JP2019163887A - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
JP2019163887A
JP2019163887A JP2018051360A JP2018051360A JP2019163887A JP 2019163887 A JP2019163887 A JP 2019163887A JP 2018051360 A JP2018051360 A JP 2018051360A JP 2018051360 A JP2018051360 A JP 2018051360A JP 2019163887 A JP2019163887 A JP 2019163887A
Authority
JP
Japan
Prior art keywords
valve
coil spring
flow path
valve body
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018051360A
Other languages
Japanese (ja)
Other versions
JP7016155B2 (en
Inventor
潤哉 早川
Junya Hayakawa
潤哉 早川
耕平 久保田
Kohei Kubota
耕平 久保田
隆 茂木
Takashi Mogi
隆 茂木
松田 亮
Akira Matsuda
亮 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2018051360A priority Critical patent/JP7016155B2/en
Publication of JP2019163887A publication Critical patent/JP2019163887A/en
Application granted granted Critical
Publication of JP7016155B2 publication Critical patent/JP7016155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lift Valve (AREA)
  • Check Valves (AREA)
  • Details Of Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

To provide an improved expansion valve which can achieve low costs and low noise.SOLUTION: An expansion valve includes: a valve body 2 including an annular valve seat 20; a valve element 3 which is seated on the valve seat 20 to block passage of a fluid and separates from the valve seat 20 to allow passage of the fluid; a coil spring 41 which is disposed in a valve chamber VS with its side surface facing flow of the fluid flowing from a supply side passage 21 and biases the valve element 3 toward the valve seat 20; and an operation rod 5 which presses the valve element 3 in a direction away from the valve seat 20 against biasing force generated by the coil spring 41. The coil spring 41 has a first coil area A1 facing the flow of the fluid flowing from the supply side passage 21 and a second coil area A2 different from the first coil area A1. A coil gap P1 in the first coil area A1 is smaller than a coil gap P2 in the second coil area A2.SELECTED DRAWING: Figure 2

Description

本発明は、膨張弁に関する。   The present invention relates to an expansion valve.

従来、自動車に搭載される空調装置等に用いる冷凍サイクルについては、設置スペースや配管を省略するために、冷媒の通過量を温度に応じて調整する感温式の膨張弁が使用されている。   Conventionally, for a refrigeration cycle used in an air conditioner or the like mounted on an automobile, a temperature-sensitive expansion valve that adjusts the passage of refrigerant according to temperature is used in order to omit installation space and piping.

ところで、このような膨張弁において騒音が発生することが確認された。騒音の発生要因について、具体的に説明する。あるタイプの膨張弁においては、冷媒が入口ポートから弁室を通り、出口ポートへ向かう際に弁座と弁体とからなる弁を通過する。ここで、弁の開閉機能を確保するために、弁座に向かって弁体を付勢するコイルばねを弁室に設けている。しかるに、入口ポートから流入した冷媒がコイルばねの狭い巻線間を通過する際に流れの乱れが発生し、これが起振力となってコイルばねを振動させることにより、騒音の発生を招来する。   By the way, it was confirmed that noise is generated in such an expansion valve. The cause of noise will be specifically described. In one type of expansion valve, the refrigerant passes through a valve consisting of a valve seat and a valve body as it passes from the inlet port through the valve chamber and toward the outlet port. Here, in order to ensure the opening / closing function of the valve, a coil spring for urging the valve body toward the valve seat is provided in the valve chamber. However, when the refrigerant flowing in from the inlet port passes between the narrow windings of the coil spring, a turbulence of the flow is generated, and this acts as an oscillating force to vibrate the coil spring, thereby causing noise.

これに対し、特許文献1には、弁体とコイルばねとを連結するばね受けに、コイルばねの内側に沿って延在する円柱状の垂下体を設け、これによりコイルばねの巻線間を冷媒が通過することを抑制し、騒音の低減を図ることができる膨張弁が開示されている。   On the other hand, in Patent Document 1, a columnar hanging body extending along the inner side of the coil spring is provided on a spring receiver that connects the valve body and the coil spring, and thereby, between the windings of the coil spring. An expansion valve capable of suppressing the passage of refrigerant and reducing noise is disclosed.

特許第6182363号公報Japanese Patent No. 6182363

特許文献1に記載の膨張弁によれば、大きな騒音抑制効果が期待できるが、膨張弁の仕様によっては、低騒音化を図りつつもコストを優先して抑制したいという場合もある。   According to the expansion valve described in Patent Document 1, a large noise suppression effect can be expected. However, depending on the specifications of the expansion valve, there is a case where it is desired to suppress the cost with priority while reducing the noise.

そこで本発明の目的は、低コストであり且つ低騒音を実現できる、改良された膨張弁を提供することにある。   Therefore, an object of the present invention is to provide an improved expansion valve that is low in cost and can realize low noise.

上記目的を達成するために、本発明による膨張弁は、
供給側流路と排出側流路との間に設けられた弁室に配置され、前記供給側流路から前記排出側流路へと向かう流体が通過する環状の弁座を備えた弁本体と、
前記弁座に着座することにより前記流体の通過を阻止し、前記弁座から離間することにより前記流体の通過を許容する弁体と、
前記供給側流路から流入する流体の流れに対して側面を向けて前記弁室に配置され、前記弁体を前記弁座に向かって付勢するコイルばねと、
前記コイルばねによる付勢力に抗して、前記弁体を前記弁座から離間する方向に押圧する作動部材と、
前記弁体と前記コイルばねの一端との間に配置された弁体サポートと、
前記弁本体に取り付けられ、前記コイルばねの他端を保持するばね受け部材と、を有し、
前記コイルばねは、前記供給側流路から流入する流体の流れに対向する第1の巻線領域と、前記第1の巻線領域とは異なる第2の巻線領域とを有し、前記第1の巻線領域における巻線間隙間は、前記第2の巻線領域における巻線間隙間より小さい、ことを特徴とする。
In order to achieve the above object, an expansion valve according to the present invention comprises:
A valve body including an annular valve seat that is disposed in a valve chamber provided between the supply-side flow path and the discharge-side flow path, and through which a fluid from the supply-side flow path toward the discharge-side flow path passes; ,
A valve body that prevents passage of the fluid by sitting on the valve seat, and allows passage of the fluid by separating from the valve seat;
A coil spring that is disposed in the valve chamber with a side faced with respect to the flow of fluid flowing in from the supply-side flow path, and biases the valve body toward the valve seat;
An actuating member that presses the valve body in a direction away from the valve seat against an urging force of the coil spring;
A valve body support disposed between the valve body and one end of the coil spring;
A spring receiving member attached to the valve body and holding the other end of the coil spring;
The coil spring includes a first winding region facing a flow of fluid flowing in from the supply-side flow path, and a second winding region different from the first winding region. The inter-winding gap in one winding area is smaller than the inter-winding gap in the second winding area.

本発明により、低コストであり且つ低騒音を実現できる、改良された膨張弁を提供することができる。   According to the present invention, it is possible to provide an improved expansion valve that can be realized at low cost and low noise.

本実施形態における膨張弁1を、冷媒循環システムに適用した例を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically the example which applied the expansion valve 1 in this embodiment to the refrigerant | coolant circulation system. 付勢装置4の近傍を拡大して示す断面図である。It is sectional drawing which expands and shows the vicinity of the urging | biasing apparatus 4. FIG. コイルばね41の周辺を拡大して示す断面図である。3 is an enlarged cross-sectional view showing the periphery of a coil spring 41. FIG. 比較例にかかる構成を示す図2と同様な断面図である。It is sectional drawing similar to FIG. 2 which shows the structure concerning a comparative example.

以下、図面を参照して、本発明にかかる実施形態について説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

(方向の定義)
本明細書において、弁体3から作動棒5に向かう方向を「上方向」と定義し、作動棒5から弁体3に向かう方向を「下方向」と定義する。よって、本明細書では、膨張弁1の姿勢に関わらず、弁体3から作動棒5に向かう方向を「上方向」と呼ぶ。
(Definition of direction)
In this specification, the direction from the valve body 3 toward the operating rod 5 is defined as “upward”, and the direction from the operating rod 5 toward the valve body 3 is defined as “downward”. Therefore, in this specification, the direction from the valve body 3 toward the operating rod 5 is referred to as “upward direction” regardless of the posture of the expansion valve 1.

(膨張弁の概要)
図1を参照して、本実施形態における膨張弁1の概要について説明する。図1は、本実施形態における膨張弁1を、冷媒循環システム100に適用した例を模式的に示す概略断面図である。なお、図1において、パワーエレメント8に対応する部分は側面図で示されており、その他の部分は断面図で示されている。本実施例では、膨張弁1は、コンプレッサ101と、コンデンサ102と、エバポレータ104とに流体接続されている。
(Outline of expansion valve)
With reference to FIG. 1, the outline | summary of the expansion valve 1 in this embodiment is demonstrated. FIG. 1 is a schematic cross-sectional view schematically showing an example in which the expansion valve 1 according to this embodiment is applied to a refrigerant circulation system 100. In FIG. 1, the part corresponding to the power element 8 is shown in a side view, and the other part is shown in a sectional view. In this embodiment, the expansion valve 1 is fluidly connected to the compressor 101, the capacitor 102, and the evaporator 104.

膨張弁1は、弁室VSを備える弁本体2と、弁体3と、付勢装置4と、作動棒(作動部材)5と、リングばね6とを具備する。   The expansion valve 1 includes a valve body 2 including a valve chamber VS, a valve body 3, an urging device 4, an operating rod (operating member) 5, and a ring spring 6.

弁本体2は、弁室VSに加え、第1流路21および第2流路22を備える。第1流路21は供給側流路であり、弁室VSには、供給側流路を介して冷媒(流体ともいう)が供給される。第2流路22は排出側流路であり、弁室VS内の流体は、作動棒挿通孔27及び排出側流路を介して膨張弁外に排出される。第1流路21と弁室VSとの間は、第1流路21より小径の接続路21aにより連通している。   The valve body 2 includes a first flow path 21 and a second flow path 22 in addition to the valve chamber VS. The first flow path 21 is a supply-side flow path, and a refrigerant (also referred to as a fluid) is supplied to the valve chamber VS through the supply-side flow path. The second flow path 22 is a discharge side flow path, and the fluid in the valve chamber VS is discharged out of the expansion valve via the operating rod insertion hole 27 and the discharge side flow path. The first flow path 21 and the valve chamber VS communicate with each other through a connection path 21a having a smaller diameter than the first flow path 21.

弁体3は、弁室VS内に配置される。弁体3が弁本体2の環状の弁座20に着座しているとき、第1流路21と第2流路22とは非連通状態となる。一方、弁体3が弁座20から離間しているとき、第1流路21と第2流路22とは連通状態となる。図1は、弁体3が弁座20から離間した状態を示している。   The valve body 3 is disposed in the valve chamber VS. When the valve body 3 is seated on the annular valve seat 20 of the valve body 2, the first flow path 21 and the second flow path 22 are in a non-communication state. On the other hand, when the valve body 3 is separated from the valve seat 20, the first flow path 21 and the second flow path 22 are in a communication state. FIG. 1 shows a state in which the valve body 3 is separated from the valve seat 20.

作動棒挿通孔27に隙間を持って挿通された作動棒5の下端は、弁体3の上面に接触している。また、作動棒5は、付勢装置4による付勢力に抗して弁体3を開弁方向に押圧することができる。作動棒5が下方向に移動するとき、弁体3は、弁座20から離間し、膨張弁1が開状態となる。   The lower end of the operating rod 5 inserted through the operating rod insertion hole 27 with a gap is in contact with the upper surface of the valve element 3. Further, the actuating rod 5 can press the valve body 3 in the valve opening direction against the urging force of the urging device 4. When the operating rod 5 moves downward, the valve body 3 is separated from the valve seat 20 and the expansion valve 1 is opened.

リングばね6は、作動棒5の振動を抑制する防振部材である。このリングばね6は、弁本体2の環状部26に配置されて、内周側に突出した爪部により、作動棒5の外周面に所定の弾性力を付与するようになっている。   The ring spring 6 is a vibration isolating member that suppresses vibration of the operating rod 5. The ring spring 6 is disposed in the annular portion 26 of the valve body 2 and applies a predetermined elastic force to the outer peripheral surface of the operating rod 5 by a claw portion protruding toward the inner peripheral side.

図2は、付勢装置4の近傍を拡大して示す断面図である。付勢装置4は、断面円形の線材を螺旋状に巻いたコイルばね41と、弁体サポート42と、ばね受け部材43とを有する。   FIG. 2 is an enlarged sectional view showing the vicinity of the urging device 4. The urging device 4 includes a coil spring 41 in which a wire having a circular cross section is spirally wound, a valve body support 42, and a spring receiving member 43.

SUS製の弁体サポート42は、フランジ状の保持部42aと、保持部42aの下端中央から下方に延在する円筒状の内側筒体42bとから一体的に形成されている。内側筒体42bの外径は、コイルばね41の内径に略等しい。保持部42aの上面には、球状の弁体3が溶接され、両者は一体となっている。   The SUS valve body support 42 is integrally formed from a flange-shaped holding portion 42a and a cylindrical inner cylindrical body 42b extending downward from the lower end center of the holding portion 42a. The outer diameter of the inner cylinder 42 b is substantially equal to the inner diameter of the coil spring 41. The spherical valve body 3 is welded to the upper surface of the holding part 42a, and both are integrated.

図2において、樹脂製であるばね受け部材43は、底部43aと、底部43aの上面から上方に延在する外側管状部43bとを有する。環状の底部43aの外周には、弁本体2の弁室VSに連通する取り付け孔2aの開口端近傍に形成された雌ねじ2bに螺合する雄ねじ43cが形成され、また環状の底部43aの下面には、不図示の工具等を係合させてばね受け部材43を回転させるための係合凹部43dが形成されている。外側管状部43bの内径は、コイルばね41の外径に略等しい。   In FIG. 2, the spring receiving member 43 made of resin has a bottom portion 43a and an outer tubular portion 43b extending upward from the upper surface of the bottom portion 43a. On the outer periphery of the annular bottom portion 43a, a male screw 43c is formed which is screwed into a female screw 2b formed in the vicinity of the opening end of the mounting hole 2a communicating with the valve chamber VS of the valve body 2, and on the lower surface of the annular bottom portion 43a. Is formed with an engaging recess 43d for engaging a tool (not shown) or the like to rotate the spring receiving member 43. The inner diameter of the outer tubular portion 43 b is substantially equal to the outer diameter of the coil spring 41.

外側管状部43bの外周には、段部43eが形成され、これに対向して、取り付け孔2aと弁室VSとの交差部には段部2cが形成されており、段部43eと段部2cとの間の環状空間内にO−リング44が配置されている。O−リング44は、取り付け孔2aとばね受け部材43との間を密封するものである。   A step portion 43e is formed on the outer periphery of the outer tubular portion 43b, and a step portion 2c is formed at the intersection of the mounting hole 2a and the valve chamber VS so as to face the step portion 43e. An O-ring 44 is arranged in the annular space between 2c. The O-ring 44 seals between the attachment hole 2 a and the spring receiving member 43.

図3は、コイルばね41の周辺を拡大して示す断面図である。図3に示すように、コイルばね41は不等ピッチの巻線を有する。具体的には、コイルばね41は、その上部の第1の巻線領域A1と、それより下部の第2の巻線領域A2というように、軸線方向に2つの領域に区分されている。   FIG. 3 is an enlarged sectional view showing the periphery of the coil spring 41. As shown in FIG. 3, the coil spring 41 has windings of unequal pitch. Specifically, the coil spring 41 is divided into two regions in the axial direction, such as a first winding region A1 in the upper part and a second winding region A2 in the lower part.

第1の巻線領域A1は、その側面が接続路21aに対向しており、巻線ピッチP1を有する。一方、第2の巻線領域A2は、その側面が接続路21aに対向しておらず、巻線ピッチP2を有し、P2>P1となっている。巻線ピッチP1,P2はそれぞれの巻線領域で個々に等しくする必要はなく、その場合には巻線ピッチP1,P2は各巻線領域での平均値をいうものとする。   The first winding region A1 has a side surface facing the connection path 21a and a winding pitch P1. On the other hand, the side surface of the second winding region A2 does not face the connection path 21a, has a winding pitch P2, and P2> P1. The winding pitches P1 and P2 do not need to be equal to each other in each winding region. In this case, the winding pitches P1 and P2 are average values in the respective winding regions.

本実施の形態では、弁体3が弁座20に着座した状態で、巻線ピッチP1は巻線径dに略等しく(いわゆる密着巻きと)なっているため、側面が接続路21aに対向する第1の巻線領域A1では、巻線間の隙間が略ゼロとなる。ただし、巻線ピッチP1は必ずしも巻線径dに等しい必要はなく、冷媒の通過を制限する程度に狭い隙間であれば足りる。本実施形態では、巻線間の隙間がゼロを超えた所定量である第2の巻線領域A2により、弁体3を付勢する弾性力を発揮する。なお、弁体3を付勢する弾性力は、巻線領域A1の初張力と、巻線領域A2の弾性力の和としてもよい。   In the present embodiment, the winding pitch P1 is substantially equal to the winding diameter d (so-called tight winding) in a state in which the valve body 3 is seated on the valve seat 20, so that the side faces the connection path 21a. In the first winding region A1, the gap between the windings is substantially zero. However, the winding pitch P1 does not necessarily have to be equal to the winding diameter d, and a gap that is narrow enough to limit the passage of the refrigerant is sufficient. In this embodiment, the elastic force which urges | biases the valve body 3 is exhibited by 2nd coil | winding area | region A2 which is the predetermined amount where the clearance gap between windings exceeded zero. The elastic force that urges the valve body 3 may be the sum of the initial tension of the winding region A1 and the elastic force of the winding region A2.

図2において、組み付け時には、弁体3を溶接された弁体サポート42の内側筒体42bを、コイルばね41の上端から内部へと挿入して、コイルばね41の上端を保持部42aの下面に当接させる。更に、コイルばね41の下端をばね受け部材43の外側管状部43bの内側に挿入し、底部43aの上面に当接させる。このとき、O−リング44を段部43eに取り付けておく。   In FIG. 2, at the time of assembly, the inner cylindrical body 42b of the valve body support 42 to which the valve body 3 is welded is inserted from the upper end of the coil spring 41 to the inside, and the upper end of the coil spring 41 is placed on the lower surface of the holding portion 42a. Make contact. Further, the lower end of the coil spring 41 is inserted inside the outer tubular portion 43b of the spring receiving member 43 and brought into contact with the upper surface of the bottom portion 43a. At this time, the O-ring 44 is attached to the stepped portion 43e.

かかる状態を保持しつつ、弁体サポート42、コイルばね41、およびばね受け部材43からなるアッセンブリを、取り付け孔2aから弁室VS内へと進入させ、雌ねじ2bに雄ねじ43cを螺合させて、不図示の工具を用いて所定位置まで追い込む。このとき、接続路21aがコイルばね41の第1の巻線領域A1の側面に正対するが、第2の巻線領域A2の側面には相対しない。ばね受け部材43は、弁本体2に装着されることにより弁室VSを封止するプラグとして機能する。   While maintaining this state, the assembly including the valve body support 42, the coil spring 41, and the spring receiving member 43 is caused to enter the valve chamber VS from the mounting hole 2a, and the male screw 43c is screwed into the female screw 2b. Drive to a predetermined position using a tool (not shown). At this time, the connection path 21a faces the side surface of the first winding region A1 of the coil spring 41, but does not face the side surface of the second winding region A2. The spring receiving member 43 functions as a plug that seals the valve chamber VS by being attached to the valve body 2.

本実施の形態においては、接続路21aから弁室VSに流入する冷媒の流れ方向(ここでは左右方向)に見たときに、コイルばね41の第1の巻線領域A1は、接続路21aの下端の下方に延在している。ただし、第1の巻線領域A1は接続路21aの少なくとも一部と重なっていれば足りる。   In the present embodiment, the first winding region A1 of the coil spring 41 is connected to the connection path 21a when viewed in the flow direction (here, the left-right direction) of the refrigerant flowing into the valve chamber VS from the connection path 21a. It extends below the lower end. However, it is sufficient that the first winding region A1 overlaps at least a part of the connection path 21a.

図1を参照して、膨張弁1の動作例について説明する。コンプレッサ101で加圧された冷媒は、コンデンサ102で液化され、膨張弁1に送られる。また、膨張弁1で断熱膨張された冷媒はエバポレータ104に送り出され、エバポレータ104で、エバポレータの周囲を流れる空気と熱交換される。エバポレータ104から戻る冷媒は、膨張弁1(より具体的には、戻り流路23)を通ってコンプレッサ101側へ戻される。   An example of the operation of the expansion valve 1 will be described with reference to FIG. The refrigerant pressurized by the compressor 101 is liquefied by the condenser 102 and sent to the expansion valve 1. In addition, the refrigerant adiabatically expanded by the expansion valve 1 is sent out to the evaporator 104, and heat is exchanged with the air flowing around the evaporator in the evaporator 104. The refrigerant returning from the evaporator 104 is returned to the compressor 101 side through the expansion valve 1 (more specifically, the return flow path 23).

膨張弁1には、コンデンサ102から高圧冷媒が供給される。より具体的には、コンデンサ102からの高圧冷媒は、第1流路21を介して弁室VSに供給される。   The expansion valve 1 is supplied with a high-pressure refrigerant from a capacitor 102. More specifically, the high-pressure refrigerant from the capacitor 102 is supplied to the valve chamber VS via the first flow path 21.

弁体3が、弁座20に着座しているとき(換言すれば、膨張弁1が閉状態のとき)には、弁室VSの上流側の第1流路21と弁室VSの下流側の第2流路22とは、非連通状態である。他方、弁体3が、弁座20から離間しているとき(換言すれば、膨張弁1が開状態のとき)には、弁室VSに供給された冷媒は、作動棒挿通孔27及び第2流路22を通って、エバポレータ104へ送り出される。なお、膨張弁1の閉状態と開状態との間の切り換えは、パワーエレメント8に接続された作動棒5によって行われる。   When the valve body 3 is seated on the valve seat 20 (in other words, when the expansion valve 1 is closed), the first flow path 21 on the upstream side of the valve chamber VS and the downstream side of the valve chamber VS. The second flow path 22 is in a non-communication state. On the other hand, when the valve body 3 is separated from the valve seat 20 (in other words, when the expansion valve 1 is in the open state), the refrigerant supplied to the valve chamber VS passes through the operating rod insertion hole 27 and the first It is sent out to the evaporator 104 through the two flow paths 22. Note that the switching between the closed state and the open state of the expansion valve 1 is performed by the operating rod 5 connected to the power element 8.

図1の例では、パワーエレメント8は、膨張弁1の上端部に配置されている。図示していないが、パワーエレメント8の内部には、ダイアフラムにより仕切られた第1空間と第2空間とが設けられ、第1空間には作動ガスが充填されている。   In the example of FIG. 1, the power element 8 is disposed at the upper end portion of the expansion valve 1. Although not shown, the power element 8 is provided with a first space and a second space partitioned by a diaphragm, and the first space is filled with a working gas.

ダイアフラムの下面は、ダイアフラム支持部材を介して作動棒5に接続される。このため、第1空間内の作動ガスが液化されると、作動棒5は上方向に移動し、液化された作動ガスが気化されると、作動棒5は下方向に移動する。こうして、膨張弁1の開状態と閉状態との間の切り換えが行われる。   The lower surface of the diaphragm is connected to the operating rod 5 through a diaphragm support member. For this reason, when the working gas in the first space is liquefied, the working rod 5 moves upward, and when the liquefied working gas is vaporized, the working rod 5 moves downward. Thus, switching between the open state and the closed state of the expansion valve 1 is performed.

パワーエレメント8の第2空間は、戻り流路23と連通している。このため、戻り流路23を流れる冷媒の温度、圧力に応じて、第1空間内の作動ガスの相(気相、液相等)が変化し、作動棒5が駆動される。換言すれば、図1に記載の膨張弁1では、エバポレータ104から膨張弁1に戻る冷媒の温度、圧力に応じて、膨張弁1からエバポレータ104に向けて供給される冷媒の量が自動的に調整される。   The second space of the power element 8 communicates with the return flow path 23. Therefore, the working gas phase (gas phase, liquid phase, etc.) in the first space changes according to the temperature and pressure of the refrigerant flowing through the return flow path 23, and the working rod 5 is driven. In other words, in the expansion valve 1 shown in FIG. 1, the amount of refrigerant supplied from the expansion valve 1 toward the evaporator 104 is automatically set in accordance with the temperature and pressure of the refrigerant returning from the evaporator 104 to the expansion valve 1. Adjusted.

次に、比較例を参照して、本実施形態の効果について説明する。図4は、比較例にかかる構成を示す図2と同様な断面図である。図4において、比較例のコイルばね41’は、等ピッチの巻線を有するため、コイルばね41’の巻線間の隙間δは等しくなっている。それ以外の構成は、上述した実施の形態と同様である。   Next, the effect of this embodiment will be described with reference to a comparative example. FIG. 4 is a cross-sectional view similar to FIG. 2 showing a configuration according to a comparative example. In FIG. 4, the coil spring 41 ′ of the comparative example has windings of equal pitch, so that the gap δ between the windings of the coil spring 41 ′ is equal. Other configurations are the same as those of the above-described embodiment.

比較例の場合、弁体3が弁座20から離間すると、第1流路21及び接続路21aから弁室VSに流入する冷媒が、図3に矢印Bで示すように、コイルばね41’の巻線間の隙間δからコイルばね41’内に進入し、反対側から抜け出るようになっている。この際に、冷媒がコイルばね41’を振動させ、それにより騒音が発生することとなる。   In the case of the comparative example, when the valve body 3 is separated from the valve seat 20, the refrigerant flowing into the valve chamber VS from the first flow path 21 and the connection path 21 a is transferred to the coil spring 41 ′ as indicated by an arrow B in FIG. The coil enters the coil spring 41 ′ from the gap δ between the windings and exits from the opposite side. At this time, the refrigerant vibrates the coil spring 41 ′, thereby generating noise.

これに対し、本実施形態によれば、コイルばね41の第1の巻線領域A1(図3)が接続路21aに対向しているので、図2に示すように第1流路21及び接続路21aから弁室VSに流入する冷媒が、矢印Aに示すようにコイルばね41の外周に弾かれて内部への進入を阻止されてしまい、巻線間の隙間を通過しないため、コイルばね41を振動させることがない。これにより騒音を効果的に抑制することができる。   On the other hand, according to the present embodiment, since the first winding region A1 (FIG. 3) of the coil spring 41 faces the connection path 21a, the first flow path 21 and the connection are connected as shown in FIG. The refrigerant flowing into the valve chamber VS from the passage 21a is bounced to the outer periphery of the coil spring 41 as shown by an arrow A and is prevented from entering the inside, and does not pass through the gap between the windings. Will not vibrate. Thereby, noise can be effectively suppressed.

なお、本発明は、上述の実施形態に限定されない。本発明の範囲内において、上述の実施形態の任意の構成要素の変形が可能である。また、上述の実施形態において任意の構成要素の追加または省略が可能である。   In addition, this invention is not limited to the above-mentioned embodiment. Within the scope of the present invention, any of the components of the above-described embodiments can be modified. In addition, arbitrary components can be added or omitted in the above-described embodiment.

1 :膨張弁
2 :弁本体
3 :弁体
4 :付勢装置
5 :作動棒
6 :リングばね
8 :パワーエレメント
20 :弁座
21 :第1流路
22 :第2流路
23 :戻り流路
26 :環状部
27 :作動棒挿通孔
41 :コイルばね
42 :弁体サポート
43 :ばね受け部材
100 :冷媒循環システム
101 :コンプレッサ
102 :コンデンサ
104 :エバポレータ
VS :弁室

1: Expansion valve 2: Valve body 3: Valve body 4: Energizing device 5: Actuating rod 6: Ring spring 8: Power element 20: Valve seat 21: First flow path 22: Second flow path 23: Return flow path 26: Annular portion 27: Actuating rod insertion hole 41: Coil spring 42: Valve body support 43: Spring receiving member 100: Refrigerant circulation system 101: Compressor 102: Condenser 104: Evaporator VS: Valve chamber

Claims (3)

供給側流路と排出側流路との間に設けられた弁室に配置され、前記供給側流路から前記排出側流路へと向かう流体が通過する環状の弁座を備えた弁本体と、
前記弁座に着座することにより前記流体の通過を阻止し、前記弁座から離間することにより前記流体の通過を許容する弁体と、
前記供給側流路から流入する流体の流れに対して側面を向けて前記弁室に配置され、前記弁体を前記弁座に向かって付勢するコイルばねと、
前記コイルばねによる付勢力に抗して、前記弁体を前記弁座から離間する方向に押圧する作動部材と、を有し、
前記コイルばねは、前記供給側流路から流入する流体の流れに対向する第1の巻線領域と、前記第1の巻線領域とは異なる第2の巻線領域とを有し、前記第1の巻線領域における巻線間隙間は、前記第2の巻線領域における巻線間隙間より小さい、
ことを特徴とする膨張弁。
A valve body including an annular valve seat that is disposed in a valve chamber provided between the supply-side flow path and the discharge-side flow path, and through which a fluid from the supply-side flow path toward the discharge-side flow path passes; ,
A valve body that prevents passage of the fluid by sitting on the valve seat, and allows passage of the fluid by separating from the valve seat;
A coil spring that is disposed in the valve chamber with a side faced with respect to the flow of fluid flowing in from the supply-side flow path, and biases the valve body toward the valve seat;
An actuating member that presses the valve body in a direction away from the valve seat against an urging force of the coil spring;
The coil spring includes a first winding region facing a flow of fluid flowing in from the supply-side flow path, and a second winding region different from the first winding region. The inter-winding gap in one winding area is smaller than the inter-winding gap in the second winding area,
An expansion valve characterized by that.
少なくとも前記弁体が前記弁座に着座している状態で、前記コイルばねの前記第1の巻線領域は、巻線間隙間がゼロである、
ことを特徴とする請求項1に記載の膨張弁。
In a state where at least the valve body is seated on the valve seat, the first winding region of the coil spring has zero inter-winding gap,
The expansion valve according to claim 1.
前記コイルばねは、不等ピッチの巻線を有する、
ことを特徴とする請求項1または2に記載の膨張弁。

The coil spring has windings of unequal pitch,
The expansion valve according to claim 1 or 2, wherein

JP2018051360A 2018-03-19 2018-03-19 Expansion valve Active JP7016155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018051360A JP7016155B2 (en) 2018-03-19 2018-03-19 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018051360A JP7016155B2 (en) 2018-03-19 2018-03-19 Expansion valve

Publications (2)

Publication Number Publication Date
JP2019163887A true JP2019163887A (en) 2019-09-26
JP7016155B2 JP7016155B2 (en) 2022-02-04

Family

ID=68066047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018051360A Active JP7016155B2 (en) 2018-03-19 2018-03-19 Expansion valve

Country Status (1)

Country Link
JP (1) JP7016155B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036173U (en) * 1989-06-06 1991-01-22
JP2008180475A (en) * 2007-01-26 2008-08-07 Fuji Koki Corp Expansion valve
JP2013257064A (en) * 2012-06-12 2013-12-26 Fuji Koki Corp Expansion valve
JP6182363B2 (en) * 2013-06-07 2017-08-16 株式会社不二工機 Expansion valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036173U (en) * 1989-06-06 1991-01-22
JP2008180475A (en) * 2007-01-26 2008-08-07 Fuji Koki Corp Expansion valve
JP2013257064A (en) * 2012-06-12 2013-12-26 Fuji Koki Corp Expansion valve
JP6182363B2 (en) * 2013-06-07 2017-08-16 株式会社不二工機 Expansion valve

Also Published As

Publication number Publication date
JP7016155B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
JP6367164B2 (en) Pressure operated valve and refrigeration cycle
JP2006242413A (en) Constant flow rate expansion valve
US8267329B2 (en) Expansion valve with noise reduction means
JP7074322B2 (en) Expansion valve
JP7016155B2 (en) Expansion valve
JP2019163834A (en) Expansion valve
JP7074321B2 (en) Expansion valve
WO2019181377A1 (en) Expansion valve
CN111133240B (en) Expansion valve
JP7082798B2 (en) Expansion valve
JP7089769B2 (en) Expansion valve
JP2019158296A (en) Expansion valve
JP4503471B2 (en) Expansion valve with integrated solenoid valve
JP2014009830A (en) Expansion valve
JP2011133157A (en) Expansion valve
JP2020041758A (en) Expansion valve
JP2020041757A (en) Expansion valve
JP2009236148A (en) Pressure control valve
KR20140145533A (en) Expansion valve
JP2012202443A (en) Pilot type solenoid valve
JP7373857B2 (en) Power element and expansion valve using it
JP7300705B2 (en) expansion valve
WO2021106933A1 (en) Power element and expansion valve using same
JP7382057B2 (en) Expansion valve and refrigeration cycle equipment
JP2018169117A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210125

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118