JP2004293797A - Throttle valve device and air conditioner - Google Patents

Throttle valve device and air conditioner Download PDF

Info

Publication number
JP2004293797A
JP2004293797A JP2003060403A JP2003060403A JP2004293797A JP 2004293797 A JP2004293797 A JP 2004293797A JP 2003060403 A JP2003060403 A JP 2003060403A JP 2003060403 A JP2003060403 A JP 2003060403A JP 2004293797 A JP2004293797 A JP 2004293797A
Authority
JP
Japan
Prior art keywords
passage
throttle valve
valve device
throttle
filter element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003060403A
Other languages
Japanese (ja)
Other versions
JP4077340B2 (en
Inventor
Hiroshi Kuno
博 久野
Shigeru Kubota
茂 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2003060403A priority Critical patent/JP4077340B2/en
Publication of JP2004293797A publication Critical patent/JP2004293797A/en
Application granted granted Critical
Publication of JP4077340B2 publication Critical patent/JP4077340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

<P>PROBLEM TO BE SOLVED: To provide a throttle valve device suppressing the occurrence of a refrigerant friction sound when performing throttling operation, reducing noises, adapting to various conditions when performing dehumidifying operation, and dispensing with a soundproofing measure with a soundproof material and having excellent silence property. <P>SOLUTION: Filter elements 24, 25, a restriction element 26, and a filter element 27 are arranged in a passage communicating and connecting a first inlet and outlet port 12 with a second inlet and outlet port 13 in a valve close condition of a valve element 20, and an annular fluid injection flow passage 28A along an inner peripheral face of the passage is formed on the most downstream side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、絞り弁装置および空気調和機に関し、特に、除湿モードを有する空気調和機で除湿用絞り弁として使用される絞り弁装置および空気調和機に関するものである。
【0002】
【従来の技術】
除湿運転を行える空気調和機として、室内熱交換器が2分割され、その2個の室内熱交換器間に、弁閉状態で絞り弁となる絞り弁装置(除湿用絞り弁、サイクルドライ弁)が設けられ、除湿運転時には、弁閉して絞り弁として作用する絞り弁装置の絞り通路を冷媒が流れることにより、2分割された室内熱交換器のうちの上流側の室内熱交換器を凝縮器、下流側の室内熱交換器を蒸発器とし、室内空気に対して下流側の室内熱交換器によって冷却・除湿を行い、上流側の室内熱交換器によって加熱を行い、空気温度を下げずに除湿を行うことができる除湿モード付きの空気調和機が知られている(例えば、特許文献1参照)。
【0003】
上述のような空気調和機では、除湿運転時に、サイクルドライ用の絞り弁装置が弁閉状態になり、絞り効果を得るために、絞り弁装置内の狭い絞り通路を冷媒が流れるため、冷媒流に乱れが生じる。このため、絞り弁装置が設置される室内機において、乱流に起因する振動が冷媒液中を伝播し、室内機の凝縮器、蒸発器が共鳴板として作用し、耳障りな冷媒擦過音(冷媒通過音)が発生する。このようなことは、圧縮機回転数の増加により冷媒循環流量が増加し、絞り弁装置内の絞り通路前後の圧力差が大きいほど顕著になり、不快騒音レベルが上昇する。
【0004】
このことに鑑みて、絞り弁装置の絞り通路に、焼結金属等による多孔質部材を設けたり、多孔質部材によって絞り通路を構成したり、絞り通路の前後に多孔質部材を設けたりし、冷媒が多孔質部材を流れることにより整流化作用を得て冷媒擦過音を低減することが、既に提案されている(例えば、特許文献2、3、4参照)。
【0005】
【特許文献1】
特開平11−51514号公報
【特許文献2】
特開2000−346495号公報
【特許文献3】
特開2002−310540号公報
【特許文献4】
特開2002−323273号公報
【0006】
【発明が解決しようとする課題】
ところで、一口に、絞り弁装置の絞り作用のもとに、凝縮器と蒸発器として作用する上流側の室内熱交換器と下流側の室内熱交換器とにより、除湿運転時に室温を変えずに除湿するといっても、それぞれの室内熱交換器において、どの程度の冷媒を凝縮し、蒸発させるかは、除湿運転の条件等によってさまざまである。
【0007】
そのため、それぞれの室内熱交換器において、冷媒をかなり凝縮し、蒸発させるような除湿運転条件の場合には、絞り弁装置に流入する冷媒の凝縮液量が多く、ガス分が少ない状態となり、絞り要素(オリフィス)前後の圧力差が大きくなる。このため、絞り要素の前後に多孔質が配置されていることにより、整流化作用を得て冷媒擦過音が低減する従来の絞り弁装置では、多孔質部材によって充分な整流化作用を得えることが難しく、チリチリ、チュルチュル、シャーと云った冷媒擦過音の低減が充分に行われない。
【0008】
このように、従来の絞り弁装置では、さまざまな除湿運転時条件に適合して充分な静音化を得ることができず、実際には、絞り弁装置のボティに遮音材を巻き付けたり、絞り弁装置の配管を防振ゴムで支承して振動音を吸収するような処理を施しているのが現状である。このため、絞り弁装置で発生する冷媒擦過音を少しでも少なくすることが要望されている。
【0009】
この発明は、上述の如き問題点を解消するためになされたもので、絞り動作時の冷媒擦過音の発生を低減し、さまざまな除湿運転時条件に適合して静音化でき、遮音材等による防音処置を必要としない静粛性に優れた絞り弁装置およびその絞り弁装置を用いた空気調和機を提供することを目的としている。
【0010】
【課題を解決するための手段】
上述の目的を達成するために、この発明による絞り弁装置は、第1の入出口ポート、第2の入出口ポート、前記第1の入出口ポートと常時連通している弁室、前記弁室と前記第2の入出口ポートとの間に設けられた弁ポートを画定する弁ハウジングと、前記弁室内に設けられて前記弁ポートを開閉する弁体とを有する絞り弁装置において、前記弁体に弁閉状態において前記第1の入出口ポートと前記第2の入出口ポートとを連通接続する通路が形成され、前記通路にフィルタ要素と絞り要素が配置され、前記通路の最下流に、該通路を通過する流体を分散して噴出させる分散噴出流路が形成されている。
【0011】
この発明による絞り弁装置では、弁閉状態においては、流体(気液混合流体)がフィルタ要素、絞り要素を通過し、流体が絞り要素を通過することにより、絞り効果(断熱膨張効果)が得られ、流体がフィルタ要素を通過することにより、液中ガス粒の微細化作用(肥大化防止作用)、乱流緩和作用(整流化作用)が得られる。そして、最後に、通路の最下流に形成された分散噴出流路より流体が噴出する。この流体噴出は、該通路を通過する流体を分散して噴出させる分散噴出流路により分散して行われるので、分散噴出流路より噴出した流体同士の衝突が少なくなる。これらのことにより、絞り動作時の騒音発生が低減し、静音化がよくなる。
【0012】
この発明による絞り弁装置は、詳細構造として、前記分散噴出流路を、前記通路の内周面に沿った環状の流体噴出流路として形成することができる。この場合、通路を通過して来た流体は、最後に、通路内周面に沿った環状の流体噴出流路より噴出する。この流体噴出は通路内周面に沿った環状に行われるので、流体噴出流路より噴出した流体同士の衝突が少なくなる。これらのことにより、絞り動作時の騒音発生が低減し、静音化がよくなる。
【0013】
この発明による絞り弁装置は、詳細構造として、前記通路が円形横断面形状をなし、当該通路の最下流に当該通路の内径より小さい外径の円柱状部材が前記通路に同心配置され、前記通路の内周面と前記円柱状部材の外周面との間に前記流体噴出流路が円環状に形成されている、或いは、前記通路が円形横断面形状をなし、当該通路の最下流にセレーション形状の外周面を有するセレーション部材が前記通路に同心配置され、前記通路の内周面と前記セレーション部材の外周面との間に円環状配置で多数に分散された形態で前記流体噴出流路が形成されている構造とすることができる。
【0014】
セレーション部材の場合、流体噴出流路が、通路内周面に沿った円環状配置で、多数に分散されているので、噴出流体の分散効果も得られ、流体噴出流路より噴出した流体同士が更に衝突しなくなり、静音化効果が向上する。
【0015】
そして、セレーション部材としては、外周面を安価な製造方法であるローレット加工によりセレーション形状に形成された安価なものを用いることができる。
【0016】
この発明による絞り弁装置は、詳細構造として、前記分散噴出流路を複数の分散噴出孔として形成することができる。この場合、通路を通過して来た流体は、最後に、複数の分散噴出孔より噴出する。この流体噴出は複数の分散噴出孔に分散して行われるので、分散噴出孔より噴出した流体同士の衝突が少なくなる。これらのことにより、絞り動作時の騒音発生が低減し、静音化がよくなる。
【0017】
また、この発明による絞り弁装置では、前記絞り要素は中心部に単一オリフィス孔を有しているオリフィス部材により構成でき、また、前記フィルタ要素は、焼結多層金網、多孔性焼結金属、発泡金属あるいは金属多孔質体、プラスチック焼結多孔質体等の多孔質体により構成することができ、良好な液中ガス粒微細化作用、乱流緩和作用を得ることができる。
【0018】
また、この発明による絞り弁装置は、前記絞り要素の上流側と下流側に各々前記フィルタ要素が配置され、前記絞り要素より下流側の前記フィルタ要素より更に下流側に前記分散噴出流路が形成されている。
【0019】
この発明による絞り弁装置では、絞り要素より上流側のフィルタ要素が、専ら液中ガス粒の微細化作用(肥大化防止作用)を行い、絞り要素より下流側のフィルタ要素が、専ら乱流緩和作用(整流化作用)を行い、そして、通路の最下流に設けられて通路を通過する流体を分散して噴出させる分散噴出流路より流体が噴出することにより、噴出流体同士の衝突が少なくなる。これらのことにより、絞り動作時の騒音発生が低減し、静音化がよくなる。
【0020】
また、この発明による絞り弁装置は、更に、前記弁室に露呈する前記弁体の外周囲に筒形フィルタ要素が装着され、前記絞り要素より上流側の前記フィルタ要素の外壁面が前記弁体に形成された複数個の径方向通路によって前記筒形フィルタ要素の内壁面に連通している。
【0021】
この発明による絞り弁装置によれば、弁室側から、まず、筒形フィルタ要素を流体が流れることにより、流体流れ中のコンタミネーション等の混入物捕捉が行われる共に、液中ガス粒の微細化(細分化)が行われ、大きいガス粒を含む気液混合流体が絞り要素に流れることが防止される。このことによっても静音化が図られる。
【0022】
また、この発明による空気調和機は、圧縮機と、室外熱交換器と、第1の室内熱交換器と、第2の室内熱交換器と、これらをループ接続する冷媒通路と、前記室外熱交換器と前記第1の室内熱交換器との間の冷媒通路に設けられた膨張弁とを有し、前記第1の室内熱交換器と前記第2の室内熱交換器との間に上述の発明による絞り弁装置が接続されているものである。
【0023】
この発明による空気調和機によれば、絞り弁装置は、弁閉することにより、第1の室内熱交換器と第2の室内熱交換器との間で、絞り作用を行い、静粛性に優れた除湿用絞り弁として機能する。
【0024】
【発明の実施の形態】
以下に添付の図を参照してこの発明の実施の形態を詳細に説明する。
図1〜図8はこの発明による絞り弁装置10の実施の形態1を示している。
【0025】
図1に示されているように、絞り弁装置10は金属製の弁ハウジング11を有している。弁ハウジング11は、第1の入出口ポート12と、第2の入出口ポート13と、第1の入出口ポート12と常時直接連通している弁室14と、弁室14と第2の入出口ポート13との間に設けられた弁ポート15とを画定している。弁ポート15の弁室14の側の開口端周りには弁座部16が画定されている。第1の入出口ポート12と、第2の入出口ポート13には各々継手管17、18が接続されている。
【0026】
弁室14には弁体20が図にて上下方向(弁リフト方向)に移動可能に設けられている。弁体20は、先端外周面20Aにて弁ポート15の周りに画定されている弁座部16に着座して弁ポート15を閉じる弁閉位置(図示の位置)と、弁座部16より離れて弁ポート15の連通を確立する弁開位置との間に移動可能になっている。
【0027】
弁ハウジング11には電磁ソレノイド装置40が取り付けられている。電磁ソレノイド装置40は、吸引子レスタイプのものであり、弁ハウジング11に固定された円筒状のプランジャチューブ41と、プランジャチューブ41内に画定されたプランジャ室42に軸線方向に移動可能に嵌合したカップ形状のプランジャ43と、プランジャチューブ41の先端部に固定されたプラグ部材44と、プランジャチューブ41の外側にてボルト45によりプラグ部材44に連結されたコの字形の外凾46と、プランジャチューブ41の外周囲に固定された電磁コイル部47と、プランジャ43をプラグ部材44側に付勢する圧縮コイルばね(弁開ばね)48とにより構成されている。
【0028】
弁室14は弁ポート15とは反対側(上側)にてプランジャチューブ41の内側(プランジャ室42)と直接連通している。弁体20は、弁室14およびプランジャチューブ41の内側にあり、上部ステム部20Bをプランジャ43の底部にかしめ結合されている。これにより、弁体20とプランジャ43とが一体化連結され、弁体20はプランジャ43と一体的に上下方向(軸線方向)に移動する。
【0029】
電磁ソレノイド装置40は、電磁コイル部47に通電が行われていない非通電時には、圧縮コイルばね48のばね力によってプランジャ43と共に弁体20を上方(弁開方向)へ駆動する。これに対し、電磁コイル部47に通電が行われている通電時には、プランジャ43が圧縮コイルばね48のばね力に抗して外凾46の下側片部46Aの側に磁気的に吸引されることにより、弁体20を下方(弁閉方向)へ駆動する。なお、図1は通電状態(弁閉状態)を示している。
【0030】
すなわち、電磁ソレノイド装置40は、非通電時には圧縮コイルばね48のばね力により弁体20を弁座部16より引き離した弁開位置へ駆動し、通電時には圧縮コイルばね48のばね力に抗して弁体20を弁座部16に着座させる弁閉位置へ駆動する常開型になっている。
【0031】
弁体20は弁ポート15の真上位置にあり、弁体20には弁閉状態において第1の入出口ポート12と第2の入出口ポート13とを連通接続する通路が形成されている。この通路は、弁ポート15に向かい合う先端面(下底面)に開口した中空開口部21によって与えられる。中空開口部21は、円形横断面形状をなし、弁体20の先端面にて弁ポート15に向けて開口(下端開口21A)しており、上端閉の有底孔をなしている。
【0032】
弁体20の外周部には軸線方向中間部よりプランジャ43との連結端側(上端側)に至る範囲に亘って周溝22が形成されている。弁体20には中空開口部21の上端閉側と周溝22の底部とを連通する複数個(6個)の径方向通路23(図3参照)が形成されている。
【0033】
周溝22、径方向通路23、中空開口部21により、弁閉状態において、弁室14、第1の入出口ポート12と第2の入出口ポート13とが連通する。
【0034】
周溝22には円筒フィルタ要素24が嵌合装着されている。円筒フィルタ要素24は、透過精度が100μm程度の多孔質体により構成され、第1の入出口ポート12より第2の入出口ポート13へ流れる流体流(気液混合流体)の最上流位置にあって、流体流中の混入物捕捉と、気液混合流体中のガス粒の細分化を行う。円筒フィルタ要素24は、多少目詰まりしても、当該フィルタにおける圧力損失が後述のオリフィス部材26による圧力損失より大きくならないことを要求される。
【0035】
円筒フィルタ要素24を構成する多孔質体としては、ステンレス鋼、真鍮等による連続気孔構造の多孔性焼結金属(たとえば、SMC(株)社製の焼結金属エレメント)、ニッケル、ニッケル・銅合金等による三次元網目状の発泡金属あるいは金属多孔質体(たとえば、住友電気工業(株)社製の商品名セルメット)、プラスチック粉末を原料として焼結成形した連続気孔構造のプラスチック焼結多孔質体(たとえば、染谷製作所製のプラスチック焼結多孔質体)、ステンレス鋼等による金網を数枚重ねて焼結した焼結多層金網等、ロングライフタイプの多孔質体等がある。なお、ここで云う発泡金属、金属多孔質体は、三次元網目状の発泡樹脂に導電処理を施し、これにニッケル、ニッケル・銅合金等を電気メッキしたものである。
【0036】
中空開口部21には、図2によく示されているように、下端開口21Aより、円盤状の上流側フィルタ要素25、オリフィス部材26、円盤状の下流側フィルタ要素27、セレーション部材28が順に挿入され、これらは座金29を介してかしめ(かしめ部20C)により弁体20に固定されている。この構造により、図3によく示されているように、上流側フィルタ要素25の外壁面が6個の径方向通路23によって筒形フィルタ要素24の内壁面に連通している。
【0037】
オリフィス部材26は、図4によく示されているように、中心部に単一オリフィス孔(絞り孔)26Aを有し、絞り作用を行う。流体がオリフィス部材26の単一オリフィス孔(絞り孔)26Aを通過することにより、絞り作用を受け、断熱膨張する。
【0038】
なお、オリフィス部材26の上下両面、すなわち、上流側フィルタ要素25あるいは下流側フィルタ要素27との対接面には、図2に示されているように、上流側フィルタ要素25あるいは下流側フィルタ要素27と単一オリフィス孔26Aとの間に位置する拡大入口空間部26B、拡大出口空間部26Cを画定する大径凹部が形成されている。拡大入口空間部26Bは上流側フィルタ要素25より単一オリフィス孔26Aへ流れるオリフィス流量を確保し、拡大出口空間部26Cは単一オリフィス孔26Aより下流側フィルタ要素27へ流れるオリフィス流量を確保する。
【0039】
上流側フィルタ要素25、下流側フィルタ要素27は、ともに多孔質体により構成され、図3及び図5にそれぞれよく示されているように、中空開口部21と同心上に配置されている。なお、上流側フィルタ要素25は、専ら液中ガス粒の微細化作用(肥大化防止作用)を行い、下流側フィルタ要素27が、専ら乱流緩和作用(整流化作用)を行う。
【0040】
上流側フィルタ要素25、下流側フィルタ要素27を構成する多孔質体としては、ステンレス鋼、真鍮等による連続気孔構造の多孔性焼結金属(たとえば、SMC(株)社製の焼結金属エレメント)、ニッケル、ニッケル−銅合金による三次元網目状の発泡金属あるいは金属多孔質体(たとえば、住友電気工業(株)社製の商品名セルメット)、プラスチック粉末を原料として焼結成形した連続気孔構造のプラスチック焼結多孔質体(たとえば、染谷製作所製のプラスチック焼結多孔質体)、ステンレス鋼等による金網を数枚重ねて焼結した焼結多層金網等、ロングライフタイプの多孔質体等がある。
【0041】
セレーション部材28は、第1の入出口ポート12より第2の入出口ポート13へ流れる流体流(気液混合流体)の最下流位置にある。セレーション部材28は、図6に示されているように、外周面を平目ローレット加工によりセレーション形状に形成されており、図8に示されているように、中空開口部21の内周面との間に、各セレーション谷部で、流体噴出流路28Aを画定している。流体噴出流路28Aは、リングシャワノズルのように中空開口部21の内周面に沿って円環状に配置されている。ローレット加工によれば、製造コストが易く、部品コストが安価になる。
【0042】
座金29は、図7に示されているように、脚片29Aによって中空開口部21内に同心配置されるものであり、可及的に流体噴出流路28Aの通路障害にならない形状になっている。
【0043】
つぎに、上述の構成による絞り弁装置10の動作について説明する。
電磁ソレノイド装置40に通電が行われていない状態では、圧縮コイルばね48のばね力によってプランジャ43と共に弁体20が持ち上げられて弁体20が弁座部16より離れ、弁ポート15が完全に開かれた全開の実質的な絞り作用がない弁開状態が得られる。
【0044】
これに対し、電磁ソレノイド装置40に通電が行われると、圧縮コイルばね48のばね力に抗してプランジャ43が外凾46の下側片部46Aの側に磁気的に吸引され、弁体20が弁閉方向へ駆動され、図1に示されているように、弁体20が先端外周面20Aをもって弁座部16に着座する。
【0045】
この弁閉状態では、円筒フィルタ要素24、複数個の径方向通路23、上流側フィルタ要素25、オリフィス部材26の単一オリフィス孔26A、下流側フィルタ要素27、セレーション部材28による多数の流体噴出流路28Aをもって弁室14と第2の入出口ポート13とが連通する。
【0046】
第1の入出口ポート12が高圧側で、第2の入出口ポート13が低圧側である場合には、円筒フィルタ要素24→各径方向通路23→上流側フィルタ要素25→オリフィス部材26の単一オリフィス孔26A→下流側フィルタ要素27の順に冷媒等の流体が流れ、セレーション部材28による各流体噴出流路28Aより流体が第2の入出口ポート13へ向けて噴出する。
【0047】
上述のように流体が流れることにより、まず、円筒状で表面積が大きい円筒フィルタ要素24によって流体流れ中のコンタミネーションの捕捉が行われると共に液流中の気泡(ガス粒)の細分化が行われる。そして流体は、複数個の径方向通路23を通り、分散された流れで上流側フィルタ要素25に流入し、上流側フィルタ要素25、オリフィス部材26の単一オリフィス孔26A、下流側フィルタ要素27を順に通過する。
【0048】
この流れにおいて、上流側フィルタ要素25は、液中ガス粒の微細化、肥大化防止を行い、大きいガス粒を含んだ気液混合流体が単一オリフィス孔26Aに流入することを防止する。これにより、単一オリフィス孔26Aにおいて、ここを流れるガス粒が分裂することが防止され、分裂音の発生が防止される。
【0049】
オリフィス部材26の単一オリフィス孔26Aを通過した流体は、絞り作用を受け、乱流を生じるが、これは、下流側フィルタ要素27によって緩和され、整流化され、静音化が図られる。
【0050】
その後、流体は、中空開口部21の内周面に沿って円環状に配置された流体噴出流路28Aの各々より分散して噴出する。この流体噴出は、中空開口部21の内周面に沿った円環状に行われるので、しかも、分散して行われるので、各流体噴出流路28Aより噴出した流体同士が衝突することが少なく、静音化が図られる。
【0051】
これにより、さまざまな除湿運転時条件に適合して静音化でき、遮音材等による防音処置を必要とすることなく、充分な静粛性が得られる。
【0052】
図9〜図11はこの発明による絞り弁装置10の実施形態2の要部を示している。なお、図9〜図11において、図1〜図8に対応する部分は、図1〜図8に付した符号と同一の符号を付けて、その説明を省略する。
【0053】
図9に示されているように、この実施形態では、セレーション部材28に代えて、円柱状部材30が中空開口部21に配置されている。円柱状部材30は、図10に示されているように、中空開口部21の内径より少し小さい外径を有する円柱状部材であり、図11に示されているように、中央のかしめ部30Aによって座金29と同心位置にかしめ結合されていることにより、中空開口部21内に同心配置される。
【0054】
これにより、中空開口部21の内周面と円柱状部材30の外周面との間に、円環状の流体噴出流路31が形成される。
【0055】
この実施形態では、複数のルートに分散させた形態での噴出は行われないが、中空開口部21の内周面に沿った円環状の流体噴出流路31より流体が噴出するから、中空開口部21の比較的中心付近に通過部分が集約される、単一オリフィス孔26A及び下流側フィルタ要素27を通過した流体は、その後、流体噴出流路31を通過する際に、中空開口部21の中心付近から周縁付近に向けて放射状に分散する。これにより、流体噴出流路31より噴出した流体同士の衝突が少なくなり、静音化が図られる。
【0056】
図12〜図13はこの発明による絞り弁装置10の実施形態3の要部を示している。なお、図12〜図13において、図1〜図8に対応する部分は、図1〜図8に付した符号と同一の符号を付けて、その説明を省略する。
【0057】
図12に示されているように、この実施形態では、セレーション部材28を省略し、中空開口部21の下端開口21Aを座金29のかしめ取り付けにより塞いで下流側フィルタ要素27の脱落を防止すると共に、座金29の中心から偏倚した箇所に分散噴出孔29B(図13参照)を複数個(6個)貫設して、これらの分散噴出孔29Bにより分散噴出流路を構成している。
【0058】
この実施形態では、実施形態1の場合と同様に、複数のルートに分散させて流体の噴出が行われるので、各分散噴出孔29Bより噴出した流体同士が衝突することが少なく、静音化が図られる。
【0059】
図14は上述した実施の形態1乃至3による絞り弁装置10をサイクルドライ弁として組み込まれた空気調和機を示している。
【0060】
この空気調和機は、圧縮機50と、室外熱交換器51と、第1の室内熱交換器52と、第2の室内熱交換器53と、これらをループ接続する冷媒通路55〜63と、室外熱交換器51と第1の室内熱交換器52との間の冷媒通路(57〜59)に設けられた膨張弁54と、冷房モードと暖房モードとの切換のためにループ接続された冷媒通路55〜63における冷媒の流れ方向を反転する四方弁65とを有している。
【0061】
第1の室内熱交換器52と第2の室内熱交換器53との間の冷媒通路60には絞り弁装置(サイクルドライ弁)10が接続されている。
【0062】
冷房モードでは、図14にて実線の矢印で示されている方向に冷媒が循環し、絞り弁装置10が弁開している状態で、冷房モードが得られ、絞り弁装置10が弁閉している状態では、当該絞り弁装置10が絞り弁として作用し、冷房サイクルドライモード(冷房時除湿)が得られる。
【0063】
絞り弁装置10は空気調和機の室内機に設けられるが、絞り弁装置10には、上述したように、複数個のフィルタ要素と複数個の絞り要素とが交互に2段配置されているから、静粛性に優れ、冷房サイクルドライモードにおいて、耳障りな冷媒擦過音や、オリフィス通過直後のガス粒の間欠的な膨張破裂による騒音を生じることがない。
【0064】
なお、暖房モードでは、図14の矢印で示されている方向とは逆方向に冷媒が循環し、通常、絞り弁装置10は弁開状態を維持する。
【0065】
【発明の効果】
以上の説明から理解される如く、この発明による絞り弁装置によれば、流体(気液混合流体)がフィルタ要素、絞り要素を通過し、流体が絞り要素を通過することにより、絞り効果(断熱膨張効果)が得られ、流体がフィルタ要素を通過することにより、液中ガス粒の微細化作用(肥大化防止作用)、乱流緩和作用(整流化作用)が得られ、そして、通路の最下流に形成された、通路を通過する流体を分散して噴出させる分散噴出流路より分散して流体が噴出することにより、分散噴出流路より噴出した流体同士の衝突が少なくなり、これらのことにより、絞り動作時の騒音発生が低減し、さまざまな除湿運転時条件に適合して静音化でき、遮音材等による防音処置を必要とすることなく、充分な静粛性が得られる。
【図面の簡単な説明】
【図1】この発明による絞り弁装置の実施形態1を示す断面図である。
【図2】実施形態1の絞り弁装置の要部の拡大断面図である。
【図3】図2および図9のA−A断面図である。
【図4】図2および図9のB−B断面図である。
【図5】図2および図9のC−C断面図である。
【図6】図2のD−D断面図である。
【図7】図2のE−E断面図である。
【図8】この発明による絞り弁装置で使用されるセレーション部材の斜視図である。
【図9】この発明による絞り弁装置の実施形態2の要部を示す拡大断面図である。
【図10】図9のF−F断面図である。
【図11】図9のG−G断面図である。
【図12】この発明による絞り弁装置の実施形態3の要部を示す拡大断面図である。
【図13】図12のH−H断面図である。
【図14】この発明による絞り弁装置が組み込まれた空気調和機を示すブロック図である。
【符号の説明】
10 絞り弁装置
11 弁ハウジング
12 第1の入出口ポート
13 第2の入出口ポート
14 弁室
15 弁ポート
16 弁座部
20 弁体
21 中空開口部
24 円筒フィルタ要素
25 上流側フィルタ要素
26 オリフィス部材
27 下流側フィルタ要素
28 セレーション部材
28A 流体噴出流路
30 円柱状部材
31 流体噴出流路
40 電磁ソレノイド装置
43 プランジャ
47 電磁コイル部
50 圧縮機
51 室外熱交換器
52 第1の室内熱交換器
53 第2の室内熱交換器
54 膨張弁
65 四方弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a throttle valve device and an air conditioner, and more particularly to a throttle valve device and an air conditioner used as a dehumidifying throttle valve in an air conditioner having a dehumidification mode.
[0002]
[Prior art]
As an air conditioner capable of dehumidifying operation, an indoor heat exchanger is divided into two, and a throttle valve device (a dehumidifying throttle valve and a cycle dry valve) is provided between the two indoor heat exchangers and becomes a throttle valve when the valve is closed. During the dehumidifying operation, the refrigerant flows through the throttle passage of the throttle valve device which closes and acts as a throttle valve, thereby condensing the upstream indoor heat exchanger of the two divided indoor heat exchangers. The indoor heat exchanger on the downstream side is the evaporator, the indoor air is cooled and dehumidified by the indoor heat exchanger on the downstream side, and the air is heated by the indoor heat exchanger on the upstream side without lowering the air temperature. An air conditioner with a dehumidification mode capable of performing dehumidification is known (for example, see Patent Document 1).
[0003]
In the air conditioner as described above, during the dehumidifying operation, the throttle valve device for cycle drying is closed, and the refrigerant flows through a narrow throttle passage in the throttle valve device in order to obtain a throttle effect. Is disturbed. For this reason, in the indoor unit in which the throttle valve device is installed, the vibration caused by the turbulent flow propagates in the refrigerant liquid, and the condenser and the evaporator of the indoor unit act as a resonance plate, so that an unpleasant refrigerant rubbing sound (refrigerant) Passing sound) is generated. Such a phenomenon becomes more remarkable as the refrigerant circulation flow rate increases due to an increase in the number of rotations of the compressor, and becomes more remarkable as the pressure difference between before and after the throttle passage in the throttle valve device becomes larger, and the unpleasant noise level rises.
[0004]
In view of this, in the throttle passage of the throttle valve device, a porous member made of a sintered metal or the like is provided, a throttle passage is formed by a porous member, or a porous member is provided before and after the throttle passage, It has already been proposed that the refrigerant flows through the porous member to obtain a rectifying effect and reduce the friction noise of the refrigerant (for example, see Patent Documents 2, 3, and 4).
[0005]
[Patent Document 1]
JP-A-11-51514
[Patent Document 2]
JP 2000-346495A
[Patent Document 3]
JP 2002-310540 A
[Patent Document 4]
JP-A-2002-323273
[0006]
[Problems to be solved by the invention]
By the way, with the throttle action of the throttle valve device, the indoor heat exchanger on the upstream side and the indoor heat exchanger on the downstream side acting as a condenser and an evaporator do not change the room temperature during the dehumidifying operation. Even when dehumidifying, the amount of refrigerant condensed and evaporated in each indoor heat exchanger varies depending on the conditions of the dehumidifying operation and the like.
[0007]
Therefore, in the dehumidifying operation conditions in which the refrigerant is considerably condensed and evaporated in each of the indoor heat exchangers, the amount of the condensed liquid of the refrigerant flowing into the throttle valve device is large, the gas content is small, and the throttling is performed. The pressure difference before and after the element (orifice) increases. For this reason, in the conventional throttle valve device in which the porous material is disposed before and after the throttle element to obtain a rectifying effect and reduce the friction noise of the refrigerant, a sufficient rectifying effect can be obtained by the porous member. And it is difficult to sufficiently reduce the rubbing noise of the refrigerant such as chili, churchur and shah.
[0008]
As described above, in the conventional throttle valve device, it is not possible to obtain sufficient noise reduction in conformity with various dehumidifying operation conditions, and in practice, a sound insulating material is wound around the body of the throttle valve device, At present, the pipes of the apparatus are treated with a vibration-proof rubber to absorb vibration noise. For this reason, there is a demand for reducing the rubbing noise generated by the throttle valve device as much as possible.
[0009]
The present invention has been made in order to solve the above-described problems, and reduces the occurrence of refrigerant rubbing noise during the throttling operation, can reduce noise in conformity with various dehumidifying operation conditions, and uses a sound insulating material or the like. It is an object of the present invention to provide a throttle valve device that does not require soundproofing and is excellent in quietness, and an air conditioner using the throttle valve device.
[0010]
[Means for Solving the Problems]
To achieve the above object, a throttle valve device according to the present invention includes a first inlet / outlet port, a second inlet / outlet port, a valve chamber constantly communicating with the first inlet / outlet port, and the valve chamber. A throttle valve device comprising: a valve housing defining a valve port provided between the valve chamber and the second inlet / outlet port; and a valve body provided in the valve chamber and opening and closing the valve port. In the valve closed state, a passage is formed for communicating and connecting the first inlet / outlet port and the second inlet / outlet port, and a filter element and a throttle element are arranged in the passage. A dispersion ejection channel for dispersing and ejecting the fluid passing through the passage is formed.
[0011]
In the throttle valve device according to the present invention, when the valve is in the closed state, the fluid (gas-liquid mixed fluid) passes through the filter element and the throttle element, and the fluid passes through the throttle element, thereby obtaining the throttle effect (adiabatic expansion effect). As a result, the fluid passes through the filter element, so that the effect of reducing the size of gas particles in the liquid (the effect of preventing enlargement) and the effect of reducing the turbulence (the effect of rectifying) are obtained. Finally, the fluid is ejected from the dispersion ejection channel formed at the most downstream of the passage. Since the fluid ejection is performed by dispersing the fluid passing through the passage in a dispersed ejection channel, the collision between the fluids ejected from the dispersed ejection channel is reduced. Due to these, noise generation during the diaphragm operation is reduced, and noise reduction is improved.
[0012]
In the throttle valve device according to the present invention, as a detailed structure, the dispersion ejection flow path can be formed as an annular fluid ejection flow path along the inner peripheral surface of the passage. In this case, the fluid that has passed through the passage is finally ejected from an annular fluid ejection passage along the inner peripheral surface of the passage. Since the fluid ejection is performed in an annular shape along the inner peripheral surface of the passage, collision of the fluids ejected from the fluid ejection channel is reduced. Due to these, noise generation during the diaphragm operation is reduced, and noise reduction is improved.
[0013]
In a throttle valve device according to the present invention, as a detailed structure, the passage has a circular cross-sectional shape, and a columnar member having an outer diameter smaller than the inner diameter of the passage is arranged concentrically with the passage at the most downstream side of the passage. The fluid ejection flow path is formed in an annular shape between the inner peripheral surface of the cylindrical member and the outer peripheral surface of the columnar member, or the passage has a circular cross-sectional shape, and a serration shape is provided at the most downstream of the passage. The fluid ejection flow path is formed in a form in which a serration member having an outer peripheral surface is concentrically arranged in the passage, and is dispersed in a large number in an annular arrangement between an inner peripheral surface of the passage and an outer peripheral surface of the serration member. It can be a structure that is.
[0014]
In the case of the serration member, since the fluid ejection flow passages are dispersed in a large number in an annular arrangement along the inner peripheral surface of the passage, a dispersion effect of the ejected fluid is also obtained, and the fluids ejected from the fluid ejection passages are separated from each other. Further, collision does not occur, and the noise reduction effect is improved.
[0015]
As the serration member, an inexpensive member whose outer peripheral surface is formed into a serrated shape by knurling, which is an inexpensive manufacturing method, can be used.
[0016]
In the throttle valve device according to the present invention, as a detailed structure, the dispersion ejection flow path can be formed as a plurality of dispersion ejection holes. In this case, the fluid that has passed through the passage is finally ejected from the plurality of dispersed ejection holes. Since the fluid ejection is performed by dispersing the fluid into the plurality of dispersed ejection holes, collision between the fluids ejected from the dispersed ejection holes is reduced. Due to these, noise generation during the diaphragm operation is reduced, and noise reduction is improved.
[0017]
Further, in the throttle valve device according to the present invention, the throttle element can be constituted by an orifice member having a single orifice hole at the center, and the filter element is a sintered multilayer wire mesh, a porous sintered metal, It can be made of a foamed metal or a porous body such as a porous metal body, a sintered plastic porous body, etc., and can obtain a good effect of miniaturizing gas particles in liquid and a function of reducing turbulence.
[0018]
Further, in the throttle valve device according to the present invention, the filter element is disposed on each of the upstream side and the downstream side of the throttle element, and the dispersed ejection flow path is formed further downstream of the filter element downstream of the throttle element. Have been.
[0019]
In the throttle valve device according to the present invention, the filter element on the upstream side of the throttle element exclusively performs the action of miniaturizing the gas particles in the liquid (the effect of preventing enlargement), and the filter element on the downstream side of the throttle element exclusively uses the turbulence reduction. A fluid (rectifying action) is performed, and the fluid is ejected from a dispersion ejection channel that is provided at the most downstream of the passage and disperses and ejects the fluid passing through the passage, so that collision between the ejected fluids is reduced. . Due to these, noise generation during the diaphragm operation is reduced, and noise reduction is improved.
[0020]
Further, in the throttle valve device according to the present invention, further, a cylindrical filter element is mounted around an outer periphery of the valve element exposed to the valve chamber, and an outer wall surface of the filter element upstream of the throttle element has the valve element. And a plurality of radial passages formed therein communicate with the inner wall surface of the cylindrical filter element.
[0021]
According to the throttle valve device of the present invention, first, the fluid flows through the cylindrical filter element from the valve chamber side, so that contaminants such as contamination in the fluid flow are captured and the fine particles of gas in the liquid are captured. The gas-liquid mixture containing large gas particles is prevented from flowing to the throttle element. This also reduces noise.
[0022]
In addition, the air conditioner according to the present invention includes a compressor, an outdoor heat exchanger, a first indoor heat exchanger, a second indoor heat exchanger, a refrigerant passage connecting these components in a loop, and the outdoor heat exchanger. An expansion valve provided in a refrigerant passage between the exchanger and the first indoor heat exchanger, wherein an expansion valve is provided between the first indoor heat exchanger and the second indoor heat exchanger. The throttle valve device according to the invention is connected.
[0023]
ADVANTAGE OF THE INVENTION According to the air conditioner by this invention, a throttle valve apparatus performs a throttle effect | action between a 1st indoor heat exchanger and a 2nd indoor heat exchanger by closing a valve, and is excellent in quietness. It functions as a dehumidifying throttle valve.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
1 to 8 show a first embodiment of a throttle valve device 10 according to the present invention.
[0025]
As shown in FIG. 1, the throttle valve device 10 has a valve housing 11 made of metal. The valve housing 11 includes a first inlet / outlet port 12, a second inlet / outlet port 13, a valve chamber 14 which is always in direct communication with the first inlet / outlet port 12, a valve chamber 14 and a second inlet / outlet port. And an outlet port 13 and a valve port 15 provided therebetween. A valve seat 16 is defined around the open end of the valve port 15 on the valve chamber 14 side. Joint pipes 17 and 18 are connected to the first inlet / outlet port 12 and the second inlet / outlet port 13, respectively.
[0026]
A valve body 20 is provided in the valve chamber 14 so as to be movable in the vertical direction (valve lift direction) in the figure. The valve body 20 is seated on a valve seat portion 16 defined around the valve port 15 at the distal end outer peripheral surface 20A, and is separated from the valve seat portion 16 to close the valve port 15 (position shown). The valve port 15 is movable between a valve opening position and a valve opening position for establishing communication with the valve port 15.
[0027]
An electromagnetic solenoid device 40 is attached to the valve housing 11. The electromagnetic solenoid device 40 is of a suction-less type, and is fitted to a cylindrical plunger tube 41 fixed to the valve housing 11 and a plunger chamber 42 defined in the plunger tube 41 so as to be movable in the axial direction. A plunger 43 in the shape of a cup, a plug member 44 fixed to the distal end of the plunger tube 41, a U-shaped outer box 46 connected to the plug member 44 by bolts 45 outside the plunger tube 41, and a plunger. It comprises an electromagnetic coil portion 47 fixed to the outer periphery of the tube 41, and a compression coil spring (valve opening spring) 48 for urging the plunger 43 toward the plug member 44 side.
[0028]
The valve chamber 14 communicates directly with the inside of the plunger tube 41 (plunger chamber 42) on the opposite side (upper side) of the valve port 15. The valve body 20 is located inside the valve chamber 14 and the plunger tube 41, and the upper stem portion 20 </ b> B is caulked to the bottom of the plunger 43. Thereby, the valve body 20 and the plunger 43 are integrally connected, and the valve body 20 moves integrally with the plunger 43 in the vertical direction (axial direction).
[0029]
The electromagnetic solenoid device 40 drives the valve body 20 upward (in the valve opening direction) together with the plunger 43 by the spring force of the compression coil spring 48 when power is not supplied to the electromagnetic coil unit 47 when power is not supplied to the electromagnetic coil unit 47. On the other hand, when the electromagnetic coil 47 is energized, the plunger 43 is magnetically attracted to the lower half 46A of the outer case 46 against the spring force of the compression coil spring 48. This drives the valve body 20 downward (to close the valve). FIG. 1 shows an energized state (valve closed state).
[0030]
That is, the electromagnetic solenoid device 40 drives the valve element 20 to the valve open position separated from the valve seat portion 16 by the spring force of the compression coil spring 48 when not energized, and resists the spring force of the compression coil spring 48 when energized. It is a normally open type that drives the valve body 20 to a valve closed position where the valve body 20 is seated on the valve seat portion 16.
[0031]
The valve body 20 is located directly above the valve port 15, and a passage is formed in the valve body 20 to connect and connect the first inlet / outlet port 12 and the second inlet / outlet port 13 when the valve is closed. This passage is provided by a hollow opening 21 opened on the front end surface (lower bottom surface) facing the valve port 15. The hollow opening 21 has a circular cross-sectional shape, is open toward the valve port 15 at the distal end surface of the valve body 20 (lower end opening 21A), and has a closed end with a closed upper end.
[0032]
A circumferential groove 22 is formed in the outer peripheral portion of the valve body 20 over a range from the axially intermediate portion to the connection end side (upper end side) with the plunger 43. The valve body 20 is formed with a plurality (six) of radial passages 23 (see FIG. 3) that communicate the upper end closed side of the hollow opening 21 and the bottom of the circumferential groove 22.
[0033]
The valve chamber 14, the first inlet / outlet port 12, and the second inlet / outlet port 13 communicate with each other in the valve closed state by the circumferential groove 22, the radial passage 23, and the hollow opening 21.
[0034]
A cylindrical filter element 24 is fitted in the circumferential groove 22. The cylindrical filter element 24 is made of a porous material having a transmission accuracy of about 100 μm, and is located at the most upstream position of a fluid flow (gas-liquid mixed fluid) flowing from the first inlet / outlet port 12 to the second inlet / outlet port 13. Thus, trapping of contaminants in the fluid flow and fragmentation of gas particles in the gas-liquid mixed fluid are performed. Even if the cylindrical filter element 24 is somewhat clogged, it is required that the pressure loss in the filter does not become larger than the pressure loss due to the orifice member 26 described later.
[0035]
Examples of the porous body constituting the cylindrical filter element 24 include a porous sintered metal having a continuous pore structure made of stainless steel, brass, or the like (for example, a sintered metal element manufactured by SMC Corporation), nickel, nickel-copper alloy 3D mesh-like foamed metal or metal porous body (for example, Celmet, trade name, manufactured by Sumitomo Electric Industries, Ltd.), plastic sintered porous body having a continuous pore structure formed by sintering plastic powder as a raw material (For example, a sintered plastic porous body manufactured by Someya Seisakusho), a long-life type porous body and the like, such as a sintered multi-layered metal mesh formed by stacking and sintering several metal meshes made of stainless steel or the like. The foamed metal and the porous metal body described here are obtained by subjecting a three-dimensional mesh-shaped foamed resin to a conductive treatment and electroplating nickel, a nickel-copper alloy or the like.
[0036]
2, a disc-shaped upstream filter element 25, an orifice member 26, a disc-shaped downstream filter element 27, and a serration member 28 are sequentially arranged in the hollow opening 21 from the lower end opening 21A. These are inserted and fixed to the valve body 20 by swaging (caulking portion 20C) via a washer 29. With this structure, the outer wall surface of the upstream filter element 25 communicates with the inner wall surface of the cylindrical filter element 24 through six radial passages 23, as is well shown in FIG.
[0037]
As shown in FIG. 4, the orifice member 26 has a single orifice hole (restriction hole) 26A at the center and performs a restricting action. When the fluid passes through the single orifice hole (throttle hole) 26A of the orifice member 26, it undergoes a throttling action and undergoes adiabatic expansion.
[0038]
As shown in FIG. 2, the upper and lower surfaces of the orifice member 26, that is, the surfaces that are in contact with the upstream filter element 25 or the downstream filter element 27, are provided on the upstream filter element 25 or the downstream filter element. There is formed a large-diameter recess defining an enlarged inlet space 26B and an enlarged outlet space 26C located between the hole 27 and the single orifice hole 26A. The enlarged inlet space 26B secures an orifice flow from the upstream filter element 25 to the single orifice hole 26A, and the enlarged outlet space 26C secures an orifice flow from the single orifice hole 26A to the downstream filter element 27.
[0039]
The upstream filter element 25 and the downstream filter element 27 are both formed of a porous body, and are disposed concentrically with the hollow opening 21 as well shown in FIGS. 3 and 5. In addition, the upstream filter element 25 exclusively performs the action of miniaturizing gas particles in liquid (prevention of enlargement), and the downstream filter element 27 exclusively performs the turbulence mitigation action (rectification action).
[0040]
As the porous body constituting the upstream filter element 25 and the downstream filter element 27, a porous sintered metal having a continuous pore structure made of stainless steel, brass, or the like (for example, a sintered metal element manufactured by SMC Corporation). , Nickel, nickel-copper alloy, a three-dimensional mesh-like foamed metal or metal porous body (for example, Celmet manufactured by Sumitomo Electric Industries, Ltd.), and a continuous pore structure formed by sintering a plastic powder as a raw material. There are long-life type porous bodies such as a plastic sintered porous body (for example, a plastic sintered porous body manufactured by Someya Seisakusho), a sintered multilayer wire mesh obtained by stacking and sintering several metal meshes made of stainless steel or the like. .
[0041]
The serration member 28 is located at the most downstream position of the fluid flow (gas-liquid mixed fluid) flowing from the first inlet / outlet port 12 to the second inlet / outlet port 13. As shown in FIG. 6, the serration member 28 has an outer peripheral surface formed into a serrated shape by flat knurling, and as shown in FIG. In between, each serration valley defines a fluid ejection channel 28A. The fluid ejection flow path 28A is arranged in an annular shape along the inner peripheral surface of the hollow opening 21 like a ring shower nozzle. According to the knurling, the manufacturing cost is easy and the parts cost is low.
[0042]
As shown in FIG. 7, the washer 29 is concentrically arranged in the hollow opening 21 by a leg piece 29A, and has a shape that does not obstruct the passage of the fluid ejection flow passage 28A as much as possible. I have.
[0043]
Next, the operation of the throttle valve device 10 having the above configuration will be described.
When power is not supplied to the electromagnetic solenoid device 40, the valve body 20 is lifted together with the plunger 43 by the spring force of the compression coil spring 48, the valve body 20 is separated from the valve seat 16, and the valve port 15 is completely opened. A valve-open state without substantial throttling action of the fully opened state is obtained.
[0044]
On the other hand, when the electromagnetic solenoid device 40 is energized, the plunger 43 is magnetically attracted to the side of the lower piece 46A of the outer casing 46 against the spring force of the compression coil spring 48, and the valve body 20 Is driven in the valve closing direction, and as shown in FIG. 1, the valve body 20 is seated on the valve seat portion 16 with the distal end outer peripheral surface 20A.
[0045]
In this valve closed state, a large number of fluid ejection flows by the cylindrical filter element 24, the plurality of radial passages 23, the upstream filter element 25, the single orifice hole 26A of the orifice member 26, the downstream filter element 27, and the serration member 28 The valve chamber 14 and the second inlet / outlet port 13 communicate with each other through the passage 28A.
[0046]
When the first inlet / outlet port 12 is on the high pressure side and the second inlet / outlet port 13 is on the low pressure side, the cylindrical filter element 24 → the respective radial passages 23 → the upstream filter element 25 → the orifice member 26 A fluid such as a refrigerant flows in the order of the one orifice hole 26A and the downstream filter element 27, and the fluid is ejected from each fluid ejection channel 28A by the serration member 28 toward the second inlet / outlet port 13.
[0047]
By the flow of the fluid as described above, first, contamination in the fluid flow is captured by the cylindrical filter element 24 having a large surface area, and the bubbles (gas particles) in the liquid flow are subdivided. . Then, the fluid flows through the plurality of radial passages 23 into the upstream filter element 25 in a dispersed flow, and flows through the upstream filter element 25, the single orifice hole 26A of the orifice member 26, and the downstream filter element 27. Pass in order.
[0048]
In this flow, the upstream side filter element 25 prevents the gas particles in the liquid from being fined and prevented from being enlarged, and prevents the gas-liquid mixed fluid containing the large gas particles from flowing into the single orifice hole 26A. Thereby, in the single orifice hole 26A, the gas particles flowing therethrough are prevented from splitting, and splitting noise is prevented from being generated.
[0049]
The fluid that has passed through the single orifice hole 26A of the orifice member 26 is subjected to a throttling action to generate a turbulent flow, which is alleviated by the downstream filter element 27, rectified, and silenced.
[0050]
After that, the fluid is dispersed and ejected from each of the fluid ejection channels 28A arranged in an annular shape along the inner peripheral surface of the hollow opening 21. Since this fluid ejection is performed in an annular shape along the inner peripheral surface of the hollow opening 21 and is performed in a dispersed manner, the fluid ejected from each fluid ejection channel 28A is less likely to collide with each other, Silence is achieved.
[0051]
Thereby, the noise can be reduced in conformity with various dehumidifying operation conditions, and sufficient quietness can be obtained without requiring a soundproofing treatment with a sound insulating material or the like.
[0052]
9 to 11 show a main part of a throttle valve device 10 according to a second embodiment of the present invention. 9 to 11, parts corresponding to those in FIGS. 1 to 8 are denoted by the same reference numerals as those in FIGS. 1 to 8, and description thereof is omitted.
[0053]
As shown in FIG. 9, in this embodiment, a cylindrical member 30 is arranged in the hollow opening 21 instead of the serration member 28. As shown in FIG. 10, the columnar member 30 is a columnar member having an outer diameter slightly smaller than the inner diameter of the hollow opening 21. As shown in FIG. By being caulked and coupled to the washer 29 at a concentric position, the concentric arrangement is provided within the hollow opening 21.
[0054]
Thus, an annular fluid ejection flow path 31 is formed between the inner peripheral surface of the hollow opening 21 and the outer peripheral surface of the columnar member 30.
[0055]
In this embodiment, although the ejection in a form dispersed in a plurality of routes is not performed, since the fluid is ejected from the annular fluid ejection channel 31 along the inner peripheral surface of the hollow opening 21, the hollow opening is not provided. The fluid that has passed through the single orifice hole 26A and the downstream filter element 27, the passage portions of which are gathered relatively near the center of the portion 21, then passes through the fluid ejection flow path 31 when the Disperse radially from near the center to near the periphery. Thereby, the collision between the fluids ejected from the fluid ejection channel 31 is reduced, and the noise is reduced.
[0056]
12 and 13 show a main part of a third embodiment of the throttle valve device 10 according to the present invention. In FIGS. 12 and 13, parts corresponding to those in FIGS. 1 to 8 are given the same reference numerals as those in FIGS.
[0057]
As shown in FIG. 12, in this embodiment, the serration member 28 is omitted, and the lower end opening 21A of the hollow opening 21 is closed by swaging the washer 29 to prevent the downstream filter element 27 from dropping off. A plurality (six) of the dispersed ejection holes 29B (see FIG. 13) penetrate the portion deviated from the center of the washer 29, and the dispersed ejection holes 29B constitute a dispersed ejection flow path.
[0058]
In this embodiment, as in the case of the first embodiment, the fluid is ejected by dispersing the fluid into a plurality of routes, so that the fluid ejected from each of the dispersed ejection holes 29B is less likely to collide with each other, and noise is reduced. Can be
[0059]
FIG. 14 shows an air conditioner in which the throttle valve device 10 according to Embodiments 1 to 3 is incorporated as a cycle dry valve.
[0060]
This air conditioner includes a compressor 50, an outdoor heat exchanger 51, a first indoor heat exchanger 52, a second indoor heat exchanger 53, and refrigerant passages 55 to 63 for loop-connecting these. An expansion valve 54 provided in a refrigerant passage (57-59) between the outdoor heat exchanger 51 and the first indoor heat exchanger 52, and a refrigerant loop-connected for switching between a cooling mode and a heating mode A four-way valve 65 for reversing the flow direction of the refrigerant in the passages 55 to 63.
[0061]
A throttle valve device (cycle dry valve) 10 is connected to the refrigerant passage 60 between the first indoor heat exchanger 52 and the second indoor heat exchanger 53.
[0062]
In the cooling mode, the refrigerant circulates in the direction indicated by the solid line arrow in FIG. 14, and the cooling mode is obtained in a state where the throttle valve device 10 is open, and the throttle valve device 10 is closed. In this state, the throttle valve device 10 functions as a throttle valve, and a cooling cycle dry mode (dehumidification during cooling) is obtained.
[0063]
Although the throttle valve device 10 is provided in the indoor unit of the air conditioner, as described above, the throttle valve device 10 includes a plurality of filter elements and a plurality of throttle elements that are alternately arranged in two stages. It is excellent in quietness, and does not generate harsh coolant rubbing noise or noise due to intermittent expansion and rupture of gas particles immediately after passing through the orifice in the cooling cycle dry mode.
[0064]
In the heating mode, the refrigerant circulates in a direction opposite to the direction indicated by the arrow in FIG.
[0065]
【The invention's effect】
As can be understood from the above description, according to the throttle valve device of the present invention, the fluid (gas-liquid mixed fluid) passes through the filter element and the throttle element, and the fluid passes through the throttle element, thereby providing the throttle effect (insulation). Expansion effect) is obtained, and the fluid passes through the filter element, so that the effect of reducing the size of gas particles in the liquid (prevention of enlargement) and the effect of reducing turbulence (rectification) are obtained. By dispersing and ejecting the fluid from the dispersion ejection channel formed downstream, which disperses and ejects the fluid passing through the passage, collision of the fluid ejected from the dispersion ejection channel is reduced. Accordingly, noise generation during the throttle operation is reduced, noise can be reduced in conformity with various dehumidifying operation conditions, and sufficient quietness can be obtained without requiring soundproofing treatment with a sound insulating material or the like.
[Brief description of the drawings]
FIG. 1 is a sectional view showing Embodiment 1 of a throttle valve device according to the present invention.
FIG. 2 is an enlarged sectional view of a main part of the throttle valve device of the first embodiment.
FIG. 3 is a sectional view taken along line AA of FIGS. 2 and 9;
FIG. 4 is a sectional view taken along line BB of FIGS. 2 and 9;
FIG. 5 is a sectional view taken along the line CC of FIGS. 2 and 9;
FIG. 6 is a sectional view taken along line DD of FIG. 2;
FIG. 7 is a sectional view taken along the line EE of FIG. 2;
FIG. 8 is a perspective view of a serration member used in the throttle valve device according to the present invention.
FIG. 9 is an enlarged sectional view showing a main part of a throttle valve device according to a second embodiment of the present invention.
FIG. 10 is a sectional view taken along line FF of FIG. 9;
FIG. 11 is a sectional view taken along line GG of FIG. 9;
FIG. 12 is an enlarged sectional view showing a main part of a throttle valve device according to a third embodiment of the present invention.
FIG. 13 is a sectional view taken along line HH of FIG.
FIG. 14 is a block diagram showing an air conditioner incorporating the throttle valve device according to the present invention.
[Explanation of symbols]
10 Throttle valve device
11 Valve housing
12 First entrance / exit port
13 Second entrance / exit port
14 Valve room
15 Valve port
16 Valve seat
20 valve body
21 Hollow opening
24 Cylindrical filter element
25 Upstream filter element
26 Orifice member
27 Downstream filter element
28 Serration material
28A Fluid ejection channel
30 cylindrical member
31 Fluid ejection channel
40 Electromagnetic solenoid device
43 plunger
47 Electromagnetic coil
50 compressor
51 Outdoor heat exchanger
52 First indoor heat exchanger
53 Second indoor heat exchanger
54 expansion valve
65 Four-way valve

Claims (11)

第1の入出口ポート、第2の入出口ポート、前記第1の入出口ポートと常時連通している弁室、前記弁室と前記第2の入出口ポートとの間に設けられた弁ポートを画定する弁ハウジングと、前記弁室内に設けられて前記弁ポートを開閉する弁体とを有する絞り弁装置において、
前記弁体に弁閉状態において前記第1の入出口ポートと前記第2の入出口ポートとを連通接続する通路が形成され、前記通路にフィルタ要素と絞り要素が配置され、前記通路の最下流に、該通路を通過する流体を分散して噴出させる分散噴出流路が形成されている絞り弁装置。
A first inlet / outlet port, a second inlet / outlet port, a valve chamber constantly communicating with the first inlet / outlet port, a valve port provided between the valve chamber and the second inlet / outlet port And a throttle valve device having a valve body provided in the valve chamber and opening and closing the valve port.
A passage is formed in the valve body for communicating and connecting the first inlet / outlet port and the second inlet / outlet port in a valve closed state, and a filter element and a throttle element are arranged in the passage, and a most downstream portion of the passage is provided. A throttle valve device in which a dispersion ejection channel for dispersing and ejecting a fluid passing through the passage is formed.
前記分散噴出流路は前記通路の内周面に沿った環状の流体噴出流路として形成されている請求項1記載の絞り弁装置。The throttle valve device according to claim 1, wherein the dispersion ejection flow path is formed as an annular fluid ejection flow path along an inner peripheral surface of the passage. 前記通路は円形横断面形状をなし、当該通路の最下流に当該通路の内径より小さい外径の円柱状部材が前記通路に同心配置され、前記通路の内周面と前記円柱状部材の外周面との間に前記流体噴出流路が円環状に形成されている請求項2記載の絞り弁装置。The passage has a circular cross-sectional shape, and a columnar member having an outer diameter smaller than the inner diameter of the passage is arranged concentrically with the passage at the most downstream side of the passage, and an inner peripheral surface of the passage and an outer peripheral surface of the columnar member The throttle valve device according to claim 2, wherein the fluid ejection flow path is formed in an annular shape between the throttle valve and the fluid ejection path. 前記通路は円形横断面形状をなし、当該通路の最下流にセレーション形状の外周面を有するセレーション部材が前記通路に同心配置され、前記通路の内周面と前記セレーション部材の外周面との間に円環状配置で多数に分散された形態で前記流体噴出流路が形成されている請求項2記載の絞り弁装置。The passage has a circular cross-sectional shape, and a serration member having a serration-shaped outer peripheral surface is disposed concentrically with the passage at the most downstream side of the passage, between the inner peripheral surface of the passage and the outer peripheral surface of the serration member. 3. The throttle valve device according to claim 2, wherein the fluid ejection flow path is formed in a form of a large number of dispersion in an annular arrangement. セレーション部材は外周面をローレット加工によりセレーション形状に形成されている請求項4記載の絞り弁装置。The throttle valve device according to claim 4, wherein the serration member is formed in a serrated shape by knurling the outer peripheral surface. 前記分散噴出流路は複数の分散噴出孔として形成されている請求項1記載の絞り弁装置。The throttle valve device according to claim 1, wherein the dispersion ejection channel is formed as a plurality of dispersion ejection holes. 前記絞り要素は中心部に単一オリフィス孔を有しているオリフィス部材により構成されている請求項1〜6の何れか1項記載の絞り弁装置。The throttle valve device according to any one of claims 1 to 6, wherein the throttle element is constituted by an orifice member having a single orifice hole at a central portion. 前記フィルタ要素は多孔質体により構成されている請求項1〜7の何れか1項記載の絞り弁装置。The throttle valve device according to any one of claims 1 to 7, wherein the filter element is formed of a porous body. 前記絞り要素の上流側と下流側に各々前記フィルタ要素が配置され、前記絞り要素より下流側の前記フィルタ要素より更に下流側に前記分散噴出流路が形成されている請求項1〜8の何れか1項記載の絞り弁装置。9. The filter element according to claim 1, wherein the filter element is arranged on an upstream side and a downstream side of the throttle element, respectively, and the dispersion ejection flow path is formed further downstream than the filter element downstream of the throttle element. The throttle valve device according to claim 1. 前記弁室に露呈する前記弁体の外周囲に筒形フィルタ要素が装着され、前記絞り要素より上流側の前記フィルタ要素の外壁面が前記弁体に形成された複数個の径方向通路によって前記筒形フィルタ要素の内壁面に連通している請求項1〜9の何れか1項記載の絞り弁装置。A cylindrical filter element is mounted around the outside of the valve body exposed to the valve chamber, and the outer wall surface of the filter element upstream of the throttle element is formed by a plurality of radial passages formed in the valve body. The throttle valve device according to any one of claims 1 to 9, wherein the throttle valve device communicates with an inner wall surface of the cylindrical filter element. 圧縮機と、室外熱交換器と、第1の室内熱交換器と、第2の室内熱交換器と、これらをループ接続する冷媒通路と、前記室外熱交換器と前記第1の室内熱交換器との間の冷媒通路に設けられた膨張弁とを有し、前記第1の室内熱交換器と前記第2の室内熱交換器との間に、請求項1〜10の何れか1項に記載の絞り弁装置が接続されている空気調和機。A compressor, an outdoor heat exchanger, a first indoor heat exchanger, a second indoor heat exchanger, a refrigerant passage connecting them in a loop, the outdoor heat exchanger and the first indoor heat exchange 11. An expansion valve provided in a refrigerant passage between the first indoor heat exchanger and the second indoor heat exchanger. An air conditioner to which the throttle valve device according to the above is connected.
JP2003060403A 2003-02-06 2003-03-06 Throttle valve device and air conditioner Expired - Fee Related JP4077340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060403A JP4077340B2 (en) 2003-02-06 2003-03-06 Throttle valve device and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003029424 2003-02-06
JP2003060403A JP4077340B2 (en) 2003-02-06 2003-03-06 Throttle valve device and air conditioner

Publications (2)

Publication Number Publication Date
JP2004293797A true JP2004293797A (en) 2004-10-21
JP4077340B2 JP4077340B2 (en) 2008-04-16

Family

ID=33421316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060403A Expired - Fee Related JP4077340B2 (en) 2003-02-06 2003-03-06 Throttle valve device and air conditioner

Country Status (1)

Country Link
JP (1) JP4077340B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024161A (en) * 2003-07-01 2005-01-27 Fuji Koki Corp Solenoid valve
WO2006090678A1 (en) * 2005-02-22 2006-08-31 Kabushiki Kaisha Saginomiya Seisakusho Restriction device, flow rate control valve, and air conditioner having the flow rate control valve assembled therein
JP2006258381A (en) * 2005-03-17 2006-09-28 Sharp Corp Air conditioner
WO2007116991A1 (en) * 2006-04-07 2007-10-18 Daikin Industries, Ltd. Expansion valve and air conditioner
CN108119698A (en) * 2016-11-30 2018-06-05 浙江三花智能控制股份有限公司 Electric expansion valve and with its refrigeration system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152880U (en) * 1979-04-19 1980-11-04
JPH02113075U (en) * 1989-02-27 1990-09-10
JPH09310939A (en) * 1996-05-22 1997-12-02 Matsushita Seiko Co Ltd Expansion valve
JPH10160290A (en) * 1996-11-28 1998-06-19 Matsushita Seiko Co Ltd Electric expansion valve
JPH11325658A (en) * 1998-05-08 1999-11-26 Matsushita Seiko Co Ltd Expansion valve
JP2002310540A (en) * 2001-04-12 2002-10-23 Saginomiya Seisakusho Inc Restrictor and air conditioner
JP2002323273A (en) * 2001-04-26 2002-11-08 Daikin Ind Ltd Expansion valve and air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152880U (en) * 1979-04-19 1980-11-04
JPH02113075U (en) * 1989-02-27 1990-09-10
JPH09310939A (en) * 1996-05-22 1997-12-02 Matsushita Seiko Co Ltd Expansion valve
JPH10160290A (en) * 1996-11-28 1998-06-19 Matsushita Seiko Co Ltd Electric expansion valve
JPH11325658A (en) * 1998-05-08 1999-11-26 Matsushita Seiko Co Ltd Expansion valve
JP2002310540A (en) * 2001-04-12 2002-10-23 Saginomiya Seisakusho Inc Restrictor and air conditioner
JP2002323273A (en) * 2001-04-26 2002-11-08 Daikin Ind Ltd Expansion valve and air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024161A (en) * 2003-07-01 2005-01-27 Fuji Koki Corp Solenoid valve
WO2006090678A1 (en) * 2005-02-22 2006-08-31 Kabushiki Kaisha Saginomiya Seisakusho Restriction device, flow rate control valve, and air conditioner having the flow rate control valve assembled therein
JP2006266662A (en) * 2005-02-22 2006-10-05 Saginomiya Seisakusho Inc Throttle device, flow control valve, and air conditioner incorporating the same
JP2006258381A (en) * 2005-03-17 2006-09-28 Sharp Corp Air conditioner
JP4550635B2 (en) * 2005-03-17 2010-09-22 シャープ株式会社 Air conditioner
WO2007116991A1 (en) * 2006-04-07 2007-10-18 Daikin Industries, Ltd. Expansion valve and air conditioner
AU2007236648B2 (en) * 2006-04-07 2010-05-13 Daikin Industries, Ltd. Expansion valve and air conditioner
CN108119698A (en) * 2016-11-30 2018-06-05 浙江三花智能控制股份有限公司 Electric expansion valve and with its refrigeration system

Also Published As

Publication number Publication date
JP4077340B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP5038105B2 (en) Valve device and air conditioner having the same
JP6968768B2 (en) Electric valve and refrigeration cycle system
JP2006207852A (en) Valve device and refrigerating cycle device
JP5690705B2 (en) Dehumidifying valve
JP4465128B2 (en) Expansion valve and air conditioner
JP3490640B2 (en) Aperture device
JP2011133139A (en) Expansion valve
JP4071451B2 (en) Throttle device and air conditioner
JP3410197B2 (en) Solenoid valve with built-in throttle
JP2004293797A (en) Throttle valve device and air conditioner
JP4465122B2 (en) Air conditioner
JP4476757B2 (en) Valve device and refrigeration cycle device
JP2006097901A (en) Flow control valve, refrigeration air conditioner, and method of manufacturing flow control valve
JP4077205B2 (en) Bidirectional solenoid valve and air conditioner
JP4064762B2 (en) Throttle valve device and air conditioner
CN101358654B (en) Electrovalve, air conditioner and throttling device for electrovalve
JP2005331153A (en) Throttle valve device and air conditioner
WO2006090678A1 (en) Restriction device, flow rate control valve, and air conditioner having the flow rate control valve assembled therein
JP2003185299A (en) Combination valve
JP4152209B2 (en) Solenoid valve for air conditioner
JP2003202167A (en) Flow rate control valve, refrigerating air conditioning device and method for manufacturing flow rate control valve
JP3951983B2 (en) Refrigerant control valve
JP2002098443A (en) Refrigeration cycle system
JP4306366B2 (en) Refrigerant control valve
JP2005024161A (en) Solenoid valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080131

R150 Certificate of patent or registration of utility model

Ref document number: 4077340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees