the valve body 32 and the valve seat 15 of the valve body 10 ( It will pass through the flow path) and flow directly into the valve chamber 14 (inflow port 11). Therefore, the pressure loss (pressure loss) is small in a large flow rate control region (a region where noise is unlikely to occur and a flow amount is desired to be secured) in which the lift amount L of the valve shaft 20 is relatively large.

このように、本実施形態の流量調整弁1では、連通空間34を介して弁室14と弁口(第1弁口)16とを連通する小流量通路における弁口(第2弁口)36より弁室14側(正流れ時で上流側、逆流れ時で下流側)及び弁口16側(正流れ時で下流側、逆流れ時で上流側)、具体的には、弁軸20の連結軸29における連通路(上側連通路)29w及び弁体32の弁体部材38における連通路(下側連通路)38wに、当該小流量通路を流れる流体中の気泡を細分化する消音部材71、72が配在されているので、流体(冷媒)通過時における騒音を効果的に低減できるとともに、大開度(大流量制御)領域における圧力損失が小さくなり、適正な冷媒流量を得ることができる。 As described above, in the flow rate adjusting valve 1 of the present embodiment, the valve opening (second valve opening) 36 in the small flow passage that connects the valve chamber 14 and the valve opening (first valve opening) 16 via the communication space 34. The valve chamber 14 side (upstream side in normal flow, downstream side in reverse flow) and the valve port 16 side (downstream side in normal flow, upstream side in reverse flow), specifically, of the valve shaft 20. A muffling member 71 that subdivides bubbles in the fluid flowing through the small flow passage into a communication passage (upper communication passage) 29w of the connecting shaft 29 and a communication passage (lower communication passage) 38w of the valve body member 38 of the valve body 32. , 72 are provided, noise can be effectively reduced when a fluid (refrigerant) passes, pressure loss in a large opening (large flow rate control) region can be reduced, and an appropriate refrigerant flow rate can be obtained. ..

また、前記消音部材71、72が、小流量通路を構成する弁軸20の連通路(上側連通路)29wにおける縦穴29vや、弁体32の弁体部材38の連通路(下側連通路)38wにおける縦穴38vに内装されているので、前記消音部材71、72を長く配置でき、流体(冷媒)通過時における騒音をより効果的に低減することができる。 Further, the muffling members 71, 72 are vertical holes 29v in the communication passage (upper communication passage) 29w of the valve shaft 20 that constitutes a small flow passage, and the communication passage (lower communication passage) of the valve body member 38 of the valve body 32. Since it is provided in the vertical hole 38v of 38w, the silencing members 71 and 72 can be arranged long, and noise during passage of the fluid (refrigerant) can be more effectively reduced.

なお、上記実施形態では、弁軸20の連結軸29に形成された縦穴29v(横穴29uとともに連通路29wを構成する縦穴29v)に円柱状の消音部材71が配在されているが、例えば、図6に示される流量調整弁1Aの如くに、前記した凹穴29cを軸線O方向に(横穴29uより上側まで)延長する等して下端が開口した(軸線O方向に長い)嵌挿穴29dを形成し、その嵌挿穴29dに、円筒状(嵌挿穴29dより小径の円筒状)且つその下端部に嵌挿穴29dの内周(特に、横穴29uの下側の内周)に当接するフランジ部29Aaが形成された管状部材29Aを所定の隙間を持って嵌挿固定し、管状部材29Aの内部空間と、管状部材29Aの上端部に設けられた横向きの(複数個の)貫通口29Auと、管状部材29A(の外壁)と嵌挿穴29d(の内壁)との隙間と、前記横穴29uとによって、前記弁軸20の連通路(上側連通路)29wを形成するとともに、当該管状部材29Aの内部空間(縦穴)に、円柱状の消音部材71を内装しても良い。なお、図6において、上記実施形態と同様の機能及び作用を有する構成には、同様の符号が付されている。かかる構成の流量調整弁1Aでは、弁軸20の連結軸29における連通路(上側連通路)29wに配在される消音部材71(の上下方向長さ)を更に長くできるので、流体(冷媒)通過時における騒音をより効果的に低減することができる。 In the above embodiment, the cylindrical silencing member 71 is arranged in the vertical hole 29v (the vertical hole 29v that forms the communication passage 29w together with the horizontal hole 29u) formed in the connecting shaft 29 of the valve shaft 20, but, for example, Like the flow rate control valve 1A shown in FIG. 6, the above-mentioned recessed hole 29c is extended in the direction of the axis O (up to the upper side of the lateral hole 29u), and the lower end is opened (long in the direction of the axis O). Is formed into a cylindrical shape (cylindrical shape having a smaller diameter than the fitting insertion hole 29d), and the lower end portion thereof is fitted to the inner circumference of the fitting insertion hole 29d (in particular, the inner circumference below the lateral hole 29u). The tubular member 29A having the contacting flange portion 29Aa is fitted and fixed with a predetermined gap, and the internal space of the tubular member 29A and the laterally-oriented (plurality) through holes provided at the upper end of the tubular member 29A. 29Au, the gap between (the outer wall of) the tubular member 29A and (the inner wall of) the fitting insertion hole 29d, and the lateral hole 29u form a communication passage (upper communication passage) 29w of the valve shaft 20. A cylindrical silencing member 71 may be installed in the internal space (vertical hole) of the member 29A. Note that, in FIG. 6, configurations having the same functions and actions as those of the above-described embodiment are denoted by the same reference numerals. In the flow rate adjusting valve 1A having such a configuration, the silencing member 71 (the vertical length thereof) arranged in the communication passage (upper communication passage) 29w in the connecting shaft 29 of the valve shaft 20 can be further lengthened, so that the fluid (refrigerant) can be used. Noise during passage can be reduced more effectively.

また、上記実施形態では、前記した逆止弁体21を利用し、流体(冷媒)を、流入口11から流出口12に向かう方向(正流れ)と、流出口12から流入口11に向かう方向(逆流れ)との双方向に流すようにしているが、例えば、流体(冷媒)を一方向(流入口11から流出口12に向かう方向(正流れ)であって、逆止弁体21が機能せずに当該逆止弁体21により逆止弁口21vが常時閉じられたままである方向)のみに流すシステムに適用する場合には、図7に示される流量調整弁1Bの如くに、弁体32の弁体部材38の上部小径部を取り除き、前記した逆止弁体21及びそれに付随する構造(収納室21b、逆止弁口21v、連通口21u)を省略しても良い。なお、図7において、上記実施形態と同様の機能及び作用を有する構成には、同様の符号が付されている。かかる構成の流量調整弁1Bでも、上記実施形態の流量調整弁1と同様の作用効果が得られることは言うまでも無い。 Further, in the above-described embodiment, the check valve body 21 is used to flow the fluid (refrigerant) from the inflow port 11 to the outflow port 12 (forward flow) and from the outflow port 12 to the inflow port 11 in the direction. Although it is made to flow in both directions (reverse flow), for example, the fluid (refrigerant) is directed in one direction (direction from the inlet 11 to the outlet 12 (normal flow), and the check valve body 21 is When it is applied to a system that does not function and flows only in the direction in which the check valve body 21v is always closed by the check valve body 21), a valve such as the flow control valve 1B shown in FIG. 7 is used. The small-diameter upper portion of the valve body member 38 of the body 32 may be removed, and the above-described check valve body 21 and the structures (accommodation chamber 21b, check valve port 21v, communication port 21u) associated therewith may be omitted. Note that, in FIG. 7, configurations having the same functions and actions as those of the above-described embodiment are denoted by the same reference numerals. It goes without saying that the flow rate adjusting valve 1B having such a configuration can also obtain the same operational effects as the flow rate adjusting valve 1 of the above-described embodiment.

また、上記実施形態では、ロータ50の回転数を減速する不思議遊星歯車減速機構60を利用しているが、例えば、図8に示される流量調整弁1Cの如くに、不思議遊星歯車減速機構を省略し、弁軸20(の推力伝達軸28)の外周にベローズ28Cを取り付け、推力伝達軸28(の段差部)と連結軸29(の上端部)で挟持されたリング状の上側ばね受け28Caと弁体32の連動部材33の天井部33bとの間に、弁体32を閉弁方向(下方)に付勢する付勢部材としての圧縮コイルばね39を介装しても良い(詳細構造については、上記特許文献2も併せて参照)。なお、図8において、上記実施形態と同様の機能及び作用を有する構成には、同様の符号が付されている。かかる構成の流量調整弁1Cでも、上記実施形態の流量調整弁1と同様の作用効果が得られることは詳述するまでも無い。 Further, in the above-described embodiment, the mysterious planetary gear reduction mechanism 60 that reduces the rotation speed of the rotor 50 is used, but the mysterious planetary gear reduction mechanism is omitted, for example, as in the flow rate control valve 1C shown in FIG. Then, a bellows 28C is attached to the outer periphery of (the thrust transmission shaft 28 of) the valve shaft 20 and a ring-shaped upper spring bearing 28Ca sandwiched between (the stepped portion of) the thrust transmission shaft 28 and (the upper end portion) of the connection shaft 29. A compression coil spring 39 as an urging member for urging the valve body 32 in the valve closing direction (downward) may be interposed between the valve body 32 and the ceiling portion 33b of the interlocking member 33 (for detailed structure). (See also Patent Document 2 above). Note that, in FIG. 8, configurations having the same functions and actions as those of the above-described embodiment are denoted by the same reference numerals. It is needless to say that the flow rate adjusting valve 1C having such a configuration can also obtain the same operational effect as the flow rate adjusting valve 1 of the above-described embodiment.

また、上記実施形態において、圧縮コイルばね39を取り付けずに流量調整弁を構成することも可能である。この場合、弁体32は、主に流体圧によって弁座15に着座若しくは弁座15から離間する。 Further, in the above embodiment, it is possible to configure the flow rate adjusting valve without attaching the compression coil spring 39. In this case, the valve element 32 is seated on the valve seat 15 or separated from the valve seat 15 mainly by fluid pressure.

また、弁体32の第1弁体部38bにより弁口16が閉じられ、かつ、弁軸20の第2弁体部29bにより弁口36が閉じられた状態で、弁口16から弁室14へ向かう流体の流れを許容するが、弁室14から弁口16へ向かう流体の流れを遮断する逆止弁体21を用いた逆止弁構造は、上記した構造に限定されない。例えば、図9(A)に示される流量調整弁1Dの如くに、弁軸20(の連結軸29)側に逆止弁体21を配置しても良い。 Further, in a state in which the valve opening 16 is closed by the first valve body portion 38b of the valve body 32 and the valve opening 36 is closed by the second valve body portion 29b of the valve shaft 20, the valve opening 16 is closed by the valve chamber 14 The check valve structure using the check valve body 21 that allows the flow of the fluid toward the valve but blocks the flow of the fluid from the valve chamber 14 toward the valve opening 16 is not limited to the above-described structure. For example, like the flow rate adjusting valve 1D shown in FIG. 9A, the check valve body 21 may be arranged on (the connecting shaft 29 of) the valve shaft 20.

より詳しくは、連結軸29の下端に底部付き円筒部29Dを(下向きに)突設し、連結軸29の下端外周に形成された鍔状係止部29aの下側に、複数個の横穴からなる連通口21uを設けるとともに、連結軸29(の底部付き円筒部29D)の底部中央に、縦穴からなる逆止弁口21vを設け、その連結軸29(の底部付き円筒部29D)の内部(収納室21b)に、流入口11と流出口12との差圧に応じて逆止弁口21vを開閉すべく、当該逆止弁口21vに接離する逆立円錐面部を有する逆止弁体21を軸線O方向に摺動自在に収納しても良い。この場合、連結軸29(の底部付き円筒部29D)の下端面が、弁体32に設けられた弁座35に接離して弁口36を開閉する逆円錐台状の第2弁体部(円錐台面部)29bとされるとともに、逆止弁体21の側部の一部(図示例では、軸線Oに対して反対側の部分)には、例えばDカット面(面取り部ともいう)21Daが形成される(図9(B)参照)。また、Dカット面21Daに代えて、流体を流通させるための縦溝21Db等を採用しても良い(図9(C)参照)。一方、弁体32の弁体部材38の中央には、弁口16と連通空間34を連通する段付きの縦穴からなる連通路(下側連通路)38wDを形成し、その弁体部材38の連通路38wD(の段差部)に、薄肉円板状の金属メッシュ等からなる消音部材(弁口16側消音部材)72を配設すれば良い。なお、図9において、上記実施形態と同様の機能及び作用を有する構成には、同様の符号が付されている。 More specifically, a cylindrical portion 29D with a bottom portion is projected (downward) from the lower end of the connecting shaft 29, and a plurality of lateral holes are formed below the brim-shaped engaging portion 29a formed on the outer periphery of the lower end of the connecting shaft 29. And a check valve port 21v formed of a vertical hole is provided at the center of the bottom of the connecting shaft 29 (the cylindrical portion 29D with the bottom thereof), and the inside of the connecting shaft 29 (the cylindrical portion 29D with the bottom thereof) ( A check valve body having an inverted conical surface portion that comes into contact with and separates from the check valve opening 21v in the storage chamber 21b) in order to open and close the check valve opening 21v according to the pressure difference between the inlet 11 and the outlet 12. 21 may be housed slidably in the direction of the axis O. In this case, the lower end surface of (the bottomed cylindrical portion 29D of) the connecting shaft 29 comes in contact with and separates from the valve seat 35 provided on the valve body 32 to open and close the valve port 36. The truncated cone surface portion) 29b, and a part of the side portion of the check valve body 21 (a portion opposite to the axis O in the illustrated example) is, for example, a D-cut surface (also referred to as a chamfered portion) 21Da. Are formed (see FIG. 9B). Further, instead of the D-cut surface 21Da, a vertical groove 21Db or the like for circulating a fluid may be adopted (see FIG. 9C). On the other hand, in the center of the valve body member 38 of the valve body 32, a communication passage (lower communication passage) 38wD formed of a stepped vertical hole that communicates the valve opening 16 and the communication space 34 is formed. A sound deadening member (a sound deadening member on the side of the valve opening 16) 72 made of a thin disk-shaped metal mesh or the like may be arranged in (the step portion of) the communication passage 38wD. Note that, in FIG. 9, configurations having the same functions and actions as those of the above embodiment are denoted by the same reference numerals.

かかる構成の流量調整弁1Dでは、逆止弁体21が収納される収納室21bが弁軸20の連結軸29に設けられた連通路(上側連通路)29w(の縦穴29v)に連続して設けられて、収納室21bと弁室14とが常時連通せしめられているので、上記実施形態の流量調整弁1と同様の作用効果が得られる。 In the flow rate control valve 1D having such a configuration, the storage chamber 21b in which the check valve body 21 is stored is continuously connected to (the vertical hole 29v of) the communication passage (upper communication passage) 29w provided in the connecting shaft 29 of the valve shaft 20. Since the storage chamber 21b and the valve chamber 14 are provided so as to be communicated with each other at all times, the same operational effect as the flow rate adjusting valve 1 of the above-described embodiment can be obtained.

なお、本発明は、上述の実施形態で説明したような、ステータとロータとを有するステッピングモータ等を用いて弁軸を昇降(移動)させてリフト量(弁開度)を任意に細かく調整する電動式の流量調整弁の他、例えばソレノイド等を用いた電磁式の流量調整(切換)弁にも採用し得ることは勿論である。 In the present invention, the lift amount (valve opening) is arbitrarily and finely adjusted by moving up and down (moving) the valve shaft using the stepping motor having the stator and the rotor as described in the above embodiment. It is needless to say that the invention can be applied to an electromagnetic type flow rate adjusting (switching) valve using, for example, a solenoid as well as the electric type flow rate adjusting valve.

1 流量調整弁
10 弁本体
11 流入口
11A 管継手
12 流出口
12A 管継手
14 弁室
15 弁座(第1弁座)
16 弁口(第1弁口)
20 弁軸
21 逆止弁体
21a かしめ部
21b 収納室
21u 連通口
21v 逆止弁口
22 ねじ駆動部材
27 ねじ送り機構
28 推力伝達軸
29 連結軸
29a 鍔状係止部
29b 第2弁体部
29c 凹穴
29u 横穴
29v 縦穴
29w 連通路(上側連通路)
30 キャン
32 弁体
33 連動部材
33a 連動部材の円筒部
33b 連動部材の天井部
33c 挿通部
34 連通空間
35 弁座(第2弁座)
36 弁口(第2弁口)
37 円錐台面部
38 弁体部材
38b 第1弁体部(円錐台面部)
38u 横穴
38v 縦穴
38w 連通路(下側連通路)
39 圧縮コイルばね(付勢部材)
40 ステータ
50 ロータ
60 不思議遊星歯車減速機構
63 ステッピングモータ(昇降駆動部)
71 消音部材(弁室側消音部材)
72 消音部材(弁口側消音部材)
73 押さえ板(支持部材)
73a 押さえ板の通し穴
1 Flow Control Valve 10 Valve Body 11 Inlet 11A Pipe Joint 12 Outlet 12A Pipe Joint 14 Valve Chamber 15 Valve Seat (First Valve Seat)
16 valve mouth (first valve mouth)
20 valve shaft 21 non-return valve body 21a caulking portion 21b storage chamber 21u communication port 21v non-return valve opening 22 screw drive member 27 screw feed mechanism 28 thrust transmission shaft 29 connecting shaft 29a collar-shaped engaging portion 29b second valve body portion 29c Recessed hole 29u Horizontal hole 29v Vertical hole 29w Communication path (upper communication path)
30 can 32 valve body 33 interlocking member 33a interlocking member cylindrical portion 33b interlocking member ceiling 33c insertion portion 34 communication space 35 valve seat (second valve seat)
36 valve (2nd valve)
37 Frustum of Conical Surface 38 Valve Body Member 38b First Valve Body (Frustum of Conical Surface)
38u horizontal hole 38v vertical hole 38w communication passage (lower communication passage)
39 Compression coil spring (biasing member)
40 Stator 50 Rotor 60 Mysterious Planetary Gear Reduction Mechanism 63 Stepping Motor (elevation drive unit)
71 Noise reduction member (valve chamber side noise reduction member)
72 Noise reduction member (Valve side noise reduction member)
73 Presser plate (support member)
73a Through hole for the holding plate

Claims (7)

弁室及び第1弁口が設けられた弁本体と、前記弁室内に昇降自在に配在された弁軸と、該弁軸を昇降させるための昇降駆動部と、前記弁軸の下端部外周を包囲するように該弁軸に摺動自在に外挿され、該弁軸の昇降動作に連動して駆動される弁体と、を備え、
前記弁体に、リフト量に応じて前記第1弁口を流れる流体の流量を変化させる第1弁体部が設けられ、
前記弁体により前記弁軸の下端部周りに画成された連通空間を介して前記弁室と前記第1弁口とを連通する小流量通路が形成されるとともに、前記弁軸に、リフト量に応じて前記小流量通路に設けられた第2弁口を流れる流体の流量を変化させる第2弁体部が設けられ、
前記第2弁体部のリフト量が所定量以下のときは、前記第1弁体部により前記第1弁口が閉じられ、前記第2弁体部の前記第2弁口に対するリフト量に応じて流量が制御される小流量制御状態をとり、前記第2弁体部のリフト量が前記所定量を超えると、前記弁軸の上昇に伴って前記弁体が上昇せしめられて前記第1弁体部が前記第1弁口を開く大流量制御状態をとるように構成され、
前記小流量通路における前記第2弁口より前記弁室側及び前記第1弁口側に、前記小流量通路を流れる流体中の気泡を細分化する消音部材が配在され
前記弁体は、前記弁軸における前記第2弁体部より上側に摺動自在に外挿された筒状の連動部材と、該連動部材の下端開口に連結され、前記第1弁体部が設けられた弁体部材とで構成され、
前記小流量通路が、前記弁室と前記連通空間を連通すべく前記弁軸に設けられた上側連通路と、前記連通空間と、該連通空間と前記第1弁口を連通すべく前記弁体部材に設けられた下側連通路とから構成され、前記連通空間における前記弁体部材周りに前記第2弁口が形成されており、
前記消音部材が、前記弁軸における前記上側連通路及び前記弁体部材における前記下側連通路に配在され、
前記弁軸の下端面に、前記上側連通路に連通する逆凹字状の凹穴が形成され、該凹穴の内周側が前記第2弁口に接離するようにされていることを特徴とする流量調整弁。
A valve body provided with a valve chamber and a first valve port, a valve shaft vertically movable in the valve chamber, a lift drive unit for moving the valve shaft up and down, and an outer circumference of a lower end of the valve shaft. A valve element slidably inserted into the valve shaft so as to surround the valve shaft and driven in association with the lifting operation of the valve shaft,
The valve body is provided with a first valve body section that changes a flow rate of a fluid flowing through the first valve opening according to a lift amount,
A small flow passage that connects the valve chamber and the first valve opening is formed through a communication space defined by the valve body around the lower end of the valve shaft, and the valve shaft has a lift amount. A second valve body portion that changes the flow rate of the fluid flowing through the second valve opening provided in the small flow passage according to
When the lift amount of the second valve body portion is equal to or smaller than a predetermined amount, the first valve opening is closed by the first valve body portion, and the lift amount of the second valve body portion with respect to the second valve opening is changed. When the lift amount of the second valve body portion exceeds the predetermined amount, the valve body is lifted as the valve shaft is lifted, and the first valve is lifted. The body is configured to take a large flow rate control state in which the first valve opening is opened,
A muffling member that subdivides air bubbles in the fluid flowing through the small flow passage is disposed on the valve chamber side and the first valve opening side of the small flow passage from the second valve opening ,
The valve body is connected to a cylindrical interlocking member slidably inserted above the second valve body section of the valve shaft and a lower end opening of the interlocking member, and the first valve body section is It is configured with the provided valve body member,
The small flow passage connects the valve chamber and the communication space to each other. An upper communication passage provided in the valve shaft to communicate with the communication space, the communication space, and the valve body to communicate the communication space with the first valve opening. A lower communication passage provided in the member, the second valve opening is formed around the valve body member in the communication space,
The sound deadening member is disposed in the upper communication passage of the valve shaft and the lower communication passage of the valve body member,
An inverted concave recessed hole that communicates with the upper communication passage is formed on the lower end surface of the valve shaft, and the inner peripheral side of the recessed hole is brought into contact with and separated from the second valve port. Flow control valve.
前記消音部材は、前記弁軸の前記上側連通路における縦穴、及び/又は、前記弁体部材の前記下側連通路における縦穴に内装されていることを特徴とする請求項に記載の流量調整弁。 2. The flow rate adjusting device according to claim 1 , wherein the muffling member is installed in a vertical hole in the upper communication passage of the valve shaft and/or in a vertical hole in the lower communication passage of the valve body member. valve. 前記弁軸に、軸線方向に延びる嵌挿穴が設けられるとともに、該嵌挿穴に、筒状の管状部材が所定の隙間を持って嵌挿固定され、
前記管状部材の内部空間と、前記管状部材の上端部に設けられた横向きの貫通口と、前記管状部材と前記嵌挿穴との前記隙間と、前記弁軸における前記管状部材の外側に設けられた横穴とによって、前記弁軸の前記上側連通路が形成されており、
前記消音部材が、前記管状部材の内部空間に内装されていることを特徴とする請求項又はに記載の流量調整弁。
The valve shaft is provided with a fitting insertion hole extending in the axial direction, and a tubular tubular member is fitted and fixed in the fitting insertion hole with a predetermined gap,
The internal space of the tubular member, a lateral through hole provided at the upper end of the tubular member, the gap between the tubular member and the fitting insertion hole, and provided outside the tubular member in the valve shaft. And the upper lateral passage of the valve shaft is formed by
The flow control valve according to claim 1 or 2 , wherein the sound deadening member is internally provided in the internal space of the tubular member.
前記弁体部材の前記下側連通路に固定され、通し穴を持つ支持部材によって、前記消音部材が前記弁体部材の前記下側連通路に支持固定されていることを特徴とする請求項からのいずれか一項に記載の流量調整弁。 Is fixed to the lower communication passage of the valve body member, according to claim 1, by a support member having a through hole, wherein the silencing member is characterized in that it is supported by and fixed to the lower communication passage of the valve member The flow rate adjustment valve according to any one of 1 to 3 . 前記第1弁体部により前記第1弁口が閉じられ、かつ、前記第2弁体部により前記第2弁口が閉じられた状態で、前記第1弁口から前記弁室へ向かう流体の流れを許容するが、前記弁室から前記第1弁口へ向かう流体の流れを遮断する逆止弁体が設けられていることを特徴とする請求項1からのいずれか一項に記載の流量調整弁。 With the first valve body section closing the first valve opening and the second valve body section closing the second valve opening, the fluid flowing from the first valve opening toward the valve chamber permits flow but from the valve chamber according to any one of claims 1 to 4, characterized in that non-return valve body to block the flow of fluid to the first valve port is provided Flow control valve. 前記弁体に、前記逆止弁体が収納される収納室、該収納室と前記第1弁口とに連通するとともに前記第1弁口側と前記弁室側との差圧に応じて前記逆止弁体により開閉される逆止弁口、及び、該収納室と前記弁室とに常時連通する連通口が設けられていることを特徴とする請求項に記載の流量調整弁。 In the valve body, a storage chamber in which the check valve body is stored, the storage chamber communicates with the storage chamber and the first valve opening, and the storage chamber is connected to the first valve opening side and the valve chamber side according to a pressure difference between the first valve opening side and the valve chamber side. The flow control valve according to claim 5 , further comprising a check valve opening and closing by a check valve body, and a communication port that always communicates with the storage chamber and the valve chamber. 前記弁軸に、前記逆止弁体が収納される収納室、及び、該収納室と前記第1弁口とに連通するとともに前記第1弁口側と前記弁室側との差圧に応じて前記逆止弁体により開閉される逆止弁口が設けられ、前記収納室は前記弁室と前記連通空間を連通する上側連通路に連続して設けられて、前記収納室と前記弁室とが常時連通せしめられていることを特徴とする請求項に記載の流量調整弁。 A storage chamber in which the check valve body is stored in the valve shaft, and a storage chamber that communicates with the storage chamber and the first valve port and that corresponds to a pressure difference between the first valve port side and the valve chamber side. A check valve port that is opened and closed by the check valve body, and the storage chamber is continuously provided in an upper communication passage that communicates the valve chamber with the communication space, and the storage chamber and the valve chamber. The flow rate adjusting valve according to claim 5 , wherein and are always communicated with each other.
JP2016104867A 2016-05-26 2016-05-26 Flow control valve Active JP6745141B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016104867A JP6745141B2 (en) 2016-05-26 2016-05-26 Flow control valve
CN201710296143.5A CN107435757B (en) 2016-05-26 2017-04-28 Flow regulating valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016104867A JP6745141B2 (en) 2016-05-26 2016-05-26 Flow control valve

Publications (2)

Publication Number Publication Date
JP2017211034A JP2017211034A (en) 2017-11-30
JP6745141B2 true JP6745141B2 (en) 2020-08-26

Family

ID=60458998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016104867A Active JP6745141B2 (en) 2016-05-26 2016-05-26 Flow control valve

Country Status (2)

Country Link
JP (1) JP6745141B2 (en)
CN (1) CN107435757B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128001A (en) * 2018-01-25 2019-08-01 株式会社不二工機 Flow rate regulation valve
JP6966416B2 (en) * 2018-12-27 2021-11-17 株式会社鷺宮製作所 Valve device and refrigeration cycle system
JP6964888B2 (en) * 2019-03-08 2021-11-10 株式会社不二工機 Flow control valve and its assembly method
JP7107881B2 (en) * 2019-04-02 2022-07-27 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7179708B2 (en) * 2019-04-23 2022-11-29 株式会社鷺宮製作所 Valve gear and refrigeration cycle system
WO2021025023A1 (en) * 2019-08-08 2021-02-11 イーグル工業株式会社 Expansion valve
CN111810649B (en) * 2020-07-25 2022-02-11 浙江中德自控科技股份有限公司 Noise-reducing impurity-removing pressure-reducing regulating valve
JP7372885B2 (en) * 2020-08-07 2023-11-01 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7466485B2 (en) 2021-03-24 2024-04-12 株式会社鷺宮製作所 Motor-operated valve

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150081A (en) * 1987-12-04 1989-06-13 Saginomiya Seisakusho Inc Solenoid valve
JP2898906B2 (en) * 1995-06-29 1999-06-02 株式会社不二工機 Electric flow control valve
JP2002195696A (en) * 2000-12-21 2002-07-10 Matsushita Electric Ind Co Ltd Air conditioner
JP4103363B2 (en) * 2001-09-18 2008-06-18 三菱電機株式会社 Flow control device, refrigeration cycle device, and air conditioner
JP4077205B2 (en) * 2002-01-28 2008-04-16 株式会社鷺宮製作所 Bidirectional solenoid valve and air conditioner
JP2004360708A (en) * 2003-02-21 2004-12-24 Fuji Koki Corp Solenoid valve
JP2005003114A (en) * 2003-06-12 2005-01-06 Fuji Koki Corp Solenoid valve
JP4336279B2 (en) * 2004-09-02 2009-09-30 株式会社鷺宮製作所 Valve device and refrigeration cycle device
JP2006349274A (en) * 2005-06-16 2006-12-28 Saginomiya Seisakusho Inc Throttle device, flow control valve and air conditioner incorporating them
CN101520107B (en) * 2008-02-27 2012-04-11 浙江三花股份有限公司 Electromagnetic valve
CN102192358B (en) * 2010-03-09 2014-03-12 浙江三花股份有限公司 Solenoid valve
JP2012117584A (en) * 2010-11-30 2012-06-21 Saginomiya Seisakusho Inc Electric flow control valve
CN103511636B (en) * 2012-06-27 2016-04-06 浙江三花股份有限公司 A kind of electric expansion valve
CN203655389U (en) * 2014-01-08 2014-06-18 山东凝创气体设备有限公司 Novel compressed air rapid noise reduction and evacuation device
JP6692215B2 (en) * 2016-05-26 2020-05-13 株式会社不二工機 Flow control valve

Also Published As

Publication number Publication date
CN107435757B (en) 2020-12-15
JP2017211034A (en) 2017-11-30
CN107435757A (en) 2017-12-05

Similar Documents

Publication Publication Date Title
JP6692215B2 (en) Flow control valve
JP6745141B2 (en) Flow control valve
EP2924373B1 (en) Electrically operated valve
CN108626463B (en) Flow regulating valve
JP6478958B2 (en) Control valve
CN106168304B (en) Electric valve
JP5701825B2 (en) Flow control valve
JP6684599B2 (en) Flow path switching valve
JP6516960B2 (en) Motorized valve
JP6567336B2 (en) Motorized valve
JP5055013B2 (en) Motorized valve
JP2017129212A (en) Flow regulating valve
JP6721175B2 (en) Motorized valve
WO2019146345A1 (en) Flow regulating valve
JP6715879B2 (en) 3-way switching valve
JP7105489B2 (en) Flow switching valve
JP2019124318A (en) Motor-operated valve
JP5911706B2 (en) Motorized valve
JP5773834B2 (en) Motorized valve
JP6661683B2 (en) Motorized valve
JP6585380B2 (en) Motorized valve
WO2020095591A1 (en) Flow path switching valve
JP2020148344A (en) Motor-operated valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200803

R150 Certificate of patent or registration of utility model

Ref document number: 6745141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250