JP2014001895A - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
JP2014001895A
JP2014001895A JP2012137614A JP2012137614A JP2014001895A JP 2014001895 A JP2014001895 A JP 2014001895A JP 2012137614 A JP2012137614 A JP 2012137614A JP 2012137614 A JP2012137614 A JP 2012137614A JP 2014001895 A JP2014001895 A JP 2014001895A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
support member
inlet port
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012137614A
Other languages
Japanese (ja)
Other versions
JP6063651B2 (en
Inventor
Yasushi Inoue
靖 井上
Takeshi Saito
武志 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2012137614A priority Critical patent/JP6063651B2/en
Publication of JP2014001895A publication Critical patent/JP2014001895A/en
Application granted granted Critical
Publication of JP6063651B2 publication Critical patent/JP6063651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce refrigerant passing noise at start of an expansion valve and easily obtain an intended flow rate.SOLUTION: A valve body 10 of an expansion valve 1 includes: an inlet port 14 for introducing a high-pressure refrigerant to a valve chamber 20; an orifice 50; a refrigerant outlet passage 52 leading toward an evaporator; and a return passage 60 returning from the evaporator to a compressor. A power element 70 operates a valve member 30 via an operation rod 82 in response to pressure and temperature of a refrigerant in the return passage 60. A support member 100 is disposed in a valve chamber 20 to cover a coil spring 42 and support the valve member 30. When the valve is closed, a shoulder portion 130 of the support member 100 overlaps with the inlet port 14 to narrow an opening area.

Description

本発明は、空気調和機等の冷凍サイクルに装備される膨張弁に関する。   The present invention relates to an expansion valve provided in a refrigeration cycle such as an air conditioner.

この種の膨張弁は、例えばカーエアコンではエンジン室と車室とを仕切る隔壁に装備されることがあり、エアコン運転中の騒音低減が要求される。
下記の特許文献1は、そのような騒音を低減するべく、コンデンサで凝縮した高圧冷媒を弁室に導入する入口ポートに絞り部を備える膨張弁を開示している。
このように構成することで、入口ポートを通過する冷媒中の気泡が細分化され、冷媒通過時の騒音が低減する。
This type of expansion valve is sometimes installed in a partition wall that partitions an engine compartment and a vehicle compartment in a car air conditioner, for example, and noise reduction during operation of the air conditioner is required.
Patent Document 1 below discloses an expansion valve having a throttle portion at an inlet port for introducing high-pressure refrigerant condensed by a condenser into a valve chamber in order to reduce such noise.
By comprising in this way, the bubble in the refrigerant | coolant which passes an inlet port is subdivided, and the noise at the time of refrigerant | coolant passage reduces.

特開平11−287536号公報Japanese Patent Laid-Open No. 11-287536

しかしながら、特許文献1の膨張弁は、弁開度に関係なく常に高圧冷媒を絞るように構成されているため、所望の流量を確保しづらいという問題点がある。
本発明の目的は、コンデンサで凝縮した高圧冷媒を絞ることにより冷媒通過時の騒音を低減するとともに、所望の冷媒流量を得られ易くした膨張弁を提供することにある。
However, the expansion valve of Patent Document 1 is configured to constantly throttle the high-pressure refrigerant regardless of the valve opening, and thus has a problem that it is difficult to ensure a desired flow rate.
An object of the present invention is to provide an expansion valve that reduces noise during passage of the refrigerant and makes it easy to obtain a desired refrigerant flow rate by narrowing down the high-pressure refrigerant condensed by the condenser.

上記目的を達成するために、本発明の膨張弁は、コンデンサで凝縮した高圧冷媒を導入する入口ポート、該入口ポートに連通する弁室、該弁室内に導入された冷媒を減圧するオリフィス、該オリフィスを通過した冷媒をエバポレータ側へ導出する出口通路及びエバポレータからコンプレッサへ戻る冷媒が通過する戻り通路を有する弁本体と、前記オリフィスを開閉する弁部材と、前記弁室内に配置されるとともに前記弁部材を支持する支持部材と、前記弁部材を駆動する弁部材駆動装置とを備える膨張弁であって、前記支持部材は、前記弁部材が前記オリフィスを閉鎖した状態で、前記入口ポートの出口と前記支持部材との隙間で形成される冷媒通路の開口面積を前記入口ポートの出口の開口面積よりも小さくして前記弁室内に導入される冷媒を絞るとともに、前記弁部材が開方向に移動するに従って前記冷媒通路の開口面積が増加するように構成されるものである。   In order to achieve the above object, an expansion valve of the present invention includes an inlet port for introducing a high-pressure refrigerant condensed by a condenser, a valve chamber communicating with the inlet port, an orifice for decompressing the refrigerant introduced into the valve chamber, A valve body having an outlet passage for leading the refrigerant that has passed through the orifice to the evaporator side and a return passage through which the refrigerant returning from the evaporator to the compressor passes; a valve member that opens and closes the orifice; and the valve disposed in the valve chamber An expansion valve comprising: a support member that supports a member; and a valve member driving device that drives the valve member, wherein the support member closes the orifice and the outlet port of the inlet port. The cooling passage introduced into the valve chamber with the opening area of the refrigerant passage formed by the gap with the support member smaller than the opening area of the outlet of the inlet port. With squeeze, the valve member is what the opening area of the refrigerant passage as it moves in the opening direction is configured to increase.

なお、前記支持部材は、例えば、金属板をプレス加工して形成される段付の円筒状部材とすることができる。
また、前記支持部材が、前記支持部材を閉弁方向に付勢するコイルバネを覆うようにすることができる。この場合、前記弁室内に導入される冷媒が直接コイルバネに触れるのを防いで騒音を低減することができる。
また、前記支持部材の外面と前記弁室の内面との間に冷媒整流通路が形成されるものとすることができる。この場合、冷媒の乱流の発生を防止するとともに、冷媒に含まれる気泡を細分化して騒音の発生を防止することができる。
The support member can be, for example, a stepped cylindrical member formed by pressing a metal plate.
The support member may cover a coil spring that biases the support member in the valve closing direction. In this case, it is possible to reduce noise by preventing the refrigerant introduced into the valve chamber from directly touching the coil spring.
Further, a refrigerant rectification passage may be formed between the outer surface of the support member and the inner surface of the valve chamber. In this case, it is possible to prevent generation of noise by preventing generation of turbulent flow of the refrigerant and subdividing bubbles contained in the refrigerant.

本発明の膨張弁は、弁部材が開方向に移動するに従って支持部材による高圧冷媒の絞り量が減少するので、起動時における冷媒通過時の騒音を低減できるとともに、所望の冷媒流量を得られ易いという利点がある。   The expansion valve of the present invention reduces the amount of high-pressure refrigerant throttling by the support member as the valve member moves in the opening direction, so that noise during passage of the refrigerant at start-up can be reduced and a desired refrigerant flow rate can be easily obtained. There is an advantage.

本発明の実施例の正面側の縦断面図(閉弁時)。The longitudinal cross-sectional view of the front side of the Example of this invention (at the time of valve closing). 本発明の実施例の側面側の縦断面図(閉弁時)。The longitudinal cross-sectional view by the side of the Example of this invention (at the time of valve closing). 本発明の実施例の正面側の縦断面図(開弁時)。The longitudinal cross-sectional view of the front side of the Example of this invention (at the time of valve opening). 本発明の実施例の横断面図であり、(a)は図1のA−A’線断面図、(b)は図2のB−B’線断面図、(c)は図1のC−C’線断面図。It is a cross-sectional view of the Example of this invention, (a) is the sectional view on the AA 'line of FIG. 1, (b) is the BB' sectional view of FIG. 2, (c) is C of FIG. -C 'sectional view taken on the line. 支持部材の斜視図。The perspective view of a supporting member. 本発明の実施例の作用の説明図。Explanatory drawing of an effect | action of the Example of this invention.

図1、図2は、本発明の膨張弁の実施例を示す縦断面図である。
膨張弁1は弁本体10を有し、弁本体10の下部に形成した弁室20にはレシーバ側からの高圧冷媒が導入される入口通路12が設けられ、入口通路12は小径の入口ポート14を有しており、この入口ポート14を介して弁室20に連通する。
1 and 2 are longitudinal sectional views showing an embodiment of the expansion valve of the present invention.
The expansion valve 1 has a valve body 10, and a valve chamber 20 formed in the lower part of the valve body 10 is provided with an inlet passage 12 into which high-pressure refrigerant from the receiver side is introduced. The inlet passage 12 has a small-diameter inlet port 14. And communicates with the valve chamber 20 through the inlet port 14.

弁室20の上部には、弁室20内に導入された冷媒を減圧するオリフィス50が設けられている。オリフィス50の下端には弁座32が形成され、この弁座32に対向して弁部材30が配設される。
弁部材30は後述する支持部材100により支持され、支持部材100と弁室20の開口部に螺合されるプラグ44との間には、支持部材100を上方へ付勢するコイルスプリング42が設けられる。プラグ44の弁室20側にはシールリング46が嵌装されて弁室20のシールが達成される。
オリフィス50を通過した冷媒は内径寸法が大きい出口通路52に流出し、エバポレータ(図示せず)へ送り出される。
入口通路12と出口通路52は、それらの軸線が直交するように形成されており、凝縮器から入口通路12を介して弁本体10内に流入する高圧冷媒は、弁本体10内をL字状に流れ、出口通路52を介して蒸発器へ送り込まれる。
An orifice 50 for reducing the pressure of the refrigerant introduced into the valve chamber 20 is provided in the upper portion of the valve chamber 20. A valve seat 32 is formed at the lower end of the orifice 50, and the valve member 30 is disposed opposite to the valve seat 32.
The valve member 30 is supported by a support member 100 described later, and a coil spring 42 that biases the support member 100 upward is provided between the support member 100 and the plug 44 screwed into the opening of the valve chamber 20. It is done. A seal ring 46 is fitted on the valve chamber 20 side of the plug 44 to achieve sealing of the valve chamber 20.
The refrigerant that has passed through the orifice 50 flows out into the outlet passage 52 having a large inner diameter, and is sent out to an evaporator (not shown).
The inlet passage 12 and the outlet passage 52 are formed so that their axes are orthogonal to each other, and the high-pressure refrigerant flowing into the valve body 10 from the condenser via the inlet passage 12 is formed in an L shape in the valve body 10. To the evaporator via the outlet passage 52.

エバポレータで外気と熱交換を行った冷媒は、弁本体10の上部に設けたL字形の戻り通路60(図4(c)参照)に送り込まれ、コンプレッサ側へ戻される。
戻り通路60内の冷媒は開口部62を介してパワーエレメント70側へも送られる。
The refrigerant having exchanged heat with the outside air by the evaporator is sent to an L-shaped return passage 60 (see FIG. 4C) provided in the upper part of the valve body 10 and returned to the compressor side.
The refrigerant in the return passage 60 is also sent to the power element 70 side through the opening 62.

パワーエレメント70は、上蓋72と下蓋73の間にダイアフラム74を挟み込んだ構造を有し、ダイアフラム74の上下に上部圧力室76と下部圧力室78が形成される。上部圧力室76には、戻り通路60を通過する冷媒の温度に応じて膨張・収縮する作動ガスが封入される。
ダイアフラム74の下面は受け部材80で支持され、受け部材80は弁部材30を駆動する作動棒82に接続されている。ダイアフラム74の変位は作動棒82を介して弁部材30に伝達され、これにより弁部材30と弁座32の間の弁開度が制御される。
作動棒82は、弁本体10に形成された凹部10a内に装着されたリング状の防振ばね部材200により弾性支持されている。この防振ばね部材200は作動棒82に外嵌され、作動棒82に対して軸方向の移動を許容しつつ径方向の移動を抑制するように構成され、高圧冷媒の圧力変動に伴う騒音の発生を防止する。
また、パワーエレメント70はカバー90で覆われ、外気温度の影響がパワーエレメント70の作動ガスに及ばないようにされている。
The power element 70 has a structure in which a diaphragm 74 is sandwiched between an upper lid 72 and a lower lid 73, and an upper pressure chamber 76 and a lower pressure chamber 78 are formed above and below the diaphragm 74. The upper pressure chamber 76 is filled with working gas that expands and contracts according to the temperature of the refrigerant passing through the return passage 60.
The lower surface of the diaphragm 74 is supported by a receiving member 80, and the receiving member 80 is connected to an operating rod 82 that drives the valve member 30. The displacement of the diaphragm 74 is transmitted to the valve member 30 through the operating rod 82, and thereby the valve opening between the valve member 30 and the valve seat 32 is controlled.
The actuating rod 82 is elastically supported by a ring-shaped vibration-proof spring member 200 mounted in a recess 10 a formed in the valve body 10. The anti-vibration spring member 200 is externally fitted to the operating rod 82, and is configured to suppress radial movement while allowing axial movement with respect to the operating rod 82. Prevent occurrence.
The power element 70 is covered with a cover 90 so that the influence of the outside air temperature does not reach the working gas of the power element 70.

本発明の膨張弁1にあっては、弁室20内に配置された支持部材100が弁室20内に導入される高圧冷媒の絞り部材を兼用するようになっている。
支持部材100は、例えば金属板のプレス加工により形成される段付の円筒状の部材である。この場合、部品点数を削減して軽量化とコストダウンを図ることができる。
In the expansion valve 1 of the present invention, the support member 100 disposed in the valve chamber 20 also serves as a throttle member for high-pressure refrigerant introduced into the valve chamber 20.
The support member 100 is a stepped cylindrical member formed by pressing a metal plate, for example. In this case, it is possible to reduce the number of parts, thereby reducing weight and cost.

図5は支持部材100の詳細を示す斜視図である。
支持部材100は、大径部110と小径部120が肩部130で連結される段付の円筒状部材であって、小径部120の頂部122には、弁部材30を支持する凹部形状の弁支持部140が形成される。
FIG. 5 is a perspective view showing details of the support member 100.
The support member 100 is a stepped cylindrical member in which a large-diameter portion 110 and a small-diameter portion 120 are connected by a shoulder 130, and a concave-shaped valve that supports the valve member 30 is provided on a top portion 122 of the small-diameter portion 120. A support portion 140 is formed.

図1、2は、弁部材30がオリフィス50を完全に塞ぐ閉弁状態を示す。
支持部材100の大径部110は弁室20の内周面に案内され、小径部120は弁室20の内周面との間に高圧冷媒をオリフィス50に案内する環状の空間を形成する。この空間は、冷媒を整流して乱流の発生を防止するとともに、冷媒中の気泡を細分化することにより騒音を低減するように作用する。
図1、2の状態では、図6(a)に示すように、支持部材100の肩部130が入口ポート14の最下部よりも上方に位置する。すなわち、大径部110の上部が入口ポート14の出口と重なり、大径部110の上部と入口ポート14の出口との隙間で形成される冷媒通路の開口面積が入口ポート14の出口の開口面積よりも小さくなり、弁室20に流入する冷媒が絞られることとなる。この作用により、エアコン起動時の冷媒通過音は低減する。
1 and 2 show a valve closing state in which the valve member 30 completely closes the orifice 50.
The large-diameter portion 110 of the support member 100 is guided to the inner peripheral surface of the valve chamber 20, and the small-diameter portion 120 forms an annular space for guiding the high-pressure refrigerant to the orifice 50 between the inner peripheral surface of the valve chamber 20. This space rectifies the refrigerant to prevent the occurrence of turbulent flow, and acts to reduce noise by subdividing the bubbles in the refrigerant.
In the state of FIGS. 1 and 2, the shoulder 130 of the support member 100 is positioned above the lowermost portion of the inlet port 14 as shown in FIG. That is, the upper area of the large diameter portion 110 overlaps the outlet of the inlet port 14, and the opening area of the refrigerant passage formed by the gap between the upper portion of the large diameter section 110 and the outlet of the inlet port 14 is the opening area of the outlet of the inlet port 14. Therefore, the refrigerant flowing into the valve chamber 20 is throttled. By this action, the refrigerant passing sound at the time of starting the air conditioner is reduced.

図3は、パワーエレメント70で駆動される作動棒82が弁部材30を押し下げて弁部材30が弁座32から離れた開弁状態を示す。
この状態にあっては、支持部材100の肩部130は、必要な冷媒流量を確保する開口面積となるように入口ポート14の中程から入口ポート14の最下部と同じ位置(図6(c)に示す位置)までの任意の位置に位置決めされる。すなわち、大径部110の上部と入口ポート14の出口との隙間で形成される冷媒通路の開口面積は、支持部材100の肩部130が開方向に移動するにしたがって増加し、これによって必要な冷媒流量を得ることができる。 このように、起動時(閉弁時)には肩部130と入口ポート14の出口との隙間で形成される冷媒通路の開口面積を小さくして弁室20内に導入される冷媒を絞るが、弁部材30が開方向に移動するに従って、図6の(a)→(b)→(c)で示すように、前記冷媒通路の開口面積が増加するように構成されているので、所望の冷媒流量が得られ易い。
FIG. 3 shows a valve opening state in which the operating rod 82 driven by the power element 70 pushes down the valve member 30 and the valve member 30 is separated from the valve seat 32.
In this state, the shoulder 130 of the support member 100 is located at the same position as the lowermost portion of the inlet port 14 from the middle of the inlet port 14 so as to have an opening area that secures a necessary refrigerant flow rate (FIG. 6C It is positioned at any position up to the position shown in ()). That is, the opening area of the refrigerant passage formed by the gap between the upper portion of the large diameter portion 110 and the outlet of the inlet port 14 increases as the shoulder portion 130 of the support member 100 moves in the opening direction. A refrigerant flow rate can be obtained. As described above, at the time of starting (when the valve is closed), the opening area of the refrigerant passage formed by the gap between the shoulder 130 and the outlet of the inlet port 14 is reduced to reduce the refrigerant introduced into the valve chamber 20. As the valve member 30 moves in the opening direction, the opening area of the refrigerant passage increases as shown in (a) → (b) → (c) of FIG. It is easy to obtain a refrigerant flow rate.

また、本発明の膨張弁1にあっては、弁室20内に配置されるコイルスプリング42を支持部材100で覆った構成を有するので、入口ポート14から弁室20内に流入する高圧冷媒はコイルスプリング42に直接触れることがなく、騒音が低減する。   In addition, since the expansion valve 1 of the present invention has a configuration in which the coil spring 42 disposed in the valve chamber 20 is covered with the support member 100, the high-pressure refrigerant flowing into the valve chamber 20 from the inlet port 14 is The coil spring 42 is not touched directly, and noise is reduced.

なお、本発明は上記実施形態に限定するものではなく、上記実施形態に種々の改変を施すことができる。
例えば、上記実施形態では、入口ポート14の出口を塞ぐ部材を支持部材に一体成形した例を説明したが、当該部材は支持部材と別体であってもよい。
その他にも、本発明の要旨を逸脱しない範囲で上記実施形態に種々の改変を施すことができる。
The present invention is not limited to the above embodiment, and various modifications can be made to the above embodiment.
For example, in the above-described embodiment, the example in which the member that closes the outlet of the inlet port 14 is integrally formed with the support member has been described.
In addition, various modifications can be made to the above embodiment without departing from the gist of the present invention.

1 膨張弁
10 弁本体
12 入口通路
14 入口ポート
20 弁室
30 弁部材
32 弁座
42 コイルスプリング
44 プラグ
46 シールリング
50 オリフィス
52 出口通路
60 戻り通路
62 開口部
70 パワーエレメント
72 上蓋
73 下蓋
74 ダイアフラム
76 上部圧力室
78 下部圧力室
80 受け部材
82 作動棒
90 カバー
100 支持部材
110 大径部
120 小径部
122 頂部
130 肩部
140 弁支持部
DESCRIPTION OF SYMBOLS 1 Expansion valve 10 Valve body 12 Inlet passage 14 Inlet port 20 Valve chamber 30 Valve member 32 Valve seat 42 Coil spring 44 Plug 46 Seal ring 50 Orifice 52 Outlet passage 60 Return passage 62 Opening portion 70 Power element 72 Upper lid 73 Lower lid 74 Diaphragm 76 Upper pressure chamber 78 Lower pressure chamber 80 Receiving member 82 Actuating rod 90 Cover 100 Support member 110 Large diameter portion 120 Small diameter portion 122 Top portion 130 Shoulder portion 140 Valve support portion

Claims (4)

コンデンサで凝縮した高圧冷媒を導入する入口ポート、該入口ポートに連通する弁室、該弁室内に導入された冷媒を減圧するオリフィス、該オリフィスを通過した冷媒をエバポレータ側へ導出する出口通路及びエバポレータからコンプレッサへ戻る冷媒が通過する戻り通路を有する弁本体と、前記オリフィスを開閉する弁部材と、前記弁室内に配置されるとともに前記弁部材を支持する支持部材と、前記弁部材を駆動する弁部材駆動装置とを備える膨張弁であって、
前記支持部材は、前記弁部材が前記オリフィスを閉鎖した状態で、前記入口ポートの出口と前記支持部材との隙間で形成される冷媒通路の開口面積を前記入口ポートの出口の開口面積よりも小さくして前記弁室内に導入される冷媒を絞るとともに、前記弁部材が開方向に移動するに従って前記冷媒通路の開口面積が増加するように構成される膨張弁。
An inlet port for introducing high-pressure refrigerant condensed by a condenser, a valve chamber communicating with the inlet port, an orifice for depressurizing the refrigerant introduced into the valve chamber, an outlet passage for leading the refrigerant that has passed through the orifice to the evaporator side, and an evaporator A valve body having a return passage through which refrigerant returning from the compressor to the compressor passes, a valve member for opening and closing the orifice, a support member disposed in the valve chamber and supporting the valve member, and a valve for driving the valve member An expansion valve comprising a member driving device,
The support member has an opening area of the refrigerant passage formed by a gap between the outlet of the inlet port and the support member smaller than the opening area of the outlet of the inlet port in a state where the valve member closes the orifice. An expansion valve configured to throttle the refrigerant introduced into the valve chamber and increase the opening area of the refrigerant passage as the valve member moves in the opening direction.
前記支持部材は、金属板をプレス加工して形成される段付の円筒状部材である請求項1記載の膨張弁。   The expansion valve according to claim 1, wherein the support member is a stepped cylindrical member formed by pressing a metal plate. 前記支持部材は、前記支持部材を閉弁方向に付勢するコイルバネを覆うように形成される請求項1又は2記載の膨張弁。   The expansion valve according to claim 1, wherein the support member is formed so as to cover a coil spring that urges the support member in a valve closing direction. 前記支持部材の外面と前記弁室の内面との間に冷媒整流通路が形成される請求項1乃至3のいずれかに記載の膨張弁。   The expansion valve according to any one of claims 1 to 3, wherein a refrigerant rectifying passage is formed between an outer surface of the support member and an inner surface of the valve chamber.
JP2012137614A 2012-06-19 2012-06-19 Expansion valve Active JP6063651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012137614A JP6063651B2 (en) 2012-06-19 2012-06-19 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137614A JP6063651B2 (en) 2012-06-19 2012-06-19 Expansion valve

Publications (2)

Publication Number Publication Date
JP2014001895A true JP2014001895A (en) 2014-01-09
JP6063651B2 JP6063651B2 (en) 2017-01-18

Family

ID=50035237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137614A Active JP6063651B2 (en) 2012-06-19 2012-06-19 Expansion valve

Country Status (1)

Country Link
JP (1) JP6063651B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091580B1 (en) * 2015-10-19 2017-03-08 三菱電機株式会社 Thermal expansion valve
KR101735181B1 (en) * 2015-05-14 2017-05-15 학교법인 두원학원 Expansion valve for an air-conditioner of a vehicle
CN106969186A (en) * 2017-05-25 2017-07-21 东莞质研工业设计服务有限公司 A kind of loop construction of expansion valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108253670A (en) * 2016-12-28 2018-07-06 浙江三花汽车零部件有限公司 A kind of automotive air-conditioning system, heating power expansion valve and its valve body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121146A (en) * 2003-10-17 2005-05-12 Fuji Koki Corp Solenoid valve
JP2005226901A (en) * 2004-02-12 2005-08-25 Tgk Co Ltd Expansion device
JP2006029654A (en) * 2004-07-14 2006-02-02 Fuji Koki Corp Expansion valve
JP2006145149A (en) * 2004-11-24 2006-06-08 Tgk Co Ltd Expansion device
JP2008014628A (en) * 2006-07-07 2008-01-24 Zhejiang Sanhua Refrigerating Group Co Ltd Temperature expansion valve
JP2008202800A (en) * 2001-07-12 2008-09-04 Fuji Koki Corp Expansion valve vibration absorbing member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202800A (en) * 2001-07-12 2008-09-04 Fuji Koki Corp Expansion valve vibration absorbing member
JP2005121146A (en) * 2003-10-17 2005-05-12 Fuji Koki Corp Solenoid valve
JP2005226901A (en) * 2004-02-12 2005-08-25 Tgk Co Ltd Expansion device
JP2006029654A (en) * 2004-07-14 2006-02-02 Fuji Koki Corp Expansion valve
JP2006145149A (en) * 2004-11-24 2006-06-08 Tgk Co Ltd Expansion device
JP2008014628A (en) * 2006-07-07 2008-01-24 Zhejiang Sanhua Refrigerating Group Co Ltd Temperature expansion valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101735181B1 (en) * 2015-05-14 2017-05-15 학교법인 두원학원 Expansion valve for an air-conditioner of a vehicle
JP6091580B1 (en) * 2015-10-19 2017-03-08 三菱電機株式会社 Thermal expansion valve
CN106969186A (en) * 2017-05-25 2017-07-21 东莞质研工业设计服务有限公司 A kind of loop construction of expansion valve

Also Published As

Publication number Publication date
JP6063651B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
EP3018434B1 (en) Electromagnetic valve
JP4283069B2 (en) Compound valve
JP6063651B2 (en) Expansion valve
JP6182363B2 (en) Expansion valve
JP2012047213A (en) Motor-operated valve
JP2011133139A (en) Expansion valve
KR20120020046A (en) Expansion valve
CN102588669B (en) Thermal expansion valve
JP6071764B2 (en) Expansion valve
JP5991871B2 (en) Expansion valve
KR20130113364A (en) Expansion valve
JP6018807B2 (en) Expansion valve
US9360873B2 (en) Thermostat that the reactivity thereof is improved
EP3249322B1 (en) Electric expansion valve
JP2013245769A (en) Control valve
JP6007369B2 (en) Control valve
JP2016023896A (en) Expansion valve
JP2013217568A (en) Expansion valve
EP3690296B1 (en) Expansion valve
JP2014009830A (en) Expansion valve
JP2015001318A (en) Expansion valve
JP7074322B2 (en) Expansion valve
JP2012047430A (en) Expansion valve
JP5463209B2 (en) Expansion valve
JP2019163834A (en) Expansion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6063651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250