JP2009144893A - Flow rate control valve - Google Patents

Flow rate control valve Download PDF

Info

Publication number
JP2009144893A
JP2009144893A JP2007325759A JP2007325759A JP2009144893A JP 2009144893 A JP2009144893 A JP 2009144893A JP 2007325759 A JP2007325759 A JP 2007325759A JP 2007325759 A JP2007325759 A JP 2007325759A JP 2009144893 A JP2009144893 A JP 2009144893A
Authority
JP
Japan
Prior art keywords
valve
valve seat
seat portion
control valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007325759A
Other languages
Japanese (ja)
Other versions
JP5196983B2 (en
Inventor
Hitoshi Kibune
仁志 木船
Masayuki Imai
正幸 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2007325759A priority Critical patent/JP5196983B2/en
Priority to KR1020080070988A priority patent/KR101276967B1/en
Priority to CN200810178363.9A priority patent/CN101463907B/en
Publication of JP2009144893A publication Critical patent/JP2009144893A/en
Application granted granted Critical
Publication of JP5196983B2 publication Critical patent/JP5196983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Magnetically Actuated Valves (AREA)
  • Lift Valve (AREA)
  • Details Of Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow rate control valve reducing as much as possible noise (refrigerant passing noise) generated by a refrigerant passing through a groove as a refrigerant delivering throttle portion. <P>SOLUTION: This flow rate control valve includes: a valve seat member 14 having a valve seat portion 14A formed with an inverted conical tapered surface 14a; and a valve rod 20 having a valve element portion 21A formed with an inverted conical tapered surface 21a approaching and separated with respect to the valve seat portion 14A. The valve seat portion 14A is provided with a bleed groove 17 of a predetermined depth in order to throttle and deliver the refrigerant even during a valve closing period when the valve element portion 21A abuts on the valve seat portion 14A. An angle α obtained by subtracting the center angle θb of the tapered surface 21a of the valve element portion 21A from the center angle θa of the tapered surface 14a of the valve seat portion 14A is 0°to 2.5°. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空気調和機等に使用されるソレノイド(電磁)駆動式やモータ駆動式等の流量制御弁に係り、特に、弁シート部に、閉弁状態においても冷媒を絞って導出させる冷媒導出用絞り部としてのブリード溝が形成されているものに関する。   The present invention relates to a solenoid (electromagnetic) drive type or motor drive type flow control valve used in an air conditioner or the like, and in particular, a refrigerant derivation in which a refrigerant is squeezed out even in a closed state in a valve seat portion. The present invention relates to a structure in which a bleed groove is formed as a throttle part.

従来より、空気調和機等に使用される流量制御弁にあっては、例えば下記特許文献1、2等にも見られるように、除湿(ドライ)運転を行う際等の冷媒導出用絞り部(閉弁状態においても冷媒を絞って導出させる)としての溝を弁シート部(弁座)に設けたものが知られている。   Conventionally, in a flow control valve used in an air conditioner or the like, as seen in, for example, the following Patent Documents 1 and 2, etc., a refrigerant derivation throttling portion (for example, when performing dehumidification (dry) operation) ( It is known that a valve seat portion (valve seat) is provided with a groove as a refrigerant to be squeezed out even in a closed state.

しかしながら、前記従来の流量制御弁のように、単に冷媒導出用絞り部としての溝を弁シート部に設けただけでは、該溝を通過する冷媒によって不快な騒音(冷媒通過音)が発生するという問題があった。   However, as in the conventional flow rate control valve, simply providing a groove as the refrigerant outlet restricting portion in the valve seat portion causes unpleasant noise (refrigerant passing sound) due to the refrigerant passing through the groove. There was a problem.

そこで、このような騒音(冷媒通過音)を可及的に低減すべく、本願の発明者等は、先に、下記特許文献3に所載の如くの流量制御弁を提案している。   Therefore, in order to reduce such noise (refrigerant passing sound) as much as possible, the inventors of the present application have previously proposed a flow control valve as described in Patent Document 3 below.

すなわち、この提案の流量制御弁は、逆円錐面状のテーパ面を持つ弁シート部を有する弁座部材と、前記弁シート部に接離する逆円錐面状のテーパ面を持つ弁体部を有する弁棒とを備え、前記弁シート部に前記弁体部が当接する閉弁時においても冷媒を絞って導出させるべく、前記弁シート部に、所定深さのブリード溝が形成されるとともに、該ブリード溝の底部に、冷媒を分散して導出するように、断面が三角形状、半円弧状、台形状等の所定深さの凹部が複数列並設されてなるものである。   That is, the proposed flow control valve includes a valve seat member having a valve seat portion having an inverted conical tapered surface, and a valve body portion having an inverted conical tapered surface contacting and separating from the valve seat portion. The valve seat portion is formed with a bleed groove having a predetermined depth so that the refrigerant is squeezed out even when the valve body portion is in contact with the valve seat portion. A plurality of rows of concave portions having a predetermined depth such as a triangular shape, a semicircular arc shape, and a trapezoidal shape are arranged in parallel at the bottom portion of the bleed groove so that the refrigerant is distributed and led out.

このような構成の提案制御弁では、冷媒空気調和機の除湿(ドライ)運転時等において、冷媒はブリード溝で分散されると同時に、前記凹部でさらに分散されて導出されることになり、そのため、ブリード溝を通過する冷媒による騒音(冷媒通過音)を効果的に低減でき、静音化を図ることができる。   In the proposed control valve having such a configuration, at the time of dehumidification (dry) operation of the refrigerant air conditioner, the refrigerant is dispersed in the bleed groove and at the same time, is further dispersed in the concave portion. In addition, noise (refrigerant passing sound) due to the refrigerant passing through the bleed groove can be effectively reduced, and noise reduction can be achieved.

特開平11−51514号公報Japanese Patent Laid-Open No. 11-51514 特開2004−150580号公報JP 2004-150580 A 特願2006−158785号Japanese Patent Application No. 2006-158785

しかしながら、前記提案制御弁においても、騒音低減効果が充分ではなく、一層静音化を図ることのできる流量制御弁の開発が強く要望されている。   However, even in the proposed control valve, there is a strong demand for the development of a flow rate control valve that does not have a sufficient noise reduction effect and can achieve further noise reduction.

本発明は、前記要望に応えるべくなされたもので、その目的とするところは、冷媒導出用絞り部としてのブリード溝を通過する冷媒によって発生する騒音(冷媒通過音)を可及的に低減できて、より一層の静音化を図ることのできる流量制御弁を提供することにある。   The present invention has been made to meet the above-mentioned demands, and the object of the present invention is to reduce as much as possible noise (refrigerant passing sound) generated by the refrigerant passing through the bleed groove as the refrigerant outlet throttle part. Accordingly, it is an object of the present invention to provide a flow control valve that can achieve further noise reduction.

前記の目的を達成すべく、本発明に係る流量制御弁の一つは、基本的には、逆円錐面状のテーパ面を持つ弁シート部を有する弁座部材と、前記弁シート部に接離する逆円錐面状のテーパ面を持つ弁体部を有する弁棒とを備え、前記弁シート部に前記弁体部が当接する閉弁時においても冷媒を絞って導出させるべく、前記弁シート部に、所定深さのブリード溝が形成されており、前記弁シート部のテーパ面の中心角θaから前記弁体部のテーパ面の中心角θbを減じた角度αが0°以上で2.5°以下とされていることを特徴としている。   In order to achieve the above object, one of the flow control valves according to the present invention basically includes a valve seat member having a valve seat portion having an inverted conical tapered surface, and a contact with the valve seat portion. A valve rod having a valve body portion having a tapered surface with an inverted conical surface that is separated from the valve seat, so that the refrigerant is squeezed out even when the valve body portion is closed against the valve seat portion. A bleed groove having a predetermined depth is formed in the portion, and an angle α obtained by subtracting the central angle θb of the tapered surface of the valve body portion from the central angle θa of the tapered surface of the valve seat portion is 0 ° or more. It is characterized by being 5 ° or less.

この場合、好ましい態様では、前記ブリード溝の底部に、冷媒を分散して導出するように、断面がV字状、半楕円弧状、台形状等の所定深さの凹部が複数列並設される。   In this case, in a preferred embodiment, a plurality of rows of recesses having a predetermined depth, such as a V shape, a semi-elliptical arc shape, and a trapezoidal shape, are arranged in parallel at the bottom of the bleed groove so that the refrigerant is distributed and led out. .

より好ましい態様では、前記中心角θaから前記中心角θbを減じた角度αが1.0°以上で1.5°以下とされる。   In a more preferred embodiment, an angle α obtained by subtracting the central angle θb from the central angle θa is set to 1.0 ° or more and 1.5 ° or less.

一方、本発明に係る流量制御弁の他の一つは、基本的には、逆円錐面状のテーパ面を持つ弁シート部を有する弁座部材と、前記弁シート部に接離する逆円錐面状のテーパ面を持つ弁体部を有する弁棒とを備え、前記弁シート部に前記弁体部が当接する閉弁時においても冷媒を絞って導出させるべく、前記弁シート部に、所定深さのブリード溝が形成されており、前記弁体部における前記テーパ面より上流側に、半径方向に膨出してその下面が前記弁シート部の上端面に対向する膨出部が設けられ、閉弁時における前記膨出部の下面と前記弁シート部の上端面との離隔距離βが所定値以下とされていることを特徴としている。   On the other hand, the other one of the flow control valves according to the present invention basically includes a valve seat member having a valve seat portion having a tapered surface with an inverted conical surface shape, and an inverted cone contacting and separating from the valve seat portion. A valve rod having a valve body portion having a planar tapered surface, and in order to squeeze and draw out the refrigerant even when the valve body portion is in contact with the valve seat portion, A bleed groove having a depth is formed, and on the upstream side of the taper surface in the valve body portion, a bulge portion is provided that bulges in the radial direction and whose lower surface faces the upper end surface of the valve seat portion, A separation distance β between the lower surface of the bulging portion and the upper end surface of the valve seat portion when the valve is closed is not more than a predetermined value.

この場合、好ましい態様では、前記ブリード溝の底部に、冷媒を分散して導出するように、断面がV字状、半楕円弧状、台形状等の所定深さの凹部が複数列並設される。   In this case, in a preferred embodiment, a plurality of rows of recesses having a predetermined depth, such as a V shape, a semi-elliptical arc shape, and a trapezoidal shape, are arranged in parallel at the bottom of the bleed groove so that the refrigerant is distributed and led out. .

他の好ましい態様では、前記弁シート部の上端面に、該上端面を半径方向に横断するように、断面がV字状、半楕円弧状、台形状等の所定深さの整流溝が複数個設けられる。   In another preferred embodiment, the upper end surface of the valve seat portion includes a plurality of rectifying grooves having a predetermined depth such as a V-shaped, semi-elliptical arc, or trapezoidal shape so as to cross the upper end surface in the radial direction. Provided.

前記複数個の整流溝は、好ましくは、放射状に配列される。
また、前記複数個の整流溝は、好ましくは、隣り合う前記ブリード溝間に設けられる。
The plurality of rectifying grooves are preferably arranged radially.
The plurality of rectifying grooves are preferably provided between adjacent bleed grooves.

本発明に係る流量制御弁の一つでは、弁シート部のテーパ面の中心角θaから弁体部のテーパ面の中心角θbを減じた角度αが0°以上で2.5°以下、より好ましくは、1.0°以上で1.5°以下とされるので、弁体部のテーパー面と弁シート部のテーパー面との間における、それらの当接部より上流側に形成される断面が鋭角三角形状の隙間Saが、従前の前記角度αが8°前後あったものに比して大幅に縮小される。このため、騒音発生源である前記ブリード溝に向かう通過冷媒中に含まれる気泡が十二分に細分化され、これによって、ブリード溝を通過する冷媒によって発生する騒音(冷媒通過音)を従前のものよりさらに低減できて、より一層の静音化を図ることができる。   In one of the flow control valves according to the present invention, an angle α obtained by subtracting the central angle θb of the tapered surface of the valve body portion from the central angle θa of the tapered surface of the valve seat portion is 0 ° or more and 2.5 ° or less. Preferably, the cross section is formed between the taper surface of the valve body portion and the taper surface of the valve seat portion on the upstream side from the contact portion because it is 1.0 ° or more and 1.5 ° or less. However, the acute-angled triangular gap Sa is greatly reduced as compared with the conventional case where the angle α is about 8 °. For this reason, the bubbles contained in the passing refrigerant toward the bleed groove, which is a noise generation source, are sufficiently subdivided, and thereby noise (refrigerant passing sound) generated by the refrigerant passing through the bleed groove is reduced. It is possible to further reduce the noise and further silence.

本発明に係る流量制御弁の他の一つでは、弁体部における前記テーパ面より上流側に膨出部が設けられ、閉弁時における前記膨出部の下面と前記弁シート部の上端面との離隔距離βが所定値以下とされるので、弁シート部及び弁体部の外周側から前記ブリード溝に向かう比較的大きな(径の)気泡が前記膨出部の下面と前記弁シート部の上端面との間に形成される隙間には侵入できなくなる。このため、騒音発生源である前記ブリード溝に向かう通過冷媒中に含まれる比較的大きな(径の)気泡が細分化され、これによって、ブリード溝を通過する冷媒によって発生する騒音(冷媒通過音)を従前のものよりさらに低減できて、より一層の静音化を図ることができる。   In another one of the flow control valves according to the present invention, a bulging portion is provided on the upstream side of the tapered surface in the valve body portion, and the lower surface of the bulging portion and the upper end surface of the valve seat portion when the valve is closed Is less than or equal to a predetermined value, relatively large (diameter) bubbles from the outer peripheral sides of the valve seat portion and the valve body portion toward the bleed groove are formed on the lower surface of the bulging portion and the valve seat portion. It becomes impossible to enter into the gap formed between the upper end surface of each other. For this reason, relatively large (diameter) bubbles contained in the passing refrigerant toward the bleed groove, which is a noise generation source, are subdivided, and thereby noise generated by the refrigerant passing through the bleed groove (refrigerant passing sound). Can be further reduced than before, and further noise reduction can be achieved.

この場合、上記構成に加えて、前記弁シート部の上端面に所定の形態で整流溝を複数個設けて冷媒を整流することことにより、より一層の静音化を図ることができる。   In this case, in addition to the above-described configuration, it is possible to further reduce the noise by providing a plurality of rectifying grooves in a predetermined form on the upper end surface of the valve seat portion to rectify the refrigerant.

以下、本発明の流量制御弁の実施形態を図面を参照しながら説明する。
図1は、本発明に係る流量制御弁の一実施形態を示す縦断面図である。
Hereinafter, an embodiment of a flow control valve of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing an embodiment of a flow control valve according to the present invention.

図示実施形態の流量制御弁1は、空気調和機等の冷凍サイクルに使用されるのもので、逆有底円筒状の小径部12A及びその下部に連なる大径部12Bからなる段付きのキャン12と該キャン12の大径部12Bに下から嵌め込まれて溶接等により密封接合された鍔状部付き弁座部材14とで弁本体10が構成されている。弁座部材14の上端部内周側は、逆円錐面状のテーパ面14aを持つ弁シート部14Aとなっており、この弁シート部14Aに、弁棒20の下部大径部20Aの下端外周側に設けられた、逆円錐面状のテーパ面21aを持つ弁体部21Aが接離するようになっている(後述)。   A flow control valve 1 of the illustrated embodiment is used in a refrigeration cycle such as an air conditioner, and has a stepped can 12 comprising a reverse-bottomed cylindrical small-diameter portion 12A and a large-diameter portion 12B connected to the lower portion thereof. And a valve seat member 14 having a hook-like portion that is fitted into the large-diameter portion 12B of the can 12 from below and sealed and joined by welding or the like. The inner peripheral side of the upper end portion of the valve seat member 14 is a valve seat portion 14A having an inverted conical tapered surface 14a. The valve body 21A having a tapered surface 21a having an inverted conical surface is provided in contact with and away from the valve body (described later).

また、前記キャン12の大径部12Bの一側部には導管(継手)41が、また、弁座部材14の下部には導管(継手)42が、それぞれろう付け等により接合連結されている。   A conduit (joint) 41 is joined to one side of the large-diameter portion 12B of the can 12, and a conduit (joint) 42 is joined and connected to the lower portion of the valve seat member 14 by brazing or the like. .

前記キャン12の小径部12Aの下部には、固定鉄芯である吸引子22がろう付け又はカシメ固定等により固着され、この吸引子22、キャン12の大径部12B、及び弁座部材14で弁室15が画成され、この弁室15には、前記弁棒20の下部大径部20Aが位置せしめられている。   A suction element 22, which is a fixed iron core, is fixed to the lower part of the small diameter part 12 </ b> A of the can 12 by brazing, caulking, or the like, and the suction element 22, the large diameter part 12 </ b> B of the can 12, and the valve seat member 14. A valve chamber 15 is defined, and a lower large diameter portion 20A of the valve rod 20 is positioned in the valve chamber 15.

前記吸引子22に設けられた貫通穴には前記弁棒20の小径部20Bが摺動自在に嵌挿され、弁棒20の上端部は、キャン12の上部に摺動自在に嵌挿された中空のプランジャ24に差し込まれてかしめ固定されている。   A small diameter portion 20B of the valve stem 20 is slidably inserted into a through hole provided in the suction element 22, and an upper end portion of the valve stem 20 is slidably inserted into the upper portion of the can 12. It is inserted into the hollow plunger 24 and fixed by caulking.

プランジャ24と吸引子22との間には圧縮コイルばね25が介装されており、この圧縮コイルばね25は、常時プランジャ24を吸引子22から引き離す方向、すなわち、弁体部21Aを弁シート部14Aから引き離す方向(開弁方向)に付勢している。   A compression coil spring 25 is interposed between the plunger 24 and the suction element 22, and this compression coil spring 25 always pulls the plunger 24 away from the suction element 22, that is, the valve body portion 21 </ b> A is a valve seat portion. It is energized in the direction of pulling away from 14A (the valve opening direction).

前記キャン20(の小径部20B)の外周側には、ハウジング32、コイル33、ボビン34等を有する電磁式アクチュエータ30が取り付けられている。なお、ハウジング32の上部には、リベット36等で半球状凸部を有するストッパ37が固着されており、このストッパ37の半球状凸部をキャン20側に複数箇所(例えば4箇所)設けられた半球状の凹部のいずれかに嵌合させることにより、キャン20に対して電磁式アクチュエータ30が位置決め固定される。   An electromagnetic actuator 30 having a housing 32, a coil 33, a bobbin 34 and the like is attached to the outer peripheral side of the can 20 (the small diameter portion 20B). A stopper 37 having a hemispherical convex portion is fixed to the upper portion of the housing 32 with a rivet 36 or the like, and a plurality of (for example, four) hemispherical convex portions of the stopper 37 are provided on the can 20 side. The electromagnetic actuator 30 is positioned and fixed with respect to the can 20 by fitting into any of the hemispherical recesses.

かかる構成のもとで、コイル33に通電がなされない状態にあっては、圧縮コイルばね25の付勢力により、プランジャ24は上端位置にあって、弁棒20の弁体部21Aは弁座部材14の弁シート部14Aから離れている。したがって、冷媒は、弁室15を介して両導管41、42の間を自由に流れることができる(ここでは、図の矢印で示されるように導管41→導管42の流れを基本としている)。   Under such a configuration, when the coil 33 is not energized, the plunger 24 is in the upper end position by the urging force of the compression coil spring 25, and the valve body 21A of the valve stem 20 is the valve seat member. It is away from 14 valve seat parts 14A. Accordingly, the refrigerant can freely flow between the two conduits 41 and 42 via the valve chamber 15 (here, the flow is based on the flow of the conduit 41 → the conduit 42 as indicated by an arrow in the figure).

コイル33に通電されると、コイル33から発せられる磁界により吸引子22及びプランジャ24が磁化される。吸引子22の磁力はプランジャ24を圧縮コイルばね25の付勢力に抗して吸引子22側へ引き寄せる。これによって、弁棒20の弁体部21Aが弁シート部14Aに当接して閉弁状態となる(図1に示される位置)。   When the coil 33 is energized, the attractor 22 and the plunger 24 are magnetized by the magnetic field generated from the coil 33. The magnetic force of the attractor 22 pulls the plunger 24 toward the attractor 22 against the urging force of the compression coil spring 25. As a result, the valve body 21A of the valve stem 20 comes into contact with the valve seat portion 14A to close the valve (position shown in FIG. 1).

以上の構成に加えて、本実施形態では、前記閉弁状態において冷媒を絞って導管41→導管42に導出するため、つまり、空気調和機において除湿(ドライ)運転を行う際等の冷媒導出用絞り部として、図2に示される如くに、前記弁シート部14Aの複数箇所(例えば45°間隔で8箇所)に、図3に断面が示されている如くの、深さがdのブリード溝17が形成されており、このブリード溝17の底部17Bに、弁室15から導管42に向かうように、例えば断面半楕円弧状で深さがeの凹部18が複数列(例えば2列)並設されている。   In addition to the above configuration, in the present embodiment, the refrigerant is squeezed out in the valve closing state and led out from the conduit 41 to the conduit 42, that is, for performing refrigerant dehumidification (dry) operation in the air conditioner. As shown in FIG. 2, as shown in FIG. 2, as shown in FIG. 2, a bleed groove having a depth of d as shown in FIG. 3 at a plurality of locations (for example, 8 locations at 45 ° intervals) of the valve seat 14 A 17 is formed, and a plurality of rows (for example, two rows) of recesses 18 having a semi-elliptical arc shape and a depth e, for example, are arranged in parallel at the bottom portion 17B of the bleed groove 17 from the valve chamber 15 toward the conduit 42. Has been.

このように、深さがdのブリード溝17に深さがeの凹部18を複数列(例えば2列)並設することにより、冷媒空気調和機の除湿(ドライ)運転時において、冷媒は前記8箇所のブリード溝17で分散されると同時に、前記2列の凹部18でさらに分散されて導出されることになり、そのため、ブリード溝17を通過する冷媒による騒音(冷媒通過音)を効果的に低減できる。   As described above, by arranging a plurality of rows (e.g., two rows) of recesses 18 having a depth e in the bleed groove 17 having a depth d, the refrigerant can be used in the dehumidification (dry) operation of the refrigerant air conditioner. At the same time as being dispersed by the eight bleed grooves 17, it is further dispersed by the two rows of recesses 18, so that noise (refrigerant passing sound) due to the refrigerant passing through the bleed grooves 17 is effectively obtained. Can be reduced.

なお、前記凹部18の断面形状は、図3に示される如くの断面半楕円弧状に限られることはなく、断面形状をV字状、半円弧状、台形状等やそれらの組み合わせにしてもよい。   The cross-sectional shape of the concave portion 18 is not limited to a semi-elliptical arc shape as shown in FIG. 3, and the cross-sectional shape may be a V shape, a semi-arc shape, a trapezoidal shape, or a combination thereof. .

かかる構成に加えて、本実施形態の流量制御弁1では、さらに、次のような構成が加えてられている。   In addition to this configuration, the following configuration is further added to the flow control valve 1 of the present embodiment.

すなわち、図4、図5に示される如くに、前記弁シート部14Aのテーパ面14aの中心角θaから前記弁体部21Aのテーパ面21aの中心角θbを減じた角度αが0°以上で2.5°以下、より好ましくは1.0°以上で1.5°以下とされて、弁体部21Aのテーパー面21aと弁シート部14Aのテーパー面14aとの間における、それらの当接部Pより上流側に形成される断面が鋭角三角形状の隙間Saが、従前の前記角度αが8°前後あったものに比して大幅に縮小されている。このため、騒音発生源である前記ブリード溝17に向かう通過冷媒中に含まれる気泡が十二分に細分化され、これによって、ブリード溝17を通過する冷媒によって発生する騒音(冷媒通過音)を従前のものよりさらに低減できて、より一層の静音化を図ることができる。   That is, as shown in FIGS. 4 and 5, the angle α obtained by subtracting the central angle θb of the tapered surface 21a of the valve body portion 21A from the central angle θa of the tapered surface 14a of the valve seat portion 14A is 0 ° or more. 2.5 ° or less, more preferably 1.0 ° or more and 1.5 ° or less, and the contact between the tapered surface 21a of the valve body portion 21A and the tapered surface 14a of the valve seat portion 14A. The gap Sa having a sharp triangular cross section formed on the upstream side of the portion P is greatly reduced as compared with the conventional case where the angle α is about 8 °. For this reason, the bubbles contained in the refrigerant passing through toward the bleed groove 17 which is a noise generation source are sufficiently subdivided, thereby generating noise (refrigerant passing sound) generated by the refrigerant passing through the bleed groove 17. This can be further reduced than the conventional one, and further noise reduction can be achieved.

かかる効果を検証すべく、試作実験を行ったところ、図6、図7に示される如くの結果が得られた。すなわち、図6及び図7において、縦軸に騒音レベルをあらわす音圧(dB)をとり、横軸にそれぞれ前記角度α(=θaーθb)及び時間(s)をとって試作実験値が示されているように、前記角度αが大きくなるに従い音圧が大きくなり、前記角度αが2°を越えたあたりで、音圧は規格上の許容限界値である33.8dBを越えてしまうこと、及び、前記角度αが1.0°以上で1.5°以下の場合に最も騒音低減効果が大きいことが分かる。   In order to verify this effect, a prototype experiment was conducted, and the results shown in FIGS. 6 and 7 were obtained. That is, in FIG. 6 and FIG. 7, the experimental values are shown with the sound pressure (dB) representing the noise level on the vertical axis and the angle α (= θa−θb) and time (s) on the horizontal axis. As described above, the sound pressure increases as the angle α increases, and when the angle α exceeds 2 °, the sound pressure exceeds 33.8 dB, which is a standard allowable limit value. It can be seen that the noise reduction effect is greatest when the angle α is 1.0 ° or more and 1.5 ° or less.

なお、前記ブリード溝17における凹部18数を1個、2個、3個、4個(図9参照)、…にした場合の騒音レベルを示す音圧(dB)を図8に示す。これから分かるように、前記凹部18数は2〜4個が適当であり、5個以上にしてもさほど騒音低減効果は得られない。   FIG. 8 shows sound pressure (dB) indicating the noise level when the number of recesses 18 in the bleed groove 17 is 1, 2, 3, 4 (see FIG. 9),. As can be seen, the number of the concave portions 18 is suitably 2 to 4, and even if the number is 5 or more, the noise reduction effect is not so much obtained.

図10は、他の実施形態の弁棒20の下部大径部20A’と弁座部材14を示す。本実施形態では、前記角度αが従前のものと同じ8°程度にされているが、ブリード溝17等は前記実施形態と同じ構成とされ、それに、次のような構成が付加されている。すなわち、前記弁体部21Aにおけるテーパ面21aより上流側に、半径方向に膨出してその下面23aが前記弁シート部14Aの上端面14bに対向する膨出部23が設けられ、閉弁時における膨出部23の下面23aと弁シート部14Aの上端面14bとの離隔距離βが所定値以下とされている。   FIG. 10 shows the lower large-diameter portion 20A ′ and the valve seat member 14 of the valve stem 20 of another embodiment. In the present embodiment, the angle α is set to about 8 °, which is the same as that in the prior art. However, the bleed groove 17 and the like have the same configuration as in the previous embodiment, and the following configuration is added thereto. That is, a bulging portion 23 is provided on the upstream side of the tapered surface 21a of the valve body portion 21A in the radial direction and its lower surface 23a faces the upper end surface 14b of the valve seat portion 14A. The separation distance β between the lower surface 23a of the bulging portion 23 and the upper end surface 14b of the valve seat portion 14A is set to a predetermined value or less.

このようにされることにより、弁シート部14A及び弁体部21Aの外周側から前記ブリード溝17に向かう比較的大きな(径の)気泡が前記膨出部23の下面23aと前記弁シート部14Aの上端面14bとの間に形成される隙間(β)には侵入できなくなる。このため、騒音発生源である前記ブリード溝17に向かう通過冷媒中に含まれる比較的大きな(径の)気泡が細分化され、これによって、ブリード溝17を通過する冷媒によって発生する騒音(冷媒通過音)を従前のものよりさらに低減できて、より一層の静音化を図ることができる。   By doing so, relatively large (diameter) bubbles from the outer peripheral sides of the valve seat portion 14A and the valve body portion 21A toward the bleed groove 17 are formed on the lower surface 23a of the bulging portion 23 and the valve seat portion 14A. It becomes impossible to enter the gap (β) formed between the upper end surface 14b and the upper end surface 14b. For this reason, relatively large (diameter) bubbles contained in the passing refrigerant toward the bleed groove 17 which is a noise generating source are subdivided, and thereby noise generated by the refrigerant passing through the bleed groove 17 (refrigerant passage). Sound) can be further reduced as compared with the conventional one, and further noise reduction can be achieved.

かかる効果を検証すべく、試作実験を行ったところ、図11に示される如くの結果が得られた。すなわち、図11において、縦軸に騒音レベルをあらわす音圧(dB)をとり、横軸に時間(s)をとって、前記離隔距離βが0.15mm、0.30mm、0.45mmとした場合の試作実験値が示されているように、前記離隔距離βが大きくなるに従い音圧が大きくなることが分かる。   In order to verify such an effect, a prototype experiment was conducted, and the result shown in FIG. 11 was obtained. That is, in FIG. 11, the vertical axis represents the sound pressure (dB) representing the noise level, the horizontal axis represents time (s), and the separation distance β was set to 0.15 mm, 0.30 mm, and 0.45 mm. As shown in the experimental test values in this case, it can be seen that the sound pressure increases as the separation distance β increases.

この場合、上記構成に加えて、図12に示される如くに、前記弁シート部14の上端面14bに、該上端面14bを半径方向に横断するように、断面がV字状(半楕円弧状、台形状等でも可)の所定深さfの整流溝14cが複数個(2個一組で45°間隔をあけて8箇所に計16個)、放射状に配列形成されている。ここでは、各整流溝14cは、隣り合う前記ブリード溝17ー17間に設けられている。   In this case, in addition to the above configuration, as shown in FIG. 12, the upper end surface 14b of the valve seat portion 14 has a V-shaped cross section (semi-elliptical arc shape) so as to cross the upper end surface 14b in the radial direction. A plurality of rectifying grooves 14c having a predetermined depth f (which may be trapezoidal or the like) are arranged in a radial pattern (a total of 16 rectifying grooves 14 in a set of two with a 45 ° interval and 8 places). Here, each rectifying groove 14c is provided between the adjacent bleed grooves 17-17.

このように、前記弁シート部の上端面に所定の形態で整流溝を複数個設けて冷媒を整流することことにより、図13に示される如くに、より一層の静音化を図ることができる。   In this way, by providing a plurality of rectifying grooves in a predetermined form on the upper end surface of the valve seat portion to rectify the refrigerant, as shown in FIG. 13, further noise reduction can be achieved.

本発明に係る流量制御弁の一実施形態を示す縦断面図。The longitudinal cross-sectional view which shows one Embodiment of the flow control valve which concerns on this invention. 図1に示される弁座部材の斜視図。The perspective view of the valve seat member shown by FIG. 図2に示される弁座部材の弁シート部に形成されたブリード溝を示す拡大断面図。The expanded sectional view which shows the bleed groove | channel formed in the valve seat part of the valve seat member shown by FIG. 本発明の一実施形態における弁棒の下部大径部と弁座部材の上部の拡大断面図。The expanded sectional view of the lower large diameter part of the valve stem and the upper part of a valve seat member in one Embodiment of this invention. 図4のX部の拡大図。The enlarged view of the X section of FIG. 本発明の一実施形態の作用効果の説明に供されるグラフ。The graph provided for description of the effect of one Embodiment of this invention. 本発明の一実施形態の作用効果の説明に供されるグラフ。The graph provided for description of the effect of one Embodiment of this invention. 本発明の一実施形態においてブリード溝における凹部数を変えた場合の音圧を示すグラフ。The graph which shows the sound pressure at the time of changing the number of the recessed parts in a bleed groove | channel in one Embodiment of this invention. 本発明の一実施形態においてブリード溝における凹部数が4個の場合を示す拡大断面図。The expanded sectional view which shows the case where the number of the recessed parts in a bleed groove | channel in one Embodiment of this invention is four. 本発明の他の実施形態における弁棒の下部大径部と弁座部材の上部の拡大断面図。The expanded sectional view of the lower large diameter part of the valve stem and the upper part of a valve seat member in other embodiments of the present invention. 本発明の他の実施形態の作用効果の説明に供されるグラフ。The graph provided for description of the effect of other embodiment of this invention. 本発明の別の実施形態における弁棒の下部大径部と弁座部材の上部の拡大断面図及び弁座弁口部材の斜視図。The enlarged sectional view of the lower large diameter part of the valve stem and the upper part of a valve seat member in another embodiment of the present invention, and the perspective view of a valve seat valve mouth member. 本発明の別の実施形態の作用効果の説明に供されるグラフ。The graph with which it uses for description of the effect of another embodiment of this invention.

符号の説明Explanation of symbols

1 流量制御弁
10 弁本体
14 弁座部材
14A 弁シート部
14a テーパ面
14b 上端面
14c 整流溝
17 ブリード溝
17B 底部
18 凹部
20 弁棒
21A 弁体部
21a テーパー面
23 膨出部
DESCRIPTION OF SYMBOLS 1 Flow control valve 10 Valve main body 14 Valve seat member 14A Valve seat part 14a Tapered surface 14b Upper end surface 14c Rectification groove 17 Bleed groove 17B Bottom part 18 Recess 20 Valve rod 21A Valve body part 21a Tapered surface 23 Swelling part

Claims (8)

逆円錐面状のテーパ面を持つ弁シート部を有する弁座部材と、前記弁シート部に接離する逆円錐面状のテーパ面を持つ弁体部を有する弁棒とを備え、前記弁シート部に前記弁体部が当接する閉弁時においても冷媒を絞って導出させるべく、前記弁シート部に、所定深さのブリード溝が形成されている流量制御弁であって、前記弁シート部のテーパ面の中心角θaから前記弁体部のテーパ面の中心角θbを減じた角度αが0°以上で2.5°以下とされていることを特徴とする流量制御弁。   A valve seat member having a valve seat portion having an inverted conical tapered surface, and a valve rod having a valve body portion having an inverted conical tapered surface contacting and separating from the valve seat portion; A flow control valve in which a bleed groove having a predetermined depth is formed in the valve seat portion so that the refrigerant is squeezed out even when the valve body portion is in contact with the valve portion, and the valve seat portion The flow rate control valve is characterized in that an angle α obtained by subtracting the central angle θb of the tapered surface of the valve body portion from 0 ° to 2.5 ° is obtained from the central angle θa of the tapered surface. 前記ブリード溝の底部に、冷媒を分散して導出するように、断面がV字状、半楕円弧状、台形状等の所定深さの凹部が複数列並設されていることを特徴とする請求項1に記載の流量制御弁。   A plurality of rows of recesses having a predetermined depth, such as a V shape, a semi-elliptical arc shape, and a trapezoidal shape, are arranged in parallel at the bottom of the bleed groove so as to distribute and lead out the refrigerant. Item 2. The flow control valve according to Item 1. 前記中心角θaから前記中心角θbを減じた角度αが1.0°以上で1.5°以下とされていることを特徴とする請求項1又は2に記載の流量制御弁。   3. The flow rate control valve according to claim 1, wherein an angle α obtained by subtracting the center angle θb from the center angle θa is 1.0 ° or more and 1.5 ° or less. 逆円錐面状のテーパ面を持つ弁シート部を有する弁座部材と、前記弁シート部に接離する逆円錐面状のテーパ面を持つ弁体部を有する弁棒とを備え、前記弁シート部に前記弁体部が当接する閉弁時においても冷媒を絞って導出させるべく、前記弁シート部に、所定深さのブリード溝が形成されている流量制御弁であって、前記弁体部における前記テーパ面より上流側に、半径方向に膨出してその下面が前記弁シート部の上端面に対向する膨出部が設けられ、閉弁時における前記膨出部の下面と前記弁シート部の上端面との離隔距離βが所定値以下とされていることを特徴とする流量制御弁。   A valve seat member having a valve seat portion having an inverted conical tapered surface, and a valve rod having a valve body portion having an inverted conical tapered surface contacting and separating from the valve seat portion; A flow control valve in which a bleed groove having a predetermined depth is formed in the valve seat portion so that the refrigerant is squeezed out even when the valve body portion is in contact with the valve portion, and the valve body portion A bulging portion is provided on the upstream side of the taper surface in the radial direction and a lower surface thereof is opposed to an upper end surface of the valve seat portion, and the lower surface of the bulging portion and the valve seat portion when the valve is closed A flow rate control valve characterized in that the separation distance β from the upper end surface of the gas flow is not more than a predetermined value. 前記ブリード溝の底部に、冷媒を分散して導出するように、断面がV字状、半楕円弧状、台形状等の所定深さの凹部が複数列並設されていることを特徴とする請求項4に記載の流量制御弁。   A plurality of rows of recesses having a predetermined depth, such as a V shape, a semi-elliptical arc shape, and a trapezoidal shape, are arranged in parallel at the bottom of the bleed groove so as to distribute and lead out the refrigerant. Item 5. The flow control valve according to Item 4. 前記弁シート部の上端面に、該上端面を半径方向に横断するように、断面がV字状、半楕円弧状、台形状等の所定深さの整流溝が複数個設けられていることを特徴とする請求項4又は5に記載の流量制御弁。   A plurality of rectifying grooves having a predetermined depth such as a V shape, a semi-elliptical arc shape, and a trapezoidal shape are provided on the upper end surface of the valve seat portion so as to cross the upper end surface in the radial direction. The flow control valve according to claim 4 or 5, characterized in that 前記複数個の整流溝は、放射状に配列されていることを特徴とする請求項6に記載の流量制御弁。   The flow control valve according to claim 6, wherein the plurality of rectifying grooves are arranged radially. 前記複数個の整流溝は、隣り合う前記ブリード溝間に設けられていることを特徴とする請求項6又は7に記載の流量制御弁。   The flow control valve according to claim 6 or 7, wherein the plurality of rectifying grooves are provided between the adjacent bleed grooves.
JP2007325759A 2007-12-18 2007-12-18 Flow control valve Active JP5196983B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007325759A JP5196983B2 (en) 2007-12-18 2007-12-18 Flow control valve
KR1020080070988A KR101276967B1 (en) 2007-12-18 2008-07-22 Flow control valve
CN200810178363.9A CN101463907B (en) 2007-12-18 2008-11-27 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007325759A JP5196983B2 (en) 2007-12-18 2007-12-18 Flow control valve

Publications (2)

Publication Number Publication Date
JP2009144893A true JP2009144893A (en) 2009-07-02
JP5196983B2 JP5196983B2 (en) 2013-05-15

Family

ID=40804621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007325759A Active JP5196983B2 (en) 2007-12-18 2007-12-18 Flow control valve

Country Status (3)

Country Link
JP (1) JP5196983B2 (en)
KR (1) KR101276967B1 (en)
CN (1) CN101463907B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177470A (en) * 2011-01-31 2012-09-13 Saginomiya Seisakusho Inc Throttle valve device
JP2013170622A (en) * 2012-02-21 2013-09-02 Rinnai Corp Flow control device
JP2019132382A (en) * 2018-02-01 2019-08-08 株式会社鷺宮製作所 Dehydration valve

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2540345C1 (en) * 2011-02-18 2015-02-10 Сименс Акциенгезелльшафт Valve unit
DE102013107390B4 (en) 2013-07-12 2023-06-07 Svm Schultz Verwaltungs-Gmbh & Co. Kg Pressure control valve with control element
JP2015038368A (en) * 2013-08-19 2015-02-26 株式会社鷺宮製作所 Flow control valve
CN107304845B (en) * 2016-04-18 2019-07-12 北京航天石化技术装备工程有限公司 A kind of automatic control return valve bypassing No leakage
CN106246927A (en) * 2016-08-23 2016-12-21 成都欧浦特控制阀门有限公司 The valve member of improved structure
CN107605633B (en) * 2017-07-12 2020-01-07 北京航空航天大学 Multi-fuel pump oil outlet valve with viscosity compensation function for aviation heavy oil piston engine

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495089A (en) * 1972-04-26 1974-01-17
JPS51120432A (en) * 1975-03-28 1976-10-21 Chappell Industries Adjustable choke
JPS529119A (en) * 1975-07-11 1977-01-24 Matsushita Electric Ind Co Ltd Fluid control device
JPH0735444A (en) * 1993-07-22 1995-02-07 Tgk Co Ltd Expansion valve
JPH1137311A (en) * 1997-05-23 1999-02-12 Fuji Koki Corp Motor-operated valve
JPH1151514A (en) * 1997-07-30 1999-02-26 Hitachi Ltd Air conditioner
JP2001012825A (en) * 1999-06-29 2001-01-19 Hitachi Ltd Throttle device
JP2004150580A (en) * 2002-10-31 2004-05-27 Daikin Ind Ltd Solenoid valve
JP2004183950A (en) * 2002-12-02 2004-07-02 Daikin Ind Ltd Solenoid valve
JP2005500484A (en) * 2001-08-17 2005-01-06 フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー Flow control valve with low pressure drop ratio coefficient
JP2007327551A (en) * 2006-06-07 2007-12-20 Fuji Koki Corp Flow control valve
JP2008291928A (en) * 2007-05-25 2008-12-04 Saginomiya Seisakusho Inc Needle valve, and refrigerating cycle device having the needle valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3444039A1 (en) * 1984-12-03 1986-06-05 Herion-Werke Kg, 7012 Fellbach CONTROL VALVE

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495089A (en) * 1972-04-26 1974-01-17
JPS51120432A (en) * 1975-03-28 1976-10-21 Chappell Industries Adjustable choke
JPS529119A (en) * 1975-07-11 1977-01-24 Matsushita Electric Ind Co Ltd Fluid control device
JPH0735444A (en) * 1993-07-22 1995-02-07 Tgk Co Ltd Expansion valve
JPH1137311A (en) * 1997-05-23 1999-02-12 Fuji Koki Corp Motor-operated valve
JPH1151514A (en) * 1997-07-30 1999-02-26 Hitachi Ltd Air conditioner
JP2001012825A (en) * 1999-06-29 2001-01-19 Hitachi Ltd Throttle device
JP2005500484A (en) * 2001-08-17 2005-01-06 フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー Flow control valve with low pressure drop ratio coefficient
JP2004150580A (en) * 2002-10-31 2004-05-27 Daikin Ind Ltd Solenoid valve
JP2004183950A (en) * 2002-12-02 2004-07-02 Daikin Ind Ltd Solenoid valve
JP2007327551A (en) * 2006-06-07 2007-12-20 Fuji Koki Corp Flow control valve
JP2008291928A (en) * 2007-05-25 2008-12-04 Saginomiya Seisakusho Inc Needle valve, and refrigerating cycle device having the needle valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177470A (en) * 2011-01-31 2012-09-13 Saginomiya Seisakusho Inc Throttle valve device
JP2013139882A (en) * 2011-01-31 2013-07-18 Saginomiya Seisakusho Inc Throttle valve apparatus
JP2014059063A (en) * 2011-01-31 2014-04-03 Saginomiya Seisakusho Inc Throttle valve device
JP2013170622A (en) * 2012-02-21 2013-09-02 Rinnai Corp Flow control device
JP2019132382A (en) * 2018-02-01 2019-08-08 株式会社鷺宮製作所 Dehydration valve

Also Published As

Publication number Publication date
KR101276967B1 (en) 2013-06-19
CN101463907B (en) 2014-01-08
CN101463907A (en) 2009-06-24
KR20090066197A (en) 2009-06-23
JP5196983B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5196983B2 (en) Flow control valve
JP4734264B2 (en) solenoid valve
JP4865287B2 (en) Pilot type solenoid valve
US20130292590A1 (en) Solenoid valve, braking system
CN104653842A (en) On-off valve
JP2016070637A (en) Control valve
JP5690705B2 (en) Dehumidifying valve
JP4733572B2 (en) Flow control valve
EP1484538B1 (en) Normally open solenoid valve
JP2007092826A (en) Pilot type solenoid valve
JP2024038287A (en) Motor valve
JP5944884B2 (en) On-off valve
JP2004108409A (en) Check valve
CN108644389A (en) Regulated brake device solenoid valve
JP2007092797A (en) Solenoid valve
JP7160307B2 (en) On-off valve and its manufacturing method
JP4326903B2 (en) Flow control valve
WO2006132120A1 (en) Pilot solenoid valve
JP4758626B2 (en) Solenoid valve
JP2006242046A (en) Fuel injection valve
JP5658194B2 (en) solenoid valve
JP2006258074A (en) Fuel injection valve
JP7321521B2 (en) on-off valve
JP2008190567A (en) Solenoid valve
JP7418811B2 (en) electrically driven valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250