JP7082798B2 - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
JP7082798B2
JP7082798B2 JP2018055804A JP2018055804A JP7082798B2 JP 7082798 B2 JP7082798 B2 JP 7082798B2 JP 2018055804 A JP2018055804 A JP 2018055804A JP 2018055804 A JP2018055804 A JP 2018055804A JP 7082798 B2 JP7082798 B2 JP 7082798B2
Authority
JP
Japan
Prior art keywords
coil spring
valve
flow path
central axis
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018055804A
Other languages
Japanese (ja)
Other versions
JP2019168152A (en
Inventor
隆 茂木
耕平 久保田
潤哉 早川
亮 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2018055804A priority Critical patent/JP7082798B2/en
Publication of JP2019168152A publication Critical patent/JP2019168152A/en
Application granted granted Critical
Publication of JP7082798B2 publication Critical patent/JP7082798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Details Of Valves (AREA)
  • Check Valves (AREA)

Description

本発明は、膨張弁に関する。 The present invention relates to an expansion valve.

従来、自動車に搭載される空調装置等に用いる冷凍サイクルについては、設置スペースや配管を省略するために、冷媒の通過量を温度に応じて調整する感温式の膨張弁が使用されている。 Conventionally, in the refrigeration cycle used for an air conditioner mounted on an automobile, a temperature-sensitive expansion valve that adjusts the amount of refrigerant passing through according to the temperature has been used in order to omit installation space and piping.

ところで、このような膨張弁において騒音が発生することが確認された。騒音の発生要因について、具体的に説明する。あるタイプの膨張弁においては、冷媒が入口ポートから弁室を通り、出口ポートへ向かう際に弁座と弁体とからなる弁を通過する。ここで、弁の開閉機能を確保するために、弁座に向かって弁体を付勢するコイルばねを弁室に設けている。しかるに、入口ポートから流入した冷媒がコイルばねの狭い巻線間を通過する際に流れの乱れが発生し、これが起振力となってコイルばねを振動させることにより、騒音の発生を招来する。 By the way, it was confirmed that noise is generated in such an expansion valve. The factors that generate noise will be explained in detail. In one type of expansion valve, the refrigerant passes through the valve chamber from the inlet port and through the valve consisting of the valve seat and valve body as it travels toward the outlet port. Here, in order to secure the opening / closing function of the valve, a coil spring for urging the valve body toward the valve seat is provided in the valve chamber. However, when the refrigerant flowing in from the inlet port passes between the narrow windings of the coil spring, the flow is turbulent, which becomes a vibrating force and vibrates the coil spring, which causes noise.

これに対し、特許文献1には、弁体とコイルばねとを連結するばね受けに、コイルばねの内側に沿って延在する円柱状の垂下体を設け、これによりコイルばねの巻線間を冷媒が通過することを抑制し、騒音の低減を図ることができる膨張弁が開示されている。 On the other hand, in Patent Document 1, a columnar hanging body extending along the inside of the coil spring is provided in the spring receiver connecting the valve body and the coil spring, whereby the space between the windings of the coil spring is provided. An expansion valve capable of suppressing the passage of a refrigerant and reducing noise is disclosed.

特許第6182363号公報Japanese Patent No. 6182363

特許文献1に記載の膨張弁によれば、大きな騒音抑制効果が期待できるが、膨張弁の仕様によっては、低騒音化を図りつつもコストを優先して抑制したいという場合もある。 According to the expansion valve described in Patent Document 1, a large noise suppression effect can be expected, but depending on the specifications of the expansion valve, it may be desired to prioritize and suppress the cost while reducing the noise.

そこで本発明の目的は、低コストであり且つ低騒音を実現できる、改良された膨張弁を提供することにある。 Therefore, an object of the present invention is to provide an improved expansion valve that can realize low cost and low noise.

上記目的を達成するために、本発明による膨張弁は、
供給側流路と排出側流路との間に設けられた弁室に配置され、前記供給側流路から前記排出側流路へと向かう流体が通過する環状の弁座を備えた弁本体と、
前記弁座に着座することにより前記流体の通過を阻止し、前記弁座から離間することにより前記流体の通過を許容する弁体と、
前記供給側流路から流入する流体の流れに対して側面を向けて前記弁室に配置され、前記弁体を前記弁座に向かって付勢するコイルばねと、
前記コイルばねによる付勢力に抗して、前記弁体を前記弁座から離間する方向に押圧する作動部材と、を有し、
前記供給側流路から流体が流入する前記弁室の入口の中心軸線は、前記コイルばねの中心軸線に対して交差しておらず、前記コイルばねの中心軸線に対して直交方向に見たときに、前記入口の中心軸線と前記コイルばねの中心軸線とのなす角は90度であり、
前記入口は、前記コイルばねの中心軸線を挟んで両側に配置される、ことを特徴とする。
In order to achieve the above object, the expansion valve according to the present invention is
A valve body provided in a valve chamber provided between a supply-side flow path and a discharge-side flow path, and having an annular valve seat through which a fluid flowing from the supply-side flow path to the discharge-side flow path passes. ,
A valve body that blocks the passage of the fluid by sitting on the valve seat and allows the fluid to pass by separating from the valve seat.
A coil spring arranged in the valve chamber with the side surface facing the flow of the fluid flowing from the supply side flow path and urging the valve body toward the valve seat.
It has an actuating member that presses the valve body in a direction away from the valve seat against the urging force of the coil spring.
When the central axis of the inlet of the valve chamber into which the fluid flows from the supply side flow path does not intersect the central axis of the coil spring and is viewed in a direction orthogonal to the central axis of the coil spring. In addition, the angle between the central axis of the inlet and the central axis of the coil spring is 90 degrees.
The inlet is arranged on both sides of the central axis of the coil spring .

本発明により、低コストであり且つ低騒音を実現できる、改良された膨張弁を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an improved expansion valve that can realize low cost and low noise.

本実施形態における膨張弁1を、冷媒循環システムに適用した例を模式的に示す概略断面図である。It is schematic cross-sectional view which shows typically the example which applied the expansion valve 1 in this embodiment to a refrigerant circulation system. 図1の膨張弁1を供給側流路がある側から見た側面図である。It is a side view which looked at the expansion valve 1 of FIG. 1 from the side which has a supply side flow path. 付勢装置4の近傍を拡大して示す断面図である。It is sectional drawing which shows the vicinity of the urging device 4 enlarged. 比較例にかかる構成を示す図3と同様な断面図である。It is a cross-sectional view similar to FIG. 3 which shows the structure which concerns on a comparative example. 比較例にかかる構成を示す図2と同様な側面図であるIt is the same side view as FIG. 2 which shows the structure which concerns on the comparative example. 本実施の形態の変形例にかかる第1流路21周辺を示す側面図である。It is a side view which shows the periphery of the 1st flow path 21 which concerns on the modification of this embodiment. 本実施の形態の別な変形例にかかる第1流路21周辺を示す側面図である。It is a side view which shows the periphery of the 1st flow path 21 which concerns on another modification of this embodiment.

以下、図面を参照して、本発明にかかる実施形態について説明する。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings.

(方向の定義)
本明細書において、弁体3から作動棒5に向かう方向を「上方向」と定義し、作動棒5から弁体3に向かう方向を「下方向」と定義する。よって、本明細書では、膨張弁1の姿勢に関わらず、弁体3から作動棒5に向かう方向を「上方向」と呼ぶ。
また、「入口の中心」とは、入口の断面形状が点対称である場合には、対称の中心をいい、入口の断面形状が非点対称である場合には、その断面形状の重心をいう。更に、「流れ方向」とは、図3に矢印Fで示すように、第1流路21から接続路21aを通り弁室VSに向かう方向であって、接続路21aの軸線方向をいうものとする。
(Definition of direction)
In the present specification, the direction from the valve body 3 toward the actuating rod 5 is defined as "upward", and the direction from the actuating rod 5 toward the valve body 3 is defined as "downward". Therefore, in the present specification, the direction from the valve body 3 toward the operating rod 5 is referred to as "upward" regardless of the posture of the expansion valve 1.
The "center of the entrance" means the center of symmetry when the cross-sectional shape of the entrance is point-symmetrical, and the center of gravity of the cross-sectional shape when the cross-sectional shape of the entrance is non-point-symmetrical. .. Further, the "flow direction" is a direction from the first flow path 21 to the valve chamber VS through the connection path 21a, as shown by an arrow F in FIG. 3, and refers to the axial direction of the connection path 21a. do.

(膨張弁の概要)
図1を参照して、本実施形態における膨張弁1の概要について説明する。図1は、本実施形態における膨張弁1を、冷媒循環システム100に適用した例を模式的に示す概略断面図である。図2は、図1の膨張弁1を供給側流路がある側から見た側面図である。なお、図1において、パワーエレメント8に対応する部分は側面図で示されており、その他の部分は断面図で示されている。本実施例では、膨張弁1は、コンプレッサ101と、コンデンサ102と、エバポレータ104とに流体接続されている。
(Overview of expansion valve)
The outline of the expansion valve 1 in this embodiment will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view schematically showing an example in which the expansion valve 1 in the present embodiment is applied to the refrigerant circulation system 100. FIG. 2 is a side view of the expansion valve 1 of FIG. 1 as viewed from the side where the supply side flow path is located. In FIG. 1, the portion corresponding to the power element 8 is shown in a side view, and the other portion is shown in a cross-sectional view. In this embodiment, the expansion valve 1 is fluidly connected to the compressor 101, the condenser 102, and the evaporator 104.

図1において、膨張弁1は、弁室VSを備える弁本体2と、弁体3と、付勢装置4と、作動棒(作動部材)5と、リングばね6とを具備する。 In FIG. 1, the expansion valve 1 includes a valve body 2 provided with a valve chamber VS, a valve body 3, an urging device 4, an actuating rod (actuating member) 5, and a ring spring 6.

弁本体2は、弁室VSに加え、第1流路21および第2流路22を備える。第1流路21は供給側流路であり、弁室VSには、供給側流路を介して冷媒(流体ともいう)が供給される。第2流路22は排出側流路であり、弁室VS内の流体は、作動棒挿通孔27及び排出側流路を介して膨張弁外に排出される。第1流路21と弁室VSとの間は、第1流路21より小径の接続路21aにより連通している。 The valve body 2 includes a first flow path 21 and a second flow path 22 in addition to the valve chamber VS. The first flow path 21 is a supply-side flow path, and a refrigerant (also referred to as a fluid) is supplied to the valve chamber VS via the supply-side flow path. The second flow path 22 is a discharge side flow path, and the fluid in the valve chamber VS is discharged to the outside of the expansion valve through the operating rod insertion hole 27 and the discharge side flow path. The first flow path 21 and the valve chamber VS communicate with each other by a connecting path 21a having a smaller diameter than the first flow path 21.

本実施の形態では、第1流路21と弁室VSとを仕切る隔壁21bに、図2に示すようにそれぞれ断面形状が円形である一対の接続路21aが、コイルばね41(後述)の中心軸線Xを挟んで両側に配置されている。接続路21aが、第2流路22から流体が流入する弁室VSの入口になる。ここで、各接続路21aの中心軸線O(図1で左右方向、図2で紙面垂直方向に延在する)は、コイルばね41の中心軸線X(図2で上下方向に延在する)に対して交差していない。また、接続路21aを流れ方向F(図2で紙面垂直方向)に投影したときに、投影された接続路21aは、コイルばね41の中心軸線Xに重なっていない。 In the present embodiment, a pair of connecting paths 21a having a circular cross-sectional shape, as shown in FIG. 2, are centered on the coil spring 41 (described later) on the partition wall 21b that separates the first flow path 21 and the valve chamber VS. They are arranged on both sides of the axis X. The connecting path 21a serves as an inlet for the valve chamber VS into which the fluid flows from the second flow path 22. Here, the central axis O of each connection path 21a (extending in the left-right direction in FIG. 1 and extending in the vertical direction of the paper surface in FIG. 2) is aligned with the central axis X of the coil spring 41 (extending in the vertical direction in FIG. 2). On the other hand, it does not intersect. Further, when the connecting path 21a is projected in the flow direction F (the direction perpendicular to the paper surface in FIG. 2), the projected connecting path 21a does not overlap with the central axis X of the coil spring 41.

図1において、弁体3は、弁室VS内に配置される。弁体3が弁本体2の環状の弁座20に着座しているとき、第1流路21と第2流路22とは非連通状態となる。一方、弁体3が弁座20から離間しているとき、第1流路21と第2流路22とは連通状態となる。図1は、弁体3が弁座20から離間した状態を示している。 In FIG. 1, the valve body 3 is arranged in the valve chamber VS. When the valve body 3 is seated on the annular valve seat 20 of the valve body 2, the first flow path 21 and the second flow path 22 are in a non-communication state. On the other hand, when the valve body 3 is separated from the valve seat 20, the first flow path 21 and the second flow path 22 are in a communicating state. FIG. 1 shows a state in which the valve body 3 is separated from the valve seat 20.

作動棒挿通孔27に隙間を持って挿通された作動棒5の下端は、弁体3の上面に接触している。また、作動棒5は、付勢装置4による付勢力に抗して弁体3を開弁方向に押圧することができる。作動棒5が下方向に移動するとき、弁体3は、弁座20から離間し、膨張弁1が開状態となる。 The lower end of the actuating rod 5 inserted through the actuating rod insertion hole 27 with a gap is in contact with the upper surface of the valve body 3. Further, the actuating rod 5 can press the valve body 3 in the valve opening direction against the urging force of the urging device 4. When the operating rod 5 moves downward, the valve body 3 is separated from the valve seat 20 and the expansion valve 1 is opened.

リングばね6は、作動棒5の振動を抑制する防振部材である。このリングばね6は、弁本体2の環状部26に配置されて、内周側に突出した爪部により、作動棒5の外周面に所定の弾性力を付与するようになっている。 The ring spring 6 is a vibration-proof member that suppresses the vibration of the operating rod 5. The ring spring 6 is arranged in the annular portion 26 of the valve body 2 and is adapted to apply a predetermined elastic force to the outer peripheral surface of the operating rod 5 by the claw portion protruding toward the inner peripheral side.

図3は、付勢装置4の近傍を拡大して示す断面図である。付勢装置4は、断面円形の線材を螺旋状に巻いたコイルばね41と、弁体サポート42と、ばね受け部材43とを有する。接続路21aの中心軸線Oは、一点鎖線で示すように左右方向に延在している。 FIG. 3 is an enlarged cross-sectional view showing the vicinity of the urging device 4. The urging device 4 has a coil spring 41 in which a wire having a circular cross section is spirally wound, a valve body support 42, and a spring receiving member 43. The central axis O of the connecting path 21a extends in the left-right direction as shown by the alternate long and short dash line.

SUS製の弁体サポート42は、フランジ状の保持部42aと、保持部42aの下端中央から下方に延在する円筒状の内側筒体42bとから一体的に形成されている。内側筒体42bの外径は、コイルばね41の内径に略等しい。保持部42aの上面には、球状の弁体3が溶接され、両者は一体となっている。 The valve body support 42 made of SUS is integrally formed of a flange-shaped holding portion 42a and a cylindrical inner cylinder 42b extending downward from the center of the lower end of the holding portion 42a. The outer diameter of the inner cylinder 42b is substantially equal to the inner diameter of the coil spring 41. A spherical valve body 3 is welded to the upper surface of the holding portion 42a, and both are integrated.

樹脂製であるばね受け部材43は、底部43aと、底部43aの上面から上方に延在する外側管状部43bとを有する。環状の底部43aの外周には、弁本体2の弁室VSに連通する取り付け孔2aの開口端近傍に形成された雌ねじ2bに螺合する雄ねじ43cが形成され、また環状の底部43aの下面には、不図示の工具等を係合させてばね受け部材43を回転させるための係合凹部43dが形成されている。外側管状部43bの内径は、コイルばね41の外径に略等しい。 The resin-made spring receiving member 43 has a bottom portion 43a and an outer tubular portion 43b extending upward from the upper surface of the bottom portion 43a. On the outer circumference of the annular bottom 43a, a male screw 43c screwed into the female screw 2b formed near the opening end of the mounting hole 2a communicating with the valve chamber VS of the valve body 2 is formed, and on the lower surface of the annular bottom 43a. Is formed with an engaging recess 43d for rotating the spring receiving member 43 by engaging a tool or the like (not shown). The inner diameter of the outer tubular portion 43b is substantially equal to the outer diameter of the coil spring 41.

外側管状部43bの外周には、段部43eが形成され、これに対向して、取り付け孔2aと弁室VSとの交差部には段部2cが形成されており、段部43eと段部2cとの間の環状空間内にO-リング44が配置されている。O-リング44は、取り付け孔2aとばね受け部材43との間を密封するものである。 A step portion 43e is formed on the outer periphery of the outer tubular portion 43b, and a step portion 2c is formed at the intersection of the mounting hole 2a and the valve chamber VS so as to face the step portion 43e. The O-ring 44 is arranged in the annular space between the 2c and the ring 44. The O-ring 44 seals between the mounting hole 2a and the spring receiving member 43.

図3において、組み付け時には、弁体3を溶接された弁体サポート42の内側筒体42bを、コイルばね41の上端から内部へと挿入して、コイルばね41の上端を保持部42aの下面に当接させる。更に、コイルばね41の下端をばね受け部材43の外側管状部43bの内側に挿入し、底部43aの上面に当接させる。このとき、O-リング44を段部43eに取り付けておく。 In FIG. 3, at the time of assembly, the inner cylinder 42b of the valve body support 42 to which the valve body 3 is welded is inserted into the inside from the upper end of the coil spring 41, and the upper end of the coil spring 41 is placed on the lower surface of the holding portion 42a. Make a contact. Further, the lower end of the coil spring 41 is inserted inside the outer tubular portion 43b of the spring receiving member 43 and brought into contact with the upper surface of the bottom portion 43a. At this time, the O-ring 44 is attached to the step portion 43e.

かかる状態を保持しつつ、弁体サポート42、コイルばね41、およびばね受け部材43からなるアッセンブリを、取り付け孔2aから弁室VS内へと進入させ、雌ねじ2bに雄ねじ43cを螺合させて、不図示の工具を用いて所定位置まで追い込む。このとき、コイルばね41の側面が隔壁21bに正対するようになる。 While maintaining this state, the assembly including the valve body support 42, the coil spring 41, and the spring receiving member 43 is made to enter the valve chamber VS from the mounting hole 2a, and the male screw 43c is screwed into the female screw 2b. Use a tool (not shown) to drive it into place. At this time, the side surface of the coil spring 41 faces the partition wall 21b.

図1を参照して、膨張弁1の動作例について説明する。コンプレッサ101で加圧された冷媒は、コンデンサ102で液化され、膨張弁1に送られる。また、膨張弁1で断熱膨張された冷媒はエバポレータ104に送り出され、エバポレータ104で、エバポレータの周囲を流れる空気と熱交換される。エバポレータ104から戻る冷媒は、膨張弁1(より具体的には、戻り流路23)を通ってコンプレッサ101側へ戻される。 An operation example of the expansion valve 1 will be described with reference to FIG. The refrigerant pressurized by the compressor 101 is liquefied by the condenser 102 and sent to the expansion valve 1. Further, the refrigerant adiabatically expanded by the expansion valve 1 is sent out to the evaporator 104, and the evaporator 104 exchanges heat with the air flowing around the evaporator. The refrigerant returning from the evaporator 104 is returned to the compressor 101 side through the expansion valve 1 (more specifically, the return flow path 23).

膨張弁1には、コンデンサ102から高圧冷媒が供給される。より具体的には、コンデンサ102からの高圧冷媒は、第1流路21を介して弁室VSに供給される。 A high-pressure refrigerant is supplied to the expansion valve 1 from the condenser 102. More specifically, the high-pressure refrigerant from the condenser 102 is supplied to the valve chamber VS via the first flow path 21.

弁体3が、弁座20に着座しているとき(換言すれば、膨張弁1が閉状態のとき)には、弁室VSの上流側の第1流路21と弁室VSの下流側の第2流路22とは、非連通状態である。他方、弁体3が、弁座20から離間しているとき(換言すれば、膨張弁1が開状態のとき)には、弁室VSに供給された冷媒は、作動棒挿通孔27及び第2流路22を通って、エバポレータ104へ送り出される。なお、膨張弁1の閉状態と開状態との間の切り換えは、パワーエレメント8に接続された作動棒5によって行われる。 When the valve body 3 is seated on the valve seat 20 (in other words, when the expansion valve 1 is in the closed state), the first flow path 21 on the upstream side of the valve chamber VS and the downstream side of the valve chamber VS. The second flow path 22 is in a non-communication state. On the other hand, when the valve body 3 is separated from the valve seat 20 (in other words, when the expansion valve 1 is in the open state), the refrigerant supplied to the valve chamber VS is the working rod insertion hole 27 and the first. It is sent out to the evaporator 104 through the two flow paths 22. The switching between the closed state and the open state of the expansion valve 1 is performed by the operating rod 5 connected to the power element 8.

図1、2の例では、パワーエレメント8は、膨張弁1の上端部に配置されている。図示していないが、パワーエレメント8の内部には、ダイアフラムにより仕切られた第1空間と第2空間とが設けられ、第1空間には作動ガスが充填されている。 In the examples of FIGS. 1 and 2, the power element 8 is arranged at the upper end portion of the expansion valve 1. Although not shown, the inside of the power element 8 is provided with a first space and a second space partitioned by a diaphragm, and the first space is filled with a working gas.

ダイアフラムの下面は、ダイアフラム支持部材を介して作動棒5に接続される。このため、第1空間内の作動ガスが液化されると、作動棒5は上方向に移動し、液化された作動ガスが気化されると、作動棒5は下方向に移動する。こうして、膨張弁1の開状態と閉状態との間の切り換えが行われる。 The lower surface of the diaphragm is connected to the actuating rod 5 via the diaphragm support member. Therefore, when the working gas in the first space is liquefied, the working rod 5 moves upward, and when the liquefied working gas is vaporized, the working rod 5 moves downward. In this way, switching between the open state and the closed state of the expansion valve 1 is performed.

パワーエレメント8の第2空間は、戻り流路23と連通している。このため、戻り流路23を流れる冷媒の温度、圧力に応じて、第1空間内の作動ガスの相(気相、液相等)が変化し、作動棒5が駆動される。換言すれば、図1、2に記載の膨張弁1では、エバポレータ104から膨張弁1に戻る冷媒の温度、圧力に応じて、膨張弁1からエバポレータ104に向けて供給される冷媒の量が自動的に調整される。 The second space of the power element 8 communicates with the return flow path 23. Therefore, the phase (gas phase, liquid phase, etc.) of the working gas in the first space changes according to the temperature and pressure of the refrigerant flowing through the return flow path 23, and the working rod 5 is driven. In other words, in the expansion valve 1 shown in FIGS. 1 and 2, the amount of the refrigerant supplied from the expansion valve 1 to the evaporator 104 is automatically adjusted according to the temperature and pressure of the refrigerant returning from the evaporator 104 to the expansion valve 1. Is adjusted.

次に、比較例を参照して、本実施形態の効果について説明する。図4は、比較例にかかる構成を示す図3と同様な断面図である。図5は、比較例にかかる構成を示す図2と同様な側面図である。比較例では、図5に示すように単一の接続路21a’が、第1流路21の中央に形成されている。すなわち、接続路21a’の中心軸線O(図4で左右方向、図5で紙面垂直方向に延在)は、コイルばね41の中心軸線Xと交差している。それ以外の構成は、上述した実施の形態と同様である。 Next, the effect of this embodiment will be described with reference to a comparative example. FIG. 4 is a cross-sectional view similar to FIG. 3 showing the configuration according to the comparative example. FIG. 5 is a side view similar to FIG. 2 showing a configuration according to a comparative example. In the comparative example, as shown in FIG. 5, a single connecting path 21a'is formed in the center of the first flow path 21. That is, the central axis O of the connecting path 21a'(extending in the left-right direction in FIG. 4 and in the vertical direction of the paper surface in FIG. 5) intersects the central axis X of the coil spring 41. Other than that, the configuration is the same as that of the above-described embodiment.

比較例の場合、弁体3が弁座20から離間すると、第1流路21及び接続路21a’から弁室VSに流入する冷媒が、図4に矢印Bで示すように、コイルばね41の巻線間の隙間δからコイルばね41内に進入し、中心を通って反対側から抜け出るようになっている。この際に、冷媒がコイルばね41を振動させ、それにより騒音が発生することとなる。 In the case of the comparative example, when the valve body 3 is separated from the valve seat 20, the refrigerant flowing into the valve chamber VS from the first flow path 21 and the connection path 21a'is the coil spring 41 as shown by an arrow B in FIG. It enters the coil spring 41 from the gap δ between the windings, passes through the center, and exits from the opposite side. At this time, the refrigerant vibrates the coil spring 41, which causes noise.

これに対し本実施形態によれば、図2に示すように、一対の接続路21aがコイルばね41の中心軸線Xを挟んで両側に配置され、各接続路21aの中心軸線は、コイルばね41の中心軸線Xと幾何学的にねじれの関係にあり、また流れ方向(図2で紙面垂直方向)に接続路21aを投影したときに、投影された接続路21aがコイルばね41の中心軸線Xからずれた位置にある。換言すれば、接続路21aからコイルばね41を見たときに、コイルばね41の中心軸線Xは、弁室VSと第1流路21とを仕切る隔壁21bに隠れて見えない。つまり、接続路21a間の隔壁21bが、冷媒がコイルばね41の中央を通過することを制限する遮蔽物となる。 On the other hand, according to the present embodiment, as shown in FIG. 2, a pair of connecting paths 21a are arranged on both sides of the central axis X of the coil spring 41, and the central axis of each connecting path 21a is the coil spring 41. When the connection path 21a is projected in the flow direction (vertical to the paper surface in FIG. 2), the projected connection path 21a is the center axis X of the coil spring 41. It is in a position deviated from. In other words, when the coil spring 41 is viewed from the connecting path 21a, the central axis X of the coil spring 41 is hidden behind the partition wall 21b that separates the valve chamber VS and the first flow path 21 and cannot be seen. That is, the partition wall 21b between the connection paths 21a serves as a shield that restricts the refrigerant from passing through the center of the coil spring 41.

したがって、接続路21aから弁室VSに流入する冷媒は、コイルばね41の中央を避けて通過するので、コイルばね41を起振させる力が弱まり、騒音の発生を抑制できる。このように騒音の抑制を、接続路21aの位置を変更するのみで対応できるので、コストの増大を最小限に抑えることができる。 Therefore, since the refrigerant flowing into the valve chamber VS from the connection path 21a passes away from the center of the coil spring 41, the force for vibrating the coil spring 41 is weakened, and the generation of noise can be suppressed. Since the noise can be suppressed only by changing the position of the connection path 21a in this way, the increase in cost can be minimized.

なお、接続路21aは、その中心軸線Oがコイルばね41の中心軸線Xとずれていれば足り、また一対である必要はなく、単一もしくは3個以上でもよい。更に、接続路21aの断面形状は円形に限らず、矩形、その他の形状でもよい。 It is sufficient that the central axis O of the connection path 21a deviates from the central axis X of the coil spring 41, and the connection path 21a does not have to be a pair, and may be single or three or more. Further, the cross-sectional shape of the connecting path 21a is not limited to a circular shape, but may be a rectangular shape or another shape.

図6は、本実施の形態の変形例にかかる第1流路21周辺を示す側面図である。接続路21cの中心軸線Oは紙面垂直方向に延在しており、コイルばね41の中心軸線Xと交差していない。本変形例では、一対の接続路21cが縦に細長の略三日月形状断面を有しているため、円形断面形状の接続路21aに比べて、接続路21cを通過する冷媒の流量を増大させることができる。また、接続路21cが隔壁21bの周辺に設けられており、図の方向に見てコイルばね41は隔壁21bに完全に隠れている。換言すれば、冷媒の流れ方向(図6で紙面垂直方向)に沿って投影された接続路21cは、コイルばね41に重なっていない。これにより、接続路21cから弁室に流入する冷媒は、コイルばね41を避けて流れるので、コイルばね41を起振させる力が更に弱まり、騒音の発生を抑制できる。 FIG. 6 is a side view showing the periphery of the first flow path 21 according to the modified example of the present embodiment. The central axis O of the connecting path 21c extends in the direction perpendicular to the paper surface and does not intersect the central axis X of the coil spring 41. In this modification, since the pair of connecting paths 21c have a vertically elongated substantially crescent-shaped cross section, the flow rate of the refrigerant passing through the connecting path 21c is increased as compared with the connecting path 21a having a circular cross section. Can be done. Further, a connecting path 21c is provided around the partition wall 21b, and the coil spring 41 is completely hidden by the partition wall 21b when viewed in the direction of the drawing. In other words, the connection path 21c projected along the flow direction of the refrigerant (the direction perpendicular to the paper surface in FIG. 6) does not overlap with the coil spring 41. As a result, the refrigerant flowing into the valve chamber from the connection path 21c flows away from the coil spring 41, so that the force for vibrating the coil spring 41 is further weakened, and the generation of noise can be suppressed.

図7は、本実施の形態の別な変形例にかかる第1流路21周辺を示す側面図である。接続路21dの中心軸線Oは紙面垂直方向に延在しており、コイルばね41の中心軸線Xと交差していない。本変形例でも、一対の接続路21dが略三日月形状断面を有しているが、その断面積が大きく、コイルばね41の一部が接続路21dを通して見えている。ただし、冷媒の流れ方向(図7で紙面垂直方向)に接続路21dを投影したときに、投影された接続路21dがコイルばね41の中心軸線Xと重なっていない。 FIG. 7 is a side view showing the periphery of the first flow path 21 according to another modification of the present embodiment. The central axis O of the connecting path 21d extends in the direction perpendicular to the paper surface and does not intersect the central axis X of the coil spring 41. Also in this modification, the pair of connecting paths 21d have a substantially crescent-shaped cross section, but the cross-sectional area is large, and a part of the coil spring 41 is visible through the connecting path 21d. However, when the connecting path 21d is projected in the flow direction of the refrigerant (the direction perpendicular to the paper surface in FIG. 7), the projected connecting path 21d does not overlap with the central axis X of the coil spring 41.

本変形例は、図6の変形例に対して接続路の断面積を更に増大させた例である。これにより、冷媒の流入量を増大させつつ、騒音低減を図ることができる。 This modification is an example in which the cross-sectional area of the connecting path is further increased with respect to the modification of FIG. As a result, it is possible to reduce noise while increasing the inflow amount of the refrigerant.

なお、以上の実施の形態に加え、コイルばね41の内側もしくは外側に、冷媒の流れを制限する部材を挿入することにより、その相乗効果にて騒音をより低減できる。 In addition to the above embodiments, by inserting a member that restricts the flow of the refrigerant inside or outside the coil spring 41, noise can be further reduced by the synergistic effect.

なお、本発明は、上述の実施形態に限定されない。本発明の範囲内において、上述の実施形態の任意の構成要素の変形が可能である。また、上述の実施形態において任意の構成要素の追加または省略が可能である。 The present invention is not limited to the above-described embodiment. Within the scope of the present invention, any component of the above-described embodiment can be modified. Further, in the above-described embodiment, any component can be added or omitted.

1 :膨張弁
2 :弁本体
3 :弁体
4 :付勢装置
5 :作動棒
6 :リングばね
8 :パワーエレメント
20 :弁座
21 :第1流路
22 :第2流路
23 :戻り流路
26 :環状部
27 :作動棒挿通孔
41 :コイルばね
42 :弁体サポート
43 :ばね受け部材
100 :冷媒循環システム
101 :コンプレッサ
102 :コンデンサ
104 :エバポレータ
VS :弁室

1: Expansion valve 2: Valve body 3: Valve body 4: Energizer 5: Actuating rod 6: Ring spring 8: Power element 20: Valve seat 21: First flow path 22: Second flow path 23: Return flow path 26: Circular portion 27: Operating rod insertion hole 41: Coil spring 42: Valve body support 43: Spring receiving member 100: Refrigerant circulation system 101: Compressor 102: Condenser 104: Evaporator VS: Valve chamber

Claims (4)

供給側流路と排出側流路との間に設けられた弁室に配置され、前記供給側流路から前記排出側流路へと向かう流体が通過する環状の弁座を備えた弁本体と、
前記弁座に着座することにより前記流体の通過を阻止し、前記弁座から離間することにより前記流体の通過を許容する弁体と、
前記供給側流路から流入する流体の流れに対して側面を向けて前記弁室に配置され、前記弁体を前記弁座に向かって付勢するコイルばねと、
前記コイルばねによる付勢力に抗して、前記弁体を前記弁座から離間する方向に押圧する作動部材と、を有し、
前記供給側流路から流体が流入する前記弁室の入口の中心軸線は、前記コイルばねの中心軸線に対して交差しておらず、前記コイルばねの中心軸線に対して直交方向に見たときに、前記入口の中心軸線と前記コイルばねの中心軸線とのなす角は90度であり、
前記入口は、前記コイルばねの中心軸線を挟んで両側に配置される、
ことを特徴とする膨張弁。
A valve body provided in a valve chamber provided between a supply-side flow path and a discharge-side flow path, and having an annular valve seat through which a fluid flowing from the supply-side flow path to the discharge-side flow path passes. ,
A valve body that blocks the passage of the fluid by sitting on the valve seat and allows the fluid to pass by separating from the valve seat.
A coil spring arranged in the valve chamber with the side surface facing the flow of the fluid flowing from the supply side flow path and urging the valve body toward the valve seat.
It has an actuating member that presses the valve body in a direction away from the valve seat against the urging force of the coil spring.
When the central axis of the inlet of the valve chamber into which the fluid flows from the supply side flow path does not intersect the central axis of the coil spring and is viewed in a direction orthogonal to the central axis of the coil spring. In addition, the angle between the central axis of the inlet and the central axis of the coil spring is 90 degrees.
The inlets are arranged on both sides of the central axis of the coil spring.
An expansion valve characterized by that.
前記供給側流路から前記コイルばねの側面に向けて、前記弁室の入口を投影した場合に、投影した前記入口は、前記コイルばねの中心軸線に重なっていない、
ことを特徴とする請求項1に記載の膨張弁。
When the inlet of the valve chamber is projected from the supply side flow path toward the side surface of the coil spring, the projected inlet does not overlap the central axis of the coil spring.
The expansion valve according to claim 1.
前記投影した入口は、前記コイルばねに重なっていない、
ことを特徴とする請求項1または2に記載の膨張弁。
The projected inlet does not overlap the coil spring,
The expansion valve according to claim 1 or 2.
前記入口の断面は、略円形または略三日月形状を有する、
ことを特徴とする請求項1~のいずれか一項に記載の膨張弁。
The cross section of the entrance has a substantially circular or substantially crescent shape.
The expansion valve according to any one of claims 1 to 3 , wherein the expansion valve is characterized in that.
JP2018055804A 2018-03-23 2018-03-23 Expansion valve Active JP7082798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018055804A JP7082798B2 (en) 2018-03-23 2018-03-23 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018055804A JP7082798B2 (en) 2018-03-23 2018-03-23 Expansion valve

Publications (2)

Publication Number Publication Date
JP2019168152A JP2019168152A (en) 2019-10-03
JP7082798B2 true JP7082798B2 (en) 2022-06-09

Family

ID=68108238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018055804A Active JP7082798B2 (en) 2018-03-23 2018-03-23 Expansion valve

Country Status (1)

Country Link
JP (1) JP7082798B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002140A (en) 2009-06-18 2011-01-06 Tgk Co Ltd Expansion valve
JP2011133139A (en) 2009-12-22 2011-07-07 Fuji Koki Corp Expansion valve
JP2018021717A (en) 2016-08-04 2018-02-08 株式会社不二工機 Expansion valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09144942A (en) * 1995-11-22 1997-06-03 Fuji Koki:Kk Expansion valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002140A (en) 2009-06-18 2011-01-06 Tgk Co Ltd Expansion valve
JP2011133139A (en) 2009-12-22 2011-07-07 Fuji Koki Corp Expansion valve
JP2018021717A (en) 2016-08-04 2018-02-08 株式会社不二工機 Expansion valve

Also Published As

Publication number Publication date
JP2019168152A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6370269B2 (en) Motorized valve and refrigeration cycle
JP6367164B2 (en) Pressure operated valve and refrigeration cycle
JP5826437B1 (en) Expansion valve and refrigeration cycle apparatus
JP4489603B2 (en) Check valve
US8267329B2 (en) Expansion valve with noise reduction means
JP2011133139A (en) Expansion valve
JP2017026191A (en) Temperature expansion valve and refrigeration cycle
KR20180085352A (en) Expansion valve
JP7082798B2 (en) Expansion valve
JP7074322B2 (en) Expansion valve
EP1500885A1 (en) Expansion valve
JP7074321B2 (en) Expansion valve
JP2006084108A (en) Valve device and refrigerating cycle device
JP7016155B2 (en) Expansion valve
JP2014001895A (en) Expansion valve
CN111133240B (en) Expansion valve
JP7089769B2 (en) Expansion valve
WO2019181377A1 (en) Expansion valve
JP2011133157A (en) Expansion valve
JP2019163834A (en) Expansion valve
JP2014009830A (en) Expansion valve
JP2018035993A (en) Expansion valve
JP2019158296A (en) Expansion valve
JP2016044861A (en) Expansion valve
JP2018035866A (en) Expansion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7082798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150