JP2011133139A - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
JP2011133139A
JP2011133139A JP2009291154A JP2009291154A JP2011133139A JP 2011133139 A JP2011133139 A JP 2011133139A JP 2009291154 A JP2009291154 A JP 2009291154A JP 2009291154 A JP2009291154 A JP 2009291154A JP 2011133139 A JP2011133139 A JP 2011133139A
Authority
JP
Japan
Prior art keywords
valve
inlet port
hole
expansion
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009291154A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayashi
宏 林
Yasushi Inoue
靖 井上
Daisuke Watari
大介 渡利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2009291154A priority Critical patent/JP2011133139A/en
Priority to KR1020100067151A priority patent/KR20110073215A/en
Priority to CN2010105073392A priority patent/CN102102923A/en
Publication of JP2011133139A publication Critical patent/JP2011133139A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/10Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with inflatable member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3267Cooling devices information from a variable is obtained related to the operation of an expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Temperature-Responsive Valves (AREA)
  • Details Of Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce noise of an expansion valve reducing a pressure of a refrigerant of a refrigerating cycle and controlling a refrigerant flow rate. <P>SOLUTION: A valve body 30 of this expansion valve is provided with an inlet port 321 to which the refrigerant of high pressure is distributed, and an outlet port 331, and a valve chest 25 is provided with a valve member 32b for controlling an opening of a valve hole 32a. The inlet port 321 is provided with a straightening member 100 functioned as a bubble atomizing member. The bubbles included in the high-pressure refrigerant are atomized and straightened, and pass through the valve body 30, thus the noise due to rupture of the bubbles can be reduced. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、冷凍サイクルに用いられる感温機構内蔵型の膨張弁に関する。   The present invention relates to a temperature sensing mechanism built-in type expansion valve used in a refrigeration cycle.

従来、自動車に搭載される空調装置等に用いる冷凍サイクルについては、設置スペースや配線を省略するために、冷媒の通過量を温度に応じて調整する感温機構内蔵型の温度膨張弁が使用されている。   Conventionally, for a refrigeration cycle used in an air conditioner or the like mounted in an automobile, a temperature expansion valve with a built-in temperature sensing mechanism that adjusts the passage of refrigerant according to the temperature is used to omit installation space and wiring. ing.

図6は、従来の感温機構内蔵型の膨張弁の一例を示す断面図であって、角柱形状を有する弁本体30には、コンデンサ5で凝縮し、レシーバ6を通過した高圧の液冷媒の通路となる第1の通路32と、エバポレ−タ8の冷媒出口からコンプレッサ4の冷媒入口へ供給される気相冷媒が流れる第2の通路34とが上下に相互に離間して形成されている。なお、11は配管である。   FIG. 6 is a cross-sectional view showing an example of a conventional temperature sensing mechanism built-in type expansion valve. In the valve body 30 having a prismatic shape, the high-pressure liquid refrigerant condensed by the condenser 5 and passed through the receiver 6 is shown. A first passage 32 serving as a passage and a second passage 34 through which the gas phase refrigerant supplied from the refrigerant outlet of the evaporator 8 to the refrigerant inlet of the compressor 4 flows are formed apart from each other. . In addition, 11 is piping.

入口通路32には、液冷媒を導入する入口ポート321と、この入口ポート321に連通する弁室35と、この弁室35に設けられた弁孔32aと、この弁孔32aで膨張した冷媒を外部に向けて導出する出口ポート331とが設けられている。弁孔32aの入口には弁座が形成されていて、この弁座に対向して弁部材32bが配置されており、弁部材32bは圧縮コイルばね32cにより弁座に向かって付勢されている。弁室35の下端は弁本体30の底面に開口しており、弁本体30に螺着されたプラグ37によって密閉されている。   The inlet passage 32 has an inlet port 321 for introducing liquid refrigerant, a valve chamber 35 communicating with the inlet port 321, a valve hole 32 a provided in the valve chamber 35, and refrigerant expanded in the valve hole 32 a. An outlet port 331 leading out is provided. A valve seat is formed at the inlet of the valve hole 32a, and a valve member 32b is disposed opposite to the valve seat. The valve member 32b is urged toward the valve seat by a compression coil spring 32c. . The lower end of the valve chamber 35 opens to the bottom surface of the valve body 30 and is sealed by a plug 37 screwed to the valve body 30.

弁本体30の上端には、弁部材32bを駆動するための弁部材駆動装置36が装着されている。弁部材駆動装置36は、ダイヤフラム36aにより内部空間を上下2つの圧力作動室36b、36cに仕切られた圧力作動ハウジング36dを有している。圧力作動ハウジング36dは、弁孔32aの中心線に対して同心的に形成された均圧孔36eを介して第2の通路34に連通している。   A valve member driving device 36 for driving the valve member 32 b is attached to the upper end of the valve body 30. The valve member driving device 36 has a pressure operating housing 36d in which the inner space is partitioned into two upper and lower pressure operating chambers 36b and 36c by a diaphragm 36a. The pressure actuating housing 36d communicates with the second passage 34 via a pressure equalizing hole 36e formed concentrically with the center line of the valve hole 32a.

弁本体30内には、ダイヤフラム36aの下面から弁孔32aまで延びた弁部材駆動棒36fが配置されている。弁部材駆動棒36fは、弁本体30における第1の通路32と第2の通路34の間の隔壁に設けた摺動案内孔により上下方向に摺動自在に案内されていて、下端を弁部材32bに当接させている。なお、上記隔壁には第1の通路32と第2の通路34の間で冷媒が漏れるのを防止する密封部材36gが装着されている。   A valve member drive rod 36f extending from the lower surface of the diaphragm 36a to the valve hole 32a is disposed in the valve body 30. The valve member drive rod 36f is guided by a sliding guide hole provided in a partition wall between the first passage 32 and the second passage 34 in the valve main body 30 so as to be slidable in the vertical direction. 32b. Note that a sealing member 36g for preventing the refrigerant from leaking between the first passage 32 and the second passage 34 is attached to the partition wall.

圧力作動ハウジング36dの上方の圧力作動室36b中には公知のダイヤフラム駆動流体が充填されていて、このダイヤフラム駆動流体には、第2の通路34や均圧孔36e内に位置する弁部材駆動棒36f及びダイヤフラム36aを介して、第2の通路34を流れる気相冷媒の熱が伝達される。上方の圧力作動室36b中のダイヤフラム駆動流体は上記伝達された熱に対応してガス化し、そのガス圧力がダイヤフラム36aの上面に作用する。ダイヤフラム36aは、その上面に作用するダイヤフラム駆動流体の圧力とダイヤフラム36aの下面に負荷される圧力との差に応じて上下に変位する。ダイヤフラム36aの中心部の上下への変位は、受け部材36h及び弁部材駆動棒36fを介して弁部材32bに伝達され、弁部材32bを弁孔32aの弁座に対して接近または離間させる。この結果、エバポレータ8に向かう冷媒流量が制御される。この種の膨張弁は、例えば下記の特許文献1に開示されている。   The pressure working chamber 36b above the pressure working housing 36d is filled with a known diaphragm driving fluid, and the diaphragm driving fluid contains a valve member driving rod located in the second passage 34 or the pressure equalizing hole 36e. The heat of the gas-phase refrigerant flowing through the second passage 34 is transmitted through the 36f and the diaphragm 36a. The diaphragm driving fluid in the upper pressure working chamber 36b is gasified in response to the transmitted heat, and the gas pressure acts on the upper surface of the diaphragm 36a. The diaphragm 36a is displaced up and down in accordance with the difference between the pressure of the diaphragm driving fluid acting on the upper surface of the diaphragm 36a and the pressure applied to the lower surface of the diaphragm 36a. The vertical displacement of the central portion of the diaphragm 36a is transmitted to the valve member 32b via the receiving member 36h and the valve member drive rod 36f, and causes the valve member 32b to approach or separate from the valve seat of the valve hole 32a. As a result, the refrigerant flow rate toward the evaporator 8 is controlled. This type of expansion valve is disclosed, for example, in Patent Document 1 below.

特開2004−138292号公報JP 2004-138292 A

この種の膨張弁にあっては、コンプレッサ4の起動時にエバポレータ8からコンプレッサ4側に冷媒ガスを戻す第2の通路34内の冷媒ガスがコンプレッサ8に吸引されて急激な圧力低下が発生し、第2の通路34と弁部材駆動装置36の圧力作動室36bとの圧力差が大きくなり、弁部材32bが弁孔32aを急速に全開する。これにより、第1の通路32を通って弁室35に導入される高圧冷媒中に多数の気泡が発生し、この気泡が破裂することにより耳障りな騒音が発生する。
本発明の目的は、上述した不具合を解消する膨張弁を提供することである。
In this type of expansion valve, the refrigerant gas in the second passage 34 that returns the refrigerant gas from the evaporator 8 to the compressor 4 side when the compressor 4 is started is sucked into the compressor 8 and a sudden pressure drop occurs. The pressure difference between the second passage 34 and the pressure working chamber 36b of the valve member driving device 36 becomes large, and the valve member 32b rapidly opens the valve hole 32a. As a result, a large number of bubbles are generated in the high-pressure refrigerant introduced into the valve chamber 35 through the first passage 32, and an unpleasant noise is generated when the bubbles burst.
The objective of this invention is providing the expansion valve which eliminates the malfunction mentioned above.

上記目的を達成するために、本発明の膨張弁は、コンデンサで凝縮した高圧の冷媒を導入する入口ポート、該入口ポートに連通する弁室、該弁室に設けられた弁孔、該弁孔で膨張した冷媒を外部に向けて導出する出口ポート及びエバポレータからコンプレッサへ戻る冷媒が通過する通路を有する弁本体と、前記弁孔を開閉する弁部材と、該弁部材を駆動して前記弁孔の開度を制御する弁部材駆動装置とを備えた膨張弁であって、前記入口ポート又は前記出口ポート若しくは前記入口ポート及び前記出口ポートに気泡細分化部材を設けたことを特徴とする。   In order to achieve the above object, an expansion valve according to the present invention includes an inlet port for introducing a high-pressure refrigerant condensed by a condenser, a valve chamber communicating with the inlet port, a valve hole provided in the valve chamber, and the valve hole. An outlet port for leading the refrigerant expanded in the direction toward the outside, a valve body having a passage through which the refrigerant returning from the evaporator to the compressor passes, a valve member for opening and closing the valve hole, and driving the valve member to the valve hole An expansion valve provided with a valve member driving device for controlling the opening degree of the air valve, wherein a bubble subdividing member is provided in the inlet port or the outlet port or the inlet port and the outlet port.

そして、気泡細分化部材は、例えば多孔質部材や多数の貫通孔を有する整流部材で構成することができる。   And the bubble subdivision member can be comprised with the rectification | straightening member which has a porous member and many through-holes, for example.

多孔質部材としては、例えば、柱状の骨格が三次元に連なることにより形成された連続気孔を持つ金属体を用いることができる。その場合、圧損の増大を抑制するために、多孔質部材の気孔率が90%以上であることが好ましい。また、多孔質部材を用いる場合には、異物による目詰まりと圧損の増大を防ぐために、多孔質部材の上流側にストレーナを設けることが好ましい。そのようなストレーナとしては、例えば、網状のシートを円錐状に形成するとともにその開口端側にフランジを形成したものとすることができ、この場合、入口ポートに圧入されるリング状の押さえ部材でフランジを気泡細分化部材との間に挟み込むことで、入口ポートに作業性良く固定することができる。   As the porous member, for example, a metal body having continuous pores formed by three-dimensional columnar skeletons can be used. In that case, in order to suppress an increase in pressure loss, the porosity of the porous member is preferably 90% or more. Moreover, when using a porous member, in order to prevent clogging by a foreign material and an increase in pressure loss, it is preferable to provide a strainer on the upstream side of the porous member. As such a strainer, for example, a net-like sheet can be formed in a conical shape and a flange is formed on the opening end side thereof. In this case, a ring-shaped pressing member press-fitted into the inlet port can be used. By sandwiching the flange with the bubble subdividing member, it can be fixed to the inlet port with good workability.

なお、騒音を効果的に低減するために、入口ポートに設けられる気泡細分化部材の孔の径を0.4mm乃至1.0mmにするのが好ましく、圧損の増大を抑制するために、出口ポートに設けられる気泡細分化部材の孔の径を0.4mm乃至2.0mmにするのが好ましい。   In order to effectively reduce noise, it is preferable that the diameter of the hole of the bubble subdividing member provided in the inlet port is 0.4 mm to 1.0 mm, and in order to suppress an increase in pressure loss, the outlet port It is preferable that the diameter of the hole of the cell subdivision member provided in is set to 0.4 mm to 2.0 mm.

本発明の膨張弁は、入口ポート又は出口ポート若しくは入口ポート及び出口ポートに気泡細分化部材を設けてあるので、弁本体内を通過する高圧の冷媒中の気泡が細分化され、気泡の破裂に起因する騒音の発生を低減することができる。   In the expansion valve of the present invention, the bubble subdividing member is provided in the inlet port or the outlet port or the inlet port and the outlet port. It is possible to reduce the occurrence of noise caused by the noise.

本発明の一実施例を示す図であり、(a)は正面断面図、(b)は右側面図、(c)は左側面図。It is a figure which shows one Example of this invention, (a) is front sectional drawing, (b) is a right view, (c) is a left view. 図1の膨張弁の整流部材の拡大断面図。The expanded sectional view of the rectification | straightening member of the expansion valve of FIG. 本発明の他の実施例を示す図であり、(a)は正面断面図、(b)は右側面図、(c)は左側面図。It is a figure which shows the other Example of this invention, (a) is front sectional drawing, (b) is a right view, (c) is a left view. 本発明の更に他の実施例を示す正面断面図。The front sectional view showing other examples of the present invention. 図4の要部の拡大図。The enlarged view of the principal part of FIG. 従来の膨張弁の概略構成の説明図。Explanatory drawing of schematic structure of the conventional expansion valve.

図1において、弁本体30には、冷媒の通路と平行に延びる1対の貫通孔50が設けられており、この貫通孔50は、膨張弁を他の機器にとりつけるために利用される。その他の構造で、先に説明した従来のものと同一の部位には同一の符号を付して再度の説明は省略する。   In FIG. 1, the valve body 30 is provided with a pair of through holes 50 extending in parallel with the refrigerant passage, and the through holes 50 are used to attach the expansion valve to another device. In other structures, the same parts as those of the conventional one described above are denoted by the same reference numerals, and the description thereof is omitted.

本発明の膨張弁にあっては、高圧の冷媒が導入される入口ポート321の奥の弁室35に通ずる開口部に気泡細分化部材として機能する整流部材100が挿入装着されている。この整流部材100は、例えばプラスチックで形成され、図2(a)に示すように、大径部110と小径部120とを有する段付の円盤状に形成されている。整流部材100には、軸方向に延びる多数の貫通孔130が設けられている。図に示す実施例にあっては、中心部に設けられる1個の貫通孔130及びこれと同心の円周上に設けられる8個の貫通孔130の合計9個の貫通孔130を有する。貫通孔130の孔径寸法Dは、0.4mmから1.0mmの間に設定される。
この整流部材100を備えることにより、特にコンプレッサの起動時に冷媒中に多く発生する気泡が細分化されるとともに、整流されて弁室35内に導入されるので、気泡の破裂に起因する騒音の発生を低減することができる。
In the expansion valve of the present invention, the rectifying member 100 functioning as a bubble subdividing member is inserted and mounted in an opening communicating with the valve chamber 35 in the back of the inlet port 321 into which the high-pressure refrigerant is introduced. The rectifying member 100 is made of plastic, for example, and is formed in a stepped disk shape having a large diameter portion 110 and a small diameter portion 120 as shown in FIG. The flow regulating member 100 is provided with a number of through holes 130 extending in the axial direction. In the embodiment shown in the figure, there are a total of nine through-holes 130, one through-hole 130 provided in the center and eight through-holes 130 provided on the circumference concentric with this. Hole diameter D 1 of the through hole 130 is set between 0.4mm of 1.0 mm.
By providing the rectifying member 100, bubbles generated in the refrigerant in particular at the time of starting the compressor are subdivided and rectified and introduced into the valve chamber 35, so that noise is generated due to bursting of the bubbles. Can be reduced.

また、本実施例では、弁孔32aを通過してエバポレータ側に向かう冷媒の出口ポート331側にも整流部材200が装着されている。
この整流部材200は、例えばプラスチックで形成され、図2(b)に示すように、大径部210と小径部220を有する段付の円盤状に形成されている。図に示す実施例にあっては、中心部に設けられる1個の貫通孔230及びこれと同心の円周上に設けられる8個の貫通孔230の合計9個の貫通孔230を有する。貫通孔230の孔径寸法Dは、0.4mmから2.0mmの間に設定される。なお、圧力損失の増大を抑制するために、貫通孔230の径は整流部材100の貫通孔130の径よりも大きくすることが好ましい。
この整流部材200を備えることにより、冷媒が弁孔32aを通過することで大径化した気泡が細分化されるとともに整流されてエバポレータ側へ向かうので、気泡の破裂に起因する騒音の低減を図ることができる。
Further, in this embodiment, the rectifying member 200 is also mounted on the refrigerant outlet port 331 side that passes through the valve hole 32a and goes to the evaporator side.
The rectifying member 200 is made of plastic, for example, and is formed in a stepped disk shape having a large diameter portion 210 and a small diameter portion 220 as shown in FIG. The embodiment shown in the figure has a total of nine through-holes 230, one through-hole 230 provided at the center and eight through-holes 230 provided on the circumference concentric with this. Hole diameter D 2 of the through hole 230 is set between 0.4mm of 2.0 mm. In order to suppress an increase in pressure loss, the diameter of the through hole 230 is preferably larger than the diameter of the through hole 130 of the rectifying member 100.
By providing the rectifying member 200, the bubbles whose diameter has been increased as the refrigerant passes through the valve hole 32a are subdivided and rectified toward the evaporator, so that noise caused by the burst of the bubbles is reduced. be able to.

本発明の膨張弁は、気泡細分化部材として機能する整流部材を入口ポート321側又は出口ポート331側に選択的に設けるか、又は両ポート321、331に設けることにより効果的に騒音の低減を図ることができる。   The expansion valve of the present invention can effectively reduce noise by selectively providing a rectifying member functioning as a bubble subdividing member on the inlet port 321 side or the outlet port 331 side, or on both ports 321 and 331. Can be planned.

図3に示す実施例にあっては、入口ポート321に装着される気泡細分化部材400が円盤状の多孔質金属体で構成されている。多孔質金属体は、ニッケル等の粉末状の金属を焼結して製造され、三角柱状の骨格が三次元に連なることにより形成された連続気孔を持っており、高い気孔率(90%以上)を有している。このような多孔質金属体としては、例えば住友電気工業株式会社製のセルメット(登録商標)を用いることができる。なお、気泡細部化部材400は気孔径が0.4mmから1.0mmの間のものを使用するのが好ましく、本実施例では、気孔径0.9mm、セル数27〜33個/インチ、比表面積1250m2/m3のものを使用している。この気泡細分化部材400を備えることにより、特にコンプレッサの起動時に冷媒中に多く発生する気泡が細分化されて弁室35に送り込まれるので、気泡の破裂に起因する騒音の低減を図ることができる。   In the embodiment shown in FIG. 3, the bubble subdividing member 400 attached to the inlet port 321 is made of a disk-shaped porous metal body. The porous metal body is produced by sintering powdered metal such as nickel, and has continuous pores formed by three-dimensionally connecting triangular prismatic skeletons, and has a high porosity (90% or more). have. As such a porous metal body, for example, Celmet (registered trademark) manufactured by Sumitomo Electric Industries, Ltd. can be used. Note that it is preferable to use a bubble detailing member 400 having a pore diameter between 0.4 mm and 1.0 mm. In this embodiment, the pore diameter is 0.9 mm, the number of cells is 27 to 33 / inch, the ratio is A surface area of 1250 m <2> / m <3> is used. By providing the bubble subdividing member 400, bubbles generated in the refrigerant in particular at the time of starting the compressor are subdivided and sent to the valve chamber 35, so that noise caused by bursting of the bubbles can be reduced. .

また、本実施例では、出口ポート331側にも気泡細部化部材400と同様の構成を有する気泡細分化部材500が装着されている。この気泡細分化部材500は、気孔径が0.4mmから2.0mmの間の多孔質金属材料で構成される。なお、圧力損失の増大を抑制するために、気泡細分化部材500の気孔径は気泡細部化部材400の気孔径よりも大きくすることが好ましい。
この気泡細分化部材500を装備することにより、冷媒が弁孔32aを通過することで大径化した気泡が細分化されてエバポレータ側へ向かうので、気泡の破裂に起因する騒音の低減を図ることができる。
In the present embodiment, the bubble subdividing member 500 having the same configuration as the bubble detailing member 400 is also attached to the outlet port 331 side. The cell segmentation member 500 is made of a porous metal material having a pore diameter of 0.4 mm to 2.0 mm. In order to suppress an increase in pressure loss, it is preferable that the pore size of the bubble subdividing member 500 is larger than the pore size of the bubble detailing member 400.
By installing the bubble subdividing member 500, the bubble whose diameter is increased by the refrigerant passing through the valve hole 32a is subdivided toward the evaporator side, so that noise caused by the burst of the bubble is reduced. Can do.

図4に示す実施例にあっては、入口ポート321側に装着されている多孔質金属体から成る気泡細分化部材630の上流側にストレーナ600が設けられている。このストレーナ600は、プラスチックや金属等からなる網状のシートを成形してなるもので、図5に示すように、円錐状の本体部610と、その開口端側に形成されたフランジ612とを備えており、入口ポート321に圧入されるリング状の押さえ部材620によりフランジ612を気泡細分化部材630との間に挟み込むことにより固定されている。これにより、冷媒中の異物による多孔質金属体630の目詰まり及び圧損の増大を抑制することができる。   In the embodiment shown in FIG. 4, a strainer 600 is provided on the upstream side of the bubble subdividing member 630 made of a porous metal body mounted on the inlet port 321 side. The strainer 600 is formed by molding a net-like sheet made of plastic, metal, or the like, and includes a conical main body 610 and a flange 612 formed on the opening end side thereof as shown in FIG. The flange 612 is fixed between the bubble subdividing member 630 by a ring-shaped pressing member 620 that is press-fitted into the inlet port 321. Thereby, the clogging of the porous metal body 630 and the increase in pressure loss by the foreign material in a refrigerant | coolant can be suppressed.

以上、本発明の具体的な実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で上記実施の形態に種々の改変を施すことができる。   The specific embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications are made to the above-described embodiments without departing from the gist of the present invention. be able to.

30 弁本体
32 第1の通路
32a 弁孔
32b 弁部材
321 入口ポート
331 出口ポート
34 第2の通路
35 弁室
36 弁部材駆動装置
100 整流部材
130 貫通孔
200 整流部材
230 貫通孔
400 多孔質金属体
500 多孔質金属体
600 ストレーナ
620 固定部材
630 多孔質金属体
DESCRIPTION OF SYMBOLS 30 Valve main body 32 1st channel | path 32a Valve hole 32b Valve member 321 Inlet port 331 Outlet port 34 2nd channel | path 35 Valve chamber 36 Valve member drive device 100 Rectifier member 130 Through-hole 200 Rectifier member 230 Through-hole 400 Porous metal body 500 Porous Metal Body 600 Strainer 620 Fixing Member 630 Porous Metal Body

Claims (11)

コンデンサで凝縮した高圧の冷媒を導入する入口ポート、該入口ポートに連通する弁室、該弁室に設けられた弁孔、該弁孔で膨張した冷媒を外部に向けて導出する出口ポート及びエバポレータからコンプレッサへ戻る冷媒が通過する通路を有する弁本体と、前記弁孔を開閉する弁部材と、前記弁部材を駆動して前記弁孔の開度を制御する弁部材駆動装置とを備えた膨張弁であって、前記入口ポートに気泡細分化部材を設けたことを特徴とする膨張弁。   Inlet port for introducing a high-pressure refrigerant condensed by a condenser, a valve chamber communicating with the inlet port, a valve hole provided in the valve chamber, an outlet port for deriving the refrigerant expanded in the valve hole to the outside, and an evaporator Expansion comprising: a valve body having a passage through which refrigerant returns from the compressor to the compressor; a valve member that opens and closes the valve hole; and a valve member driving device that drives the valve member to control the opening degree of the valve hole An expansion valve, characterized in that a bubble fragmentation member is provided at the inlet port. コンデンサで凝縮した高圧の冷媒を導入する入口ポート、該入口ポートに連通する弁室、該弁室に設けられた弁孔、該弁孔で膨張した冷媒を外部に向けて導出する出口ポート及びエバポレータからコンプレッサへ戻る冷媒が通過する通路を有する弁本体と、前記弁孔を開閉する弁部材と、前記弁部材を駆動して前記弁孔の開度を制御する弁部材駆動装置とを備える膨張弁であって、前記出口ポートに気泡細分化部材を設けたことを特徴とする膨張弁。   Inlet port for introducing a high-pressure refrigerant condensed by a condenser, a valve chamber communicating with the inlet port, a valve hole provided in the valve chamber, an outlet port for deriving the refrigerant expanded in the valve hole to the outside, and an evaporator An expansion valve comprising a valve body having a passage through which refrigerant returns from the compressor to the compressor, a valve member that opens and closes the valve hole, and a valve member driving device that drives the valve member to control the opening degree of the valve hole An expansion valve characterized in that a bubble fragmentation member is provided at the outlet port. コンデンサで凝縮した高圧の冷媒を導入する入口ポート、該入口ポートに連通する弁室、該弁室に設けられた弁孔、該弁孔で膨張した冷媒を外部に向けて導出する出口ポート及びエバポレータからコンプレッサへ戻る冷媒が通過する通路を有する弁本体と、前記弁孔を開閉する弁部材と、前記弁部材を駆動して前記弁孔の開度を制御する弁部材駆動装置とを備えた膨張弁であって、前記入口ポート及び前記出口ポートに気泡細分化部材を設けたことを特徴とする膨張弁。   Inlet port for introducing a high-pressure refrigerant condensed by a condenser, a valve chamber communicating with the inlet port, a valve hole provided in the valve chamber, an outlet port for deriving the refrigerant expanded in the valve hole to the outside, and an evaporator Expansion comprising: a valve body having a passage through which refrigerant returns from the compressor to the compressor; a valve member that opens and closes the valve hole; and a valve member driving device that drives the valve member to control the opening degree of the valve hole An expansion valve, wherein a bubble subdividing member is provided at the inlet port and the outlet port. 前記気泡細分化部材が多孔質部材であることを特徴とする請求項1乃至3のいずれかに記載の膨張弁。   The expansion valve according to any one of claims 1 to 3, wherein the bubble subdividing member is a porous member. 前記多孔質部材は柱状の骨格が三次元に連なることにより形成された連続気孔を持つ金属体であることを特徴とする請求項4記載の膨張弁。   5. The expansion valve according to claim 4, wherein the porous member is a metal body having continuous pores formed by three-dimensional columnar skeletons. 前記気泡細分化部材の気孔率が90%以上であることを特徴とする請求項5記載の膨張弁。   6. The expansion valve according to claim 5, wherein the porosity of the cell subdividing member is 90% or more. 前記入口ポートに設けられる気泡細分化部材の上流側にストレーナを設けたことを特徴とする請求項4乃至6のいずれかに記載の膨張弁。   The expansion valve according to any one of claims 4 to 6, wherein a strainer is provided on the upstream side of the bubble subdividing member provided in the inlet port. 前記ストレーナは、網状のシートを円錐状に形成するとともにその開口端側にフランジを形成したものであり、前記入口ポートに圧入されるリング状の押さえ部材で前記フランジを前記気泡細分化部材との間に挟み込むことにより前記入口ポート内に固定されることを特徴とする請求項7記載の膨張弁。   The strainer is formed by forming a net-like sheet in a conical shape and forming a flange on the opening end side thereof, and a ring-shaped pressing member that is press-fitted into the inlet port. The expansion valve according to claim 7, wherein the expansion valve is fixed in the inlet port by being sandwiched therebetween. 前記気泡細分化部材が多数の貫通孔を有する整流部材であることを特徴とする請求項1乃至3のいずれかに記載の膨張弁。   The expansion valve according to any one of claims 1 to 3, wherein the bubble subdividing member is a rectifying member having a large number of through holes. 前記入口ポートに設けられる気泡細分化部材の孔の径が0.4mm乃至1.0mmであることを特徴とする請求項1、3、4、5、6、7、8及び9のいずれかに記載の膨張弁。   The diameter of the hole of the bubble segmentation member provided in the inlet port is 0.4 mm to 1.0 mm, according to any one of claims 1, 3, 4, 5, 6, 7, 8 and 9. The expansion valve described. 前記出口ポートに設けられる気泡細分化部材の孔の径が0.4mm乃至2.0mmであることを特徴とする請求項2乃至10のいずれかに記載の膨張弁。   The expansion valve according to any one of claims 2 to 10, wherein the diameter of the hole of the bubble subdividing member provided in the outlet port is 0.4 mm to 2.0 mm.
JP2009291154A 2009-12-22 2009-12-22 Expansion valve Pending JP2011133139A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009291154A JP2011133139A (en) 2009-12-22 2009-12-22 Expansion valve
KR1020100067151A KR20110073215A (en) 2009-12-22 2010-07-13 Expansion valve
CN2010105073392A CN102102923A (en) 2009-12-22 2010-09-29 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009291154A JP2011133139A (en) 2009-12-22 2009-12-22 Expansion valve

Publications (1)

Publication Number Publication Date
JP2011133139A true JP2011133139A (en) 2011-07-07

Family

ID=44155869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291154A Pending JP2011133139A (en) 2009-12-22 2009-12-22 Expansion valve

Country Status (3)

Country Link
JP (1) JP2011133139A (en)
KR (1) KR20110073215A (en)
CN (1) CN102102923A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238207A (en) * 2013-06-07 2014-12-18 株式会社不二工機 Expansion valve
CN107741110A (en) * 2017-11-21 2018-02-27 珠海格力电器股份有限公司 Expansion valve and refrigerating unit
US10060659B2 (en) 2015-03-13 2018-08-28 Denso International America, Inc. Noise reduction insert for an evaporator
JP2019168152A (en) * 2018-03-23 2019-10-03 株式会社不二工機 Expansion valve

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102924A (en) * 2010-11-17 2011-06-22 上海星易汽车空调股份有限公司 Structure for preventing noise and improving heat exchange performance in automotive air-conditioning heating power expansion valve
CN104567140A (en) * 2014-12-16 2015-04-29 合肥三艾汽车配件有限公司 Expansion valve
CN106440316B (en) * 2016-08-31 2019-09-10 青岛海信日立空调系统有限公司 A kind of denoising device and the air conditioner with the denoising device
CN112443668B (en) * 2019-08-29 2023-04-21 浙江三花汽车零部件有限公司 Expansion valve
CN111637234B (en) * 2020-06-10 2022-04-15 浙江博威汽车空调有限公司 Automobile expansion valve and processing technology thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07146032A (en) * 1993-11-26 1995-06-06 Matsushita Seiko Co Ltd Expansion valve
JP2002323273A (en) * 2001-04-26 2002-11-08 Daikin Ind Ltd Expansion valve and air conditioner
JP2002350003A (en) * 2001-05-22 2002-12-04 Hitachi Ltd Air conditioner
JP2004003793A (en) * 2001-09-07 2004-01-08 Saginomiya Seisakusho Inc Throttle valve device and air conditioner
JP2006275452A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Expansion valve
JP2007162851A (en) * 2005-12-14 2007-06-28 Fuji Koki Corp Motor operated valve
JP2009014292A (en) * 2007-07-06 2009-01-22 Zhejiang Chunhui Intelligent Control Co Ltd Two throttle two-way expansion valve with filtering structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3209868B2 (en) * 1994-11-17 2001-09-17 株式会社不二工機 Expansion valve
JP2007240138A (en) * 2006-02-07 2007-09-20 Tgk Co Ltd Expansion device
JP2007327672A (en) * 2006-06-07 2007-12-20 Tgk Co Ltd Expansion valve
JP5100136B2 (en) * 2007-01-26 2012-12-19 株式会社不二工機 Expansion valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07146032A (en) * 1993-11-26 1995-06-06 Matsushita Seiko Co Ltd Expansion valve
JP2002323273A (en) * 2001-04-26 2002-11-08 Daikin Ind Ltd Expansion valve and air conditioner
JP2002350003A (en) * 2001-05-22 2002-12-04 Hitachi Ltd Air conditioner
JP2004003793A (en) * 2001-09-07 2004-01-08 Saginomiya Seisakusho Inc Throttle valve device and air conditioner
JP2006275452A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Expansion valve
JP2007162851A (en) * 2005-12-14 2007-06-28 Fuji Koki Corp Motor operated valve
JP2009014292A (en) * 2007-07-06 2009-01-22 Zhejiang Chunhui Intelligent Control Co Ltd Two throttle two-way expansion valve with filtering structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238207A (en) * 2013-06-07 2014-12-18 株式会社不二工機 Expansion valve
US10060659B2 (en) 2015-03-13 2018-08-28 Denso International America, Inc. Noise reduction insert for an evaporator
CN107741110A (en) * 2017-11-21 2018-02-27 珠海格力电器股份有限公司 Expansion valve and refrigerating unit
CN107741110B (en) * 2017-11-21 2023-11-14 珠海格力电器股份有限公司 Expansion valve and refrigerating unit
JP2019168152A (en) * 2018-03-23 2019-10-03 株式会社不二工機 Expansion valve
JP7082798B2 (en) 2018-03-23 2022-06-09 株式会社不二工機 Expansion valve

Also Published As

Publication number Publication date
KR20110073215A (en) 2011-06-29
CN102102923A (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP2011133139A (en) Expansion valve
JP5696093B2 (en) Motorized valve
JP2012047393A (en) Expansion valve
CN204285910U (en) A kind of liquid receiver for compressor
EP2573489B1 (en) Expansion Valve
JP5991871B2 (en) Expansion valve
JP5690705B2 (en) Dehumidifying valve
JP2018021717A (en) Expansion valve
KR20130113364A (en) Expansion valve
JP6018807B2 (en) Expansion valve
JPH0578743B2 (en)
JP5643925B2 (en) Expansion valve
JP6063651B2 (en) Expansion valve
JP6650335B2 (en) Refrigerant splitter-coupled expansion valve and refrigeration cycle device and air conditioner using the same
JP2011133157A (en) Expansion valve
CN111133240B (en) Expansion valve
JPH0571670A (en) Expansion valve
JP6175628B2 (en) Expansion valve
JP2004293797A (en) Throttle valve device and air conditioner
JP2017072352A (en) Refrigerating device
JP2008180476A (en) Expansion valve
JP2019163888A (en) Expansion valve
JP7082798B2 (en) Expansion valve
JP3963672B2 (en) Expansion valve
JP2020041758A (en) Expansion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140212