JP2004003793A - Throttle valve device and air conditioner - Google Patents

Throttle valve device and air conditioner Download PDF

Info

Publication number
JP2004003793A
JP2004003793A JP2002243948A JP2002243948A JP2004003793A JP 2004003793 A JP2004003793 A JP 2004003793A JP 2002243948 A JP2002243948 A JP 2002243948A JP 2002243948 A JP2002243948 A JP 2002243948A JP 2004003793 A JP2004003793 A JP 2004003793A
Authority
JP
Japan
Prior art keywords
filter element
throttle
valve
fluid flow
valve device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002243948A
Other languages
Japanese (ja)
Other versions
JP2004003793A5 (en
JP4064762B2 (en
Inventor
Hiroshi Kuno
久野 博
Okiyoshi Fujisaki
藤崎 興至
Shigeru Kubota
久保田 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2002243948A priority Critical patent/JP4064762B2/en
Priority to CN031202020A priority patent/CN1453532B/en
Publication of JP2004003793A publication Critical patent/JP2004003793A/en
Publication of JP2004003793A5 publication Critical patent/JP2004003793A5/ja
Application granted granted Critical
Publication of JP4064762B2 publication Critical patent/JP4064762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

<P>PROBLEM TO BE SOLVED: To significantly reduce noise caused by the intermittent expansion burst of gas particles (gas blocks) after passing through an orifice by preventing the gas particles from being enlarged in the throttle valve device. <P>SOLUTION: A passage that guides fluid to the throttle passage member 23 from a filter element 20 for capturing an impure ingredient is provided by a distributed communicating hole 26 of a plurality of small paths. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、絞り弁装置および空気調和機に関し、特に、除湿モードを有する空気調和機で除湿用絞り弁として使用される絞り弁装置および空気調和機に関するものである。
【0002】
【従来の技術】
除湿運転を行える空気調和機として、室内熱交換器が2分割され、その2個の室内熱交換器間に、弁閉状態で絞り弁となる絞り弁装置(除湿用絞り弁、サイクルドライ弁)が設けられ、除湿運転時には、弁閉して絞り弁として作用する絞り弁装置の絞り通路を冷媒が流れることにより、2分割された室内熱交換器のうちの上流側の室内熱交換器を凝縮器、下流側の室内熱交換器を蒸発器とし、室内空気に対して下流側の室内熱交換器によって冷却・除湿を行い、上流側の室内熱交換器によって加熱を行い、空気温度を下げずに除湿を行うことができる除湿モード付きの空気調和機が知られている。
【0003】
この種の除湿モード付きの空気調和機は、特開平2−183776号公報、特開平7−91778号(特許第3047702号)公報、特開平11−51514号公報等に示されている。
【0004】
上述のような空気調和機では、除湿運転時に、サイクルドライ用の絞り弁装置が弁閉状態になり、絞り効果を得るために、絞り弁装置の狭い絞り通路を冷媒が流れるため、噴流によって冷媒流が乱れ、絞り弁装置が設置される室内機において、冷媒噴出音が冷媒液中を伝播し、室内機の凝縮器、蒸発器が共鳴板として作用し、耳障りな冷媒擦過音(冷媒通過音)が発生する。このようなことは、圧縮機回転数の増加により、冷媒循環流量が増加することにより顕著になり、不快騒音レベルが上昇する。
【0005】
このことに鑑みて、絞り通路に、焼結金属等による多孔質部材を設けたり、多孔質部材によって絞り通路を構成したりし、冷媒が多孔質部材を流れることにより整流化作用を得て冷媒擦過音を低減することが既に提案されている(実開平1−152176号公報、特開2000−346495号公報)。
【0006】
【発明が解決しようとする課題】
冷媒流中にはコンタミネーションと云われる固形の混入物が存在するから、長期間の使用において絞り通路に混入物が詰まり、絞り弁装置における冷媒流量が変化すると云う不具合が生じる。このため、長期間の使用において、安定した除湿運転性能を得ることが難しい。
【0007】
また、サイクルドライ用の絞り弁装置を流れる冷媒は、液とガス(気体)との気液混合流体であり、絞り弁装置の内部に大きい空間があると、絞り弁装置内でガス粒(ガス塊)が肥大化し、そのガス粒が大きくなりすぎると、オリフィス通過直後のガス粒が膨張破裂してそのガス粒のガスが流れ、騒音を生じることになる。
【0008】
この発明は、上述の如き問題点を解消するためになされたもので、絞り通路における混入物詰まりによる冷媒流量の変動を来すことなく冷媒擦過音を充分低減でき、長期間の使用においても、安定した除湿運転性能と静粛性を得ることができる絞り弁装置および空気調和機を提供することを目的としている。
【0009】
【課題を解決するための手段】
上述の目的を達成するために、この発明による絞り弁装置は、第1の入出口ポート、第2の入出口ポート、前記第1の入出口ポートと常時連通している弁室、前記弁室と前記第2の入出口ポートとの間に設けられた弁ポートを画定する弁ハウジングと、前記弁室内に設けられて前記弁ポートを開閉する弁体とを有する絞り弁装置において、前記弁体の外周囲に筒形状の混入物捕捉用フィルタ要素が装着され、前記弁体内に、一方において前記混入物捕捉用フィルタ要素と連通し、他方において前記弁ポートに対して開口連通する態様で、絞り作用を行う絞り通路部材と流体流動音低減用フィルタ要素とが配置され、前記混入物捕捉用フィルタ要素と弁体内の絞り通路部材・流体流動音低減用フィルタ要素の配置部とを連通接続する通路が、複数個の小径の分散連通孔によって与えられている。
【0010】
この発明による絞り弁装置によれば、弁閉時には、混入物捕捉用フィルタ要素→流体流動音低減用フィルタ要素→絞り通路部材→流体流動音低減用フィルタ要素の順に冷媒等の流体が流れ、混入物捕捉用フィルタ要素によって流体流れ中のコンタミネーション等の混入物捕捉が行われ、絞り通路部材によって絞り効果が得られ、流体流動音低減用フィルタ要素により整流化作用が得られる。
【0011】
混入物捕捉用フィルタ要素を流れる流体が気液混合流体であると、混入物捕捉用フィルタ要素の通過によって気液混合流体中のガス粒が細分化され、混入物捕捉用フィルタ要素より絞り通路部材へ至る途中に大きい通路空間があると、ガス粒が滞留し易く、滞留中にガス粒が肥大化し、オリフィス通過直後のガス粒の間欠的な膨張破裂によって騒音が生じる原因となるが、混入物捕捉用フィルタ要素より絞り通路部材へ流体を導く通路が複数個に分散された小径の分散連通孔であることにより、個々の分散連通孔は大きい通路空間を呈さず、分散連通孔でガス粒が滞留せず、ガス粒が肥大化することがない。
【0012】
また、この発明による絞り弁装置では、前記流体流動音低減用フィルタ要素は流体流れで見て前記絞り通路部材の上流側と下流側の両側に配置され、前記分散連通孔は一方にて前記混入物捕捉用フィルタ要素と直接又は、微少な隙間を持って連通し、他方において前記絞り通路部材より上流側の前記流体流動音低減用フィルタ要素と直接連通している。絞り通路部材より上流側の流体流動音低減用フィルタ要素は気泡再結合防止作用も行う。
【0013】
また、この発明による絞り弁装置は、前記混入物捕捉用フィルタ要素と前記流体流動音低減用フィルタ要素の個々の圧力損失および前記分散連通孔全体の圧力損失が、前記絞り通路部材の圧力損失より小さい。これにより、絞り通路部材によって絞り弁装置による絞り度合い(絞り流量)が設定される。
【0014】
なお、絞り通路部材によって絞り弁装置による絞り度合い(絞り流量)を設定する場合、この発明による絞り弁装置では、流体流れで見て前記絞り通路部材の上流側と下流側の両側に配置された各流体流動音低減用フィルタ要素や、前記混入物捕捉用フィルタ要素を、焼結多層金網、多孔性焼結金属、発泡金属あるいは金属多孔体、プラスチック焼結多孔質体のいずれかによって構成することができ、公称濾過精度が50〜600μmのフィルタ材で構成されればよい。
【0015】
また、この発明による絞り弁装置は、更に、前記絞り通路部材より下流側の前記流体流動音低減用フィルタ要素よりもさらに下流側に、複数個の噴出孔を有する分散噴出部材を有している。これにより、単一孔である場合に比して流体流動音低減用フィルタ要素を流れる流体の流路長が長くなり、流体流動音低減用フィルタ要素の有効度が増し、また、隣接する噴出孔の噴出流同士の干渉により衝撃波が打ち消し合う作用が得られる。
【0016】
また、この発明による絞り弁装置は、前記弁体を開閉駆動する電磁アクチェータを有し、前記弁体は、前記弁ポートとは反対側にて前記弁室と連続しているプランジャ室に軸線方向移動可能に嵌合している前記電磁アクチェータのプランジャと連結され、前記混入物捕捉用フィルタ要素は、前記弁体と前記プランジャとの連結部に装着され、外径が前記プランジャの外径にほぼ等しい。これにより、弁ハウジングの外径寸法を大きくすることなく構成できる。
【0017】
この発明による絞り弁装置に組み込まれる絞り通路部材は、単一孔オリフィス、クロススリットオリフィスのもの以外に、互いに並列に設けられた複数個のオリフィスを有してものでよい。複数オリフィスの場合、流体流が各オリフィスを分流するので、各オリフィスより噴出する流体流の運動エネルギが分散低減し、それに伴う流体流動音が低減する。
【0018】
また、この発明による空気調和機は、圧縮機と、室外熱交換器と、第1の室内熱交換器と、第2の室内熱交換器と、これらをループ接続する冷媒通路と、前記室外熱交換器と前記第1の室内熱交換器との間の冷媒通路に設けられた膨張弁とを有し、前記第1の室内熱交換器と前記第2の室内熱交換器との間に上述の発明による絞り弁装置が接続されているものである。
【0019】
この発明による空気調和機によれば、絞り弁装置は、弁閉することにより、第1の室内熱交換器と第2の室内熱交換器との間で、絞り作用を行い、除湿用絞り弁として機能する。
【0020】
この発明による空気調和機においては、冷房モード時における冷媒流れで見て前記混入物捕捉用フィルタ要素が前記絞り通路部材より上流側に位置するように前記絞り弁装置を接続することができる。
【0021】
【発明の実施の形態】
以下に添付の図を参照してこの発明の実施の形態を詳細に説明する。
図1はこの発明による絞り弁装置10の実施の形態1を示している。
【0022】
絞り弁装置10は金属製の弁ハウジング11を有している。弁ハウジング11は、第1の入出口ポート12と、第2の入出口ポート13と、第1の入出口ポート12と常時直接連通している弁室14と、弁室14と第2の入出口ポート13との間に設けられた弁ポート15とを画定している。弁ポート15の弁室14の側の開口端周りには弁座部16が画定されている。
【0023】
弁室14には弁体17が図にて上下方向(弁リフト方向)に移動可能に設けられている。弁体17は、先端外周面17Aにて弁ポート15の周りに画定されている弁座部16に着座して弁ポート15を閉じる弁閉位置と、弁座部16より離れて弁ポート15の連通を確立する弁開位置との間に移動可能になっている。
【0024】
弁ハウジング11には電磁ソレノイド装置30が取り付けられている。電磁ソレノイド装置30は、弁ハウジング11に一体形成されたプランジャチューブ部31と、プランジャチューブ部31内に画定されたプランジャ室31Aに軸線方向に移動可能に嵌合したプランジャ32と、プランジャチューブ部31の先端部に固定されたプラグ状のコイルガイド部材33と、プランジャチューブ部31の外側にボルト34によってコイルガイド部材33に取り付けられたコの字形の外凾35と、プランジャチューブ部31の外周囲に固定された電磁コイル部36と、プランジャ32をコイルガイド部材33側に付勢する圧縮コイルばね(弁開ばね)37とにより構成されている。
【0025】
弁室14は弁ポート15とは反対側(上側)にてプランジャ室31Aと直接連続しており、弁体17は、上側のステム部17Bによってプランジャ32とかしめ結合されている。
【0026】
これにより、電磁ソレノイド装置30は、電磁コイル部36に通電が行われていない非通電時には圧縮コイルばね37のばね力によってプランジャ32と共に弁体17を上方(弁開方向)へ駆動し、これに対し、電磁コイル部36に通電が行われている通電時には、プランジャ32が圧縮コイルばね37のばね力に抗して外凾35の下側片部35A側に磁気的に吸引されることにより、弁体17を下方(弁閉方向)へ駆動する。なお、図1は通電状態を示している。
【0027】
すなわち、電磁ソレノイド装置30は、非通電時には圧縮コイルばね37のばね力により弁体17を弁座部16より引き離した弁開位置へ駆動し、通電時には圧縮コイルばね37のばね力に抗して弁体17を弁座部16に着座させる弁閉位置へ駆動する常開型になっている。
【0028】
弁体17は弁ポート15の真上位置にあり、弁体17には弁ポート15に向かい合う先端面(下底面)に開口した中空開口部18が中ぐり状に形成されている。中空開口部18は、下端開口で、上端が閉じられた有底孔をなしている。弁体17外周部には、先端外周面17A近傍よりプランジャ32との連結端側(上端側)に至る広範囲に亘って周溝19が形成されている。
【0029】
周溝19には円筒状の混入物捕捉用フィルタ要素20が嵌合装着されている。混入物捕捉用フィルタ要素20は、周溝19に填められてフィルタ外径をプランジャ32の外径にほぼ等しい寸法に設定されており、このことにより、弁ハウジング11の外径寸法が大きくなることがない。
【0030】
混入物捕捉用フィルタ要素20は、混入物捕捉と気液混合流体中のガス粒が細分化を行い、多少目詰まりしても、当該フィルタにおける圧力損失が後述の絞り通路部材23による圧力損失より大きくならないことを要求され、ステンレス鋼、真鍮等による連続気孔構造の多孔性焼結金属(たとえば、SMC(株)社製の焼結金属エレメント)、ニッケル、ニッケル・銅合金等による三次元網目状の発泡金属あるいは金属多孔体(たとえば、住友電気工業(株)社製の商品名セルメット)、プラスチック粉末を原料として焼結成形した連続気孔構造のプラスチック焼結多孔質体(たとえば、染谷製作所製のプラスチック焼結多孔質体)、ステンレス鋼等による金網を数枚重ねて焼結した焼結多層金網等のロングライフタイプのフィルタ材によって構成することができる。なお、ここで云う発泡金属、金属多孔体は、三次元網目状の発泡樹脂に導電処理を施し、これにニッケル、ニッケル・銅合金等を電気メッキしたものである。
【0031】
混入物捕捉用フィルタ要素20の濾過性能は、原料を粒度区分した名称である公称濾過精度によって表すことができ、多孔性焼結金属、発泡金属あるいは金属多孔体、プラスチック焼結多孔質体による場合には、気孔径が50〜500μm程度で、公称濾過精度は、混入物捕捉および気液混合流体中のガス粒が細分化と正常な流れを維持するための流動抵抗限界(フィルタの圧力損失限界)を両立するために、50〜200μm程度、より好ましくは50〜150μm程度に設定されればよい。
【0032】
混入物捕捉用フィルタ要素20を焼結多層金網(焼結積層金属メッシュ)によって構成する場合には、図9、図10に例示されているように、4層以上で、各層の網目の角度をずらして積層焼結したものを使用する。焼結多層金網の場合、混入物捕捉と正常な流れを維持するための流動抵抗限界を両立するために、目開きが100〜500μm、公称濾過精度で云えば50〜200μm程度のものであればよい。
【0033】
中空開口部18には、下端開口より円柱状の流体流動音低減用フィルタ要素21、オリフィス通路22を形成された板状の絞り通路部材23、円柱状の流体流動音低減用フィルタ要素24が順に挿入され、これらは座金25を介してかしめにより弁体17に固定されている。これにより、中空開口部18の最上位に流体流動音低減用フィルタ要素21があり、これの下位に絞り通路部材23があり、最下位にもう一つの流体流動音低減用フィルタ要素24があり、流体流動音低減用フィルタ要素24は下底面にて中空開口部18の下端開口に露呈している。
【0034】
流体流動音低減用フィルタ要素21、24は、流体流れで見て絞り通路部材23の上流側と下流側の両側に配置され、静音化のために液流中のガス粒の細分化、液流の整流化を行い、多少目詰まりしても、当該フィルタにおける圧力損失が絞り通路部材23による圧力損失より大きくならないことを要求され、ステンレス鋼、真鍮等による連続気孔構造の多孔性焼結金属(たとえば、SMC(株)社製の焼結金属エレメント)、ニッケル、ニッケル−銅合金による三次元網目状の発泡金属あるいは金属多孔体(たとえば、住友電気工業(株)社製の商品名セルメット)、プラスチック粉末を原料として焼結成形した連続気孔構造のプラスチック焼結多孔質体(たとえば、染谷製作所製のプラスチック焼結多孔質体)、ステンレス鋼等による金網を数枚重ねて焼結した焼結多層金網等のロングライフタイプのフィルタ材によって構成することができる。
【0035】
流体流動音低減用フィルタ要素21、24の濾過性能は、混入物捕捉用フィルタ要素20と同様に、原料を粒度区分した名称である公称濾過精度によって表すことができ、多孔性焼結金属、発泡金属あるいは金属多孔体、プラスチック焼結多孔質体による場合には、気孔径が50〜500μm程度で、公称濾過精度は、静音作用と正常な流れを維持するための流動抵抗限界(フィルタの圧力損失限界)を両立するために、300〜600μm、より好ましくは400〜600μm程度に設定されればよい。
【0036】
流体流動音低減用フィルタ要素21、24を焼結多層金網(焼結積層金属メッシュ)によって構成する場合には、混入物捕捉用フィルタ要素20と同様に、図9、図10に例示されているように、5層以上で、各層の網目の角度をずらして積層焼結したものを使用する。焼結多層金網の場合、静音作用と正常な流れを維持するための流動抵抗限界を両立するために、目開きが100〜700μm、公称濾過精度で云えば300〜600μm程度、より好ましくは400〜600μm程度のものであればよい。
【0037】
絞り通路部材23のオリフィス通路22は、図2に示されているような単一孔オリフィス22A、あるいは図3に示されているようなクロススリットオリフィス22Bにより構成されている。
【0038】
また、絞り通路部材23は、図4、図5に示されているように、複数個のオリフィス22Cを互いに並列に設けられたものであってもよい。絞り通路部材23の絞り通路断面積に適正値Atが存在する場合、オリフィス22Cの個数(孔数)をn、各オリフィス22Cの通路断面積をAoで互いに等しくし、Ao=At/nが成立するよう、各オリフィス22Cの通路断面積Aoを設定する。これにより、トータルで、単一孔のものと流量が同じになる。
【0039】
このような、複数オリフィスの場合、流体流が各オリフィス22Cを分流するので、各オリフィスより噴出する流体流の運動エネルギが分散低減し、それに伴う流体流動音が低減する。
【0040】
たとえば、絞り通路部材23の単一口径(直径)を0.8mm、絞り通路前後圧力差0.098MPa、流量を毎分9リットルとした場合、図4に示されているように、孔数=2で、各オリフィス22Cの口径を0.57mmとすると、後述する空気調和機の組み込みにおいて、同一条件で単一孔のものに比して騒音が低減した。また、図5に示されているように、孔数=3で、各オリフィス22Cの口径を0.47mmとすると、更に、騒音が低減した。
【0041】
弁体17には周溝19の溝底部と中空開口部18の上端近傍とを連通接続する小径(口径0.5〜0.7mm程度)の分散連通孔26が複数個(最低2個)、放射状に形成されている。これにより、分散連通孔26は、各々、一方にて周溝19に配置されている混入物捕捉用フィルタ要素20の内周面と直接又は、微少な隙間を持って連通し、他方において絞り通路部材23より上流側の流体流動音低減用フィルタ要素21の上端側外周面と直接連通している。
【0042】
ここで、混入物捕捉用フィルタ要素20と流体流動音低減用フィルタ要素21、24の個々の圧力損失および複数個の分散連通孔26全体(合計値)の圧力損失は、絞り通路部材23の圧力損失より小さい。これにより、絞り通路部材23に形成されるオリフィス通路22の断面積によって絞り弁装置10による絞り度合い(絞り流量)が正確に設定される。
【0043】
つぎに、上述の構成による絞り弁装置10の動作について説明する。
電磁ソレノイド装置30に通電が行われていない状態では、電磁ソレノイド装置30の圧縮コイルばね37のばね力によってプランジャ32と共に弁体17が持ち上げられて弁座部16より離れ、弁ポート15が完全に開かれた全開の実質的な絞り作用がない弁開状態が得られる。
【0044】
電磁ソレノイド装置30に通電が行われると、圧縮コイルばね37のばね力に抗してプランジャ32が外凾35の下側片部35Aの側に磁気的に吸引され、弁体17が弁閉方向へ駆動され、図1に示されているように、弁体17が先端外周面17Aをもって弁座部16に着座する。
【0045】
この弁閉状態では、混入物捕捉用フィルタ要素20、分散連通孔26、流体流動音低減用フィルタ要素21、絞り通路部材23のオリフィス通路22、流体流動音低減用フィルタ要素24、弁ポート15をもって弁室14と第2の入出口ポート13とが連通し、第1の入出口ポート12が高圧側で、第2の入出口ポート13が低圧側である場合には、混入物捕捉用フィルタ要素20→分散連通孔26→流体流動音低減用フィルタ要素21→絞り通路部材23のオリフィス通路22→流体流動音低減用フィルタ要素24の順に冷媒等の流体が流れる。
【0046】
上述のように流体が流れることにより、まず、円筒状で表面積が大きい混入物捕捉用フィルタ要素20によって流体流れ中のコンタミネーションの捕捉が行われると共に液流中の気泡(ガス粒)の細分化が行われ、そして流体は、複数個の分散連通孔26の各々を通り、分散された流れで流体流動音低減用フィルタ要素21に流入し、流体流動音低減用フィルタ要素21、絞り通路部材23のオリフィス通路22、流体流動音低減用フィルタ要素24を順に通過する。これにより、オリフィス通路孔22によって所要の絞り効果が得られ、その前後の流体流動音低減用フィルタ要素21、24により整流化作用が得られ、整流化作用によって流体流動音が低減し、静音性が向上する。
【0047】
また、混入物捕捉用フィルタ要素20によって流体流中のコンタミネーションの捕捉が行われるから、長期間の使用においても、オリフィス通路22にコンタミネーションが詰まることがなく、安定した絞り効果が得られ、混入物捕捉用フィルタ要素20は円筒状で表面積が大きいから、目詰まりに関して長期間の使用に耐えることができる。
【0048】
混入物捕捉用フィルタ要素20を流れる流体が気液混合流体であると、混入物捕捉用フィルタ要素20の通過によって気液混合流体中のガス粒が細分化され、細分化されたガス粒は、流速抵抗が液体より大きく、浮力によって上部に停溜し易く、停溜中にガス粒の再結合によって大きいものになり易く、オリフィス通過直後のガス粒の間欠的な膨張破裂によって騒音(チリチリ音)が生じる。
【0049】
このことに対して、混入物捕捉用フィルタ要素20より、流体流動音低減用フィルタ要素21、絞り通路部材23へ流体を導く通路が複数個に分散された小径の分散連通孔26であることにより、個々の分散連通孔26は大きい通路空間を呈さないから、各分散連通孔26でガス粒が滞留せず、ガス粒が肥大化することがない。これにより、オリフィス通過直後のガス粒の間欠的な膨張破裂によって騒音が生じることが回避され、静音性がさらに向上する。
【0050】
また、混入物捕捉用フィルタ要素20の外径がプランジャ32の外径にほぼ等しく、弁室14の上方部に気液混合流体中のガス粒が肥大化するような大きい空間が存在しないから、弁室14の上方部にガス粒が溜ることがない。このことによっても、ガス粒が肥大化することが防止され、オリフィス通過直後のガス粒の間欠的な膨張破裂によって騒音が生じることが回避され、静音性がさらに向上する。
【0051】
図6はこの発明による絞り弁装置10の実施の形態2を示している。なお、図6において、図1に対応する部分は、図1に付した符号と同一の符号を付けて、その説明を省略する。
【0052】
この実施の形態では、絞り通路部材23より下流側の流体流動音低減用フィルタ要素24より下流側に、複数個の噴出孔27を有する分散噴出部材28(図7参照)が取り付けられている。
【0053】
分散噴出部材28であると、複数個の噴出孔27の各々より流体が噴出するから、単一孔である場合に比して、流体流動音低減用フィルタ要素24を流れる流体の流路長が長くなり、流体流動音低減用フィルタ要素24の有効度が増し、また、隣接する噴出孔27の噴出流同士の干渉により衝撃波が打ち消し合う作用が得られる。これにより、静音性が更に改善される。
【0054】
また、この実施の形態2では、弁体17外周部の周溝19に、混入物捕捉用フィルタ要素20の内周面と分散連通孔26との間に微少な隙間を形成するための凹部19Aが設けられている。
【0055】
この凹部19Aが弁体17外周部の周溝19に設けられていることにより、分散連通孔26と混入物捕捉用フィルタ要素20とが微少な隙間を持って連通し、分散連通孔26を通過した冷媒の流速が、この分散連通孔26よりも最大通過可能流量の低い混入物捕捉用フィルタ要素20の存在によって減速されることがなくなる。
【0056】
したがって、冷媒中に混入しているコンタミネーションと云われる固形の混入物が分散連通孔26の内壁に付着しようとしても、混入物捕捉用フィルタ要素20によって流速を減じられることのない、分散連通孔26を通過した冷媒の流勢によって、実際に分散連通孔26の内壁に付着することが防止され、分散連通孔26の目詰まりを防ぐことができるようになる。
【0057】
なお、上述した弁体17外周部の周溝19の凹部19Aは、図1に示されている実施の形態における絞り弁装置10にも、同様に設けることができ、逆に、図6に示されている実施の形態2の絞り弁装置10で設けた弁体17外周部の周溝19の凹部19Aは、図1に示されている実施の形態における絞り弁装置10のように、別段問題がなければ省略することもできる。
【0058】
図8は上述した実施の形態1あるいは実施の形態2による絞り弁装置10をサイクルドライ弁として組み込まれた空気調和機を示している。
【0059】
この空気調和機は、圧縮機50と、室外熱交換器51と、第1の室内熱交換器52と、第2の室内熱交換器53と、これらをループ接続する冷媒通路55〜63と、室外熱交換器51と第1の室内熱交換器52との間の冷媒通路(57〜59)に設けられた膨張弁54と、冷房モードと暖房モードとの切換のためにループ接続された冷媒通路55〜63における冷媒の流れ方向を反転する四方弁64とを有している。
【0060】
第1の室内熱交換器52と第2の室内熱交換器53との間の冷媒通路60には絞り弁装置(サイクルドライ弁)10が接続されている。
【0061】
冷房モードでは、図8にて実線の矢印で示されている方向に冷媒が循環し、絞り弁装置10が弁開している状態で、冷房モードが得られ、絞り弁装置10が弁閉している状態では、当該絞り弁装置10が絞り弁として作用し、冷房サイクルドライモード(冷房時除湿)が得られる。
【0062】
冷房サイクルドライモードにおいては、絞り弁装置10のオリフィス通路22より冷媒流で見て上流側に混入物捕捉用フィルタ要素20が存在することになる。これにより、オリフィス通路22より上流側で冷媒流中のコンタミネーションの捕捉が行われ、オリフィス通路22がコンタミネーションによって汚染されることがなく、長期間の使用においても、絞り効果が変動することがなく、冷房サイクルドライモードの性能が低下することがない。
【0063】
また、絞り弁装置10は空気調和機の室内機に設けられるが、絞り弁装置10には、流体流動音低減用フィルタ要素21、24が設けられていたり、分散連通孔26が設けられていたり、弁室14の上方部に気液混合流体中のガス粒が肥大化するような大きい空間が存在しないこと等によって、耳障りな冷媒擦過音や、オリフィス通過直後のガス粒の間欠的な膨張破裂による騒音を生じることがない。
【0064】
なお、暖房モードでは、図8の矢印で示されている方向とは逆方向に冷媒が循環し、通常、絞り弁装置10は弁開状態を維持する。
【0065】
【発明の効果】
以上の説明から理解される如く、この発明による絞り弁装置によれば、混入物捕捉用フィルタ要素によって流体流れ中のコンタミネーション等の混入物捕捉が行われ、絞り通路部材によって絞り効果が得られ、流体流動音低減用フィルタ要素により整流化作用が得られ、更に、混入物捕捉用フィルタ要素より絞り通路部材へ流体を導く通路が複数個に分散された小径の分散連通孔であることにより、個々の分散連通孔は大きい通路空間を呈さず、分散連通孔でガス粒が滞留せず、ガス粒が肥大化することがないから、オリフィス通過直後のガス粒の間欠的な膨張破裂によって騒音が生じることがなく。静音性が向上する。
【0066】
また、この発明による空気調和機によれば、第1の室内熱交換器と第2の室内熱交換器との間に、上述の絞り弁装置が接続されていることにより、冷房モードにおいて、絞り弁装置が弁閉状態になることにより、除湿運転が行われる。この空気調和機に組み込まれる絞り弁装置は、流体擦過音が小さく、ガス粒の肥大化による騒音を生じることがなく、静粛性に優れ、絞り部をコンタミネーションによって汚染されることがなく、長期間の使用においても、絞り効果が変動することがなく、冷房サイクルドライモードの性能が低下することがない。
【図面の簡単な説明】
【図1】この発明による絞り弁装置の実施の形態1を示す弁閉状態の断面図である。
【図2】この発明による絞り弁装置で使用される絞り通路部材の一つの実施の形態を示す平面図である。
【図3】この発明による絞り弁装置で使用される絞り通路部材の他の実施の形態を示す平面図である。
【図4】この発明による絞り弁装置で使用される絞り通路部材の他の実施の形態を示す平面図である。
【図5】この発明による絞り弁装置で使用される絞り通路部材の他の実施の形態を示す平面図である。
【図6】この発明による絞り弁装置の実施の形態2を示す弁閉状態の断面図である。
【図7】この発明による絞り弁装置で使用される分散噴出部材の一つの実施の形態を示す斜視図である。
【図8】この発明による絞り弁装置が組み込まれた空気調和機を示すブロック図である。
【図9】この発明による絞り弁装置の実施の形態で使用される流体流動音低減用フィルタ要素や混入物捕捉用フィルタ要素に使用可能な焼結多層金網の構成の一例を示す部分拡大平面図である。
【図10】この発明による絞り弁装置の実施の形態で使用される流体流動音低減用フィルタ要素や混入物捕捉用フィルタ要素に使用可能な焼結多層金網の構成の他の例を示す部分拡大平面図である。
【符号の説明】
10 絞り弁装置
11 弁ハウジング
12 第1の入出口ポート
13 第2の入出口ポート
14 弁室
15 弁ポート
16 弁座部
17 弁体
19A 凹部
20 混入物捕捉用フィルタ要素
21 流体流動音低減用フィルタ要素
23 絞り通路部材
24 流体流動音低減用フィルタ要素
26 分散連通孔
28 分散噴出部材
30 電磁ソレノイド装置
32 プランジャ
36 電磁コイル部
50 圧縮機
51 室外熱交換器
52 第1の室内熱交換器
53 第2の室内熱交換器
54 膨張弁
64 四方弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a throttle valve device and an air conditioner, and more particularly to a throttle valve device and an air conditioner used as a dehumidifying throttle valve in an air conditioner having a dehumidification mode.
[0002]
[Prior art]
As an air conditioner capable of dehumidifying operation, an indoor heat exchanger is divided into two, and a throttle valve device (a dehumidifying throttle valve and a cycle dry valve) is provided between the two indoor heat exchangers and becomes a throttle valve when the valve is closed. During the dehumidifying operation, the refrigerant flows through the throttle passage of the throttle valve device which closes and acts as a throttle valve, thereby condensing the upstream indoor heat exchanger of the two divided indoor heat exchangers. The indoor heat exchanger on the downstream side is the evaporator, the indoor air is cooled and dehumidified by the indoor heat exchanger on the downstream side, and the air is heated by the indoor heat exchanger on the upstream side without lowering the air temperature. An air conditioner with a dehumidification mode that can perform dehumidification is known.
[0003]
An air conditioner with a dehumidification mode of this type is disclosed in JP-A-2-183776, JP-A-7-91778 (Japanese Patent No. 3047702), JP-A-11-51514, and the like.
[0004]
In the air conditioner as described above, during the dehumidifying operation, the throttle valve device for cycle drying is closed, and the refrigerant flows through the narrow throttle passage of the throttle valve device to obtain the throttle effect. In the indoor unit where the flow is disturbed and the throttle valve device is installed, the refrigerant jet sound propagates in the refrigerant liquid, and the condenser and evaporator of the indoor unit act as a resonance plate, causing an unpleasant refrigerant rubbing sound (refrigerant passing sound). ) Occurs. Such a phenomenon becomes more conspicuous as the refrigerant circulation flow rate increases due to an increase in the compressor rotation speed, and the unpleasant noise level increases.
[0005]
In view of this, a porous member made of a sintered metal or the like is provided in the throttle passage, or a throttle passage is formed by the porous member. It has already been proposed to reduce the rubbing noise (Japanese Utility Model Laid-Open No. 1-152176, Japanese Patent Laid-Open No. 2000-346495).
[0006]
[Problems to be solved by the invention]
Since there is a solid contaminant called contamination in the refrigerant flow, the contaminant is clogged in the throttle passage during long-term use, causing a problem that the refrigerant flow rate in the throttle valve device changes. For this reason, it is difficult to obtain stable dehumidifying operation performance in long-term use.
[0007]
The refrigerant flowing through the throttle valve device for cycle drying is a gas-liquid mixture of liquid and gas (gas). If there is a large space inside the throttle valve device, gas particles (gas If the gas mass becomes too large and the gas particles become too large, the gas particles immediately after passing through the orifice expand and rupture, and the gas of the gas particles flows, causing noise.
[0008]
The present invention has been made in order to solve the above-mentioned problems, and it is possible to sufficiently reduce the refrigerant rubbing noise without causing the fluctuation of the refrigerant flow rate due to the clogging of the contaminant in the throttle passage, and even in long-term use, It is an object of the present invention to provide a throttle valve device and an air conditioner capable of obtaining stable dehumidifying operation performance and quietness.
[0009]
[Means for Solving the Problems]
To achieve the above object, a throttle valve device according to the present invention includes a first inlet / outlet port, a second inlet / outlet port, a valve chamber constantly communicating with the first inlet / outlet port, and the valve chamber. A throttle valve device comprising: a valve housing defining a valve port provided between the valve chamber and the second inlet / outlet port; and a valve body provided in the valve chamber and opening and closing the valve port. A cylindrical contaminant trapping filter element is attached to the outer periphery of the diaphragm, and the restrictor is provided in the valve body so as to communicate with the contaminant trapping filter element on one side and to open with the valve port on the other side. A passage in which a restricting passage member and a fluid flow noise reducing filter element for performing an action are arranged, and a communication passage connects the contaminant trapping filter element and an arrangement portion of the restricting passage member and the fluid flow noise reducing filter element in the valve body. But Pieces of given by the small diameter of the dispersed communication hole.
[0010]
According to the throttle valve device of the present invention, when the valve is closed, a fluid such as a refrigerant flows and mixes in the order of the contaminant trapping filter element → the fluid flow noise reducing filter element → the throttle passage member → the fluid flow noise reducing filter element. The contaminants such as contamination in the fluid flow are captured by the filter element for capturing substances, the throttle effect is obtained by the throttle passage member, and the rectifying action is obtained by the filter element for reducing fluid flow noise.
[0011]
When the fluid flowing through the contaminant trapping filter element is a gas-liquid mixed fluid, gas particles in the gas-liquid mixed fluid are fragmented by passing through the contaminant trapping filter element, and the constriction passage member is narrower than the contaminant trapping filter element. If there is a large passage space on the way to the gas, the gas particles are likely to stay, and the gas particles will enlarge during the stay, causing noise due to intermittent expansion and rupture of the gas particles immediately after passing through the orifice. Since the passage for guiding the fluid from the trapping filter element to the throttle passage member is a small-diameter dispersed communication hole dispersed in a plurality, the individual dispersed communication holes do not exhibit a large passage space, and the gas particles are dispersed in the dispersed communication holes. There is no stagnation and gas particles do not enlarge.
[0012]
Further, in the throttle valve device according to the present invention, the fluid flow noise reducing filter element is disposed on both the upstream side and the downstream side of the throttle passage member when viewed from the fluid flow, and the dispersed communication hole is provided with one of the mixed communication holes. It communicates directly or with a small gap with the filter element for capturing objects, and on the other hand communicates directly with the filter element for reducing fluid flow noise upstream of the throttle passage member. The fluid flow noise reduction filter element upstream of the throttle passage member also performs a bubble recombination preventing action.
[0013]
Further, in the throttle valve device according to the present invention, the pressure loss of each of the contaminant trapping filter element and the filter element for reducing fluid flow noise and the pressure loss of the entire dispersion communication hole are smaller than the pressure loss of the throttle passage member. small. Thus, the degree of throttling (throttle flow rate) by the throttling valve device is set by the throttling passage member.
[0014]
When the degree of throttle (throttle flow rate) by the throttle valve device is set by the throttle passage member, in the throttle valve device according to the present invention, the throttle valve member is disposed on both the upstream side and the downstream side of the throttle passage member when viewed from the fluid flow. Each of the fluid flow noise reduction filter elements and the contaminant trapping filter element is made of a sintered multilayer wire mesh, a porous sintered metal, a foamed metal or a porous metal body, or a plastic sintered porous body. And a filter material having a nominal filtration accuracy of 50 to 600 μm.
[0015]
Further, the throttle valve device according to the present invention further includes a dispersed ejection member having a plurality of ejection holes, further downstream than the fluid flow noise reducing filter element downstream of the throttle passage member. . As a result, the flow path length of the fluid flowing through the fluid flow noise reduction filter element is increased as compared with the case of a single hole, the effectiveness of the fluid flow noise reduction filter element is increased, and an adjacent ejection hole is provided. The effect of canceling out the shock wave by the interference between the jet flows of the gas is obtained.
[0016]
Also, the throttle valve device according to the present invention has an electromagnetic actuator for driving the valve element to open and close, and the valve element is disposed in the plunger chamber that is continuous with the valve chamber on the side opposite to the valve port in the axial direction. The electromagnetic actuator is movably fitted with a plunger of the electromagnetic actuator, and the contaminant capturing filter element is mounted on a connecting portion between the valve body and the plunger, and has an outer diameter substantially equal to the outer diameter of the plunger. equal. Thus, the valve housing can be configured without increasing the outer diameter dimension.
[0017]
The throttle passage member incorporated in the throttle valve device according to the present invention may have a plurality of orifices provided in parallel to each other, in addition to the single hole orifice and the cross slit orifice. In the case of a plurality of orifices, the fluid flow divides each orifice, so that the kinetic energy of the fluid flow ejected from each orifice is reduced and the fluid flow noise associated with it is reduced.
[0018]
In addition, the air conditioner according to the present invention includes a compressor, an outdoor heat exchanger, a first indoor heat exchanger, a second indoor heat exchanger, a refrigerant passage connecting these components in a loop, and the outdoor heat exchanger. An expansion valve provided in a refrigerant passage between the exchanger and the first indoor heat exchanger, wherein an expansion valve is provided between the first indoor heat exchanger and the second indoor heat exchanger. The throttle valve device according to the invention is connected.
[0019]
According to the air conditioner of the present invention, the throttle valve device performs a throttling operation between the first indoor heat exchanger and the second indoor heat exchanger by closing the valve, and the dehumidifying throttle valve. Function as
[0020]
In the air conditioner according to the present invention, the throttle valve device can be connected such that the contaminant trapping filter element is located upstream of the throttle passage member as viewed from the refrigerant flow in the cooling mode.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows a first embodiment of a throttle valve device 10 according to the present invention.
[0022]
The throttle valve device 10 has a metal valve housing 11. The valve housing 11 includes a first inlet / outlet port 12, a second inlet / outlet port 13, a valve chamber 14 which is always in direct communication with the first inlet / outlet port 12, a valve chamber 14 and a second inlet / outlet port. And an outlet port 13 and a valve port 15 provided therebetween. A valve seat 16 is defined around the open end of the valve port 15 on the valve chamber 14 side.
[0023]
A valve body 17 is provided in the valve chamber 14 so as to be movable in the vertical direction (valve lift direction) in the figure. The valve element 17 is seated on a valve seat portion 16 defined around the valve port 15 at the distal end outer peripheral surface 17 </ b> A to close the valve port 15. It is movable between a valve opening position for establishing communication.
[0024]
An electromagnetic solenoid device 30 is attached to the valve housing 11. The electromagnetic solenoid device 30 includes a plunger tube 31 formed integrally with the valve housing 11, a plunger 32 fitted in a plunger chamber 31A defined in the plunger tube 31 so as to be movable in the axial direction, and a plunger tube 31. A plug-shaped coil guide member 33 fixed to the distal end of the plunger tube portion; a U-shaped outer box 35 attached to the coil guide member 33 by bolts 34 outside the plunger tube portion 31; , And a compression coil spring (valve opening spring) 37 for urging the plunger 32 toward the coil guide member 33.
[0025]
The valve chamber 14 is directly continuous with the plunger chamber 31A on the opposite side (upper side) of the valve port 15, and the valve body 17 is swaged to the plunger 32 by the upper stem 17B.
[0026]
Accordingly, the electromagnetic solenoid device 30 drives the valve body 17 upward (toward the valve opening direction) together with the plunger 32 by the spring force of the compression coil spring 37 when the electromagnetic coil portion 36 is not energized and is not energized. On the other hand, at the time of energization in which the electromagnetic coil portion 36 is energized, the plunger 32 is magnetically attracted to the lower piece 35A side of the outer case 35 against the spring force of the compression coil spring 37, The valve body 17 is driven downward (to close the valve). FIG. 1 shows an energized state.
[0027]
That is, the electromagnetic solenoid device 30 drives the valve element 17 to the valve open position separated from the valve seat 16 by the spring force of the compression coil spring 37 when not energized, and resists the spring force of the compression coil spring 37 when energized. It is a normally-open type in which the valve body 17 is driven to a valve closed position where the valve body 17 is seated on the valve seat portion 16.
[0028]
The valve element 17 is located directly above the valve port 15, and the valve element 17 is formed with a hollow opening 18 that is opened at a front end surface (lower bottom surface) facing the valve port 15. The hollow opening 18 is a lower end opening and forms a bottomed hole with an upper end closed. In the outer peripheral portion of the valve body 17, a peripheral groove 19 is formed over a wide range from the vicinity of the distal end outer peripheral surface 17 </ b> A to the connection end side (upper end side) with the plunger 32.
[0029]
A cylindrical contaminant trapping filter element 20 is fitted and mounted in the circumferential groove 19. The contaminant trapping filter element 20 is fitted in the circumferential groove 19 and has a filter outer diameter set to a size substantially equal to the outer diameter of the plunger 32, thereby increasing the outer diameter of the valve housing 11. There is no.
[0030]
The contaminant trapping filter element 20 can reduce the pressure loss in the filter due to the contaminant trapping and the gas particles in the gas-liquid mixed fluid, even if the gas particles are somewhat clogged. It is required that it does not become large, and a three-dimensional network made of a porous sintered metal (for example, a sintered metal element manufactured by SMC Corporation) having a continuous pore structure made of stainless steel, brass, etc., nickel, nickel-copper alloy, etc. Or a porous metal body (for example, Celmet manufactured by Sumitomo Electric Industries, Ltd.), a sintered porous porous body having a continuous pore structure formed by sintering a plastic powder as a raw material (for example, manufactured by Someya Seisakusho) Long life type filter materials such as sintered multi-layered wire mesh made by laminating several layers of wire mesh made of stainless steel It can be configured. The foamed metal and the porous metal described herein are obtained by subjecting a three-dimensional mesh-shaped foamed resin to a conductive treatment and electroplating nickel, a nickel-copper alloy or the like.
[0031]
The filtration performance of the contaminant trapping filter element 20 can be represented by a nominal filtration accuracy, which is a name obtained by classifying the raw material, and is based on a porous sintered metal, a foamed metal or a metal porous body, or a plastic sintered porous body. Has a pore diameter of about 50 to 500 μm and a nominal filtration accuracy of a flow resistance limit (a pressure drop limit of the filter) for trapping contaminants and maintaining fine flow of gas particles in a gas-liquid mixture fluid and normal flow. ) May be set to about 50 to 200 μm, more preferably about 50 to 150 μm.
[0032]
When the contaminant trapping filter element 20 is configured by a sintered multilayer wire mesh (sintered laminated metal mesh), as illustrated in FIGS. 9 and 10, the angle of the mesh of each layer is four or more layers. Use the one that has been shifted and laminated and sintered. In the case of a sintered multilayer wire mesh, in order to achieve both contaminant capture and the flow resistance limit for maintaining a normal flow, if the opening is 100 to 500 μm and the nominal filtration accuracy is about 50 to 200 μm, Good.
[0033]
In the hollow opening 18, a cylindrical fluid flow noise reducing filter element 21, a plate-shaped throttle passage member 23 having an orifice passage 22 formed therein, and a cylindrical fluid flow noise reducing filter element 24 are arranged in order from the lower end opening. These are inserted and fixed to the valve element 17 by swaging via a washer 25. As a result, the fluid flow noise reduction filter element 21 is at the top of the hollow opening 18, the throttle passage member 23 is below it, and another fluid flow noise reduction filter element 24 is at the bottom. The fluid flow noise reduction filter element 24 is exposed on the lower bottom surface at the lower end opening of the hollow opening 18.
[0034]
The fluid flow noise reduction filter elements 21 and 24 are disposed on both the upstream side and the downstream side of the throttle passage member 23 when viewed from the fluid flow, and for reducing noise, subdivide gas particles in the liquid flow, It is required that the pressure loss in the filter should not be greater than the pressure loss due to the throttle passage member 23 even if the filter is rectified and the filter is somewhat clogged, and a porous sintered metal (such as stainless steel or brass) having a continuous pore structure is used. For example, a sintered metal element manufactured by SMC Corporation), a three-dimensional mesh-like foamed metal or porous metal body made of nickel or a nickel-copper alloy (for example, Celmet manufactured by Sumitomo Electric Industries, Ltd.), A plastic sintered porous body having a continuous pore structure (for example, a plastic sintered porous body manufactured by Someya Seisakusho) formed by sintering and molding a plastic powder as a raw material; It can be constituted by long-life type of filter material, such as sintered multilayer wire mesh sintered stacked several sheets of.
[0035]
The filtration performance of the fluid flow noise reduction filter elements 21 and 24 can be represented by the nominal filtration accuracy, which is a name obtained by dividing the size of the raw material, as in the case of the filter element 20 for capturing contaminants. In the case of using a metal or a porous metal body or a sintered plastic porous body, the pore diameter is about 50 to 500 μm, and the nominal filtration accuracy is a flow resistance limit (a pressure loss of the filter) for maintaining a silent operation and a normal flow. In order to satisfy both of the limits, the distance may be set to about 300 to 600 μm, more preferably about 400 to 600 μm.
[0036]
When the filter elements 21 and 24 for reducing fluid flow noise are formed of a sintered multilayer wire mesh (sintered laminated metal mesh), they are illustrated in FIGS. 9 and 10 similarly to the filter element 20 for capturing contaminants. As described above, five or more layers are laminated and sintered by shifting the mesh angle of each layer. In the case of a sintered multilayer wire mesh, in order to achieve both a silent operation and a flow resistance limit for maintaining a normal flow, the opening is 100 to 700 μm, and the nominal filtration accuracy is about 300 to 600 μm, more preferably 400 to 700 μm. What is necessary is just about 600 micrometers.
[0037]
The orifice passage 22 of the throttle passage member 23 is constituted by a single hole orifice 22A as shown in FIG. 2 or a cross slit orifice 22B as shown in FIG.
[0038]
Further, as shown in FIGS. 4 and 5, the throttle passage member 23 may have a plurality of orifices 22C provided in parallel with each other. When an appropriate value At exists in the throttle passage sectional area of the throttle passage member 23, the number (the number of holes) of the orifices 22C is set to n, and the passage sectional areas of the orifices 22C are made equal to each other by Ao, and Ao = At / n is established. The passage cross-sectional area Ao of each orifice 22C is set so as to perform the above. Thereby, the flow rate becomes the same as that of the single hole in total.
[0039]
In the case of such a plurality of orifices, the fluid flow diverges through each orifice 22C, so that the kinetic energy of the fluid flow ejected from each orifice is reduced and the fluid flow noise accompanying it is reduced.
[0040]
For example, when the single diameter (diameter) of the throttle passage member 23 is 0.8 mm, the pressure difference before and after the throttle passage is 0.098 MPa, and the flow rate is 9 liters per minute, as shown in FIG. Assuming that the diameter of each orifice 22C was 0.57 mm in 2, the noise was reduced as compared with a single hole under the same conditions when the air conditioner described below was assembled. Further, as shown in FIG. 5, when the number of holes was 3 and the diameter of each orifice 22C was 0.47 mm, the noise was further reduced.
[0041]
The valve body 17 has a plurality (at least two) of small-diameter (about 0.5 to 0.7 mm) dispersed communication holes 26 for communicating the bottom of the circumferential groove 19 and the vicinity of the upper end of the hollow opening 18 with each other. It is formed radially. As a result, each of the dispersion communication holes 26 communicates directly or with a small gap with the inner peripheral surface of the contaminant trapping filter element 20 arranged on one side in the peripheral groove 19, and on the other hand, the throttle passage It is in direct communication with the outer peripheral surface on the upper end side of the fluid flow noise reduction filter element 21 on the upstream side of the member 23.
[0042]
Here, the pressure loss of each of the contaminant trapping filter element 20 and the fluid flow noise reducing filter elements 21 and 24 and the pressure loss of the plurality of dispersion communication holes 26 (total value) are determined by the pressure of the throttle passage member 23. Less than loss. Thereby, the degree of throttling (throttle flow rate) by the throttling valve device 10 is accurately set by the cross-sectional area of the orifice passage 22 formed in the throttling passage member 23.
[0043]
Next, the operation of the throttle valve device 10 having the above configuration will be described.
In a state where the electromagnetic solenoid device 30 is not energized, the valve body 17 is lifted together with the plunger 32 by the spring force of the compression coil spring 37 of the electromagnetic solenoid device 30 and separated from the valve seat 16 so that the valve port 15 is completely closed. A valve-open state is obtained in which there is no substantial throttling effect of the fully opened state.
[0044]
When the electromagnetic solenoid device 30 is energized, the plunger 32 is magnetically attracted to the lower half 35A of the outer case 35 against the spring force of the compression coil spring 37, and the valve body 17 is moved in the valve closing direction. As shown in FIG. 1, the valve element 17 is seated on the valve seat portion 16 with the distal end outer peripheral surface 17A as shown in FIG.
[0045]
In this valve closed state, the contaminant trapping filter element 20, the dispersion communication hole 26, the fluid flow noise reduction filter element 21, the orifice passage 22 of the throttle passage member 23, the fluid flow noise reduction filter element 24, and the valve port 15 are provided. When the valve chamber 14 and the second inlet / outlet port 13 communicate with each other and the first inlet / outlet port 12 is on the high pressure side and the second inlet / outlet port 13 is on the low pressure side, the contaminant trapping filter element Fluid such as a refrigerant flows in the order of 20 → distributed communication hole 26 → filter element 21 for reducing fluid flow noise → orifice passage 22 of throttle passage member 23 → filter element 24 for reducing fluid flow noise.
[0046]
When the fluid flows as described above, first, the contaminants in the fluid flow are captured by the contaminant capturing filter element 20 having a cylindrical shape and a large surface area, and the bubbles (gas particles) in the liquid flow are subdivided. Is performed, and the fluid passes through each of the plurality of dispersion communication holes 26 and flows into the fluid flow noise reduction filter element 21 in a dispersed flow, and the fluid flow noise reduction filter element 21 and the throttle passage member 23 Through the orifice passage 22 and the fluid flow noise reduction filter element 24 in that order. As a result, a required throttle effect is obtained by the orifice passage hole 22, and a rectifying action is obtained by the fluid flow noise reduction filter elements 21 and 24 before and after the orifice passage hole 22, and the rectifying action reduces fluid flow noise, thereby reducing noise. Is improved.
[0047]
In addition, since contamination in the fluid flow is captured by the contaminant capturing filter element 20, even during long-term use, the orifice passage 22 is not clogged with contamination, and a stable throttle effect is obtained. Since the contaminant capturing filter element 20 is cylindrical and has a large surface area, it can withstand long-term use with respect to clogging.
[0048]
When the fluid flowing through the contaminant capturing filter element 20 is a gas-liquid mixed fluid, the gas particles in the gas-liquid mixed fluid are finely divided by passing through the contaminant capturing filter element 20, and the finely divided gas particles are Flow velocity resistance is larger than liquid, it tends to stagnate at the upper part due to buoyancy, it tends to become large due to recombination of gas particles during stagnation, and noise due to intermittent expansion and rupture of gas particles immediately after passing through the orifice (tilting noise) Occurs.
[0049]
On the other hand, the small-diameter dispersion communication hole 26 in which the passage for guiding the fluid from the contaminant trapping filter element 20 to the fluid flow noise reduction filter element 21 and the throttle passage member 23 is dispersed into a plurality of parts is provided. Since each of the dispersed communication holes 26 does not exhibit a large passage space, gas particles do not stay in each of the dispersed communication holes 26, and the gas particles do not enlarge. This avoids generating noise due to intermittent expansion and rupture of gas particles immediately after passing through the orifice, and further improves silentness.
[0050]
Further, the outer diameter of the contaminant trapping filter element 20 is substantially equal to the outer diameter of the plunger 32, and there is no large space above the valve chamber 14 where gas particles in the gas-liquid mixed fluid are enlarged. Gas particles do not accumulate in the upper part of the valve chamber 14. This also prevents the gas particles from being enlarged, prevents noise from being generated due to intermittent expansion and rupture of the gas particles immediately after passing through the orifice, and further improves silentness.
[0051]
FIG. 6 shows a second embodiment of the throttle valve device 10 according to the present invention. In FIG. 6, portions corresponding to those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and description thereof is omitted.
[0052]
In this embodiment, a dispersion ejection member 28 having a plurality of ejection holes 27 (see FIG. 7) is attached downstream of the throttle passage member 23 and downstream of the fluid flow noise reduction filter element 24.
[0053]
In the case of the dispersed ejection member 28, the fluid is ejected from each of the plurality of ejection holes 27, so that the flow path length of the fluid flowing through the fluid flow noise reduction filter element 24 is smaller than in the case of a single hole. As a result, the effectiveness of the fluid flow noise reduction filter element 24 increases, and the effect of canceling out shock waves due to interference between the jet flows of the adjacent jet holes 27 can be obtained. Thereby, the quietness is further improved.
[0054]
Further, in the second embodiment, the concave portion 19A for forming a minute gap between the inner peripheral surface of the contaminant trapping filter element 20 and the dispersion communicating hole 26 in the peripheral groove 19 of the outer peripheral portion of the valve body 17. Is provided.
[0055]
Since the concave portion 19A is provided in the circumferential groove 19 on the outer peripheral portion of the valve element 17, the dispersion communication hole 26 and the contaminant trapping filter element 20 communicate with a small gap, and pass through the dispersion communication hole 26. The flow velocity of the refrigerant thus cooled is not reduced by the presence of the filter element 20 for trapping contaminants having a lower maximum permissible flow rate than the dispersion communication hole 26.
[0056]
Therefore, even if a solid contaminant called contamination mixed in the refrigerant tries to adhere to the inner wall of the dispersion communication hole 26, the dispersion communication hole is not reduced by the contaminant trapping filter element 20. The flow of the refrigerant that has passed through 26 prevents the dispersion communication hole 26 from actually adhering to the inner wall of the dispersion communication hole 26, thereby preventing the dispersion communication hole 26 from being clogged.
[0057]
The above-described concave portion 19A of the peripheral groove 19 on the outer peripheral portion of the valve element 17 can be similarly provided in the throttle valve device 10 in the embodiment shown in FIG. 1, and conversely, as shown in FIG. The recess 19A of the circumferential groove 19 in the outer peripheral portion of the valve element 17 provided in the throttle valve device 10 according to the second embodiment is different from the throttle valve device 10 according to the embodiment shown in FIG. If there is no, it can be omitted.
[0058]
FIG. 8 shows an air conditioner in which the throttle valve device 10 according to the first or second embodiment is incorporated as a cycle dry valve.
[0059]
This air conditioner includes a compressor 50, an outdoor heat exchanger 51, a first indoor heat exchanger 52, a second indoor heat exchanger 53, and refrigerant passages 55 to 63 for loop-connecting these. An expansion valve 54 provided in a refrigerant passage (57-59) between the outdoor heat exchanger 51 and the first indoor heat exchanger 52, and a refrigerant loop-connected for switching between a cooling mode and a heating mode And a four-way valve 64 for reversing the flow direction of the refrigerant in the passages 55 to 63.
[0060]
A throttle valve device (cycle dry valve) 10 is connected to the refrigerant passage 60 between the first indoor heat exchanger 52 and the second indoor heat exchanger 53.
[0061]
In the cooling mode, the refrigerant circulates in the direction indicated by the solid line arrow in FIG. 8 and the cooling mode is obtained in a state where the throttle valve device 10 is open, and the throttle valve device 10 is closed. In this state, the throttle valve device 10 functions as a throttle valve, and a cooling cycle dry mode (dehumidification during cooling) is obtained.
[0062]
In the cooling cycle dry mode, the contaminant trapping filter element 20 exists upstream from the orifice passage 22 of the throttle valve device 10 as viewed from the refrigerant flow. As a result, contamination in the refrigerant flow is captured on the upstream side of the orifice passage 22, so that the orifice passage 22 is not contaminated by the contamination, and the throttle effect may fluctuate even during long-term use. Therefore, the performance of the cooling cycle dry mode does not decrease.
[0063]
Further, the throttle valve device 10 is provided in an indoor unit of an air conditioner, and the throttle valve device 10 is provided with filter elements 21 and 24 for reducing fluid flow noise, or provided with a distributed communication hole 26. Since there is no large space above the valve chamber 14 where gas particles in the gas-liquid mixed fluid are enlarged, an unpleasant rubbing sound of the refrigerant or intermittent expansion and rupture of gas particles immediately after passing through the orifice. No noise due to noise.
[0064]
In the heating mode, the refrigerant circulates in the direction opposite to the direction indicated by the arrow in FIG. 8, and the throttle valve device 10 normally maintains the valve open state.
[0065]
【The invention's effect】
As can be understood from the above description, according to the throttle valve device of the present invention, contaminants such as contamination in a fluid flow are captured by the contaminant capturing filter element, and a throttle effect is obtained by the throttle passage member. The rectifying action is obtained by the fluid flow noise reduction filter element, and furthermore, the passage for guiding the fluid from the contaminant trapping filter element to the throttle passage member is a small-diameter dispersed communication hole dispersed in a plurality, Since the individual dispersion communication holes do not have a large passage space, the gas particles do not stay in the dispersion communication holes, and the gas particles do not enlarge, so that noise is generated due to intermittent expansion and rupture of the gas particles immediately after passing through the orifice. Without happening. Quietness is improved.
[0066]
Further, according to the air conditioner of the present invention, the above-described throttle valve device is connected between the first indoor heat exchanger and the second indoor heat exchanger. The dehumidifying operation is performed when the valve device is in the valve closed state. The throttle valve device incorporated in this air conditioner has a small fluid rubbing noise, does not generate noise due to the enlargement of gas particles, is excellent in quietness, does not contaminate the throttle portion by contamination, and has a long length. Even during use for a period, the throttle effect does not fluctuate, and the performance of the cooling cycle dry mode does not decrease.
[Brief description of the drawings]
FIG. 1 is a sectional view of a throttle valve device according to a first embodiment of the present invention in a valve closed state.
FIG. 2 is a plan view showing one embodiment of a throttle passage member used in the throttle valve device according to the present invention.
FIG. 3 is a plan view showing another embodiment of the throttle passage member used in the throttle valve device according to the present invention.
FIG. 4 is a plan view showing another embodiment of the throttle passage member used in the throttle valve device according to the present invention.
FIG. 5 is a plan view showing another embodiment of the throttle passage member used in the throttle valve device according to the present invention.
FIG. 6 is a sectional view of a throttle valve device according to a second embodiment of the present invention in a valve closed state.
FIG. 7 is a perspective view showing one embodiment of a dispersion ejection member used in the throttle valve device according to the present invention.
FIG. 8 is a block diagram showing an air conditioner incorporating the throttle valve device according to the present invention.
FIG. 9 is a partially enlarged plan view showing an example of a configuration of a sintered multilayer wire mesh usable for a filter element for reducing fluid flow noise and a filter element for capturing contaminants used in the embodiment of the throttle valve device according to the present invention. It is.
FIG. 10 is a partially enlarged view showing another example of the configuration of the sintered multilayer wire mesh usable for the filter element for reducing fluid flow noise and the filter element for capturing contaminants used in the embodiment of the throttle valve device according to the present invention. It is a top view.
[Explanation of symbols]
10 Throttle valve device
11 Valve housing
12 First entrance / exit port
13 Second entrance / exit port
14 Valve room
15 Valve port
16 Valve seat
17 Valve
19A recess
20 Filter elements for capturing contaminants
21 Filter element for reducing fluid flow noise
23 Throttle passage member
24 Filter element for reducing fluid flow noise
26 Distributed communication holes
28 Dispersion ejection member
30 Electromagnetic solenoid device
32 plunger
36 Electromagnetic coil
50 compressor
51 Outdoor heat exchanger
52 First indoor heat exchanger
53 Second indoor heat exchanger
54 expansion valve
64 four-way valve

Claims (10)

第1の入出口ポート、第2の入出口ポート、前記第1の入出口ポートと常時連通している弁室、前記弁室と前記第2の入出口ポートとの間に設けられた弁ポートを画定する弁ハウジングと、前記弁室内に設けられて前記弁ポートを開閉する弁体とを有する絞り弁装置において、
前記弁体の外周囲に筒形状の混入物捕捉用フィルタ要素が装着され、前記弁体内に、一方において前記混入物捕捉用フィルタ要素と連通し、他方において前記弁ポートに対して開口連通する態様で、絞り作用を行う絞り通路部材と流体流動音低減用フィルタ要素とが配置され、
前記混入物捕捉用フィルタ要素と弁体内の絞り通路部材・流体流動音低減用フィルタ要素の配置部とを連通接続する通路が、複数個の小径の分散連通孔によって与えられていることを特徴とする絞り弁装置。
A first inlet / outlet port, a second inlet / outlet port, a valve chamber constantly communicating with the first inlet / outlet port, a valve port provided between the valve chamber and the second inlet / outlet port And a throttle valve device having a valve body provided in the valve chamber and opening and closing the valve port.
A mode in which a cylindrical contaminant trapping filter element is mounted around the outer periphery of the valve body, and one side of the valve body is in communication with the contaminant trapping filter element and the other side is in open communication with the valve port. A throttle passage member for performing a throttle action and a filter element for reducing fluid flow noise are arranged,
A passage connecting and communicating the contaminant trapping filter element and an arrangement portion of the throttle passage member and the fluid flow noise reducing filter element in the valve body is provided by a plurality of small-diameter dispersed communication holes. Throttle valve device.
前記流体流動音低減用フィルタ要素は流体流れで見て前記絞り通路部材の上流側と下流側の両側に配置され、前記分散連通孔は一方にて前記混入物捕捉用フィルタ要素と直接又は、微少な隙間を持って連通し、他方において前記絞り通路部材より上流側の前記流体流動音低減用フィルタ要素と直接連通していることを特徴とする請求項1記載の絞り弁装置。The filter element for reducing fluid flow noise is disposed on both the upstream side and the downstream side of the throttle passage member as viewed from the fluid flow, and the dispersed communication hole is directly or minutely connected to the filter element for capturing contaminants on one side. 2. The throttle valve device according to claim 1, wherein the throttle valve device communicates with a small gap and directly communicates with the fluid flow noise reduction filter element upstream of the throttle passage member. 前記混入物捕捉用フィルタ要素と前記流体流動音低減用フィルタ要素の個々の圧力損失および前記分散連通孔全体の圧力損失が、前記オリフィス部材の圧力損失より小さいことを特徴とする請求項1または2記載の絞り弁装置。The pressure loss of each of the contaminant trapping filter element and the filter element for reducing fluid flow noise and the pressure loss of the entire dispersion communication hole are smaller than the pressure loss of the orifice member. The throttle valve device as described in the above. 前記流体流動音低減用フィルタ要素は流体流れで見て前記絞り通路部材の上流側と下流側の両側に配置されており、これら各流体流動音低減用フィルタ要素や、前記混入物捕捉用フィルタ要素は、焼結多層金網、多孔性焼結金属、発泡金属あるいは金属多孔体、プラスチック焼結多孔質体のいずれかによって構成されていることを特徴とする請求項1〜3の何れか1項記載の絞り弁装置。The fluid flow noise reduction filter elements are disposed on both the upstream and downstream sides of the throttle passage member when viewed in fluid flow, and each of these fluid flow noise reduction filter elements and the contaminant trapping filter element 4. The method according to claim 1, wherein the metal is made of any one of a sintered multilayer wire mesh, a porous sintered metal, a foamed metal or a porous metal body, and a plastic sintered porous body. Throttle valve device. 前記流体流動音低減用フィルタ要素および前記混入物捕捉用フィルタ要素が、公称濾過精度50〜600μmのフィルタ材により構成されていることを特徴とする請求項1〜4の何れか1項記載の絞り弁装置。The diaphragm according to any one of claims 1 to 4, wherein the filter element for reducing fluid flow noise and the filter element for capturing contaminants are formed of a filter material having a nominal filtration accuracy of 50 to 600 µm. Valve device. 前記絞り通路部材より下流側の前記流体流動音低減用フィルタ要素よりもさらに下流側に、複数個の噴出孔を有する分散噴出部材を有していることを特徴とする請求項1〜5の何れか1項記載の絞り弁装置。6. A dispersion ejection member having a plurality of ejection holes, further downstream of the fluid flow noise reduction filter element downstream of the throttle passage member. The throttle valve device according to claim 1. 前記弁体を開閉駆動する電磁アクチェータを有し、前記弁体は、前記弁ポートとは反対側にて前記弁室と連続しているプランジャ室に軸線方向移動可能に嵌合している前記電磁アクチェータのプランジャと連結され、前記混入物捕捉用フィルタ要素は、前記弁体と前記プランジャとの連結部に装着され、外径が前記プランジャの外径にほぼ等しいことを特徴とする請求項1〜6の何れか1項記載の絞り弁装置。An electromagnetic actuator for driving the valve element to open and close, wherein the valve element is fitted on a plunger chamber connected to the valve chamber at a side opposite to the valve port so as to be movable in the axial direction. The plunger of an actuator, wherein the filter element for capturing contaminants is mounted on a connecting portion between the valve body and the plunger, and has an outer diameter substantially equal to the outer diameter of the plunger. 7. The throttle valve device according to claim 6, wherein: 前記絞り通路部材は、互いに並列に設けられた複数個のオリフィスを有していることを特徴とする請求項1〜7の何れか1項記載の絞り弁装置。The throttle valve device according to any one of claims 1 to 7, wherein the throttle passage member has a plurality of orifices provided in parallel with each other. 圧縮機と、室外熱交換器と、第1の室内熱交換器と、第2の室内熱交換器と、これらをループ接続する冷媒通路と、前記室外熱交換器と前記第1の室内熱交換器との間の冷媒通路に設けられた膨張弁とを有し、前記第1の室内熱交換器と前記第2の室内熱交換器との間に、請求項1〜8の何れか1項に記載の絞り弁装置が接続されていることを特徴とする空気調和機。A compressor, an outdoor heat exchanger, a first indoor heat exchanger, a second indoor heat exchanger, a refrigerant passage connecting them in a loop, the outdoor heat exchanger and the first indoor heat exchange 9. An expansion valve provided in a refrigerant passage between the first indoor heat exchanger and the second indoor heat exchanger. An air conditioner characterized by being connected to the throttle valve device described in (1). 冷房モード時における冷媒流れで見て前記混入物捕捉用フィルタ要素が前記絞り通路部材より上流側に位置するように前記絞り弁装置が接続されていることを特徴とする請求項9記載の空気調和機。10. The air conditioner according to claim 9, wherein the throttle valve device is connected such that the contaminant trapping filter element is located upstream of the throttle passage member when viewed from the refrigerant flow in the cooling mode. Machine.
JP2002243948A 2001-09-07 2002-08-23 Throttle valve device and air conditioner Expired - Fee Related JP4064762B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002243948A JP4064762B2 (en) 2001-09-07 2002-08-23 Throttle valve device and air conditioner
CN031202020A CN1453532B (en) 2002-04-25 2003-03-07 Throttle valve and air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001272626 2001-09-07
JP2002123898 2002-04-25
JP2002243948A JP4064762B2 (en) 2001-09-07 2002-08-23 Throttle valve device and air conditioner

Publications (3)

Publication Number Publication Date
JP2004003793A true JP2004003793A (en) 2004-01-08
JP2004003793A5 JP2004003793A5 (en) 2005-07-07
JP4064762B2 JP4064762B2 (en) 2008-03-19

Family

ID=30449027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002243948A Expired - Fee Related JP4064762B2 (en) 2001-09-07 2002-08-23 Throttle valve device and air conditioner

Country Status (1)

Country Link
JP (1) JP4064762B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169920A (en) * 2002-11-19 2004-06-17 Robert Bosch Gmbh Solenoid valve
WO2007028499A1 (en) * 2005-09-06 2007-03-15 Behr Gmbh & Co. Kg Expansion valve
JP2011133139A (en) * 2009-12-22 2011-07-07 Fuji Koki Corp Expansion valve
JP2012177470A (en) * 2011-01-31 2012-09-13 Saginomiya Seisakusho Inc Throttle valve device
CN115432175A (en) * 2022-11-08 2022-12-06 中国空气动力研究与发展中心低速空气动力研究所 Jet flow rectification structure, jet flow control valve, jet flow control system and flight equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152176U (en) * 1988-04-12 1989-10-20
JPH058160U (en) * 1991-07-18 1993-02-05 カヤバ工業株式会社 Switching valve
JPH0571670A (en) * 1991-09-12 1993-03-23 Nippondenso Co Ltd Expansion valve
JPH07146032A (en) * 1993-11-26 1995-06-06 Matsushita Seiko Co Ltd Expansion valve
JPH11325655A (en) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd Silencer and air conditioner
JP3047702B2 (en) * 1993-09-24 2000-06-05 株式会社日立製作所 Air conditioner
JP2000205433A (en) * 1998-11-09 2000-07-25 Fuji Koki Corp Solenoid valve
JP2000346495A (en) * 1999-06-01 2000-12-15 Mitsubishi Electric Corp Throttle device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152176U (en) * 1988-04-12 1989-10-20
JPH058160U (en) * 1991-07-18 1993-02-05 カヤバ工業株式会社 Switching valve
JPH0571670A (en) * 1991-09-12 1993-03-23 Nippondenso Co Ltd Expansion valve
JP3047702B2 (en) * 1993-09-24 2000-06-05 株式会社日立製作所 Air conditioner
JPH07146032A (en) * 1993-11-26 1995-06-06 Matsushita Seiko Co Ltd Expansion valve
JPH11325655A (en) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd Silencer and air conditioner
JP2000205433A (en) * 1998-11-09 2000-07-25 Fuji Koki Corp Solenoid valve
JP2000346495A (en) * 1999-06-01 2000-12-15 Mitsubishi Electric Corp Throttle device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169920A (en) * 2002-11-19 2004-06-17 Robert Bosch Gmbh Solenoid valve
JP4603789B2 (en) * 2002-11-19 2010-12-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Solenoid valve
WO2007028499A1 (en) * 2005-09-06 2007-03-15 Behr Gmbh & Co. Kg Expansion valve
JP2011133139A (en) * 2009-12-22 2011-07-07 Fuji Koki Corp Expansion valve
JP2012177470A (en) * 2011-01-31 2012-09-13 Saginomiya Seisakusho Inc Throttle valve device
CN115432175A (en) * 2022-11-08 2022-12-06 中国空气动力研究与发展中心低速空气动力研究所 Jet flow rectification structure, jet flow control valve, jet flow control system and flight equipment
CN115432175B (en) * 2022-11-08 2023-03-28 中国空气动力研究与发展中心低速空气动力研究所 Jet flow rectification structure, jet flow control valve, jet flow control system and flight equipment

Also Published As

Publication number Publication date
JP4064762B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP5038105B2 (en) Valve device and air conditioner having the same
US7290567B2 (en) Refrigerating cycle device, air conditioner, choke, and flow rate controller
JP5755711B2 (en) Throttle valve device
JP4071451B2 (en) Throttle device and air conditioner
JP5690705B2 (en) Dehumidifying valve
JP4465128B2 (en) Expansion valve and air conditioner
JP5620833B2 (en) 3-way solenoid valve
JP3490640B2 (en) Aperture device
JP2004003793A (en) Throttle valve device and air conditioner
JP4077205B2 (en) Bidirectional solenoid valve and air conditioner
CN1453532B (en) Throttle valve and air conditioner
WO2006090678A1 (en) Restriction device, flow rate control valve, and air conditioner having the flow rate control valve assembled therein
JP3872824B2 (en) Air conditioner
JP4077340B2 (en) Throttle valve device and air conditioner
JP2005331153A (en) Throttle valve device and air conditioner
JP5570314B2 (en) 3-way solenoid valve
JP2005331154A (en) Throttle valve device and air conditioner
JP3951983B2 (en) Refrigerant control valve
JP4152209B2 (en) Solenoid valve for air conditioner
JP4197470B2 (en) solenoid valve
JP4306366B2 (en) Refrigerant control valve
JP4270952B2 (en) Flow control valve
JP2020012562A (en) Microchannel heat exchanger and refrigeration cycle device
JPH04262181A (en) Electromagnetic valve
AU2004202567A1 (en) Refrigerating cycle apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4064762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees