JP2004360708A - Solenoid valve - Google Patents

Solenoid valve Download PDF

Info

Publication number
JP2004360708A
JP2004360708A JP2003124783A JP2003124783A JP2004360708A JP 2004360708 A JP2004360708 A JP 2004360708A JP 2003124783 A JP2003124783 A JP 2003124783A JP 2003124783 A JP2003124783 A JP 2003124783A JP 2004360708 A JP2004360708 A JP 2004360708A
Authority
JP
Japan
Prior art keywords
valve
valve body
refrigerant
hole
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003124783A
Other languages
Japanese (ja)
Other versions
JP2004360708A5 (en
Inventor
Hitoshi Kibune
仁志 木船
Masayuki Imai
正幸 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2003124783A priority Critical patent/JP2004360708A/en
Publication of JP2004360708A publication Critical patent/JP2004360708A/en
Publication of JP2004360708A5 publication Critical patent/JP2004360708A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solenoid valve structured so that the refrigerant passing sound is reduced in the dehumidifying operation. <P>SOLUTION: The solenoid valve is opened and closed when its valve element 4 is contacted with and separated from a seat part 6a by a solenoid coil 2. The valve element 4 is provided with a bleeder hole 44 on its refrigerant influx side and a large diametric hole 43b and a small diametric hole 43c having communication with the bleeder hole 44. A first porous member 51 to make finer the bubbles is held on the refrigerant influx side of the valve element 4. A minor bubble holding passage D to hold the condition of the bubbles being made finer is formed on the refrigerant flowout side of the large diametric hole 43b and the small diametric hole 43c of the valve element 4 where a second porous member 52 to make finer the bubbles is installed in the small diametric hole 43c. The small bubble holding passage D is formed in a diffuser structure. The porous members 51 and 52 are made of foaming metal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和機等に使用する電磁弁に関する。
【0002】
【従来の技術】
従来、弁本体に設けたプランジャチューブの周囲にソレノイドコイルを設け、プランジャチューブ内において弁本体側に可動吸引子、他側にプランジャを設け可動吸引子とプランジャ間に開弁ばねで付勢された状態で、プランジャと弁体をカシメにより結合して収納した通電時閉型電磁弁が知られている。
【0003】
かかる従来の電磁弁を冷凍サイクルで除湿運転を行う空気調和機に用いた場合に、除湿運転の絞りとして弁体に孔を設けることが行なわれる。しかしながら、弁体に孔を設けた場合には、絞り作用に伴ない冷媒流動音が発生する場合があり、発生した場合には騒音となるという間題点があった。
【0004】
そこで、この騒音を低減する技術が下記の特許文献1に開示されている。この特許文献1には、除湿モードを有する空気調和機で除湿用絞り弁として使用される絞り装置として、絞り通路における冷媒通過音を低減し、長期間の使用においても除湿運転性能を得ることができる絞り装置が示されている。しかしながら、この装置においても冷媒通過音の低減について期待される効果をあげていないのが現状である。
【0005】
【特許文献1】特開2002−310540号公報
【0006】
【発明が解決しようとする課題】
そこで、本発明者らは、上記従来技術を考慮しつつ、更に冷媒通過音の低減を目的として技術の開発をおこなったもので、本発明は、弁体に気泡を細分化する部材を一体に組付けると共に、細分化された気泡が再び大きく成長しないようにして、冷媒流動音を一層低減し、騒音の発生を抑制した電磁弁を提供することを目的とする。また、本発明は、細分化された気泡を弁座等の通過壁面に衝突させることで冷媒の流速を小さくして、更に冷媒流動音を低減できる電磁弁を提供することを目的とする。
さらにまた、冷媒と冷凍機油とにより所謂スラッジが生成され、これがコンタミネーションとして上記部材に付着した場合には流路を塞ぎ、流量不足が生じるという不具合の発生することがあるが、本発明は係る不具合を防止できる電磁弁を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る電磁弁は下記の手段を講じた。即ち、
請求項1記載の電磁弁は、電磁コイルにより弁体を弁座部に対して接離させることにより弁の開閉を行う電磁弁において、上記弁体にはその冷媒流入側に孔とこの孔に連通する通路が設けられると共に、上記弁体の冷媒流入側に気泡を細分化する第1の部材が上記弁体に保持され、且つ、上記通路の冷媒流出側には、細分化された気泡の状態を保持させる流路が形成されていることを特徴とする。
【0008】
請求項2記載の電磁弁は、請求項1記載の電磁弁において、上記弁体内の上記通路内に気泡を細分化する第2の部材が配置されていることを特徴とする。
請求項3記載の電磁弁は、電磁コイルにより弁体を弁座部に対して接離させることにより弁の開閉を行う電磁弁において、上記弁体にはその冷媒流入側に孔とこの孔に連通する通路が設けられると共に、該通路内に気泡を細分化する第1の部材が設けられ、更に、前記通路の冷媒流出側には、細分化された気泡の状態を保持させる流路が形成されると共に、該流路の下流側に気泡を細分化する第2の部材が配置されていることを特徴とする。
請求項4記載の電磁弁は、請求項1乃至請求項3記載のいずれかの電磁弁において、上記細分化された気泡の状態を保持させる流路は、インデューサ部、オリフィス部及びディフューザ部が連続空間として形成される小気泡保持流路からなることを特徴とする。
【0009】
請求項5記載の電磁弁は、請求項4記載の電磁弁において、前記小気泡保持流路は、上記流路に配置された案内環部材と案内部材とから構成され、案内環部材の内周には、下方程狭くなる漏斗状の入口側傾斜部、均一内径の均一径部、及び、下方程拡くなる逆漏斗状の出口側傾斜部が連続して形成され、且つ、上記案内部材には上記案内環部材の内周部に挿通される柱状部が形成され、前記インデューサ部は、入口側傾斜部と上記柱状部の間に形成され、オリフィス部は均一径部と上記柱状部の間に形成され、且つ、ディフューザ部は出口側傾斜部と上記柱状部の間に形成される連続空間であることを特徴とする。
請求項6記載の電磁弁は、請求項1乃至請求項5記載のいずれかの電磁弁において、上記第1及び第2の部材が、発泡金属、多孔質プラスチック、金属の糸を編んだメッシュ、また複数の孔を穿設した金属板からなることを特徴とする。
【0010】
請求項7記載の電磁弁は、弁室を有すると共に、一端を閉塞したパイプ部を有する弁本体と、弁本体のパイプ部の外周に装置された電磁コイルと、弁本体のパイプ部の内部に固定された吸引子と、吸引子に弁本体のパイプ部の長手方向に摺動自在に設けた棒状の弁体と、弁体に連結されたプランジャと、弁本体の開口端に設けた弁座シート部材と、吸引子とプランジャとの間に配設された弁体を弁座シート部材と反対方向の開弁方向に向って付勢する開弁用付勢手段とを備え、上記弁座シート部材に弁本体の弁室の内部に臨んで弁体の離接する弁座を形成し、前記電磁コイルにより弁体を弁座部に対して接離させることにより、弁の開閉を行う電磁弁において、上記弁体には上記弁体の冷媒流入側に孔とこの孔に連通する通路が設けられると共に、上記弁体の冷媒流入側又は冷媒流出側、及び、上記通路内に気泡を細分化する部材が設けられ、且つ、上記通路には細分化された気泡の状態を保持させる小気泡保持流路が形成されていることを特徴とする。
請求項8記載の電磁弁は、請求項1乃至請求項7記載のいずれかの電磁弁において、上記弁体内の上記通路の出口から出る冷媒の流出方向が、上記弁体が当接する弁座部の内壁面と交わるように形成されていることを特徴とする。
かかる本発明の電磁弁によれば、気泡を細分化する部材により冷媒中の気泡を細分化でき、しかも、細分化された気泡の状態を保持させる流路が形成されているので、冷媒流動音を抑制し、騒音の発生を防止できる電磁弁を実現できる。また、細分化された気泡の状態を保持させたまま、冷媒の流速を下げることで、一層の冷媒流動音の抑制を図る。
【0011】
請求項9記載の電磁弁は、請求項3乃至請求項8記載のいずれかの電磁弁において、上記第1の部材の幅に対して、上記第2部材の幅を大としたことを特徴とする。
かかる特徴によれば、冷媒と冷凍機油とにより、所謂スラッジが生成され、これがコンタミネーションとなった場合にそのコンタミネーションが第2の部材の表面に付着して流路を塞ぎ、流量不足となる恐れが生じることがあるが、第1の部材に対し第2の部材の体積或いは表面積を増大させることで、冷媒の運動エネルギーを低下させることに加えて、コンタミネーションが仮に付着しても、十分な流量を確保できる。
【0012】
請求項10記載の電磁弁は、請求項1乃至請求項9記載のいずれかの電磁弁において、上記第1の部材に対して、冷媒の流入方向をその中心位置から偏心させることを特徴とする。
請求項11記載の電磁弁は、請求項3乃至請求項10記載のいずれかの電磁弁において、上記第2の部材に冷媒を流入させるに当って、その流入位置を該第2の部材の中心位置から偏心させると共にその流入方向を傾斜させることを特徴とする。
かかる請求項9,請求項10,或いは請求項11記載の発明の特徴によれば、冷媒が、気泡を細分化する第1の部材及び第2の部材中を、より長い距離を経て通過させることで、冷媒流動音を一層低減し、騒音の発生を一層抑制する。
【0013】
【実施形態1】
先ず、実施形態1について、図1乃至図3に従って説明する。図1はその電磁弁の開状態の縦断面図、図2は図1のA部の拡大図、図3は閉状態の縦断面図である。なお、下記の説明において、図面との関係において上下左右の表現を用いるが、実際の位置関係はこれに限るものではない。
【0014】
本発明の電磁弁は、図1に示すように、弁本体1の内部に弁室10を有すると共に、弁本体1の上部には吸引子3の係止部3aを介して、一端を閉塞したパイプ部3bが装着されており、上記パイプ部3bの外周には電磁コイル2が装備され、パイプ部3bの内部には、吸引子3に対してパイプ部3bの長手方向に摺動自在に棒状の弁体4が設けられている。また、この電磁弁は、パイプ部3b内に、弁体4に連結されたプランジャ5と、弁本体1の下部開口端に設けた弁シート6と、吸引子3とプランジャ5との間に配設されたコイルスプリング7と、を備えている。なお、コイルスプリング7は、弁体4を弁シート6と反対方向の開弁方向に向って付勢する開弁用付勢手段である。
【0015】
弁シート6には、図1に示すように、弁本体1の弁室10の内部に臨んで弁体4の離接する弁座部6aが形成され、弁シート6は弁本体1に溶接・固着されている。なお、弁本体1と弁シート6はステンレススチールよりなり、弁本体1及び弁シート6はプレス加工により成形されている。
【0016】
上記パイプ部3bの外周には、図1に示すように、電磁コイル2を収容するコイルケース8が装備され、コイルケース8に固定された押圧係止部材9が弁本体1のパイプ部3bに形成した係止凹部3dに係止され、コイルケース8が押圧係止部材9を介して弁本体1のパイプ部3bに固定されている。
【0017】
弁本体1の円筒状の周壁1aの内部には、図1に示すように、弁室10が形成され、弁本体1の周壁1aには垂直な中心軸線と直交する方向にパイプ嵌合孔1bが設けられ、入口側パイプ100が接続・溶着されている。
また、弁本体1の周壁1aの下端は、弁シート6が装着される。該弁シート6は、パイプ状の弁座部6aと、該弁座部6aの下部に形成されたパイプ嵌合部6bと、該パイプ嵌合部6bの外周部に形成されたフランジ6cと、からなり、該フランジ6cの外周部に周壁1aが溶着される。
【0018】
また、弁本体1の周壁1aの上端には吸引子3が装着される。該吸引子3はその下部に段部3cが形成され、該段部3cの下部には弁本体1の周壁1aの上端が装着されている。また、前記吸引子3の上部外周に形成されている係止凹部3dにはパイプ部3bの下部が装着されている。また、このパイプ部3bの上端は閉塞されている。
【0019】
上記弁シート6下部に形成されたパイプ嵌合部6bには出口側パイプ110が接続・溶着されている。弁本体1の上部には、図1に示すように、弁室10の上側に円筒状の吸引子3が配設され、該吸引子3の外周面には係止凹部3dが形成され、更に吸引子3の上部外周部にはパイプ部3bがカシメ加工により固定されている。また、上記吸引子3の下部には下部の弁室10に連通する凹部が形成されて上部弁室11を構成している。
【0020】
吸引子3には、図1に示すように、これを貫通する例えば真鍮製の棒状の弁体4がパイプ部3bの長手方向に沿って摺動自在に設けられ、弁体4の下端部には弁シート6の弁座部6aに離接する弁部40が形成され、弁体4の上端部には小径部46が形成されている。この小径部46がプランジャ5下部の固定用孔5aに嵌合・固定されることになる。
【0021】
弁部40には、その上方の弁棒部分より径大に形成され、その段部となる肩部41が形成されると共にこれを介して円筒状の側壁部42が形成され、また、該側壁部42の内部には空間部43aが形成される。
【0022】
上記弁部40には、図2に示すように、その中心部において、空間部43aに連通する径大孔43b、及び該径大孔43bに連通する径小孔43cが形成され、この径小孔43cに連通して横断面積が小さい孔、即ち、ブリード孔44が横方向(したがって、径小孔43cの軸線方向と直角方向)に形成されている。そして、前記ブリード孔44は両端部に入口側径大部44aが形成され、該入口側径大部44aを介して上部弁室11に開口している(図1の開弁状態)。但し、図3に示す閉弁状態においては、弁室10で開口する。
【0023】
上記弁部40の肩部41の上部でブリード孔44の開口に臨ませて冷媒中の気泡を細分化する部材として第1の多孔質部材51が保持される。この第1の多孔質部材51は、肩部41の上部に載置され、保持突部48により支持される。即ち、この第1の多孔質部材51は、所定厚さの円環形状に形成され、その円環の上面内周部を弁部40の保持突部48にてカシメ固定されることにより弁部40に固定・保持される。
【0024】
更に、弁部40の径小孔43c及び径大孔43b内には第2の多孔質部材52が内挿されている。該第2の多孔質部材52は異径の円柱状で縦断面逆T形に形成されており、その大径部は径大孔43b内に配置され、小径部は径小孔43c内に配置される。また、上記多孔質部材52は、下方から後述の案内部材60の柱状部61に支持される。なお、多孔質部材51とブリード孔44との間には、上下幅の大きい隙間(入口側径大部44a)が形成され、また、多孔質部材52とブリード孔44との間には、上下幅の大きい隙間43fが形成されていることから、多孔質部材51,52内での冷媒の流路範囲が広がり、気泡の細粒化が促進される。
【0025】
上記各多孔質部材51,52は、例えば発泡金属が用いられる。その他、多孔質プラスチックを用いてもよく、ステンレス、真鍮等の金属の糸を編んでメッシュ状に所定の厚さに成形した金網部材(例えば東亜鉄網株式会社製商品名「アキュームメッシュ」)を用いてもよい。さらには所定の厚さの金属板に所定数の貫通穴を形成したものを用いてもよい。なお、これらの多孔質部材の素材は後述の実施形態2乃至実施形態4においても同様である。
【0026】
更に、弁部40における径大孔43b及び空間部43a内には、細分化気泡の状態を保持させるための小気泡保持流路Dが、案内環部材47及び案内部材60によって形成される。
【0027】
上記案内環部材47は所定厚みの環状部材からなり、その内面は下方程狭くなる漏斗状の入口側傾斜部47a、該入口側傾斜部47aに連続する均一内径の均一径部47b、及び、下方程拡くなる逆漏斗状の出口側傾斜部47cと、が上方から下方に順次形成されている。また、この案内環部材47は図1に示すように、弁体4の先端45でカシメ固定されている。
【0028】
また、上記案内部材60は、円盤状のフランジ部63と、該フランジ部63の軸心位置に立設された柱状部61と傾斜部62と、からなる。上記フランジ部63には、図2に示すように、通孔64が複数個形成されており、弁部40内の冷媒はこの通孔64から出口側パイプ110に直接流出することになる。
前記案内部材60に配置される柱状部61は、上面が半球状の円柱体からなり、上記均一径部47bの内面とは隙間(オリフィス)を形成させるために、僅かに小さい径として形成されている。また、柱状部61に連続する傾斜部62は、下方ほど径大となっている。
したがって、上記案内環部材47と案内部材60との間にインデューサ部(前記下方程狭くなる漏斗状の入口側傾斜部47aと柱状部61の間)、均一流路面積のオリフィス部(前記均一内径の均一径部47bと柱状部61の間)、及び、ディフューザ部(前記下方程拡くなる逆漏斗状の出口側傾斜部47cと柱状部61の間)が連続空間として形成されることになる。そして、これらの間を流動する冷媒は、そのエネルギは比較的緩やかに速度エネルギに変換され、急激な収縮・膨張が行われないことから、冷媒内に気泡が含まれている場合にも、気泡の急激な成長(膨張)は発生しない。したがって、冷媒中に細分化された気泡があっても、大きく成長させないことから、これらの部分を本発明では、「小気泡保持流路D」と称する。
【0029】
また、弁本体1のパイプ部3bの上端寄りの内部には、図1に示すように、円筒状のプランジャ5が移動自在に配設され、プランジャ5の端壁には垂直な中心軸線上に沿って弁体4の小径部46を固定するための固定用孔5aが設けられている。なお、符号5bは均圧孔である。
【0030】
該固定用孔5aには、図1に示すように、下方より弁体4の小径部46が嵌入され、弁体4の小径部46の先端にカシメ止め加工を施すことにより、プランジャ5は弁体4の小径部46に連結されている。
【0031】
上記弁体4の外側には、図1に示すように、吸引子3とプランジャ5との間に開弁用のコイルスプリング7が配設され、プランジャ5はコイルスプリング7の付勢力により吸引子3と離間する方向に常時付勢されている。
【0032】
弁シート6は、図1に示すように、弁本体1と同一中心軸線上に円筒状に形成され、その上端には入口側パイプ100の中心軸線に近づけて弁座部6aが形成され、弁シート6の下端には段部を介してパイプ嵌合部6bが形成され、該パイプ嵌合部6bの端縁には外方に向って張出したフランジ6cが形成されている。
【0033】
弁本体1の弁室10には、図1に示すように、弁部40に臨んで弁シート6の弁座部6aが配置され、弁本体1の下縁部には弁シート6のフランジ6cが当接され、両部分はアーク溶接、例えばTIG溶接がなされている。
【0034】
弁シート6には、図1に示すように、出口側パイプ110が接続され、弁シート6のパイプ嵌合部6bには下方より出口側パイプ110の一端部が嵌入され、水素炉中銅ろう付け手段などの雰囲気ろう付けにより溶着されている。
【0035】
弁シート6の弁本体1に対する組付けは、まず、弁シート6の中心軸線が弁本体1の周壁1aの中心軸線と一致するように位置合わせし、弁シート6の弁座部6aを弁本体1の弁室10の内部に下方より挿入すると共に、弁シート6のフランジ6cを弁本体1の下縁部に当接し、TIG溶接手段により溶着して組付けられる。
【0036】
上記パイプ部3bの外側には、図1に示すように、ボビン120が嵌合装着され、ボビン120の周囲には電磁コイル2が巻回され、ボビン120はコイルケース8の内部に収容されている。上記ボビン120には、図1に示すように、リード線140が接続され、電磁コイル2にはリード線140を介して通電される。
【0037】
また、コイルケース8の互いに対向する水平な上壁80及び下壁81には垂直な同一中心軸線上に沿って貫通孔82及び貫通孔83がそれぞれ設けられ、パイプ部3bが挿通されている。
【0038】
また、コイルケース8の上壁80の上部には、図1に示すように、板金製の押圧係止部材9が配設され、該押圧係止部材9は、平板状の本体90を有し、その一端には下方に向って直角に折曲した垂下部92が形成され、また、押圧係止部材9の本体90の他端には上方に向って直角に折曲した立上り部94が形成され、該の立上り部94には弁本体1のパイプ部3bの係止凹部に係合する突起95が形成されている。
【0039】
コイルケース8の上壁80の上部には、図1に示すように、押圧係止部材9の本体90が載置され、リベット150を介してコイルケース8に固定されている。
【0040】
次に、本発明の実施形態1の作用について説明する。
先ず、除湿運転について説明する。この電磁弁は、電磁コイル2に通電すると、吸引子3に電磁コイル2の通電により磁力が発生し、吸引子3がプランジャ5を下方に向って吸引し、プランジャ5が弁本体1のパイプ部3bの内部を吸引子3の吸引によりコイルスプリング7の付勢力に抗しながら下方に向って移動すると同時に、弁体4が吸引子3に案内されながらプランジャ5と共に弁シート6の弁座部6aに向って下方に移動し、図3に示すように、弁体4の弁部40が弁シート6の弁座部6aに密接し、電磁弁は閉弁状態となる。
【0041】
かかる閉弁状態において、入口側パイプ100と、出口側パイプ110とは、弁室10、上部弁室11、入口側径大部44a、ブリード孔44、径小孔43c、径大孔43b、及び空間部43aを介して連通する。そこで、所定冷凍サイクルの除湿運転時において、冷媒を入口側パイプ100から流すと、弁体4にはブリード孔44が設けてあるので、絞り作用を受ける上記冷媒は分散され、冷媒の流量及び運動エネルギーが小さくなり、冷媒の流動音は低減される。しかも、絞り作用を受けて径小孔43cから出口側パイプ110に流出する冷媒に気泡が発生しても、冷媒は気泡を細分化する部材として第1多孔質部材51及び第2多孔質部材52を通過する際に、冷媒中の気泡は細分化され、気泡による冷媒の流動音が低減される。
更に、本発明は前記小気泡保持流路Dを設け、細分化後の冷媒を通過させることから、細分化された気泡は、再び気泡が成長して大きくなることなく、出口側パイプ110に流入し、上記冷凍サイクルにおいて冷却及び除湿を行う。
【0042】
また、電磁コイル2への通電を遮断すると、吸引子3に磁力が発生せず、吸引子3は吸引力を失い、プランジャ5が弁本体1のパイプ部3bの内部をコイルスプリング7の付勢力により吸引子3と反対方向の上方に向って移動すると同時に、弁体4が吸引子3に案内されながらプランジャ5と共に上方に向って移動し、図1,2に示すように、弁部40が弁シート6の弁座部6aから離間し、流体が入口側パイプ100から弁室10及び弁シート6の内部を通って出口側パイプ110へと流通し、電磁弁は開弁操作を行う。
符号を追加して、説明を加える。おおきな隙間を形成したことで、流路面積が大きくなる。流路範囲が拡大することで、耐久性を向上できる。
【0043】
【実施形態2】
次に、実施形態2について説明する。
図4は実施形態2に係る電磁弁の開状態の縦断面図、図5は図4のB部の拡大図、図6は同電磁弁の閉状態の縦断面図である。
図4乃至図6に示す実施形態2は、図1乃至図3に示す実施形態1において、第1多孔質部材51に代えて、小気泡保持流路Dにおける柱状部61の下流側に多孔質部材53に設けた場合を示し、この場合においても、冷媒流動音を低減させることができる。
【0044】
したがって、実施形態2においては、実施形態1とは多孔質部材を設ける位置が異なり、他の構成は同一であるので、図1と同一部分には同一の符号を付して説明を省略する。
実施形態2において、特に図5に示すように、気泡を細分化する部材として多孔質部材53を、空間部43a内において案内部材60’の傾斜部62’の外周部にリング状に形成したものを配置している。この多孔質部材53は案内部材60におけるフランジ部63’の上部に載置され、空間部43aを横断する状態で弁体4に圧入して配置されている。また、フランジ部63’の上面は多孔質部材53を支持させるために二段の平面に形成されている。
【0045】
かかる電磁弁においても、実施形態1と同じく電磁コイル2に通電すると図6に示す如く電磁弁は閉弁操作となる。かかる閉弁状態において、入口側パイプ100と出口側パイプ110とは、弁室10、上部弁室11、ブリード孔44、径小孔43c、径大孔43b、及び空間部43aを介して連通する。
そこで、所定冷凍サイクルの除湿運転時において、冷媒を入口側パイプ100から流すと冷媒中の大きな気泡は、第1の多孔質部材52を通過する際に細分化され、その細分化された状態で小気泡保持流路Dに流入し、更に、第2の多孔質部材53を通過して、気泡が細分化された状態のまま通孔64を介して出口側パイプ110に流出する。
【0046】
即ち、冷媒は弁部40内のブリード孔44等により分散され、しかも冷媒中の気泡は細分化されているので、冷媒の流動音は低減され空間部43a内に流入する。この空間部43a内で、更に気泡は多孔質部材53を通過する際に更に細分化され、出口側パイプ110に流入するので、気泡による冷媒流動音は低減され、冷凍サイクル内で冷却・除湿作用を行わせることができる。
【0047】
なお、実施形態2において、多孔質部材53として実施形態1と同様に発泡金属、多孔質プラスチック又はアキュームメッシュ等を用いることができるのは勿論である。さらには、真鍮、ステンレス材等の金属板に所定数の貫通穴を形成したものを用いることができる。
【0048】
【実施形態3】
次に、実施形態3について説明する。図7は実施形態3に係る電磁弁の開状態の縦断面図、図8は図7のC部の拡大図である。なお、実施形態3の説明において、図1乃至図3に示す実施形態1及び図4乃至図6に示す実施形態2と同一構成要素については、図7及び図8に同一の符号を付して説明を省略する。
【0049】
図7及び図8に示す実施形態3は、図4乃至図6に示す実施形態2に対して下記の点で異なる。即ち、案内部材60”の柱状部61”を均一径の柱状体とし、その上端部を弁体4の径小部43cの更に上方に形成された支持孔43dに圧入により係合させる。また、この支持孔43dには必要に応じて冷媒の抜孔43eが形成される。上記径小部43c内には環状の多孔質部材54が嵌合される。また、該多孔質部材54と柱状部61との間には、冷媒の流動性を向上させるために隙間43gが形成される。
【0050】
上記多孔質部材54を下方から支持させるように配置される案内環部材47’は、ブリード孔44の下方近傍からフランジ63’の上面まで上下に長く形成され、その結果、小気泡保持流路Dが上下に長く形成されると共に、案内環部材47’の下部には出口側径大部47dを介して第3の多孔質部材53が保持されている。また更に、第3の多孔質部材53とフランジ部63’との間には径大隙間部64aが形成されている。
【0051】
実施形態3は、特に図8に示すように、気泡を細分化する部材として多孔質部材51,53,54を3個所とすること、及び、各多孔質部材51,53,54の流路の前後に、径大部44a,44b、隙間43g、径大部47d,64aを形成することで、各多孔質部材51,53,54内での流路を拡大させ、泡の細分化を一層確実とし、冷媒流動音を一層低減させることができる。
【0052】
また、案内環部材47’は、ブリード孔44の下方近傍からフランジ63’の上面まで上下に長く形成され、小気泡保持流路Dが上下に長く形成されることで、インデューサ部、オリフィス部及びディフューザ部が連続空間として、より長く形成されるから、流路断面積の変化が緩慢となり、泡の成長が少ないという効果がある。
【0053】
また、実施形態3の電磁弁を構成する案内部材60”、案内環部材47’、多孔質部材33,54は、上記柱状部61”を軸とする同軸配置となっていることから、組立性、一体性、機能の安定性が良いという付随的効果もある。
【0054】
【実施形態4】
次に、実施形態4について説明する。図9は実施形態4に係る電磁弁の要部拡大図、図10は実施形態4に係る電磁弁の閉状態の縦断面図である。
実施形態4は、図7及び図8に示す実施形態3の通孔64を、図9に示すように、傾斜させて穿設することで、冷媒の流出方向が拡大するに斜孔64bとしている。そして、この点以外は、実施形態3と同じであることから、その他の構成部分は、図9及び図10に図7及び図8に付した符号と同一符号を付すことで説明を省略する。
【0055】
実施形態4は上記構成により、斜孔64bから流出する冷媒を弁座部6aの内側の側壁にぶつけることで、冷媒の運動エネルギを減少させ、一層騒音をなくするようにしたものである。なお、このような斜孔64bは実施形態1,2にも適用できることはいうまでもない。
【0056】
【実施形態5】
さらに、実施形態5について説明する。図11は実施形態5に係る電磁弁の開状態の縦断面図、図12は図11のE部の拡大図である。
実施形態5は、実施形態3に示す通孔64を形成する位置を多孔質部材53’の上流側に配置したことを特徴としている。即ち、実施形態5においては、案内環部材47’の下部つまり下流側に形成された径大隙間部47eと案内部材60bの下部に設けられている円盤状のフランジ部63’に形成された径大隙間部64aとの間を連通する通孔64’が複数個、例えば6個設けられている。
【0057】
さらに、径大隙間部47eの下流側に通孔64’、さらに、径大隙間部64aの下流側に多孔質部材53’が設けられ、該多孔質部材53’は側壁部42’に設けられると共に弁部40bの端部にてカシメ固定され、通孔64’を介して流れる冷媒が多孔質部材53’を通過して出口側通路110へ流出する。
【0058】
また、実施形態5では、案内部材60bの柱状部61aの上流側に多孔質部材54aを設け、多孔質部材51aを通過した冷媒は側壁部42’に設けられた径大部44cが形成する空間を経てブリード孔44’を通り、側壁部42’に設けられた径大部44dが形成する空間を経て多孔質部材54aに流入する。なお、ブリード孔44’は上下に並設されて形成されている。そして、多孔質部材54aを通過した冷媒は、案内環部材47’の上部つまり上流側に形成された入口側径大部47fが形成する空間を経て案内環部47’と案内部材60bの柱状部61aとで形成される小気泡保持流路Dに流入する。
【0059】
かかる構成の実施形態5によれば、冷媒中の気泡を細分化する部材として多孔質部材51a,54a,53’を3個所とすること、及び、各多孔質部材51a,54a,53’の流路の前後に、径大部44c,44d、径大部47f,47eを形成することで、各多孔質部材51a,54a,53’内での流路を拡大させ、泡の細分化を一層確実とし、冷媒流動音を一層低減させることができる。しかも、通孔64’を多孔質部材53’の上流側に配置することにより、冷媒が通孔64’を通過する際に冷媒流動音が発生する場合が生じても、多孔質部材53’を通過することで低減することができる。
【0060】
なお、図11及び図12において、図7及び図8と同一部分には同一符号を付して説明を省略している。
【0061】
【実施形態6】
さらに、実施形態6について図面に従って説明する。図13は実施形態6に係る電磁弁の開状態の縦断面図、図14は同電磁弁の要部拡大図、図15は図14のB−B線断面図、図16はフランジ部の平面図、図17は図16のA−A線断面図、図18は図14のB−B線断面の別例図である。なお、実施形態6の説明において、他の実施形態1乃至実施形態5と同一の構成要件を具備する点については、図13乃至図18において、図1乃至図12に付した符号と同一の符号を付すことによって、その他の構成要件の説明を省略する。
【0062】
実施形態6の特徴は、実施形態5の電磁弁と比べると、第2の部材を構成する多孔質部材53’の幅を、第1の部材を構成する多孔質部材54bの幅に比べて大きくしたこと、ブリード孔44”の開孔方向を多孔質部材54bの中心部方向以外の方向に穿設したこと、及び、案内部材60cのフランジ部63aに穿設される斜孔64b’を円周方向に傾斜させて穿設した点にある。
【0063】
先ず、実施形態6の第1の特徴である多孔質部材53’の幅について説明すると、図14に示すように、主として冷媒中の気泡を細分化する多孔質部材54bの体積に対して、主として、騒音の発生を抑止・低下させる多孔質部材53’の体積を増大させた点にある。そのために、上記多孔質部材54bの幅に対して、多孔質部材53’の幅を増大させた点にあり、本実施形態6は、このような第1の特徴により、第2の部材である多孔質部材53’における冷媒の通過流路を拡大させて冷媒が持つ運動エネルギを低下させることで、一層の消音効果を向上させることができる。
しかも、冷媒と冷凍機油とにより所謂スラッジが生成され、これがコンタミネーションとなった場合には、そのコンタミネーションが第2の部材の表面に付着することがあり、流路を塞ぎ、流量不足となる恐れが生じるが、本実施形態では、第1の部材に対し第2の部材の表面積を拡大することで、冷媒の運動エネルギーを低下させることに加えて、コンタミネーションが付着しても、十分な流量を確保できるのである。
【0064】
次に、実施形態6の第2の特徴について説明すると、図15に示すように、多孔質部材54bに対して冷媒の流入孔として弁部40cに形成されるブリード孔44”の孔軸方向を、多孔質部材54bの中心部に向けて形成するのではなく、多孔質部材54bの中心部以外の方向に向けて形成するものである。即ち、ブリード孔44”の形成位置をそのブリード孔44”の流路が多孔質部材54bの中心部から外れる方向に形成するのである。なお、図ではブリード孔44”を複数個、例えば、2個形成する場合を示している。
このような構成により、ブリード孔44”から多孔質部材54bに流入した冷媒は、多孔質部材54b内を通過する際に多孔質部材54bとの接触面積・時間を増加させることができ、消音機能を一層向上させる点にある。なお、このような技術思想は、例えば、図18(A)に示すように、ブリード孔44”を多孔質部材54bの外周面の接線方向に形成すること、或いは、図18(B)に示すように、より多数のブリード孔44”を複数個形成することなどによっても実現できる。
なお、実施形態6の上記第2の特徴を省略して、ブリード孔44”の流路を多孔質部材54bの中心部に向かう方向に形成し、第1の特徴である多孔質部材53’の体積及び表面積を、多孔質部材54bのそれより増大させることのみとしてもよいことはいうまでもない。
【0065】
次に、実施形態6の第3の特徴である案内部材60cのフランジ部63aに穿設される孔(実施形態5では、通孔64’)を、円周方向に傾斜させて穿設した斜孔64b’とした点である。即ち、図16及び図17に示すように、案内部材60bの下部に形成されている円盤状のフランジ部63aには、複数個の、例えば6個の斜孔64b’が形成される。
【0066】
また、この斜孔64b’は、フランジ部63aの円周方向に且つ斜めに穿設されていることから、冷媒はその下部に位置する多孔質部材53’内を長い流路で多孔質部材53’と接触することになるから、その保持する運動エネルギがより多く消耗され、冷媒中の気泡が細分化され消音効果を一層向上させることができる。
【0067】
なお、上記実施形態6の特徴を説明したが、これらの特徴は、各々他の発明或いは他の実施形態に個別に適用でき、それぞれの作用・効果を発揮することは言うまでもない。
【0068】
【発明の効果】
本発明によれば、冷媒中の気泡を細分化する部材、及び、細分化された状態の気泡を保持させる小気泡保持流路Dを弁体に設けることにより、冷媒の流動音を低減し、騒音を抑制することができる電磁弁を実現できる。また、上記構成に加えて、小気泡保持流路Dの下流側にも冷媒中の気泡を細分化する部材を配置することで、上記冷媒の気泡を細分化することが促進され、騒音の抑制効果が一層促進される。
また、冷媒と冷凍機油とにより所謂スラッジが生成され、これがコンタミネーションとして上記部材に付着した場合でも流路を塞ぎ、流量不足が生じることがない。
【図面の簡単な説明】
【図1】実施形態1に係る電磁弁の開状態の縦断面図。
【図2】図1のA部の拡大図。
【図3】実施形態1に係る電磁弁の閉状態の縦断面図。
【図4】実施形態2に係る電磁弁の開状態の縦断面図。
【図5】図4のB部の拡大図。
【図6】実施形態2に係る電磁弁の閉状態の縦断面図。
【図7】実施形態3に係る電磁弁の開状態の縦断面図。
【図8】図7のC部の拡大図。
【図9】実施形態4に係る電磁弁の要部拡大図。
【図10】実施形態4に係る電磁弁の閉状態の縦断面図。
【図11】実施形態5に係る電磁弁の開状態の縦断面図。
【図12】実施形態5に係る電磁弁の要部拡大図。
【図13】実施形態6に係る電磁弁の開状態の縦断面図。
【図14】図13の要部拡大図。
【図15】図14のB−B線断面図。
【図16】電磁弁のフランジ部の平面図。
【図17】図16のA−A線断面図。
【図18】図14のB−B線断面の別例図。
【符号の説明】
D・・(細分化気泡の状態の)小気泡保持流路
1・・弁本体 1a・・周壁 1b・・パイプ嵌合孔 2・・電磁コイル
3・・吸引子 3a・・係止部 3b・・パイプ部
3c・・段部 3d・・係止凹部 4・・弁体 5・・プランジャ
5a・・固定用孔 5b・・均圧孔 6・・弁シート 6a・・弁座部
6b・・パイプ嵌合部 6c・・フランジ 7・・コイルスプリング
8・・コイルケース 9・・押圧係止部材 10・・弁室 11・・上部弁室
40,40’,40”,40a,40b,40c・・弁部 41・・肩部
42,42’,42”・・側壁部
43a・・空間部 43b・・径大孔(通路) 43c・・径小孔(通路)
43d・・支持孔 43e・・抜孔 43f,43g・・隙間
44,44’,44”・・ブリード孔 44a・・入口側径大部
44b・・出口側径大部 44c・・径大部 44d・・径大部
44e・・径大部(実施形態6) 45・・先端 46・・小径部
47,47’,47”・・案内環部材 47a・・入口側傾斜部
47b・・均一径部 47c・・出口側傾斜部 47d・・出口側径大部
47e・・径大隙間部 47f・・入口側径大部
48・・保持突部(カシメ部)
51,51a,51b,52,53,53’,54,54a,54b・・
多孔質部材 60,60’,60”・・案内部材
60a・・案内部材(実施形態4) 60b・・案内部材(実施形態5)
60c・・案内部材(実施形態6) 61,61” ,61a・・柱状部
62,62’・・傾斜部 63,63’,63a・・フランジ部
64,64’・・通孔 64a・・出口側径大部 64b,64b’・・斜孔
80・・上壁 81・・下壁 82・・貫通孔
83・・貫通孔 84・・垂直壁 90・・本体
92・・垂下部 94・・入口側立上り部 95・・突起
100・・入口側パイプ 110・・出口側パイプ 120・・ボビン
140・・リード線 150・・リベット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solenoid valve used for an air conditioner or the like.
[0002]
[Prior art]
Conventionally, a solenoid coil is provided around a plunger tube provided in a valve body, and a movable suction element is provided on the valve body side and a plunger is provided on the other side in the plunger tube, and is biased by a valve-opening spring between the movable suction element and the plunger. There is known an energized closed solenoid valve in which a plunger and a valve body are connected and housed by caulking in a state.
[0003]
When such a conventional electromagnetic valve is used in an air conditioner that performs a dehumidifying operation in a refrigeration cycle, a hole is provided in a valve body as a throttle for the dehumidifying operation. However, in the case where a hole is provided in the valve body, there is a case where refrigerant flow noise is generated due to the throttling action, and when it is generated, there is a problem that noise occurs.
[0004]
Therefore, a technique for reducing this noise is disclosed in Patent Document 1 below. This patent document 1 discloses that as a throttle device used as a dehumidifying throttle valve in an air conditioner having a dehumidifying mode, it is possible to reduce refrigerant passage noise in a throttle passage and obtain dehumidifying operation performance even in long-term use. A possible aperture device is shown. However, at present, this device does not provide the expected effect of reducing the refrigerant passage noise.
[0005]
[Patent Document 1] JP-A-2002-310540
[0006]
[Problems to be solved by the invention]
In view of the above, the present inventors have developed a technique for the purpose of further reducing the refrigerant passage noise while considering the above-described conventional technique.The present invention integrates a member for dividing air bubbles into a valve body. It is an object of the present invention to provide an electromagnetic valve in which the flow of the refrigerant is further reduced and the generation of the noise is suppressed while preventing the fragmented air bubbles from growing large again while being assembled. Another object of the present invention is to provide an electromagnetic valve capable of reducing the flow velocity of the refrigerant by colliding the fragmented air bubbles with a passage wall surface such as a valve seat, and further reducing the refrigerant flow noise.
Furthermore, when a so-called sludge is generated by the refrigerant and the refrigerating machine oil and adheres to the above-mentioned member as a contamination, a flow path is blocked, and a problem of insufficient flow rate may occur. It is an object of the present invention to provide a solenoid valve capable of preventing a malfunction.
[0007]
[Means for Solving the Problems]
To achieve the above object, the solenoid valve according to the present invention employs the following measures. That is,
The solenoid valve according to claim 1 is a solenoid valve that opens and closes the valve by moving a valve body toward and away from a valve seat by an electromagnetic coil. A communication passage is provided, and a first member for dividing air bubbles on the refrigerant inflow side of the valve body is held by the valve body, and a refrigerant outflow side of the passage is provided with a divided air bubble. A flow path for maintaining the state is formed.
[0008]
According to a second aspect of the present invention, there is provided the electromagnetic valve according to the first aspect, wherein a second member for dividing air bubbles is disposed in the passage in the valve body.
According to a third aspect of the present invention, there is provided an electromagnetic valve which opens and closes a valve by moving a valve body toward and away from a valve seat by an electromagnetic coil. A communication path is provided, a first member for dividing air bubbles is provided in the passage, and a flow path for holding the state of the divided air bubbles is formed on the refrigerant outflow side of the passage. In addition, a second member for dividing air bubbles is disposed downstream of the flow path.
According to a fourth aspect of the present invention, in the solenoid valve according to any one of the first to third aspects, the flow path for maintaining the state of the fragmented air bubbles includes an inducer section, an orifice section, and a diffuser section. It is characterized by comprising a small bubble holding channel formed as a continuous space.
[0009]
According to a fifth aspect of the present invention, in the solenoid valve according to the fourth aspect, the small bubble holding flow path includes a guide ring member and a guide member disposed in the flow path, and an inner periphery of the guide ring member. , A funnel-shaped inlet-side inclined portion that becomes narrower downward, a uniform-diameter portion with a uniform inner diameter, and an inverted funnel-shaped outlet-side inclined portion that becomes wider downward are continuously formed, and the guide member has Is formed with a columnar portion to be inserted into the inner peripheral portion of the guide ring member, the inducer portion is formed between the inlet-side inclined portion and the columnar portion, and the orifice portion has a uniform diameter portion and the columnar portion. The diffuser portion is formed between the outlet-side inclined portion and the columnar portion, and the diffuser portion is a continuous space.
The solenoid valve according to claim 6 is the solenoid valve according to any one of claims 1 to 5, wherein the first and second members are made of a foam metal, a porous plastic, a mesh formed by knitting a metal thread, In addition, it is characterized by being made of a metal plate having a plurality of holes.
[0010]
The solenoid valve according to claim 7 has a valve chamber, a valve body having a pipe part closed at one end, an electromagnetic coil provided on an outer periphery of the pipe part of the valve body, and a valve body having a pipe part. A fixed suction element, a rod-shaped valve element slidably provided in the suction element in the longitudinal direction of the pipe portion of the valve body, a plunger connected to the valve element, and a valve seat provided at an open end of the valve body. A valve member provided between the suction element and the plunger; and a valve opening urging means for urging a valve body in a valve opening direction opposite to the valve seat sheet member. In a solenoid valve that opens and closes a valve by forming a valve seat that faces and separates a valve body facing the inside of a valve chamber of a valve body on a member and moves the valve body toward and away from a valve seat by the electromagnetic coil. The valve body is provided with a hole and a passage communicating with the hole on the refrigerant inflow side of the valve body. A member for dividing air bubbles into the refrigerant inlet side or the refrigerant outlet side of the valve element and the passage, and a small bubble holding flow for maintaining the state of the divided bubbles in the passage. A road is formed.
The solenoid valve according to claim 8 is the solenoid valve according to any one of claims 1 to 7, wherein the outflow direction of the refrigerant from the outlet of the passage in the valve body is such that the valve seat contacts the valve body. Characterized by being formed so as to intersect with the inner wall surface.
According to the solenoid valve of the present invention, the air bubbles in the refrigerant can be subdivided by the member that subdivides the air bubbles, and the flow path for maintaining the state of the subdivided air bubbles is formed. And an electromagnetic valve capable of preventing generation of noise can be realized. In addition, by lowering the flow velocity of the refrigerant while maintaining the state of the fragmented bubbles, the refrigerant flow noise is further suppressed.
[0011]
According to a ninth aspect of the present invention, in the solenoid valve according to any one of the third to eighth aspects, the width of the second member is larger than the width of the first member. I do.
According to this feature, so-called sludge is generated by the refrigerant and the refrigerating machine oil, and when this becomes a contamination, the contamination adheres to the surface of the second member to block the flow path, resulting in insufficient flow rate. Although a fear may occur, by increasing the volume or surface area of the second member with respect to the first member, in addition to reducing the kinetic energy of the refrigerant, even if the contamination is temporarily attached, sufficient Flow rate can be secured.
[0012]
According to a tenth aspect of the present invention, in the solenoid valve according to any one of the first to ninth aspects, the refrigerant inflow direction is eccentric with respect to the first member from a center position thereof. .
An electromagnetic valve according to an eleventh aspect is the electromagnetic valve according to any one of the third to tenth aspects, wherein the inflow position is set at the center of the second member when the refrigerant flows into the second member. It is characterized by being eccentric from the position and inclining its inflow direction.
According to the feature of the ninth, tenth, or eleventh aspect of the present invention, the refrigerant passes through the first member and the second member for dividing the air bubbles over a longer distance. Thus, the flow noise of the refrigerant is further reduced, and the generation of noise is further suppressed.
[0013]
Embodiment 1
First, a first embodiment will be described with reference to FIGS. 1 is a longitudinal sectional view of the solenoid valve in an open state, FIG. 2 is an enlarged view of a portion A in FIG. 1, and FIG. 3 is a longitudinal sectional view of a closed state. In the following description, upper, lower, left, and right expressions are used in relation to the drawings, but the actual positional relationship is not limited to this.
[0014]
As shown in FIG. 1, the solenoid valve of the present invention has a valve chamber 10 inside a valve body 1, and has one end closed at an upper portion of the valve body 1 via a locking portion 3 a of a suction element 3. A pipe portion 3b is mounted, and an electromagnetic coil 2 is provided on the outer periphery of the pipe portion 3b. Inside the pipe portion 3b, a rod-like member is provided so as to be slidable with respect to the suction element 3 in the longitudinal direction of the pipe portion 3b. Is provided. Further, this solenoid valve is provided in the pipe portion 3b between the plunger 5 connected to the valve body 4, the valve seat 6 provided at the lower opening end of the valve body 1, and the suction element 3 and the plunger 5. And a coil spring 7 provided. The coil spring 7 is a valve-opening biasing unit that biases the valve body 4 in a valve opening direction opposite to the valve seat 6.
[0015]
As shown in FIG. 1, the valve seat 6 is formed with a valve seat 6 a which faces the inside of the valve chamber 10 of the valve body 1 and which comes into contact with and separates from the valve body 4. The valve seat 6 is welded and fixed to the valve body 1. Have been. The valve body 1 and the valve sheet 6 are made of stainless steel, and the valve body 1 and the valve sheet 6 are formed by press working.
[0016]
As shown in FIG. 1, a coil case 8 for housing the electromagnetic coil 2 is provided on the outer periphery of the pipe portion 3b, and a pressing and locking member 9 fixed to the coil case 8 is attached to the pipe portion 3b of the valve body 1. The coil case 8 is fixed to the pipe portion 3b of the valve body 1 via the pressing and locking member 9 by being locked to the formed locking recess 3d.
[0017]
As shown in FIG. 1, a valve chamber 10 is formed inside a cylindrical peripheral wall 1a of the valve body 1, and a pipe fitting hole 1b is formed in the peripheral wall 1a of the valve body 1 in a direction orthogonal to a vertical central axis. Are provided, and the inlet side pipe 100 is connected and welded.
A valve seat 6 is attached to the lower end of the peripheral wall 1a of the valve body 1. The valve seat 6 includes a pipe-shaped valve seat portion 6a, a pipe fitting portion 6b formed below the valve seat portion 6a, and a flange 6c formed on an outer peripheral portion of the pipe fitting portion 6b. The peripheral wall 1a is welded to the outer peripheral portion of the flange 6c.
[0018]
A suction element 3 is mounted on the upper end of the peripheral wall 1a of the valve body 1. The suction element 3 has a step 3c formed at a lower portion thereof, and an upper end of the peripheral wall 1a of the valve body 1 is mounted below the step 3c. A lower portion of the pipe portion 3b is mounted in a locking recess 3d formed on the outer periphery of the upper portion of the suction element 3. The upper end of the pipe portion 3b is closed.
[0019]
An outlet-side pipe 110 is connected and welded to a pipe fitting portion 6b formed below the valve seat 6. As shown in FIG. 1, a cylindrical suction element 3 is disposed above the valve chamber 10 at the upper part of the valve body 1, and a locking recess 3 d is formed on the outer peripheral surface of the suction element 3. A pipe portion 3b is fixed to the upper outer peripheral portion of the suction element 3 by caulking. Further, a concave portion communicating with the lower valve chamber 10 is formed in a lower portion of the suction element 3 to constitute an upper valve chamber 11.
[0020]
As shown in FIG. 1, the suction element 3 is provided with a rod-shaped valve element 4 made of, for example, brass penetrating therethrough so as to be slidable along the longitudinal direction of the pipe portion 3 b. The valve 40 has a valve portion 40 that is separated from and in contact with the valve seat 6 a of the valve seat 6, and a small diameter portion 46 is formed at the upper end of the valve body 4. The small diameter portion 46 is fitted and fixed in the fixing hole 5a at the lower part of the plunger 5.
[0021]
The valve portion 40 is formed to be larger in diameter than the valve stem portion above it, has a shoulder portion 41 serving as a step portion, and has a cylindrical side wall portion 42 formed therethrough. A space 43a is formed inside the part 42.
[0022]
2, a large-diameter hole 43b communicating with the space 43a and a small-diameter hole 43c communicating with the large-diameter hole 43b are formed at the center of the valve portion 40. The hole communicating with the hole 43c and having a small cross-sectional area, that is, the bleed hole 44 is formed in the lateral direction (therefore, in the direction perpendicular to the axial direction of the small-diameter hole 43c). The bleed hole 44 has an inlet-side large-diameter portion 44a formed at both ends, and opens to the upper valve chamber 11 through the inlet-side large-diameter portion 44a (the valve-open state in FIG. 1). However, in the valve closed state shown in FIG.
[0023]
A first porous member 51 is held as a member for dividing air bubbles in the refrigerant by facing the opening of the bleed hole 44 above the shoulder 41 of the valve portion 40. The first porous member 51 is placed on the upper part of the shoulder 41 and is supported by the holding projection 48. That is, the first porous member 51 is formed in an annular shape having a predetermined thickness, and the inner peripheral portion of the upper surface of the annular portion is caulked and fixed by the holding projection 48 of the valve portion 40 to thereby form the valve portion. It is fixed and held at 40.
[0024]
Further, a second porous member 52 is inserted into the small diameter hole 43c and the large diameter hole 43b of the valve portion 40. The second porous member 52 is formed in a cylindrical shape having a different diameter and an inverted T-shape in vertical section. The large diameter portion is disposed in the large diameter hole 43b, and the small diameter portion is disposed in the small diameter hole 43c. Is done. The porous member 52 is supported from below by a columnar portion 61 of a guide member 60 described below. A gap having a large vertical width (a large inlet side diameter portion 44 a) is formed between the porous member 51 and the bleed hole 44, and a vertical gap is formed between the porous member 52 and the bleed hole 44. Since the wide gap 43f is formed, the flow path range of the refrigerant in the porous members 51 and 52 is widened, and finer bubbles are promoted.
[0025]
For example, foamed metal is used for each of the porous members 51 and 52. In addition, a porous plastic may be used, and a wire mesh member (for example, trade name “Akyume Mesh” manufactured by Toa Iron Net Co., Ltd.) formed by knitting a metal thread such as stainless steel or brass and forming the mesh to a predetermined thickness. May be used. Further, a metal plate having a predetermined thickness formed with a predetermined number of through holes may be used. The materials of these porous members are the same in Embodiments 2 to 4 described later.
[0026]
Further, in the large-diameter hole 43b and the space 43a of the valve portion 40, a small bubble holding flow path D for holding the state of the fragmented bubbles is formed by the guide ring member 47 and the guide member 60.
[0027]
The guide ring member 47 is formed of an annular member having a predetermined thickness, and has a funnel-shaped inlet-side inclined portion 47a whose inner surface becomes narrower downward, a uniform-diameter portion 47b having a uniform inner diameter continuous with the inlet-side inclined portion 47a, and a lower portion. An inverted funnel-shaped outlet-side inclined portion 47c that expands in the direction is formed sequentially from above to below. Further, as shown in FIG. 1, the guide ring member 47 is caulked and fixed at the distal end 45 of the valve body 4.
[0028]
The guide member 60 includes a disk-shaped flange portion 63, a columnar portion 61 erected at an axial position of the flange portion 63, and an inclined portion 62. As shown in FIG. 2, a plurality of through holes 64 are formed in the flange portion 63, and the refrigerant in the valve portion 40 flows out of the through holes 64 directly to the outlet pipe 110.
The columnar portion 61 arranged on the guide member 60 has a hemispherical cylindrical body on the upper surface, and has a slightly smaller diameter to form a gap (orifice) with the inner surface of the uniform diameter portion 47b. I have. In addition, the inclined portion 62 that is continuous with the columnar portion 61 has a larger diameter toward the lower side.
Therefore, between the guide ring member 47 and the guide member 60, an inducer portion (between the funnel-shaped inlet-side inclined portion 47a and the columnar portion 61, which narrows downward, and an orifice portion having a uniform flow passage area (the uniform orifice portion). A continuous space is formed between the uniform inner diameter portion 47b and the columnar portion 61) and the diffuser portion (between the inverted funnel-shaped outlet-side inclined portion 47c and the columnar portion 61 that expands toward the lower side). Become. The energy of the refrigerant flowing between them is relatively slowly converted into velocity energy, and does not undergo rapid contraction / expansion. Therefore, even when the refrigerant contains bubbles, No rapid growth (expansion) occurs. Therefore, even if there are finely divided air bubbles in the refrigerant, they do not grow large. Therefore, these parts are referred to as “small air bubble holding flow paths D” in the present invention.
[0029]
As shown in FIG. 1, a cylindrical plunger 5 is movably disposed inside the pipe portion 3b of the valve body 1 near the upper end thereof. A fixing hole 5a for fixing the small diameter portion 46 of the valve body 4 is provided along the hole. Reference numeral 5b denotes a pressure equalizing hole.
[0030]
As shown in FIG. 1, the small diameter portion 46 of the valve body 4 is fitted into the fixing hole 5a from below, and the tip of the small diameter portion 46 of the valve body 4 is subjected to caulking, so that the plunger 5 is moved. It is connected to the small diameter portion 46 of the body 4.
[0031]
As shown in FIG. 1, a coil spring 7 for opening a valve is provided between the suction element 3 and the plunger 5 outside the valve element 4, and the plunger 5 is moved by the urging force of the coil spring 7. It is always urged in a direction away from the third.
[0032]
As shown in FIG. 1, the valve seat 6 is formed in a cylindrical shape on the same central axis as the valve body 1, and a valve seat 6 a is formed at an upper end thereof close to the central axis of the inlet pipe 100. A pipe fitting portion 6b is formed at the lower end of the sheet 6 via a step, and a flange 6c that protrudes outward is formed at an end edge of the pipe fitting portion 6b.
[0033]
As shown in FIG. 1, a valve seat 6 a of the valve seat 6 is disposed in the valve chamber 10 of the valve body 1 so as to face the valve portion 40, and a flange 6 c of the valve seat 6 is provided at a lower edge of the valve body 1. , And both parts are subjected to arc welding, for example, TIG welding.
[0034]
As shown in FIG. 1, an outlet pipe 110 is connected to the valve seat 6, and one end of the outlet pipe 110 is fitted into the pipe fitting portion 6 b of the valve seat 6 from below, and copper brazing in a hydrogen furnace is performed. It is welded by atmosphere brazing such as attaching means.
[0035]
At first, the valve seat 6 is assembled to the valve body 1 such that the center axis of the valve seat 6 coincides with the center axis of the peripheral wall 1a of the valve body 1, and the valve seat 6a of the valve seat 6 is placed in the valve body. The valve seat 6 is inserted into the inside of the valve chamber 10 from below, and the flange 6c of the valve seat 6 is brought into contact with the lower edge of the valve body 1 and is welded and assembled by TIG welding means.
[0036]
As shown in FIG. 1, a bobbin 120 is fitted and mounted on the outside of the pipe portion 3b, and the electromagnetic coil 2 is wound around the bobbin 120, and the bobbin 120 is housed inside the coil case 8. I have. As shown in FIG. 1, a lead wire 140 is connected to the bobbin 120, and power is supplied to the electromagnetic coil 2 via the lead wire 140.
[0037]
Further, a through hole 82 and a through hole 83 are provided on the horizontal upper wall 80 and the lower wall 81 of the coil case 8 facing each other along the same vertical central axis, and the pipe portion 3b is inserted therethrough.
[0038]
As shown in FIG. 1, a pressing and locking member 9 made of sheet metal is disposed on an upper portion of the upper wall 80 of the coil case 8, and the pressing and locking member 9 has a flat main body 90. At one end thereof, a hanging portion 92 bent downward at right angles is formed, and at the other end of the main body 90 of the pressing and locking member 9, a rising portion 94 bent at right angles upward is formed. The rising portion 94 is formed with a projection 95 that engages with the locking recess of the pipe portion 3b of the valve body 1.
[0039]
As shown in FIG. 1, a main body 90 of the pressing and locking member 9 is placed on the upper wall 80 of the coil case 8, and is fixed to the coil case 8 via rivets 150.
[0040]
Next, the operation of the first embodiment of the present invention will be described.
First, the dehumidifying operation will be described. In this solenoid valve, when the electromagnetic coil 2 is energized, a magnetic force is generated in the attracting element 3 by energizing the electromagnetic coil 2, the attracting element 3 attracts the plunger 5 downward, and the plunger 5 is connected to the pipe portion of the valve body 1. At the same time, the valve body 4 moves downward in the interior of the valve seat 3b against the urging force of the coil spring 7 by the suction of the suction element 3, and at the same time, the valve body 4 is guided by the suction element 3 and the plunger 5 and the valve seat 6a of the valve seat 6 together. 3, the valve portion 40 of the valve body 4 comes into close contact with the valve seat 6a of the valve seat 6, and the solenoid valve is closed.
[0041]
In such a closed state, the inlet pipe 100 and the outlet pipe 110 are connected to the valve chamber 10, the upper valve chamber 11, the inlet-side large-diameter portion 44a, the bleed hole 44, the small-diameter hole 43c, the large-diameter hole 43b, and It communicates through the space 43a. Therefore, during the dehumidifying operation of the predetermined refrigeration cycle, when the refrigerant flows from the inlet pipe 100, the bleed hole 44 is provided in the valve body 4, so that the refrigerant subjected to the throttling action is dispersed, and the flow rate and the movement of the refrigerant are reduced. The energy is reduced, and the flow noise of the refrigerant is reduced. In addition, even if bubbles are generated in the refrigerant flowing out of the small-diameter hole 43c to the outlet pipe 110 due to the restricting action, the refrigerant is used as the first porous member 51 and the second porous member 52 as members for dividing the bubbles. When passing through, the air bubbles in the refrigerant are fragmented, and the flow noise of the refrigerant due to the air bubbles is reduced.
Further, in the present invention, the small bubble holding flow path D is provided to allow the refrigerant after the fragmentation to pass, so that the fragmented bubbles flow into the outlet pipe 110 without the bubbles growing again and becoming large. Then, cooling and dehumidification are performed in the refrigeration cycle.
[0042]
Further, when the power supply to the electromagnetic coil 2 is cut off, no magnetic force is generated in the attraction element 3, the attraction element 3 loses the attraction force, and the plunger 5 applies the urging force of the coil spring 7 to the inside of the pipe portion 3 b of the valve body 1. As a result, the valve body 4 moves upward together with the plunger 5 while being guided by the suction element 3, and the valve portion 40 moves as shown in FIGS. The fluid is separated from the valve seat 6a of the valve seat 6, the fluid flows from the inlet pipe 100 through the valve chamber 10 and the inside of the valve seat 6 to the outlet pipe 110, and the solenoid valve performs an opening operation.
The description will be added by adding reference numerals. The formation of the large gap increases the flow channel area. The durability can be improved by expanding the flow path range.
[0043]
Embodiment 2
Next, a second embodiment will be described.
4 is a longitudinal sectional view of the solenoid valve according to the second embodiment in an open state, FIG. 5 is an enlarged view of a portion B in FIG. 4, and FIG. 6 is a longitudinal sectional view of the solenoid valve in a closed state.
The second embodiment shown in FIGS. 4 to 6 is different from the first embodiment shown in FIGS. 1 to 3 in that the first porous member 51 is replaced with a porous member downstream of the columnar portion 61 in the small bubble holding channel D. The case where the cooling medium is provided on the member 53 is shown. In this case as well, the refrigerant flow noise can be reduced.
[0044]
Therefore, in the second embodiment, the position at which the porous member is provided is different from that of the first embodiment, and the other configuration is the same. Therefore, the same parts as those in FIG.
In the second embodiment, as shown in FIG. 5 in particular, a porous member 53 is formed in a ring shape on the outer peripheral portion of the inclined portion 62 'of the guide member 60' in the space 43a as a member for dividing air bubbles. Is placed. The porous member 53 is placed above the flange portion 63 'of the guide member 60, and is pressed into the valve body 4 in a state of crossing the space 43a. Further, the upper surface of the flange portion 63 ′ is formed in a two-step plane to support the porous member 53.
[0045]
In this solenoid valve, as in the first embodiment, when the electromagnetic coil 2 is energized, the solenoid valve is closed as shown in FIG. In such a closed state, the inlet-side pipe 100 and the outlet-side pipe 110 communicate with each other through the valve chamber 10, the upper valve chamber 11, the bleed hole 44, the small-diameter hole 43c, the large-diameter hole 43b, and the space 43a. .
Therefore, during the dehumidifying operation of the predetermined refrigeration cycle, when the refrigerant flows from the inlet side pipe 100, large bubbles in the refrigerant are fragmented when passing through the first porous member 52, and in the fragmented state. The bubbles flow into the small bubble holding flow path D, further pass through the second porous member 53, and flow out to the outlet pipe 110 through the through holes 64 while the bubbles are fragmented.
[0046]
That is, the refrigerant is dispersed by the bleed holes 44 and the like in the valve portion 40, and the bubbles in the refrigerant are fragmented, so that the flow noise of the refrigerant is reduced and flows into the space 43a. In the space 43a, the air bubbles are further subdivided when passing through the porous member 53 and flow into the outlet pipe 110, so that the refrigerant flow noise due to the air bubbles is reduced, and the cooling / dehumidifying action in the refrigeration cycle is performed. Can be performed.
[0047]
In the second embodiment, it is a matter of course that a foamed metal, a porous plastic, an accumulation mesh, or the like can be used as the porous member 53 as in the first embodiment. Further, a metal plate having a predetermined number of through holes formed in a metal plate such as brass or stainless steel can be used.
[0048]
Embodiment 3
Next, a third embodiment will be described. FIG. 7 is a longitudinal sectional view of the solenoid valve according to the third embodiment in an open state, and FIG. 8 is an enlarged view of a portion C in FIG. In the description of the third embodiment, the same components as those in the first embodiment illustrated in FIGS. 1 to 3 and the second embodiment illustrated in FIGS. 4 to 6 are denoted by the same reference numerals in FIGS. 7 and 8. Description is omitted.
[0049]
The third embodiment shown in FIGS. 7 and 8 differs from the second embodiment shown in FIGS. 4 to 6 in the following points. That is, the columnar portion 61 "of the guide member 60" is formed as a columnar member having a uniform diameter, and the upper end thereof is engaged with a support hole 43d formed further above the small diameter portion 43c of the valve body 4 by press fitting. The support hole 43d is formed with a coolant vent 43e as required. An annular porous member 54 is fitted in the small diameter portion 43c. A gap 43g is formed between the porous member 54 and the columnar portion 61 in order to improve the fluidity of the refrigerant.
[0050]
The guide ring member 47 ', which is arranged to support the porous member 54 from below, is formed vertically long from the vicinity near the bleed hole 44 to the upper surface of the flange 63'. As a result, the small bubble holding flow path D Are formed vertically long, and a third porous member 53 is held at a lower portion of the guide ring member 47 'via a large-diameter outlet-side portion 47d. Further, a large-diameter gap portion 64a is formed between the third porous member 53 and the flange portion 63 '.
[0051]
In the third embodiment, as shown in FIG. 8 in particular, three porous members 51, 53, and 54 are provided as members for dividing air bubbles, and the flow path of each of the porous members 51, 53, and 54 is reduced. By forming the large-diameter portions 44a and 44b, the gap 43g, and the large-diameter portions 47d and 64a before and after, the flow path in each of the porous members 51, 53, and 54 is expanded, and the fragmentation of the foam is further ensured. Thus, the refrigerant flow noise can be further reduced.
[0052]
The guide ring member 47 'is formed vertically long from the vicinity below the bleed hole 44 to the upper surface of the flange 63', and the small bubble holding flow path D is formed vertically long, so that the inducer portion and the orifice portion are formed. Further, since the diffuser portion is formed as a continuous space longer, there is an effect that the change in the cross-sectional area of the flow path becomes slow and the growth of bubbles is small.
[0053]
Further, the guide member 60 ″, the guide ring member 47 ′, and the porous members 33 and 54 that constitute the solenoid valve according to the third embodiment are coaxially arranged with the columnar portion 61 ″ as an axis. There is also an ancillary effect of good integration and functional stability.
[0054]
Embodiment 4
Next, a fourth embodiment will be described. 9 is an enlarged view of a main part of the solenoid valve according to the fourth embodiment, and FIG. 10 is a longitudinal sectional view of the solenoid valve according to the fourth embodiment in a closed state.
In the fourth embodiment, as shown in FIG. 9, the through holes 64 of the third embodiment shown in FIGS. 7 and 8 are formed by being inclined and formed as oblique holes 64b so that the outflow direction of the refrigerant is enlarged. . Except for this point, the third embodiment is the same as the third embodiment, and the other components are denoted by the same reference numerals as those shown in FIGS. 7 and 8 in FIGS.
[0055]
According to the fourth embodiment, the refrigerant flowing out of the oblique hole 64b collides against the inner side wall of the valve seat 6a to reduce the kinetic energy of the refrigerant and further reduce noise. Needless to say, such an oblique hole 64b can be applied to the first and second embodiments.
[0056]
Embodiment 5
Further, a fifth embodiment will be described. FIG. 11 is a longitudinal sectional view of the solenoid valve according to the fifth embodiment in an open state, and FIG. 12 is an enlarged view of a portion E in FIG.
The fifth embodiment is characterized in that the position where the through hole 64 shown in the third embodiment is formed is arranged on the upstream side of the porous member 53 ′. That is, in the fifth embodiment, the large-diameter gap portion 47e formed at the lower portion of the guide ring member 47 ', that is, the downstream side, and the diameter formed at the disc-shaped flange portion 63' provided at the lower portion of the guide member 60b. A plurality of, for example, six through holes 64 ′ communicating with the large gap portion 64 a are provided.
[0057]
Further, a through hole 64 'is provided downstream of the large-diameter gap portion 47e, and a porous member 53' is provided downstream of the large-diameter gap portion 64a. The porous member 53 'is provided in the side wall portion 42'. At the same time, the refrigerant is fixed by caulking at the end of the valve portion 40b, and the refrigerant flowing through the through hole 64 'passes through the porous member 53' and flows out to the outlet side passage 110.
[0058]
In the fifth embodiment, the porous member 54a is provided on the upstream side of the columnar portion 61a of the guide member 60b, and the refrigerant that has passed through the porous member 51a is formed by the large-diameter portion 44c provided on the side wall 42 '. Through the bleed hole 44 ', and flows into the porous member 54a through the space formed by the large-diameter portion 44d provided in the side wall portion 42'. The bleed holes 44 'are formed vertically. Then, the refrigerant that has passed through the porous member 54a passes through a space formed by the upper portion of the guide ring member 47 ', that is, the inlet-side large-diameter portion 47f formed on the upstream side, and the columnar portion of the guide ring portion 47' and the guide member 60b. 61a and flows into the small bubble holding flow path D formed by the flow path D.
[0059]
According to the fifth embodiment having such a configuration, the porous members 51a, 54a, and 53 'are provided at three locations as members for subdividing bubbles in the refrigerant, and the flow of the porous members 51a, 54a, and 53' is performed. By forming the large-diameter portions 44c and 44d and the large-diameter portions 47f and 47e before and after the road, the flow path in each of the porous members 51a, 54a and 53 'is expanded, and the fragmentation of the bubbles is further ensured. Thus, the refrigerant flow noise can be further reduced. Moreover, by disposing the through-hole 64 ′ on the upstream side of the porous member 53 ′, even when a refrigerant flow noise occurs when the refrigerant passes through the through-hole 64 ′, the porous member 53 ′ can be removed. It can be reduced by passing.
[0060]
In FIGS. 11 and 12, the same parts as those in FIGS. 7 and 8 are denoted by the same reference numerals, and description thereof is omitted.
[0061]
Embodiment 6
Further, a sixth embodiment will be described with reference to the drawings. 13 is a longitudinal sectional view of the solenoid valve according to the sixth embodiment in an open state, FIG. 14 is an enlarged view of a main part of the solenoid valve, FIG. 15 is a sectional view taken along line BB of FIG. 14, and FIG. FIG. 17 is a sectional view taken along line AA of FIG. 16, and FIG. 18 is another example of a sectional view taken along line BB of FIG. In the description of the sixth embodiment, the same components as those in the other embodiments 1 to 5 are denoted by the same reference numerals in FIGS. 13 to 18 as those in FIGS. 1 to 12. The description of the other components is omitted by appending a symbol.
[0062]
The feature of the sixth embodiment is that the width of the porous member 53 'constituting the second member is larger than the width of the porous member 54b constituting the first member, as compared with the solenoid valve of the fifth embodiment. That is, the opening direction of the bleed hole 44 ″ is formed in a direction other than the direction of the center of the porous member 54 b, and the oblique hole 64 b ′ formed in the flange 63 a of the guide member 60 c is formed circumferentially. It is in the point that it was pierced by inclining in the direction.
[0063]
First, the width of the porous member 53 ′, which is the first feature of the sixth embodiment, will be described. As shown in FIG. 14, mainly the volume of the porous member 54b that subdivides the bubbles in the refrigerant is mainly determined. The point is that the volume of the porous member 53 'that suppresses or reduces the generation of noise is increased. Therefore, the width of the porous member 53 'is increased with respect to the width of the porous member 54b, and the sixth embodiment is a second member due to such a first feature. By expanding the flow passage of the refrigerant in the porous member 53 'to reduce the kinetic energy of the refrigerant, the noise reduction effect can be further improved.
In addition, when so-called sludge is generated by the refrigerant and the refrigerating machine oil and becomes a contamination, the contamination may adhere to the surface of the second member, block the flow path, and cause a flow rate shortage. Although a fear arises, in the present embodiment, in addition to reducing the kinetic energy of the refrigerant by enlarging the surface area of the second member with respect to the first member, even if contamination adheres, sufficient The flow rate can be secured.
[0064]
Next, the second feature of the sixth embodiment will be described. As shown in FIG. 15, the hole axis direction of a bleed hole 44 ″ formed in the valve portion 40c as a coolant inflow hole with respect to the porous member 54b. Is formed not in the center of the porous member 54b but in a direction other than the center of the porous member 54b. Is formed in a direction deviating from the center of the porous member 54b. The figure shows a case where a plurality of bleed holes 44 ", for example, two bleed holes 44" are formed.
With such a configuration, the refrigerant that has flowed into the porous member 54b from the bleed hole 44 ″ can increase the contact area and time with the porous member 54b when passing through the porous member 54b, and the noise reduction function can be achieved. The technical idea is to form the bleed hole 44 ″ in the tangential direction of the outer peripheral surface of the porous member 54b, as shown in FIG. As shown in FIG. 18B, this can be realized by forming a plurality of bleed holes 44 ".
It should be noted that the second feature of the sixth embodiment is omitted, and the flow path of the bleed hole 44 ″ is formed in a direction toward the center of the porous member 54b. It goes without saying that the volume and the surface area may be increased only from those of the porous member 54b.
[0065]
Next, a hole (through hole 64 'in the fifth embodiment) formed in the flange portion 63a of the guide member 60c, which is a third feature of the sixth embodiment, is formed by making a hole inclined in the circumferential direction. The point is that the hole 64b 'is used. That is, as shown in FIGS. 16 and 17, a plurality of, for example, six oblique holes 64b 'are formed in the disk-shaped flange portion 63a formed below the guide member 60b.
[0066]
Further, since the oblique hole 64b 'is formed obliquely in the circumferential direction of the flange portion 63a, the refrigerant flows through the porous member 53' through a long flow path in the porous member 53 'located thereunder. As a result, the retained kinetic energy is consumed more, the bubbles in the refrigerant are fragmented, and the sound deadening effect can be further improved.
[0067]
Although the features of the sixth embodiment have been described, it goes without saying that these features can be individually applied to other inventions or other embodiments, and exert their respective functions and effects.
[0068]
【The invention's effect】
According to the present invention, a member that subdivides the bubbles in the refrigerant, and a small bubble holding channel D that holds the subdivided air bubbles is provided in the valve body, thereby reducing the flow noise of the refrigerant, An electromagnetic valve capable of suppressing noise can be realized. In addition, in addition to the above configuration, by disposing a member for fragmenting the bubbles in the refrigerant on the downstream side of the small bubble holding flow path D, fragmentation of the bubbles of the refrigerant is promoted, and noise is suppressed. The effect is further promoted.
In addition, even when so-called sludge is generated by the refrigerant and the refrigerating machine oil and adheres to the above-mentioned members as contamination, the flow path is not blocked, and there is no shortage of flow rate.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an electromagnetic valve according to a first embodiment in an open state.
FIG. 2 is an enlarged view of a portion A in FIG.
FIG. 3 is a longitudinal sectional view of the solenoid valve according to the first embodiment in a closed state.
FIG. 4 is a longitudinal sectional view of an electromagnetic valve according to a second embodiment in an open state.
FIG. 5 is an enlarged view of a portion B in FIG. 4;
FIG. 6 is a longitudinal sectional view of a solenoid valve according to a second embodiment in a closed state.
FIG. 7 is a longitudinal sectional view of an electromagnetic valve according to a third embodiment in an open state.
FIG. 8 is an enlarged view of a portion C in FIG. 7;
FIG. 9 is an enlarged view of a main part of a solenoid valve according to a fourth embodiment.
FIG. 10 is a longitudinal sectional view of a solenoid valve according to a fourth embodiment in a closed state.
FIG. 11 is a longitudinal sectional view of an electromagnetic valve according to a fifth embodiment in an open state.
FIG. 12 is an enlarged view of a main part of a solenoid valve according to a fifth embodiment.
FIG. 13 is a longitudinal sectional view of an electromagnetic valve according to a sixth embodiment in an open state.
FIG. 14 is an enlarged view of a main part of FIG. 13;
FIG. 15 is a sectional view taken along line BB of FIG. 14;
FIG. 16 is a plan view of a flange portion of the solenoid valve.
FIG. 17 is a sectional view taken along line AA of FIG. 16;
FIG. 18 is another example of a cross section taken along line BB of FIG. 14;
[Explanation of symbols]
D ··· Small bubble holding channel (in the state of fragmented bubbles)
1. Valve body 1a Peripheral wall 1b Pipe fitting hole 2. Electromagnetic coil
3. Suction element 3a ... Locking part 3b ... Pipe part
3c Step 3d Locking recess 4 Valve body 5 Plunger
5a ... fixing hole 5b ... equalizing hole 6 ... valve seat 6a ... valve seat
6b pipe fitting 6c flange 7 coil spring
8. Coil case 9. Pressing and locking member 10. Valve chamber 11. Upper valve chamber
40, 40 ', 40 ", 40a, 40b, 40c ... valve part 41 ... shoulder part
42, 42 ', 42 "··· Side wall
43a · · · space 43b · · · large hole (passage) 43c · · · small diameter hole (passage)
43d ··· Support hole 43e · · · Hole 43f, 43g · · · Gap
44, 44 ', 44 "Bleed hole 44a Large diameter on inlet side
44b ··· Larger diameter on exit side 44c ··· Larger diameter 44d ··· Larger diameter
44e Large diameter part (Embodiment 6) 45 Tip 46 Small diameter part
47, 47 ', 47 "-guide ring member 47a- Inlet-side inclined portion
47b ... uniform diameter part 47c ... outlet side inclined part 47d ... outlet side large diameter part
47e: Large-diameter gap 47f: Large inlet-side diameter
48 ・ ・ Holding projection (caulking)
51, 51a, 51b, 52, 53, 53 ', 54, 54a, 54b ...
Porous member 60, 60 ', 60 "
60a Guide member (Embodiment 4) 60b Guide member (Embodiment 5)
60c guide member (sixth embodiment) 61, 61 ″, 61a column
62, 62 '... inclined portion 63, 63', 63a ... flange portion
64, 64 ', through hole 64a, large portion on exit side 64b, 64b', oblique hole
80 ... top wall 81 ... bottom wall 82 ... through hole
83 ... through hole 84 ... vertical wall 90 ... body
92 ··· Hanging part 94 · · · Inlet side rising part 95 · · · projection
100 ・ ・ Inlet side pipe 110 ・ ・ Outlet side pipe 120 ・ ・ Bobbin
140 lead wire 150 rivet

Claims (11)

電磁コイルにより弁体を弁座部に対して接離させることにより弁の開閉を行う電磁弁において、上記弁体にはその冷媒流入側に孔とこの孔に連通する通路が設けられると共に、上記弁体の冷媒流入側に気泡を細分化する第1の部材が上記弁体に保持され、且つ、上記通路の冷媒流出側には、細分化された気泡の状態を保持させる流路が形成されていることを特徴とする電磁弁。In a solenoid valve which opens and closes a valve by bringing a valve body into and out of contact with a valve seat by an electromagnetic coil, the valve body is provided with a hole on a refrigerant inflow side thereof and a passage communicating with the hole. A first member for dividing air bubbles on the refrigerant inflow side of the valve body is held by the valve body, and a flow path for maintaining the state of the finely divided air bubbles is formed on the refrigerant outflow side of the passage. Solenoid valve characterized by the following. 上記弁体内の上記通路内に気泡を細分化する第2の部材が配置されていることを特徴とする請求項1記載の電磁弁。2. The solenoid valve according to claim 1, wherein a second member for dividing air bubbles is disposed in the passage in the valve body. 電磁コイルにより弁体を弁座部に対して接離させることにより弁の開閉を行う電磁弁において、上記弁体にはその冷媒流入側に孔とこの孔に連通する通路が設けられると共に、該通路内に気泡を細分化する第1の部材が設けられ、更に、前記通路の冷媒流出側には、細分化された気泡の状態を保持させる流路が形成されると共に、該流路の下流側に気泡を細分化する第2の部材が配置されていることを特徴とする電磁弁。In a solenoid valve which opens and closes a valve by moving a valve body toward and away from a valve seat by an electromagnetic coil, the valve body is provided with a hole on a refrigerant inflow side thereof and a passage communicating with the hole. A first member for dividing air bubbles is provided in the passage, and a flow path for maintaining the state of the divided air bubbles is formed on the refrigerant outlet side of the passage, and a downstream side of the flow path is formed. An electromagnetic valve, wherein a second member for dividing air bubbles is disposed on a side. 上記細分化された気泡の状態を保持させる流路は、インデューサ部、オリフィス部及びディフューザ部が連続空間として形成される小気泡保持流路からなることを特徴とする請求項1乃至請求項3記載のいずれかの電磁弁。The flow path for maintaining the state of the fragmented air bubbles comprises a small air bubble holding flow path in which an inducer portion, an orifice portion, and a diffuser portion are formed as a continuous space. A solenoid valve according to any of the preceding claims. 前記小気泡保持流路は、上記流路に配置された案内環部材と案内部材とから構成され、案内環部材の内周には、下方程狭くなる漏斗状の入口側傾斜部、均一内径の均一径部、及び、下方程拡くなる逆漏斗状の出口側傾斜部が連続して形成され、且つ、上記案内部材には上記案内環部材の内周部に挿通される柱状部が形成され、前記インデューサ部は、入口側傾斜部と上記柱状部の間に形成され、オリフィス部は均一径部と上記柱状部の間に形成され、且つ、ディフューザ部は出口側傾斜部と上記柱状部の間に形成される連続空間であることを特徴とする請求項4記載の電磁弁。The small bubble holding flow path is composed of a guide ring member and a guide member arranged in the flow path, and the inner circumference of the guide ring member has a funnel-shaped inlet-side inclined portion that becomes narrower downward, and has a uniform inner diameter. A uniform-diameter portion and an inverted funnel-shaped outlet-side inclined portion that expands downward are formed continuously, and the guide member is formed with a columnar portion that is inserted into the inner peripheral portion of the guide ring member. The inducer portion is formed between the inlet-side inclined portion and the columnar portion, the orifice portion is formed between the uniform diameter portion and the columnar portion, and the diffuser portion is the outlet-side inclined portion and the columnar portion. 5. The solenoid valve according to claim 4, wherein the solenoid valve is a continuous space formed between the solenoid valves. 上記第1及び第2の部材が、発泡金属、多孔質プラスチック、金属の糸を編んだメッシュ、又は、複数の孔を穿設した金属板からなることを特徴とする請求項1乃至請求項5記載のいずれかの電磁弁。The said 1st and 2nd member consists of a foam metal, a porous plastic, the mesh which knitted the thread | yarn of a metal, or the metal plate which perforated a several hole, The Claims 1 thru | or 5 characterized by the above-mentioned. A solenoid valve according to any of the preceding claims. 弁室を有すると共に、一端を閉塞したパイプ部を有する弁本体と、弁本体のパイプ部の外周に装置された電磁コイルと、弁本体のパイプ部の内部に固定された吸引子と、吸引子に弁本体のパイプ部の長手方向に摺動自在に設けた棒状の弁体と、弁体に連結されたプランジャと、弁本体の開口端に設けた弁座シート部材と、吸引子とプランジャとの間に配設された弁体を弁座シート部材と反対方向の開弁方向に向って付勢する開弁用付勢手段とを備え、上記弁座シート部材に弁本体の弁室の内部に臨んで弁体の離接する弁座を形成し、前記電磁コイルにより弁体を弁座部に対して接離させることにより、弁の開閉を行う電磁弁において、上記弁体には上記弁体の冷媒流入側に孔とこの孔に連通する通路が設けられると共に、上記弁体の冷媒流入側又は冷媒流出側、及び、上記通路内に気泡を細分化する部材が設けられ、且つ、上記通路には細分化された気泡の状態を保持させる小気泡保持流路が形成されていることを特徴とする電磁弁。A valve body having a valve chamber and having a pipe part closed at one end, an electromagnetic coil provided on the outer periphery of the pipe part of the valve body, a suction element fixed inside the pipe part of the valve body, and a suction element A rod-shaped valve body slidably provided in the longitudinal direction of the pipe portion of the valve body, a plunger connected to the valve body, a valve seat member provided at an open end of the valve body, a suction element and a plunger. Biasing means for biasing the valve body disposed between the valve seat member and the valve seat in a direction opposite to the valve opening direction, wherein the valve seat member is provided inside the valve chamber of the valve body. A solenoid valve that opens and closes the valve by forming a valve seat that separates and contacts the valve body in front of the valve body and moves the valve body toward and away from the valve seat by the electromagnetic coil; A hole and a passage communicating with the hole are provided on the refrigerant inflow side of Alternatively, a member that breaks up bubbles is provided in the refrigerant outflow side and in the passage, and a small bubble holding channel that holds a state of the broken up bubbles is formed in the passage. And a solenoid valve. 上記弁体内の上記通路の出口から出る冷媒の流出方向が、上記弁体が当接する弁座部の内壁面と交わるように形成されていることを特徴とする請求項1乃至請求項7記載のいずれかの電磁弁。8. The valve according to claim 1, wherein an outflow direction of the refrigerant from the outlet of the passage in the valve body is formed so as to intersect an inner wall surface of a valve seat with which the valve body contacts. Any solenoid valve. 上記第1の部材の幅に対して、上記第2部材の幅を大としたことを特徴とする請求項3乃至請求項8記載のいずれかの電磁弁。The solenoid valve according to any one of claims 3 to 8, wherein the width of the second member is larger than the width of the first member. 上記第1の部材に冷媒を流入させるに当って、その流入方向を該第1の部材の中心位置から偏心させることを特徴とする請求項1乃至請求項9記載のいずれかの電磁弁。The solenoid valve according to any one of claims 1 to 9, wherein when flowing the refrigerant into the first member, the flow direction of the refrigerant is eccentric from a center position of the first member. 上記第2の部材に冷媒を流入させるに当って、その流入位置を該第2の部材の中心位置から偏心させると共にその流入方向を傾斜させることを特徴とする請求項3乃至請求項10記載のいずれかの電磁弁。11. The refrigerant flowing into the second member, wherein an inflow position is eccentric from a center position of the second member and the inflow direction is inclined. Any solenoid valve.
JP2003124783A 2003-02-21 2003-04-30 Solenoid valve Pending JP2004360708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003124783A JP2004360708A (en) 2003-02-21 2003-04-30 Solenoid valve

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003043998 2003-02-21
JP2003103287 2003-04-07
JP2003124783A JP2004360708A (en) 2003-02-21 2003-04-30 Solenoid valve

Publications (2)

Publication Number Publication Date
JP2004360708A true JP2004360708A (en) 2004-12-24
JP2004360708A5 JP2004360708A5 (en) 2006-06-01

Family

ID=34068885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003124783A Pending JP2004360708A (en) 2003-02-21 2003-04-30 Solenoid valve

Country Status (1)

Country Link
JP (1) JP2004360708A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003114A (en) * 2003-06-12 2005-01-06 Fuji Koki Corp Solenoid valve
JP2008151351A (en) * 2006-12-14 2008-07-03 Matsushita Electric Ind Co Ltd Air conditioner
JP2011510232A (en) * 2008-01-21 2011-03-31 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト Pressure control valve device
JP2017211034A (en) * 2016-05-26 2017-11-30 株式会社不二工機 Flow rate regulating valve
CN107435754A (en) * 2016-05-26 2017-12-05 株式会社不二工机 Flow control valve
KR20180095654A (en) * 2015-12-19 2018-08-27 제지앙 산후아 인텔리전트 컨트롤즈 컴퍼니 리미티드 Two-stage electronic expansion valve
CN110513532A (en) * 2019-08-15 2019-11-29 浙江盾安禾田金属有限公司 Valve muffler and electric expansion valve with the valve muffler
JP2022535640A (en) * 2019-06-13 2022-08-10 浙江盾安人工環境股▲ふん▼有限公司 Valve silencer and its electronic expansion valve

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131919A (en) * 1975-05-12 1976-11-16 Tokyo Shibaura Electric Co Fluid control valve
JPS51154430U (en) * 1975-06-03 1976-12-09
JPH01152176U (en) * 1988-04-12 1989-10-20
JPH02141778U (en) * 1989-05-02 1990-11-29
JPH058160U (en) * 1991-07-18 1993-02-05 カヤバ工業株式会社 Switching valve
JPH07146032A (en) * 1993-11-26 1995-06-06 Matsushita Seiko Co Ltd Expansion valve
JPH08159617A (en) * 1994-12-09 1996-06-21 Daikin Ind Ltd Electronic expansion valve
JP2001012825A (en) * 1999-06-29 2001-01-19 Hitachi Ltd Throttle device
JP2002071241A (en) * 2000-08-30 2002-03-08 Mitsubishi Heavy Ind Ltd Air conditioner and its throttle valve for controlling refrigerant
JP2002310540A (en) * 2001-04-12 2002-10-23 Saginomiya Seisakusho Inc Restrictor and air conditioner
JP2003004160A (en) * 2001-06-25 2003-01-08 Fuji Koki Corp Motor-operated valve
JP2003156269A (en) * 2001-11-20 2003-05-30 Fuji Koki Corp Solenoid valve

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131919A (en) * 1975-05-12 1976-11-16 Tokyo Shibaura Electric Co Fluid control valve
JPS51154430U (en) * 1975-06-03 1976-12-09
JPH01152176U (en) * 1988-04-12 1989-10-20
JPH02141778U (en) * 1989-05-02 1990-11-29
JPH058160U (en) * 1991-07-18 1993-02-05 カヤバ工業株式会社 Switching valve
JPH07146032A (en) * 1993-11-26 1995-06-06 Matsushita Seiko Co Ltd Expansion valve
JPH08159617A (en) * 1994-12-09 1996-06-21 Daikin Ind Ltd Electronic expansion valve
JP2001012825A (en) * 1999-06-29 2001-01-19 Hitachi Ltd Throttle device
JP2002071241A (en) * 2000-08-30 2002-03-08 Mitsubishi Heavy Ind Ltd Air conditioner and its throttle valve for controlling refrigerant
JP2002310540A (en) * 2001-04-12 2002-10-23 Saginomiya Seisakusho Inc Restrictor and air conditioner
JP2003004160A (en) * 2001-06-25 2003-01-08 Fuji Koki Corp Motor-operated valve
JP2003156269A (en) * 2001-11-20 2003-05-30 Fuji Koki Corp Solenoid valve

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003114A (en) * 2003-06-12 2005-01-06 Fuji Koki Corp Solenoid valve
JP2008151351A (en) * 2006-12-14 2008-07-03 Matsushita Electric Ind Co Ltd Air conditioner
JP2011510232A (en) * 2008-01-21 2011-03-31 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト Pressure control valve device
KR20180095654A (en) * 2015-12-19 2018-08-27 제지앙 산후아 인텔리전트 컨트롤즈 컴퍼니 리미티드 Two-stage electronic expansion valve
KR102590435B1 (en) * 2015-12-19 2023-10-16 제지앙 산후아 인텔리전트 컨트롤즈 컴퍼니 리미티드 Two-stage electronic expansion valve
JP2019500567A (en) * 2015-12-19 2019-01-10 浙江三花智能控制股▲ふん▼有限公司 Two-stage electronic expansion valve
JP2017211034A (en) * 2016-05-26 2017-11-30 株式会社不二工機 Flow rate regulating valve
CN107435754A (en) * 2016-05-26 2017-12-05 株式会社不二工机 Flow control valve
CN107435757B (en) * 2016-05-26 2020-12-15 株式会社不二工机 Flow regulating valve
CN107435757A (en) * 2016-05-26 2017-12-05 株式会社不二工机 Flow control valve
JP2022535640A (en) * 2019-06-13 2022-08-10 浙江盾安人工環境股▲ふん▼有限公司 Valve silencer and its electronic expansion valve
JP7429707B2 (en) 2019-06-13 2024-02-08 浙江盾安人工環境股▲ふん▼有限公司 Valve silencer and its electronic expansion valve
CN110513532A (en) * 2019-08-15 2019-11-29 浙江盾安禾田金属有限公司 Valve muffler and electric expansion valve with the valve muffler

Similar Documents

Publication Publication Date Title
JP2004360708A (en) Solenoid valve
EP3064868B1 (en) Expansion valve
JP2014524619A (en) Fluid regulator with bleed valve
JP3490640B2 (en) Aperture device
EP1275916A2 (en) Expansion valve
JP2009144893A (en) Flow rate control valve
JP2003156269A (en) Solenoid valve
JP2017129212A (en) Flow regulating valve
US11181207B2 (en) Noise attenuation trim assembly
JP2019143727A (en) Flow control valve and refrigeration cycle system
JP2019143726A (en) Flow control valve and refrigeration cycle system
JP2005003114A (en) Solenoid valve
JP2001004252A (en) Supercooling degree control type expansion valve
JP4197470B2 (en) solenoid valve
JP4537457B2 (en) Fuel injection valve
JP4270952B2 (en) Flow control valve
CN101865323A (en) Electromagnetic valve
CN107631524A (en) Electric expansion valve
JP4326903B2 (en) Flow control valve
JP2008516135A (en) Fuel injection valve
JP2005524812A (en) Pressure and flow control valve for gas or liquid
JP4285897B2 (en) Expansion valve used in refrigeration cycle
JP4077340B2 (en) Throttle valve device and air conditioner
JP2005331154A (en) Throttle valve device and air conditioner
JPH05264129A (en) Expansion valve

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520