JP4270952B2 - Flow control valve - Google Patents

Flow control valve Download PDF

Info

Publication number
JP4270952B2
JP4270952B2 JP2003174292A JP2003174292A JP4270952B2 JP 4270952 B2 JP4270952 B2 JP 4270952B2 JP 2003174292 A JP2003174292 A JP 2003174292A JP 2003174292 A JP2003174292 A JP 2003174292A JP 4270952 B2 JP4270952 B2 JP 4270952B2
Authority
JP
Japan
Prior art keywords
valve
flow
valve body
refrigerant
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003174292A
Other languages
Japanese (ja)
Other versions
JP2005009762A5 (en
JP2005009762A (en
Inventor
仁志 木船
正幸 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2003174292A priority Critical patent/JP4270952B2/en
Publication of JP2005009762A publication Critical patent/JP2005009762A/en
Publication of JP2005009762A5 publication Critical patent/JP2005009762A5/ja
Application granted granted Critical
Publication of JP4270952B2 publication Critical patent/JP4270952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和機等に使用する流量制御弁に関する。
【0002】
【従来の技術】
従来、流量制御弁の一例として、弁本体に設けたプランジャチューブの周囲にソレノイドコイルを設け、プランジャチューブ内において弁本体側に可動吸引子、他側にプランジャを設け、可動吸引子とプランジャ間を開弁ばねで付勢された状態で、プランジャと弁体をカシメにより結合して収納した通電時閉型電磁弁が知られている。
【0003】
かかる従来の電磁弁を冷凍サイクルで除湿運転を行う空気調和機に用いた場合に、除湿運転の絞りとして弁体に孔を設けることが行なわれる。しかしながら、弁体に孔を設けた場合には、絞り作用に伴なって冷媒流動音が発生する場合があり、発生した場合には騒音となるという問題点があった。
【0004】
そこで、この騒音を低減する技術が下記の特許文献1に開示されている。この特許文献1には、除湿モードを有する空気調和機で除湿用絞り弁として使用される絞り装置として、絞り通路における冷媒通過音を低減し、長期間の使用においても除湿運転性能を維持できる絞り装置が示されている。しかしながら、この装置においても冷媒通過音の低減について期待される効果をあげていないのが現状である。
【0005】
【特許文献1】
特開2002−310540号公報
【0006】
【発明が解決しようとする課題】
そこで、本発明者らは、上記従来技術を考慮しつつ、更に冷媒通過音の低減を目的として技術の開発をおこない、弁体に気泡を細分化する部材を一体に組付けると共に、細分化された気泡が再び大きく成長しないようにして、冷媒流動音を一層低減し、騒音の発生を抑制した電磁弁を提供することを目的として、下記の発明を先願(特願2003−124783号)として提案した。
【0007】
以下、先に提案した発明の概略を図及び図を参照して説明する。図はその電磁弁の閉状態の縦断面図、図は図の弁部の拡大図である。なお、図中、矢印は冷媒の流れ方向を示す。
【0008】
この先願に係る電磁弁は、図に示すように、弁本体1’の内部に弁室10’を有すると共に、弁本体1’の上部には吸引子3’の係止部3a’を介して、一端を閉塞したパイプ部3b’が装着されており、上記パイプ部3b’の外周には電磁コイル2’が装備され、パイプ部3b’の内部には、吸引子3’に対してパイプ部3b’の長手方向に摺動自在に棒状の弁体4’が設けられている。また、上記パイプ部3b’内に、弁体4’に連結されたプランジャ5’と、弁本体1’の下部開口端に設けた弁シート6’と、吸引子3’とプランジャ5’との間に配設されたコイルスプリング7’と、を備えている。そして、上記吸引子3’には、これを貫通する棒状の弁体4’がパイプ部3b’の長手方向に沿って摺動自在に設けられ、弁体4’の下端部には弁シート6’の弁座部6a’に離接する弁部40’が形成され、また、弁体4’の上端部はプランジャ5’に嵌合・固定されている。
【0009】
弁部40’には、その上方の弁棒部分より径大に形成され、その段部となる肩部41’が形成されると共にこれを介して円筒状の側壁部42’が形成され、また、該側壁部42’の内部には空間部43a’が形成される。また、上記弁部40’には、図に示すように、その中心部において、上記空間部43a’に連通する径大孔43b’、及び該径大孔43b’に連通する径小孔43c’が形成され、この径小孔43c’に連通して横断面積が小さい孔、即ち、小孔44’が横方向に形成されている。そして、前記小孔44’は両端部に入口側径大部44a’が形成され、該入口側径大部44a’を介して上部弁室11’に開口している。
【0010】
上記弁部40’の肩部41’の上部で小孔44’の開口に臨ませて冷媒中の気泡を細分化する第1の多孔質部材51’が保持される。この第1の多孔質部材51’は、そのバネ弾性により変形可能であり、弁部40’に形成されている保持突部48’を上部から下方へ変形させて乗り越えさせ弁部40’の外周に装着させて、上記肩部41’の上部に載置された状態で保持突部48’により支持される。
【0011】
また、弁部40’の径小孔43c’及び径大孔43b’内には第2の多孔質部材52’が内挿されている。該第2の多孔質部材52’は異径の円柱状で縦断面逆T形に形成されており、その大径部は径大孔43b’内に配置され、小径部は径小孔43c’内に配置される。また、上記多孔質部材52’は、下方から後述の案内部材60’に支持される。上記各多孔質部材51’,52’は、例えば発泡金属が用いられる。
【0012】
更に、弁部40’における径大孔43b’及び空間部43a’内には、細分化気泡の状態を保持させるための小気泡保持流路が、案内環部材47’及び案内部材60’によって形成される。
【0013】
上記案内環部材47’は所定厚みの環状部材からなり、その内面は下方程狭くなる漏斗状の入口側傾斜部47a’、該入口側傾斜部47a’に連続する均一内径の均一径部47b’、及び、下方程広くなる逆漏斗状の出口側傾斜部47c’と、が上方から下方に順次形成されている。また、この案内環部材47’は、図に示すように、弁体4’の先端45’でカシメ固定されている。
【0014】
上記案内部材60’は、円盤状のフランジ部63’と、該フランジ部63’の軸心位置に立設された柱状部61’と傾斜部62’と、からなる。上記フランジ部63’には、図に示すように、通孔64’が複数個形成されており、弁部40’内の冷媒はこの通孔64’から出口側パイプ110’に直接流出することになる。前記案内部材60’に配置される柱状部61’は、上記均一径部47b’の内面とは隙間(クリアランス)を形成させるために、僅かに小さい径として形成されている。そして、これらの間を流動する冷媒は、そのエネルギが比較的緩やかに速度エネルギに変換され、急激な収縮・膨張が行われないことから、冷媒内に気泡が含まれている場合でも、気泡の急激な成長(膨張)は発生しない。
【0015】
上記構成において、電磁コイル2’に通電すると、吸引子3’に電磁コイル2’の通電により磁力が発生し、吸引子3’がプランジャ5’を下方に向って吸引し、プランジャ5’が弁本体1’のパイプ部3b’の内部を吸引子3’の吸引によりコイルスプリング7’の付勢力に抗しながら下方に向って移動すると同時に、弁体4’が吸引子3’に案内されながらプランジャ5’と共に弁シート6’の弁座部6a’に向って下方に移動し、図に示すように、弁体4’の弁部40’が弁シート6’の弁座部6a’に密接し、電磁弁は閉弁状態となる。
【0016】
かかる閉弁状態において、入口側パイプ100’と、出口側パイプ110’とは、弁室10’、上部弁室11’、入口側径大部44a’、小孔44’、径小孔43c’、径大孔43b’、及び空間部43a’を介して連通する。そこで、冷媒を入口側パイプ100’から流入させると、弁体4’には小孔44’が設けてあるので、絞り作用を受ける上記冷媒は分散され、冷媒の流量及び運動エネルギーが小さくなり、冷媒の流動音は低減される。しかも、絞り作用を受けて径小孔43c’から出口側パイプ110’に流出する冷媒に気泡が発生しても、冷媒は気泡を細分化する部材として第1多孔質部材51’及び第2多孔質部材52’を通過する際に、冷媒中の気泡は細分化され、気泡による冷媒の流動音が低減される。
【0017】
更に、冷媒は上記案内環部材47’と案内部材60’との間を通過させることから、細分化された気泡は、再び気泡が成長して大きくなることなく、出口側パイプ110’に流入し、上記冷凍サイクルにおいて除湿を行う。したがって、先願発明によれば、冷媒中の気泡を細分化する部材、及び、細分化された状態の気泡を保持させることにより、冷媒の流動音を低減し、騒音を抑制することができる流量制御弁を実現できる。
【0018】
しかしながら、上記先願発明においては、案内環部材47’と案内部材60’との間のクリアランスの大きさの設定・管理を要することから、本発明者らはその設定を容易にするための更なる開発を行った。
その結果、発明されたものが本発明であり、弁体に気泡を細分化する部材を一体に組付けると共に、細分化された気泡が再び大きく成長しないようにして、冷媒流動音を一層低減し、騒音の発生を抑制すると共に、気泡を細分化する部材と細分化された気泡の大きさを保持させる流路絞り部の構成を簡略化することで、構成が簡単でクリアランスの大きさの設定・管理及び製造が容易な流量制御弁を提供することを目的とする。
【0019】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る流量制御弁は下記の手段を講じた。即ち、請求項1記載の流量制御弁は、電磁コイルにより弁体を弁座部に対して接離させることにより弁の開閉を行うものであって、前記通路の前記からの流入側前記通路の流出側とに、気泡を細分化する気泡細分化部材がそれぞれ設けられ、前記両気泡細分化部材の間には、流路絞り部が形成され、前記流路絞り部の流入側流出側とに、それぞれ流体案内用の錐体部が配置され、前記各錐体は、前記流路絞り部の中央部に向けて尖った形状を有して互いに対向的に位置し、かつ前記流路絞り部の長さの半分以下に設定されていることを特徴とする。
【0020】
かかる特徴により、気泡を細分化する部材により冷媒中の気泡を細分化でき、しかも、細分化された気泡の状態を保持させる流路が形成されているので、冷媒流動音を抑制し、騒音の発生を防止できる流量制御弁を実現できる。また、細分化された気泡の状態を保持させる流路絞り部の構成を簡略化することで、流路絞り部の製造を容易にしたものである。
【0021】
請求項2記載の流量制御弁は、請求項1記載のものにおいて、前記流路絞り部が曲面から構成されることを特徴とする。
かかる特徴により、流路絞り部内の冷媒の絞り及び流れが円滑に行われる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
【実施形態1】
先ず、実施形態1について、図1、図2に従って説明する。図1は流量制御弁の一例としての電磁弁の開状態の縦断面図、図2はその弁部の拡大図である。なお、図中の矢印は冷媒の流れ方向を示す。また、下記の説明において、図面との関係で上下左右の表現を用いるが、実際の位置関係はこれに限るものではない。
【0023】
本発明の流量制御弁(電磁弁)は、図1に示すように、弁本体1の内部に弁室10を有すると共に、弁本体1の上部には吸引子3の係止部3aを介して、一端を閉塞したパイプ部3bが装着されており、上記パイプ部3bの外周には電磁コイル2が装備され、パイプ部3bの内部には、吸引子3に対してパイプ部3bの長手方向に摺動自在に棒状の弁体4が設けられている。また、この電磁弁は、パイプ部3b内に、弁体4に連結されたプランジャ5と、弁本体1の下部開口端に設けた弁シート6と、吸引子3とプランジャ5との間に配設されたコイルスプリング7と、を備えている。なお、コイルスプリング7は、弁体4を弁シート6と反対方向の開弁方向に向って付勢する開弁用付勢手段である。
【0024】
上記パイプ部3bの外側には、図1に示すように、ボビン2aが嵌合装着され、ボビン2aの周囲には電磁コイル2が巻回され、ボビン2aはコイルケース8の内部に収容されている。上記ボビン2aには、図1に示すように、リード線2cが接続され、電磁コイル2はリード線2cを介して通電される。
【0025】
また、コイルケース8の互いに対向する水平な上壁8a及び下壁8bには垂直な同一中心軸線上に沿って貫通孔8c及び貫通孔8dがそれぞれ設けられ、パイプ部3bが挿通されている。また、コイルケース8の上壁8aの上部には、図1に示すように、板金製の押圧係止部材9が配設され、該押圧係止部材9の一端には上方に向って直角に折曲した立上り部が形成され、該立上り部に上記パイプ部3bの係止凹部3dに係合する突起9aが形成されている。また、コイルケース8の上壁8aは、図1に示すように、リベット2bを介して押圧係止部材9支持ている。
【0026】
更に、弁本体1のパイプ部3bの上端寄りの内部には、図1に示すように、円筒状のプランジャ5が移動自在に配設され、プランジャ5の端壁には垂直な中心軸線上に沿って弁体4の小径部46を固定するための固定用孔5aが設けられている。なお、符号5bは均圧孔である。上記固定用孔5aには、図1に示すように、下方より弁体4の小径部46が嵌入され、弁体4の小径部46の先端にカシメ止め加工を施すことにより、プランジャ5は弁体4の小径部46に連結されている。上記弁体4の外側には、図1に示すように、吸引子3とプランジャ5との間に開弁用のコイルスプリング7が配設され、プランジャ5はコイルスプリング7の付勢力により吸引子3と離間する方向に常時付勢されている。
【0027】
弁シート6には、図1に示すように、弁本体1の弁室10の内部に臨んで弁体4の離接する弁座部6aが形成され、弁シート6は弁本体1に溶接・固着されている。なお、弁本体1と弁シート6はステンレススチールよりなり、弁本体1及び弁シート6はプレス加工により成形されている。
【0028】
上記パイプ部3bの外周には、図1に示すように、電磁コイル2を収容するコイルケース8が装備され、コイルケース8に固定された押圧係止部材9が弁本体1のパイプ部3bに形成した係止凹部3dに係止され、コイルケース8が押圧係止部材9を介して弁本体1のパイプ部3bに固定されている。
【0029】
弁本体1を構成する円筒状の周壁1aの内部には、図1に示すように、弁室10が形成され、上記周壁1aには垂直な弁体4に沿った中心軸線と直交する方向にパイプ嵌合孔1bが設けられ、入口側パイプ1cが溶着されている。
また、上記周壁1aの下端は、弁シート6が装着される。該弁シート6は、パイプ状の弁座部6aと、該弁座部6aの下部に形成されたパイプ嵌合部6bと、該パイプ嵌合部6bの外周部に形成されたフランジ6cと、からなり、該フランジ6cの外周部に周壁1aが溶着される。
【0030】
また、上記周壁1aの上端には吸引子3が装着される。該吸引子3はその下部に段部3cが形成され、該段部3cの下部には弁本体1の周壁1aの上端が装着されている。また、前記吸引子3の上部外周に形成されている係止部3aにはパイプ部3bの下部が装着されている。また、このパイプ部3bの上端は閉塞されている。
【0031】
更に、上記弁シート6下部に形成されたパイプ嵌合部6bには出口側パイプ1dが溶着され、また、吸引子3のパイプ部3bの外周面には係止凹部3dが形成されている。また、上記吸引子3の下部には下部の弁室10に連通する凹部が形成されて上部弁室11を構成している。
【0032】
吸引子3には、図1に示すように、これを貫通する例えば真鍮製の棒状の弁体4がパイプ部3bの長手方向に沿って摺動自在に設けられ、弁体4の下端部には弁シート6の弁座部6aに離接する弁部40が形成され、弁体4の上端部には小径部46が形成されている。この小径部46がプランジャ5下部の固定用孔5aに嵌合・固定されることになる。
【0033】
弁部40には、図2に示すように、その上方の弁棒部分より径大に形成され、その段部となる肩部41が形成されると共にこれを介して円筒状の側壁部42が形成され、また、該側壁部42の内部には細分化気泡の状態を保持させるための小気泡保持流路Dで形成される流路絞り部dが、案内環部材47及び案内部材60によって形成される。
【0034】
即ち、上記案内環部材47は所定厚みの環状部材からなり、入口側径大部47fから、その内面が下方程流路が狭くなる入口側傾斜部47a、下方程流路が広くなる逆漏斗状の出口側傾斜部47c、及び、出口側径大部47dが上方から下方に縦方向断面において対称的な円周形状に形成されている。また、この案内環部材47は、図2に示すように、上方の上フランジ部63aと下方のフランジ部63によって支持される。
【0035】
そして、小気泡保持流路Dに連通して横断面積が小さい孔、即ち、小孔44が横方向(したがって、小気泡保持流路Dの軸線方向と直角方向)に形成される。前記小孔44は両端部(上部弁室11側)に入口側径大部44aが形成され、該入口側径大部44aを介して上部弁室11に開口している(図1の開弁状態参照)。また、側壁部42の内部には後述の案内部材60が嵌合される。なお、前記入口側径大部44aは、その下方に径大延設部44fが形成される。
【0036】
上記弁部40の肩部41の上部で小孔44の開口に臨ませて冷媒中の気泡を細分化する部材として第1の多孔質部材51が嵌合・保持される。この第1の多孔質部材51は、上下に所定長さで均一径の円筒状物からなり、肩部41の上部に載置され、上記側壁部42の外周部に嵌合され支持される。なお、多孔質部材51と小孔44との間には、上下幅の大きい隙間(径大延設部44f)が形成されていることから、多孔質部材51内での冷媒の流路範囲が広がり、気泡の細粒化が促進される。
【0037】
また、上記小孔44が形成される筒状部内には、図2に示すように、気泡を細分化する第2の部材として円柱状の多孔質部材52が配置される。そして、この多孔質部材52の下部(下流側)には、述の小気泡保持流路Dが設けられ、この小気泡保持流路Dの下部(下流側)に、述のフランジ部63を介して第3の多孔質部材53が配置される。
【0038】
即ち、図2に示すように、気泡を細分化する第3の部材として円柱状の多孔質部材53が側壁部42の内部に配置されている。この多孔質部材53はカシメられて側壁部42に支持されている(カシメ部42a)。
【0039】
上記各多孔質部材51,52,53は、例えば発泡金属が用いられ、発泡金属として、SUS(ステンレススチール)を用いた場合は、略3g/cmの高密度の連続気泡の発泡体から構成されている。そして、このような高密度の条件を満たせば、プラスチックやステンレス、真鍮等の金属の糸を編んでメッシュ状に所定の厚さに成形した金網部材を用いてもよい。さらには所定の厚さの金属板に所定数の貫通穴を形成したものを用いてもよい。
【0040】
上記のように、弁部40における側壁部42の内部には、細分化気泡の状態を保持させるための小気泡保持流路Dで形成される流路絞り部dが、案内環部材47及び案内部材60によって形成される。上記案内環部材47は所定厚みの環状部材からなり、入口側径大部47fから、その内面が下方程流路が狭くなる入口側傾斜部47a、下方程流路が広くなる逆漏斗状の出口側傾斜部47c、及び、出口側径大部47dが上方から下方に縦方向断面において対称的な円周形状に形成されている。また、この案内環部材47は、図1に示すように、下方から案内部材60によって支持される。
【0041】
また、上記案内部材60は、円盤状のフランジ部63と、該フランジ部63の軸心位置に立設された所定高さの水平断面円形の錐体部61と、上方の円盤状の上フランジ部63aとからなる。上記錐体部61の長さ(高さ)は案内環部材47によって最も流路面積が狭くなる位置(高さ)よりも低く、具体的には、流路絞り部dの長さの半分以下に設定されている。そして、上記フランジ部63には、図2に示すように、通孔64が複数個形成されており、弁部40内の冷媒はこの通孔64から多孔質部材53を通じて、出口側パイプ1dに直接流出することになる。
【0042】
したがって、上記案内環部材47と案内部材60との間にインデューサ部(前記下方程狭くなる漏斗状部の入口側傾斜部47a)、及び、ディフューザ部(前記下方程広くなる逆漏斗状の出口側傾斜部47cと錐体部61の間)が連続空間として形成されることになる。
【0043】
そして、これらの間を流動する冷媒は、そのエネルギが比較的緩やかに速度エネルギに変換され、急激な収縮・膨張が行われないことから、冷媒内に気泡が含まれている場合にも気泡の急激な成長(膨張)は発生しない。即ち、冷媒中に細分化された気泡があっても、大きく成長させない。
【0044】
次に、本発明の実施形態1の作用について説明する。
先ず、除湿運転について説明する。この流量制御弁は、電磁コイル2に通電すると、吸引子3に電磁コイル2の通電により磁力が発生し、吸引子3がプランジャ5を下方に向って吸引し、プランジャ5が弁本体1のパイプ部3bの内部を吸引子3の吸引によりコイルスプリング7の付勢力に抗しながら下方に向って移動すると同時に、弁体4が吸引子3に案内されながらプランジャ5と共に弁シート6の弁座部6aに向って下方に移動し、弁体4の弁部40が弁シート6の弁座部6aに密接し、閉弁状態となる。
【0045】
かかる閉弁状態において、入口側パイプ1cと、出口側パイプ1dとは、弁室10、上部弁室11、入口側径大部44a、小孔44、径小孔43c、及び径大孔43bを介して連通する。そこで、所定冷凍サイクルの除湿運転時において、冷媒を入口側パイプ1cから流すと、弁体4には小孔44が設けてあるので、絞り作用を受ける上記冷媒は分散され、冷媒の流量及び運動エネルギーが小さくなり、冷媒の流動音は低減される。しかも、絞り作用を受けて径小孔43cから出口側パイプ1dに流出する冷媒に気泡が発生しても、冷媒は気泡を細分化する部材として第1乃至第3の多孔質部材51,52,53を通過する際に、冷媒中の気泡は細分化され、気泡による冷媒の流動音が低減される。
【0046】
更に、本発明は前記小気泡保持流路Dが設けられ、細分化後の冷媒を通過させることから、細分化された気泡は、再び気泡が成長して大きくなることなく、第3多孔質部材53を通過する。このとき、更に冷媒中の気泡は細分化され、気泡による冷媒の流動音が低減される。そして、冷媒は出口側パイプ1dに流出して、上記冷凍サイクルにおいて除湿を行う。
【0047】
また、電磁コイル2への通電を遮断すると、吸引子3に磁力が発生せず、吸引子3は吸引力を失い、プランジャ5が弁本体1のパイプ部3bの内部をコイルスプリング7の付勢力により吸引子3と反対方向の上方に向って移動すると同時に、弁体4が吸引子3に案内されながらプランジャ5と共に上方に向って移動し、図1,2に示すように、弁部40が弁シート6の弁座部6aから離間し、電磁弁は開弁状態となって、流体が入口側パイプ1cから弁室10及び弁シート6の内部を通って出口側パイプ1dへと流出する。
【0048】
また、各多孔質部材51,52,53の形状は、円筒形或いは円柱形としたが、その他の形状であってもよい。更に、実施形態1における錐体部61,61aは、図示のものに限定されるものではなく、その高さや傾斜面形状は、種々選択できるものとする。
【0049】
【発明の効果】
本発明によれば、冷媒中の気泡を細分化する高密度の部材、特に高密度の多孔質部材を弁体に設けたことにより、冷媒の流動音を低減し、騒音を抑制することができる。流路絞り部のクリアランスの管理が容易で構成を簡略化し、製造が簡単になり製造原価を抑制することができる。
【図面の簡単な説明】
【図1】 実施形態1に係る流量制御弁の開状態の縦断面図。
【図2】 図1の流量制御弁の弁部の拡大図。
【図】 先願発明に係る流量制御弁の閉状態の縦断面図。
【図】 図の弁部の拡大図。
【符号の説明】
・・(細分化気泡の状態の)小気泡保持流路 d・・流路絞り部
1・・弁本体 1a・・周壁 1b・・パイプ嵌合孔
1c・・入口側パイプ 1d・・出口側パイプ
2・・電磁コイル 2a・・ボビン 2b・・リベット 2c・・リード線
3・・吸引子 3a・・係止部 3b・・パイプ部
3c・・段部 3d・・係止凹部 4・・弁体
5・・プランジャ 5a・・固定用孔 5b・・均圧孔
6・・弁シート 6a・・弁座部 6b・・パイプ嵌合部 6c・・フランジ
7・・コイルスプリング 8・・コイルケース 8a・・上壁 8b・・下壁
8c・・貫通孔 8d・・貫通孔 9・・押圧係止部材 9a・・突起
10・・弁室 11・・上部弁室
40・・弁部 41・・肩部 42・・側壁部
42a・・カシメ部 43b・・径大孔(通路) 43c・・径小孔(通路)
44・・小孔(孔) 44a・・入口側径大部 44f・・径大延設部
46・・小径部 47・・案内環部材
47a・・入口側傾斜部
47c・・出口側傾斜部 47d・・出口側径大部 47f・・入口側径大部
51・・多孔質部材(第1の部材) 52・・多孔質部材(第2の部材)
53・・多孔質部材(第3の部材) 60・・案内部材
61,61a・・錐体部 63・・フランジ部 63a・・上フランジ部
64,64a・・通孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow control valve used for an air conditioner or the like.
[0002]
[Prior art]
Conventionally, as an example of a flow control valve, a solenoid coil is provided around a plunger tube provided in the valve body, a movable suction element is provided on the valve body side in the plunger tube, and a plunger is provided on the other side. An energized closed electromagnetic valve is known in which a plunger and a valve body are coupled by caulking while being energized by a valve opening spring.
[0003]
When such a conventional solenoid valve is used in an air conditioner that performs a dehumidifying operation in a refrigeration cycle, a hole is provided in the valve body as a throttle for the dehumidifying operation. However, when a hole is provided in the valve body, there is a problem in that a refrigerant flow noise may be generated along with the throttling action, and if it occurs, noise is generated.
[0004]
Therefore, a technique for reducing this noise is disclosed in Patent Document 1 below. This patent document 1 discloses a throttling device used as a throttling valve for dehumidification in an air conditioner having a dehumidifying mode, which can reduce the refrigerant passing sound in the throttling passage and maintain the dehumidifying operation performance even for a long period of use. The device is shown. However, even in this apparatus, the current situation is that the expected effect of reducing the refrigerant passing sound is not achieved.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-310540
[Problems to be solved by the invention]
Therefore, the present inventors have developed the technology for the purpose of further reducing the refrigerant passing sound while taking the above-mentioned conventional technology into consideration, and assembling a member for subdividing bubbles into the valve body, and further subdividing it. In order to provide a solenoid valve that further reduces the flow noise of the refrigerant and suppresses the generation of noise by preventing the air bubbles from growing greatly again, the following invention is named as a prior application (Japanese Patent Application No. 2003-124783). Proposed.
[0007]
Hereinafter will be described with reference to FIGS. 3 and 4 schematically inventions previously proposed. Figure 3 is a vertical sectional view of a closed state of the solenoid valve, FIG. 4 is an enlarged view of the valve unit of FIG. In the figure, the arrows indicate the flow direction of the refrigerant.
[0008]
As shown in FIG. 3 , the electromagnetic valve according to this prior application has a valve chamber 10 'inside a valve body 1' and an upper portion of the valve body 1 'via a locking portion 3a' of an attractor 3 '. A pipe portion 3b ′ whose one end is closed is mounted, and an electromagnetic coil 2 ′ is provided on the outer periphery of the pipe portion 3b ′, and a pipe is connected to the attractor 3 ′ inside the pipe portion 3b ′. A rod-like valve body 4 ′ is provided so as to be slidable in the longitudinal direction of the portion 3b ′. Also, in the pipe portion 3b ', there are a plunger 5' connected to the valve body 4 ', a valve seat 6' provided at the lower opening end of the valve body 1 ', an aspirator 3' and a plunger 5 '. A coil spring 7 'disposed therebetween. The suction element 3 'is provided with a rod-like valve body 4' penetrating therethrough so as to be slidable along the longitudinal direction of the pipe portion 3b '. A valve seat 6 is provided at the lower end of the valve body 4'. A valve portion 40 ′ that is separated from and contacting the “valve seat portion 6 a” is formed, and the upper end portion of the valve body 4 ′ is fitted and fixed to the plunger 5 ′.
[0009]
The valve portion 40 'is formed to have a diameter larger than the valve stem portion above it, and a shoulder portion 41' is formed as a step portion thereof, and a cylindrical side wall portion 42 'is formed through the shoulder portion 41'. A space 43a ′ is formed inside the side wall 42 ′. Further, as shown in FIG. 4 , the valve portion 40 ′ has a large-diameter hole 43b ′ communicating with the space portion 43a ′ and a small-diameter hole 43c communicating with the large-diameter hole 43b ′. 'Is formed, and a hole having a small cross-sectional area in communication with the small-diameter hole 43c', that is, a small hole 44 'is formed in the lateral direction. The small hole 44 'is formed with an inlet side large diameter portion 44a' at both ends, and opens into the upper valve chamber 11 'via the inlet side large diameter portion 44a'.
[0010]
A first porous member 51 ′ that holds the small holes 44 ′ at the upper portion of the shoulder portion 41 ′ of the valve portion 40 ′ and subdivides the bubbles in the refrigerant is held. The first porous member 51 'can be deformed by its spring elasticity, and the holding projection 48' formed on the valve portion 40 'is deformed downward from the upper portion to get over the outer periphery of the valve portion 40'. And is supported by the holding projection 48 ′ while being placed on the upper portion of the shoulder 41 ′.
[0011]
Further, a second porous member 52 ′ is inserted into the small diameter hole 43c ′ and the large diameter hole 43b ′ of the valve portion 40 ′. The second porous member 52 'has a columnar shape with a different diameter and is formed in an inverted T-shaped longitudinal section. The large diameter portion is disposed in the large diameter hole 43b', and the small diameter portion is the small diameter hole 43c '. Placed inside. The porous member 52 ′ is supported by a guide member 60 ′ described later from below. For example, foam metal is used for each of the porous members 51 ′ and 52 ′.
[0012]
Further, a small bubble holding channel for holding the state of the fragmented bubbles is formed by the guide ring member 47 ′ and the guide member 60 ′ in the large-diameter hole 43b ′ and the space portion 43a ′ in the valve portion 40 ′. Is done.
[0013]
The guide ring member 47 ′ is formed of an annular member having a predetermined thickness, and the inner surface thereof becomes narrower in the downward direction. The funnel-shaped inlet side inclined portion 47a ′ and the uniform diameter portion 47b ′ having a uniform inner diameter continuous with the inlet side inclined portion 47a ′. And the reverse funnel-shaped exit side inclined part 47c 'which becomes wider as it goes downward is formed sequentially from the upper side to the lower side. Further, as shown in FIG. 4 , the guide ring member 47 ′ is fixed by caulking at the tip 45 ′ of the valve body 4 ′.
[0014]
The guide member 60 'includes a disc-shaped flange portion 63', and a columnar portion 61 'and an inclined portion 62' that are erected at the axial center position of the flange portion 63 '. As shown in FIG. 4 , a plurality of through holes 64 ′ are formed in the flange portion 63 ′, and the refrigerant in the valve portion 40 ′ flows out directly from the through hole 64 ′ to the outlet side pipe 110 ′. It will be. The columnar portion 61 ′ disposed on the guide member 60 ′ is formed with a slightly smaller diameter so as to form a gap (clearance) with the inner surface of the uniform diameter portion 47 b ′. The refrigerant flowing between them is converted into velocity energy relatively slowly and does not undergo rapid contraction / expansion. Therefore, even when bubbles are included in the refrigerant, Rapid growth (expansion) does not occur.
[0015]
In the above configuration, when the electromagnetic coil 2 'is energized, a magnetic force is generated in the attractor 3' by energization of the electromagnetic coil 2 ', the attractor 3' attracts the plunger 5 'downward, and the plunger 5' is a valve. While the pipe 3b 'of the main body 1' moves downward while resisting the urging force of the coil spring 7 'by suction of the suction element 3', the valve body 4 'is guided to the suction element 3'. The plunger 5 'moves downward toward the valve seat 6a' of the valve seat 6 ', and as shown in FIG. 3 , the valve 40' of the valve body 4 'is moved to the valve seat 6a' of the valve seat 6 '. Closely, the solenoid valve is closed.
[0016]
In such a valve closing state, the inlet side pipe 100 ′ and the outlet side pipe 110 ′ include the valve chamber 10 ′, the upper valve chamber 11 ′, the inlet side large diameter portion 44a ′, the small hole 44 ′, and the small diameter hole 43c ′. The large diameter hole 43b ′ and the space 43a ′ communicate with each other. Therefore, when the refrigerant is caused to flow from the inlet pipe 100 ′, the valve body 4 ′ is provided with the small holes 44 ′, so that the refrigerant subjected to the throttling action is dispersed, and the flow rate and kinetic energy of the refrigerant are reduced, The flow noise of the refrigerant is reduced. In addition, even if bubbles are generated in the refrigerant flowing out from the small-diameter hole 43c ′ to the outlet side pipe 110 ′ due to the squeezing action, the refrigerant is a member that subdivides the bubbles into the first porous member 51 ′ and the second porous member. When passing through the mass member 52 ′, the bubbles in the refrigerant are subdivided, and the flow noise of the refrigerant due to the bubbles is reduced.
[0017]
Furthermore, since the refrigerant passes between the guide ring member 47 ′ and the guide member 60 ′, the subdivided bubbles flow into the outlet side pipe 110 ′ without growing and growing again. Dehumidification is performed in the refrigeration cycle. Therefore, according to the invention of the prior application, the flow rate capable of reducing the flow noise of the refrigerant and suppressing the noise by holding the member that subdivides the bubbles in the refrigerant and the bubbles in the subdivided state. A control valve can be realized.
[0018]
However, in the invention of the prior application, since it is necessary to set and manage the size of the clearance between the guide ring member 47 ′ and the guide member 60 ′, the present inventors have made further modifications to facilitate the setting. Developed.
As a result, the invented invention is the present invention, in which a member for subdividing bubbles is integrally assembled to the valve body, and the subdivided bubbles do not grow greatly again to further reduce the refrigerant flow noise. In addition to suppressing the generation of noise and simplifying the configuration of the member that breaks down the bubbles and the flow passage restrictor that holds the size of the broken bubbles, the configuration is simple and the clearance size is set -An object is to provide a flow control valve that is easy to manage and manufacture.
[0019]
[Means for Solving the Problems]
In order to achieve the above object, the flow control valve according to the present invention has the following means. That is, the flow control valve according to claim 1 is be one for opening and closing the valve by contacting and separating a valve body against the valve seat by an electromagnetic coil, an inflow side from the hole of said passage said on the outlet side of the passage, provided the bubble subdividing member for subdividing bubbles respectively, wherein between the two bubble subdividing member, the passage aperture part is formed, inflow and outflow side of the flow path narrowed portion Each of which is provided with a cone portion for fluid guidance, each cone portion having a pointed shape toward the central portion of the flow path restricting portion, and being opposed to each other, and It is characterized by being set to half or less of the length of the flow restrictor.
[0020]
Due to this feature, the bubbles in the refrigerant can be subdivided by the member that subdivides the bubbles, and the flow path that maintains the state of the subdivided bubbles is formed. A flow control valve that can prevent generation can be realized. In addition, by simplifying the configuration of the flow passage restricting portion that maintains the state of the subdivided bubbles, the manufacture of the flow restricting portion is facilitated.
[0021]
Flow control valve according to claim 2, wherein, in one of claim 1, wherein said flow path narrowing part is composed of a curved surface.
With such a feature, the refrigerant is throttled and flowed smoothly in the flow restrictor.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1
First, the first embodiment will be described with reference to FIGS. 1 and 2 . FIG. 1 is a longitudinal sectional view of an electromagnetic valve as an example of a flow control valve, and FIG. 2 is an enlarged view of the valve portion. In addition, the arrow in a figure shows the flow direction of a refrigerant | coolant. Further, in the following description, expressions of upper, lower, left and right are used in relation to the drawings, but the actual positional relationship is not limited to this.
[0023]
As shown in FIG. 1, the flow control valve (solenoid valve) of the present invention has a valve chamber 10 inside a valve body 1, and an upper portion of the valve body 1 via a locking portion 3 a of an attractor 3. A pipe portion 3b whose one end is closed is mounted, and an electromagnetic coil 2 is provided on the outer periphery of the pipe portion 3b. The pipe portion 3b has a pipe 3b in the longitudinal direction of the pipe 3b with respect to the attractor 3. A rod-like valve body 4 is provided so as to be slidable. In addition, this electromagnetic valve is arranged in the pipe portion 3b between the plunger 5 connected to the valve body 4, the valve seat 6 provided at the lower opening end of the valve body 1, and the suction element 3 and the plunger 5. And a coil spring 7 provided. The coil spring 7 is valve opening urging means that urges the valve body 4 in the valve opening direction opposite to the valve seat 6.
[0024]
As shown in FIG. 1, a bobbin 2 a is fitted on the outside of the pipe portion 3 b, the electromagnetic coil 2 is wound around the bobbin 2 a, and the bobbin 2 a is accommodated inside the coil case 8. Yes. As shown in FIG. 1, a lead wire 2c is connected to the bobbin 2a, and the electromagnetic coil 2 is energized via the lead wire 2c.
[0025]
Further, the horizontal upper wall 8a and the lower wall 8b facing each other of the coil case 8 are respectively provided with a through hole 8c and a through hole 8d along the same vertical axis, and the pipe portion 3b is inserted therethrough. Further, as shown in FIG. 1, a press locking member 9 made of sheet metal is disposed on the upper portion of the upper wall 8 a of the coil case 8, and one end of the press locking member 9 is directed upward at a right angle. A bent rising portion is formed, and a protrusion 9a that engages with the locking recess 3d of the pipe portion 3b is formed on the rising portion. Further, the upper wall 8a of the coil case 8, as shown in FIG. 1, and supports the pressing locking member 9 through the rivet 2b.
[0026]
Further, as shown in FIG. 1, a cylindrical plunger 5 is movably disposed inside the pipe body 3 b near the upper end of the valve body 1, and the end wall of the plunger 5 is on a central axis perpendicular to the end wall. A fixing hole 5a for fixing the small diameter portion 46 of the valve body 4 is provided along the same. Reference numeral 5b is a pressure equalizing hole. As shown in FIG. 1, a small-diameter portion 46 of the valve body 4 is fitted into the fixing hole 5 a from below, and the distal end of the small-diameter portion 46 of the valve body 4 is crimped so that the plunger 5 The small diameter part 46 of the body 4 is connected. As shown in FIG. 1, a coil spring 7 for valve opening is disposed outside the valve body 4 between the suction element 3 and the plunger 5, and the plunger 5 is attracted by the biasing force of the coil spring 7. 3 is always energized in a direction away from 3.
[0027]
As shown in FIG. 1, the valve seat 6 is formed with a valve seat portion 6 a that faces the inside of the valve chamber 10 of the valve body 1 and contacts the valve body 4, and the valve seat 6 is welded and fixed to the valve body 1. Has been. The valve body 1 and the valve seat 6 are made of stainless steel, and the valve body 1 and the valve seat 6 are formed by pressing.
[0028]
As shown in FIG. 1, a coil case 8 that accommodates the electromagnetic coil 2 is provided on the outer periphery of the pipe portion 3 b, and a press locking member 9 fixed to the coil case 8 is attached to the pipe portion 3 b of the valve body 1. The coil case 8 is fixed to the pipe portion 3b of the valve main body 1 through the press locking member 9 by being locked in the formed locking recess 3d.
[0029]
As shown in FIG. 1, a valve chamber 10 is formed inside a cylindrical peripheral wall 1 a constituting the valve body 1, and the peripheral wall 1 a is perpendicular to a central axis along a vertical valve body 4. A pipe fitting hole 1b is provided, and the inlet side pipe 1c is welded.
A valve seat 6 is attached to the lower end of the peripheral wall 1a. The valve seat 6 includes a pipe-shaped valve seat portion 6a, a pipe fitting portion 6b formed at a lower portion of the valve seat portion 6a, a flange 6c formed at an outer peripheral portion of the pipe fitting portion 6b, The peripheral wall 1a is welded to the outer peripheral portion of the flange 6c.
[0030]
A suction element 3 is attached to the upper end of the peripheral wall 1a. The suction element 3 is formed with a step portion 3c at the lower portion thereof, and the upper end of the peripheral wall 1a of the valve body 1 is attached to the lower portion of the step portion 3c. A lower portion of the pipe portion 3b is attached to a locking portion 3a formed on the outer periphery of the upper portion of the suction element 3. Moreover, the upper end of this pipe part 3b is obstruct | occluded.
[0031]
Further, an outlet side pipe 1d is welded to a pipe fitting portion 6b formed in the lower part of the valve seat 6, and a locking recess 3d is formed on the outer peripheral surface of the pipe portion 3b of the suction element 3. A concave portion communicating with the lower valve chamber 10 is formed in the lower portion of the suction element 3 to constitute an upper valve chamber 11.
[0032]
As shown in FIG. 1, the suction element 3 is provided with a rod-like valve body 4 made of, for example, brass that passes through the suction element 3 so as to be slidable along the longitudinal direction of the pipe portion 3 b. A valve portion 40 is formed so as to be separated from and in contact with the valve seat portion 6 a of the valve seat 6, and a small diameter portion 46 is formed at the upper end portion of the valve body 4. The small-diameter portion 46 is fitted and fixed in the fixing hole 5a below the plunger 5.
[0033]
As shown in FIG. 2, the valve portion 40 is formed with a diameter larger than the valve stem portion above it, and a shoulder portion 41 is formed as a step portion thereof, and a cylindrical side wall portion 42 is interposed therebetween. In addition, a channel restricting portion d formed by a small bubble holding channel D for holding the state of the subdivided bubbles is formed in the side wall portion 42 by the guide ring member 47 and the guide member 60. Is done.
[0034]
That is, the guide ring member 47 is formed of an annular member having a predetermined thickness, and from the inlet side large diameter portion 47f, the inner side of the guide ring member 47 is inclined toward the inlet side inclined portion 47a. The outlet-side inclined portion 47c and the outlet-side large-diameter portion 47d are formed in a symmetrical circumferential shape in the longitudinal section from above to below. The guide ring member 47 is supported by an upper upper flange portion 63a and a lower flange portion 63 as shown in FIG.
[0035]
Then, a hole having a small cross-sectional area communicating with the small bubble holding channel D , that is, a small hole 44 is formed in the lateral direction (therefore, the direction perpendicular to the axial direction of the small bubble holding channel D ). The small hole 44 has an inlet-side large diameter portion 44a formed at both ends (upper valve chamber 11 side), and opens into the upper valve chamber 11 via the inlet-side large diameter portion 44a (the valve opening in FIG. 1). Status). Further, a guide member 60 described later is fitted inside the side wall portion 42 . The inlet side large diameter portion 44a has a large diameter extending portion 44f formed therebelow.
[0036]
The first porous member 51 is fitted and held as a member for subdividing the bubbles in the refrigerant so as to face the opening of the small hole 44 above the shoulder portion 41 of the valve portion 40. The first porous member 51 is made of a cylindrical material having a predetermined length in the vertical direction and a uniform diameter, is placed on the upper portion of the shoulder portion 41, and is fitted and supported on the outer peripheral portion of the side wall portion 42. In addition, since the gap | interval (diameter large extension part 44f) with a large vertical width is formed between the porous member 51 and the small hole 44, the flow path range of the refrigerant | coolant in the porous member 51 is large. Spreads and promotes finer bubbles.
[0037]
Further, above the small hole 44 is cylindrical portion which is formed, as shown in FIG. 2, a cylindrical porous member 52 is disposed as a second member to subdivide the air bubbles. Then, the lower portion of the porous member 52 (the downstream side), before mentioned small bubble holding channel D is provided in the lower part (downstream side) of the small bubble holding channel D, before predicate of the flange portion 63 A third porous member 53 is disposed via the.
[0038]
That is, as shown in FIG. 2, a cylindrical porous member 53 is arranged inside the side wall portion 42 as a third member for subdividing the bubbles. The porous member 53 is caulked and supported by the side wall part 42 (caulking part 42a).
[0039]
Each of the porous members 51, 52, 53 is made of, for example, foam metal. When SUS (stainless steel) is used as the foam metal, the porous members 51, 52, 53 are formed of a high-density open-cell foam of about 3 g / cm 3. Has been. If such a high density condition is satisfied, a metal mesh member formed by knitting a metal thread such as plastic, stainless steel, brass or the like into a mesh shape to a predetermined thickness may be used. Furthermore, you may use what formed the predetermined number of through-holes in the metal plate of predetermined thickness .
[0040]
As described above, inside the side wall portion 42 of the valve portion 40, the flow passage restricting portion d formed by the small bubble holding flow passage D for holding the state of the subdivided bubbles is provided with the guide ring member 47 and the guide. Formed by member 60. The guide ring member 47 is made of an annular member having a predetermined thickness, and from the large inlet side diameter portion 47f, the inlet side inclined portion 47a whose inner surface is narrower toward the lower side and the reverse funnel-shaped outlet whose lower channel is wider. The side inclined portion 47c and the outlet side large diameter portion 47d are formed in a symmetrical circumferential shape in the longitudinal section from above to below. The guide ring member 47 is supported by the guide member 60 from below as shown in FIG.
[0041]
The guide member 60 includes a disc-shaped flange portion 63, a circular- cone portion 61 having a horizontal cross section having a predetermined height standing at the axial center of the flange portion 63, and an upper disc-shaped upper flange. Part 63a . The length (height) of the cone portion 61 is lower than the position (height) at which the flow channel area becomes the narrowest by the guide ring member 47. Specifically, it is less than half the length of the flow passage restricting portion d. Is set to As shown in FIG. 2, a plurality of through holes 64 are formed in the flange portion 63, and the refrigerant in the valve portion 40 passes from the through holes 64 to the outlet side pipe 1 d through the porous member 53. It will flow directly.
[0042]
Therefore, between the guide ring member 47 and the guide member 60, the inducer portion (inlet side inclined portion 47a of the funnel-shaped portion narrowing toward the lower side) and the diffuser portion (the reverse funnel-shaped outlet widening toward the lower side). The side inclined portion 47c and the cone portion 61) are formed as a continuous space.
[0043]
The refrigerant flowing between them is converted into velocity energy relatively slowly and does not undergo rapid contraction / expansion. Therefore, even when bubbles are included in the refrigerant, Rapid growth (expansion) does not occur. That is, even if there are subdivided bubbles in the refrigerant, they do not grow greatly.
[0044]
Next, the operation of Embodiment 1 of the present invention will be described.
First, the dehumidifying operation will be described. When the electromagnetic coil 2 is energized, the flow control valve generates a magnetic force in the attractor 3 by energization of the electromagnetic coil 2, the attractor 3 attracts the plunger 5 downward, and the plunger 5 is a pipe of the valve body 1. The valve 3 is moved downward while resisting the urging force of the coil spring 7 by the suction of the suction element 3 while the valve body 4 is guided by the suction element 3 and the valve seat part of the valve seat 6 together with the plunger 5. moves downward toward the 6a, the valve portion 40 of the valve body 4 is in close contact with the valve seat portion 6a of the valve seat 6, the valve closed state.
[0045]
In such a valve closing state, the inlet side pipe 1c and the outlet side pipe 1d include the valve chamber 10, the upper valve chamber 11, the inlet side large diameter portion 44a, the small hole 44, the small diameter hole 43c, and the large diameter hole 43b. Communicate through. Therefore, when the refrigerant is allowed to flow from the inlet side pipe 1c during the dehumidifying operation of the predetermined refrigeration cycle, since the small holes 44 are provided in the valve body 4, the refrigerant that receives the throttling action is dispersed, and the flow rate and motion of the refrigerant Energy is reduced and the flow noise of the refrigerant is reduced. In addition, even if bubbles are generated in the refrigerant that flows out from the small-diameter hole 43c to the outlet-side pipe 1d due to the squeezing action, the refrigerant is the first to third porous members 51, 52, When passing through 53, the bubbles in the refrigerant are subdivided, and the flow noise of the refrigerant due to the bubbles is reduced.
[0046]
Further, in the present invention, since the small bubble holding channel D is provided and the subdivided refrigerant is allowed to pass therethrough, the subdivided bubble does not grow and become large again, and the third porous member Pass through 53. At this time, the bubbles in the refrigerant are further subdivided, and the flow noise of the refrigerant due to the bubbles is reduced. Then, the refrigerant flows out to the outlet side pipe 1d and performs dehumidification in the refrigeration cycle.
[0047]
Further, when the energization to the electromagnetic coil 2 is interrupted, no magnetic force is generated in the attractor 3, the attractor 3 loses the attracting force, and the plunger 5 urges the inside of the pipe portion 3 b of the valve body 1 by the coil spring 7. As a result, the valve body 4 moves upward together with the plunger 5 while being guided by the suction element 3, and as shown in FIGS. The solenoid valve is opened from the valve seat 6a of the valve seat 6, and the fluid flows out from the inlet side pipe 1c through the valve chamber 10 and the valve seat 6 to the outlet side pipe 1d.
[0048]
The shape of the porous members 51, 52 and 53 was a cylindrical or columnar shape, it may be other shapes. Furthermore, the cone parts 61 and 61a in the first embodiment are not limited to the illustrated ones, and various heights and inclined surface shapes can be selected.
[0049]
【The invention's effect】
According to the present invention, by providing the valve body with a high-density member that subdivides bubbles in the refrigerant, particularly a high-density porous member, the flow noise of the refrigerant can be reduced and noise can be suppressed. . The clearance of the flow restrictor can be easily managed, the configuration can be simplified, the manufacturing can be simplified, and the manufacturing cost can be suppressed.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an open state of a flow control valve according to a first embodiment.
FIG. 2 is an enlarged view of a valve portion of the flow control valve of FIG.
FIG. 3 is a longitudinal sectional view of a closed state of a flow control valve according to the prior invention.
FIG. 4 is an enlarged view of the valve unit shown in FIG. 3.
[Explanation of symbols]
D ··· Small bubble holding channel (in the form of subdivided bubbles) d · · Channel restrictor 1 · · Valve body 1a · · Perimeter wall 1b · · Pipe fitting hole 1c · · Inlet side pipe 1d · · · Outlet side Pipe 2 ·· Electromagnetic coil 2a · · Bobbin 2b · · Rivet 2c · · Lead wire 3 · · Suction element 3a · · Locking portion 3b · · Pipe portion 3c · · Step portion 3d · · Locking recess 4 · · Valve Body 5 ·· Plunger 5a · · Fixing hole 5b · · Pressure equalizing hole 6 · · Valve seat 6a · · Valve seat 6b · · Pipe fitting portion 6c · · Flange 7 · · coil spring 8 · · coil case 8a・ ・ Upper wall 8b ・ ・ Lower wall 8c ・ ・ Through hole 8d ・ ・ Through hole 9 ・ ・ Pressure locking member 9a ・ ・ Protrusion 10 ・ ・ Valve chamber 11 ・ ・ Upper valve chamber
40 ·· Valve part 41 · · Shoulder portion 42 · · Side wall portion 42a · · Caulking portion 43b · · Large diameter hole (passage) 43c · · Small diameter hole (passage)
44 ·· Small hole (hole) 44a ·· Large inlet side portion 44f ·· Large diameter extended portion 46 ·· Small diameter portion 47 ·· Guide ring member 47a ·· Inlet side inclined portion 47c ·· Outlet side inclined portion 47d · · Outlet side large diameter portion 47f · · Inlet side large diameter portion 51 · · Porous member (first member) 52 · · Porous member (second member)
53 ... porous member (third member) 60 ... guide member 61 and 61a ... conical portion 63 ... flange portion 63a ... on the flange portion 64, 64a ... through hole

Claims (2)

電磁コイルにより弁体を弁座部に対して接離させることにより弁の開閉を行う流量制御弁において、
前記弁体にはその冷媒流入側に位置する孔と該孔に連通して前記弁座部側へ開口する通路が設けられ
前記通路の前記からの流入側前記通路の流出側とに、気泡を細分化する気泡細分化部材がそれぞれ設けられ、
前記両気泡細分化部材の間には、流路絞り部が形成され、
前記流路絞り部の流入側流出側とに、それぞれ流体案内用の錐体部が配置され、
前記各錐体は、前記流路絞り部の中央部に向けて尖った形状を有して互いに対向的に位置し、かつ前記流路絞り部の長さの半分以下に設定されていることを特徴とする流量制御弁。
In a flow control valve that opens and closes the valve by moving the valve body to and away from the valve seat by an electromagnetic coil,
It said valve body includes a hole located on the refrigerant inflow side, and a passageway which opens in communication with the pores to the valve seat side is provided,
On the outlet side of the passage and the inflow side from the hole of the passage, the bubble subdividing member for subdividing bubbles are respectively provided,
Between the two bubble subdividing members, a flow passage restricting portion is formed,
Wherein the on and outflow-side inlet side of the flow path aperture portion, is disposed conical portion of the fluid guide, respectively,
Each of the cone portions has a pointed shape toward the central portion of the flow passage restriction portion, is positioned to face each other, and is set to be equal to or less than half the length of the flow passage restriction portion. A flow control valve characterized by
前記流路絞り部が曲面から構成されることを特徴とする請求項に記載の流量制御弁。The flow rate control valve according to claim 1 , wherein the flow restrictor is formed of a curved surface.
JP2003174292A 2003-06-19 2003-06-19 Flow control valve Expired - Fee Related JP4270952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003174292A JP4270952B2 (en) 2003-06-19 2003-06-19 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174292A JP4270952B2 (en) 2003-06-19 2003-06-19 Flow control valve

Publications (3)

Publication Number Publication Date
JP2005009762A JP2005009762A (en) 2005-01-13
JP2005009762A5 JP2005009762A5 (en) 2006-06-22
JP4270952B2 true JP4270952B2 (en) 2009-06-03

Family

ID=34097813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174292A Expired - Fee Related JP4270952B2 (en) 2003-06-19 2003-06-19 Flow control valve

Country Status (1)

Country Link
JP (1) JP4270952B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245138B (en) * 2012-02-10 2015-07-01 株式会社鹭宫制作所 Expansion valve
CN211059467U (en) * 2019-06-13 2020-07-21 浙江盾安禾田金属有限公司 Valve silencer and electronic expansion valve thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152176U (en) * 1988-04-12 1989-10-20
JPH02141778U (en) * 1989-05-02 1990-11-29
JPH06101938A (en) * 1992-08-27 1994-04-12 Hitachi Ltd Expansion valve
JP3380395B2 (en) * 1996-05-22 2003-02-24 松下精工株式会社 Expansion valve
JP4071451B2 (en) * 2001-04-12 2008-04-02 株式会社鷺宮製作所 Throttle device and air conditioner

Also Published As

Publication number Publication date
JP2005009762A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP5484061B2 (en) Flow regulator
JP5968814B2 (en) Throttle valve device
JP2017129212A (en) Flow regulating valve
JP5196983B2 (en) Flow control valve
JPS59147177A (en) Pilot operation type pressure operating valve
JP4465128B2 (en) Expansion valve and air conditioner
JP4071451B2 (en) Throttle device and air conditioner
JP4270952B2 (en) Flow control valve
JP4197470B2 (en) solenoid valve
JP2005003114A (en) Solenoid valve
JP4326903B2 (en) Flow control valve
JP2004360708A (en) Solenoid valve
JP2006307964A (en) Electric control valve
JP4237560B2 (en) Fluid pressure control valve
JP2005331153A (en) Throttle valve device and air conditioner
JP4077340B2 (en) Throttle valve device and air conditioner
JP4043076B2 (en) Flow control valve
JP2005331154A (en) Throttle valve device and air conditioner
JP2006242046A (en) Fuel injection valve
JP4152209B2 (en) Solenoid valve for air conditioner
JP2004003793A (en) Throttle valve device and air conditioner
JPH08178109A (en) Solenoid-driven diaphragm valve structure
JPH09236185A (en) Control valve
JP3951983B2 (en) Refrigerant control valve
KR20200103770A (en) Throttle device and heat exchange system equipped with the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees