JP2003083641A - Flow control device, restricting device and air conditioning equipment - Google Patents

Flow control device, restricting device and air conditioning equipment

Info

Publication number
JP2003083641A
JP2003083641A JP2001271335A JP2001271335A JP2003083641A JP 2003083641 A JP2003083641 A JP 2003083641A JP 2001271335 A JP2001271335 A JP 2001271335A JP 2001271335 A JP2001271335 A JP 2001271335A JP 2003083641 A JP2003083641 A JP 2003083641A
Authority
JP
Japan
Prior art keywords
flow
throttle
passage
control device
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001271335A
Other languages
Japanese (ja)
Other versions
JP4221922B2 (en
Inventor
Atsushi Mochizuki
厚志 望月
Satoru Hirakuni
悟 平國
Yoshihiro Sumida
嘉裕 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001271335A priority Critical patent/JP4221922B2/en
Publication of JP2003083641A publication Critical patent/JP2003083641A/en
Application granted granted Critical
Publication of JP4221922B2 publication Critical patent/JP4221922B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a restricting device and a flow control device which enable setting of a different amount of restriction for a refrigerant flow in normal and reverse directions and to obtain air conditioning equipment which can conduct heating, reheating and dehumidifying operations and can reduce the sound of the refrigerant flow. SOLUTION: A communicating flow passage 16a making first and second flow passages 9a and 9b communicate with each other are provided, while a restricting flow passage 16b is provided in parallel to the passage 16a, and first and second restricting parts 13 and 15 are connected to the restricting passage 16b. The passages 16a and 16b are switched over by a switchover means 8 and a flow to the second restricting part 15 is switched over by a check valve 14. A fluid is subjected to pressure reduction by the first restricting part when it flows in the direction A through the restricting passage 16b, and subjected thereto by the second restricting part 15 or by the second restricting part 15 and the first restricting part when it flows in the direction B, so that the amount of restriction is different according to the flowing direction of the fluid. Besides, a porous permeable material is disposed in the restricting flow passage 16b so as to reduce a noise.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、凝縮熱または蒸
発熱を利用する冷凍サイクルにおいて、内部を流れる流
体を減圧する絞り装置、および内部を流れる冷媒の流量
を制御する流量制御装置に関するものである。また、こ
の絞り装置および流量制御装置を用い、室内の冷房、暖
房、除湿を行う空気調和装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a throttle device for decompressing a fluid flowing inside and a flow rate control device for controlling a flow rate of a refrigerant flowing inside in a refrigeration cycle utilizing heat of condensation or heat of evaporation. . The present invention also relates to an air conditioner that cools, heats, and dehumidifies the room by using the expansion device and the flow control device.

【0002】[0002]

【従来の技術】従来の空気調和装置では、空調負荷の変
動に対応するためにインバーターなどの容量可変型圧縮
機が用いられ、空調負荷の大小に応じて圧縮機の回転周
波数が制御されている。ところが冷房運転時に圧縮機回
転が小さくなると蒸発温度も上昇し、蒸発器での除湿能
力が低下したり、あるいは蒸発温度が室内の露点温度以
上に上昇し、除湿できなくなったりする問題点があっ
た。
2. Description of the Related Art In a conventional air conditioner, a variable capacity compressor such as an inverter is used to cope with a change in air conditioning load, and the rotation frequency of the compressor is controlled according to the size of the air conditioning load. . However, when the rotation of the compressor is reduced during cooling operation, the evaporation temperature also rises and the dehumidifying capacity of the evaporator decreases, or the evaporation temperature rises above the dew point temperature in the room, making it impossible to dehumidify. .

【0003】この冷房低容量運転時の除湿能力を向上さ
せる手段としては次のような空気調和装置が考案されて
いる。図21は例えば特開平11−51514号公報に
示された従来の空気調和装置を示す冷媒回路図である。
図において、1は圧縮機、2は四方弁、3は室外熱交換
器、4は第1流量制御装置、5は第1室内熱交換器、6
は第2流量制御装置、7は第2室内熱交換器であり、こ
れらは配管で順次接続され冷凍サイクルを構成してい
る。9aは第2流量制御装置6の一方側の流路である第
一流路接続配管、9bは第2流量制御装置6の他方側の
流路である第二流路接続配管である。さらに、第1流量
制御装置4は、主絞り装置41と二方弁42とが並列に
接続された構成である。この空気調和装置は、室外ユニ
ット51と室内ユニット52とに分離して配置されてい
る。
The following air conditioner has been devised as a means for improving the dehumidifying ability during the cooling low capacity operation. FIG. 21 is a refrigerant circuit diagram showing a conventional air conditioner disclosed in, for example, Japanese Patent Laid-Open No. 11-51514.
In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is a first flow controller, 5 is a first indoor heat exchanger, and 6
Is a second flow rate control device, 7 is a second indoor heat exchanger, and these are sequentially connected by piping to form a refrigeration cycle. Reference numeral 9a is a first flow path connecting pipe which is a flow path on one side of the second flow rate control device 6, and 9b is a second flow path connecting pipe which is a flow path on the other side of the second flow rate control device 6. Furthermore, the first flow control device 4 has a configuration in which the main expansion device 41 and the two-way valve 42 are connected in parallel. This air conditioner is separately arranged in an outdoor unit 51 and an indoor unit 52.

【0004】次に従来の空気調和装置の動作について説
明する。冷房運転では二方弁42を閉、第2流量制御装
置6を全開とする。圧縮機1を出た冷媒は四方弁2を通
過して、室外熱交換器3で凝縮液化し、第1流量制御装
置4に流入する。二方弁42は閉じられているため、主
絞り装置41で減圧され室内熱交換器5、7において蒸
発気化し、再び四方弁2を介して圧縮機1に戻る。ま
た、暖房運転でも二方弁を閉、第2流量制御装置6を全
開とし、四方弁2における冷媒流れを切換える。圧縮機
1を出た冷媒は冷房運転とは逆に四方弁2を通過して、
室内熱交換器7、5で凝縮液化し、第1流量制御装置4
に流入する。二方弁42は閉じられているため主絞り装
置41で減圧され室外熱交換器3において蒸発気化し、
再び四方弁2を介して圧縮機1に戻る。
Next, the operation of the conventional air conditioner will be described. In the cooling operation, the two-way valve 42 is closed and the second flow rate control device 6 is fully opened. The refrigerant exiting the compressor 1 passes through the four-way valve 2, is condensed and liquefied in the outdoor heat exchanger 3, and flows into the first flow rate control device 4. Since the two-way valve 42 is closed, it is decompressed by the main expansion device 41 and vaporized in the indoor heat exchangers 5 and 7, and then returns to the compressor 1 via the four-way valve 2 again. Also in the heating operation, the two-way valve is closed and the second flow rate control device 6 is fully opened to switch the refrigerant flow in the four-way valve 2. The refrigerant exiting the compressor 1 passes through the four-way valve 2 as opposed to the cooling operation,
The indoor heat exchangers 7 and 5 condense and liquefy, and the first flow control device 4
Flow into. Since the two-way valve 42 is closed, the pressure is reduced by the main expansion device 41 and vaporized in the outdoor heat exchanger 3,
It returns to the compressor 1 via the four-way valve 2 again.

【0005】一方、冷房運転及び暖房運転での除湿運転
時には、第1流量制御装置4の主絞り装置41を閉、二
方弁42を開とし、第2流量制御装置6で冷媒流量を制
御する。このように構成すると、例えば第1室内熱交換
器5と第2室内熱交換器7の一方が凝縮器すなわち再熱
器、他方が蒸発器として動作する。室内空気は蒸発器で
冷却・除湿されると共に、再熱器で加熱されるため、室
内に吹出す空気の温度をあまり下げずに湿度を下げる除
湿運転が可能となる。以下、このような運転を再熱除湿
運転と称する。また、図22は従来の空気調和装置の第
2流量制御装置6を示す部分断面図である。第2流量制
御装置6内に複数の切り込み溝43と弁体44からなる
オリフィス状の絞り流路を設けている。
On the other hand, during the dehumidifying operation in the cooling operation and the heating operation, the main throttle device 41 of the first flow rate control device 4 is closed, the two-way valve 42 is opened, and the second flow rate control device 6 controls the refrigerant flow rate. . With this configuration, for example, one of the first indoor heat exchanger 5 and the second indoor heat exchanger 7 operates as a condenser, that is, a reheater, and the other operates as an evaporator. Since the indoor air is cooled and dehumidified by the evaporator and is heated by the reheater, it is possible to perform the dehumidification operation in which the temperature of the air blown into the room is not lowered so much to reduce the humidity. Hereinafter, such an operation is referred to as a reheat dehumidifying operation. FIG. 22 is a partial cross-sectional view showing the second flow rate control device 6 of the conventional air conditioner. The second flow rate control device 6 is provided with an orifice-shaped throttle channel including a plurality of cut grooves 43 and a valve element 44.

【0006】[0006]

【発明が解決しようとする課題】上記のような従来の空
気調和装置では、室内ユニット52内に設置する第2流
量制御装置6として、通常は図22に示したようなオリ
フィス状の絞り流路を有する流量制御装置を用いてい
る。特に除湿運転時には第2流量制御装置6の入口が気
液二相冷媒となるため、第2流量制御装置6のオリフィ
スを通過する冷媒の流動音が大きくなるという問題があ
った。この流動音は室内環境を悪化させる要因となり、
第2流量制御装置6の周囲に遮音材や制振材を設けるな
どの追加の対策が必要となり、コスト増加や設置性の悪
化およびリサイクル性の悪化などの問題もあった。
In the conventional air conditioner as described above, as the second flow rate control device 6 installed in the indoor unit 52, an orifice-shaped throttle channel normally shown in FIG. 22 is used. A flow rate control device having In particular, during the dehumidifying operation, since the inlet of the second flow rate control device 6 becomes a gas-liquid two-phase refrigerant, there is a problem that the flow noise of the refrigerant passing through the orifice of the second flow rate control device 6 becomes loud. This flowing sound becomes a factor that deteriorates the indoor environment,
Additional measures such as providing a sound insulating material and a vibration damping material around the second flow rate control device 6 are required, and there are problems such as an increase in cost, deterioration of installation property, and deterioration of recyclability.

【0007】また従来の空気調和装置の流量制御装置6
では、第一流路接続配管9aから第二流路接続配管9b
への一方向の流れでしか流量制御ができず、流れが逆の
場合には全開の状態となるため、暖房再熱除湿運転がで
きないという問題があった。また流量を制御する場合の
絞り量が固定のため、温度制御の範囲が非常に狭くなる
という問題もあった。
A conventional flow control device 6 for an air conditioner
Then, from the first flow path connecting pipe 9a to the second flow path connecting pipe 9b
There is a problem that the heating reheat dehumidification operation cannot be performed because the flow rate can be controlled only by the one-way flow to, and when the flow is opposite, the flow is in the fully open state. Further, there is a problem that the range of temperature control becomes extremely narrow because the throttle amount when controlling the flow rate is fixed.

【0008】この除湿運転時の第2流量制御装置の冷媒
流動音低減策として、特願平12−127778号明細
書に示されたものがある。その第2流量制御装置6の断
面図を図23に示す。図のようにオリフィス12の前後
に多孔質透過材11を挟み込み、多孔質透過材11で気
液二相冷媒を整流し、発生する騒音を低下させるように
している。この第2流量制御装置6は、冷媒流動音の低
減には効果があり、ほとんど圧力損失のないように冷媒
を流す通常冷房運転や通常暖房運転のときのためには、
図24のように別に開閉弁45を設けて、開閉弁45の
開閉で流量制御をしていた。この流量制御装置6を図の
ように配管に接続した場合、第一流路接続配管9aから
第二流路接続配管9bへの一方向の流れでしか流量制御
ができないため、流れが逆になる暖房再熱除湿運転がで
きないという問題があった。
As a measure for reducing the refrigerant flow noise of the second flow rate control device during the dehumidifying operation, there is one disclosed in Japanese Patent Application No. 12-127778. A sectional view of the second flow rate control device 6 is shown in FIG. As shown in the figure, the porous permeable material 11 is sandwiched in front of and behind the orifice 12, and the porous permeable material 11 rectifies the gas-liquid two-phase refrigerant to reduce the noise generated. The second flow rate control device 6 is effective in reducing the refrigerant flow noise, and in the normal cooling operation or the normal heating operation in which the refrigerant flows so that there is almost no pressure loss,
An on-off valve 45 is separately provided as shown in FIG. 24, and the flow rate is controlled by opening and closing the on-off valve 45. When the flow rate control device 6 is connected to a pipe as shown in the figure, the flow rate can be controlled only by a one-way flow from the first flow path connection pipe 9a to the second flow path connection pipe 9b. There was a problem that the reheat dehumidification operation could not be performed.

【0009】この発明は、以上に述べたような問題点を
解決するためになされたものであり、凝縮熱または蒸発
熱を利用する冷凍サイクル装置の構成機器である絞り装
置および流量制御装置において、冷媒の流動制御に適
し、冷媒流動音を低減でき、正逆の方向の冷媒流れに対
して、異なる絞り量に設定できる絞り装置および流量制
御装置を得ることを目的としている。また、この発明
は、冷凍サイクルの凝縮熱を室内空気への加熱源として
利用する空気調和装置において、冷房、除湿、暖房、各
運転時における、温度と湿度の制御性を高め、冷房シー
ズン、暖房シーズンを問わず再熱除湿運転を実現すると
ともに、冷媒流動音を低減できる空気調和装置を得るこ
とを目的としている。
The present invention has been made in order to solve the above-mentioned problems, and in a throttle device and a flow rate control device, which are constituent devices of a refrigeration cycle device that uses heat of condensation or heat of evaporation, An object of the present invention is to obtain a throttle device and a flow rate control device that are suitable for the flow control of a refrigerant, can reduce the noise of the refrigerant flow, and can set different throttle amounts for the refrigerant flows in the forward and reverse directions. Further, the present invention, in an air conditioner that uses the condensation heat of the refrigeration cycle as a heating source for indoor air, enhances controllability of temperature and humidity during cooling, dehumidification, heating, and each operation, and improves cooling season, heating The objective is to obtain an air conditioner that can realize reheat dehumidification operation regardless of the season and can reduce refrigerant flow noise.

【0010】[0010]

【課題を解決するための手段】この発明の請求項1に係
る流量制御装置は、第一流路と第二流路を連通する連通
流路と、この連通流路に並列に設けられ第1絞り部と第
2絞り部を有する絞り流路と、前記連通流路と前記絞り
流路を切換える切換手段と、を備え、流体が前記絞り流
路の前記第一流路から前記第二流路へ流れる時、前記第
1絞り部で減圧し、流体が前記絞り流路の前記第二流路
から前記第一流路へ流れる時、前記第2絞り部または前
記第2絞り部と前記第1絞り部で減圧して、前記絞り流
路の流体の流れ方向で絞り量が異なるように構成したこ
とを特徴とするものである。
According to a first aspect of the present invention, there is provided a flow rate control device, a communication channel for communicating the first channel and the second channel, and a first throttle provided in parallel with the communication channel. A flow path including a flow path and a second flow path, and a switching means for switching between the communication flow path and the flow path. The fluid flows from the first flow path of the throttle flow path to the second flow path. At the time, when the pressure is reduced in the first throttle portion and the fluid flows from the second flow passage of the throttle flow passage to the first flow passage, in the second throttle portion or the second throttle portion and the first throttle portion. It is characterized in that the pressure is reduced and the amount of throttling is different depending on the flow direction of the fluid in the throttle channel.

【0011】また、この発明の請求項2に係る流量制御
装置は、請求項1記載の流量制御装置において、第1絞
り部を、流体を減圧して通過させるオリフィスで構成
し、前記オリフィスと第一流路の間および前記オリフィ
スと第二流路の間の少なくともいずれか一方の流路に、
流体を通過させる多孔質透過材を備えたことを特徴とす
るものである。
According to a second aspect of the present invention, there is provided the flow rate control device according to the first aspect, wherein the first throttle portion is constituted by an orifice for depressurizing and passing the fluid, and the orifice and the At least one flow path between the one flow path and between the orifice and the second flow path,
It is characterized by comprising a porous permeable material that allows a fluid to pass therethrough.

【0012】また、この発明の請求項3に係る絞り装置
は、両端に流路口を有し流路に配設される筐体と、この
筐体内の一端部に設けた開口を有する弁座と、前記筐体
内を流れる流体の流れ方向に稼動する稼動弁と、前記筐
体内の他端部に設けたストッパと、前記稼動弁または前
記弁座に設けた絞り部とを備え、前記弁座側から前記ス
トッパ側へ流体が流れる時、前記稼動弁は前記ストッパ
で停止して前記流体は前記開口を流れ、前記ストッパ側
から前記弁座側へ流体が流れる時、前記稼動弁は前記弁
座で停止して前記開口を塞ぎ、前記流体は前記絞り部を
流れることにより、流体の流れ方向で絞り量を異なるよ
うに構成したことを特徴とするものである。
According to a third aspect of the present invention, there is provided a throttle device having a casing having channel openings at both ends and arranged in the channel, and a valve seat having an opening provided at one end of the casing. The valve seat side, which includes an operating valve that operates in the flow direction of the fluid flowing in the housing, a stopper that is provided at the other end of the housing, and a throttle portion that is provided in the operating valve or the valve seat. When the fluid flows from the stopper valve to the stopper side, the operating valve stops at the stopper and the fluid flows through the opening, and when the fluid flows from the stopper side to the valve seat side, the operating valve operates at the valve seat. It is characterized in that the opening is closed to close the opening and the fluid flows through the throttle portion so that the throttle amount is different depending on the flow direction of the fluid.

【0013】また、この発明の請求項4に係る流量制御
装置は、請求項1または請求項2記載の流量制御装置に
おいて、前記第2絞り部を、請求項3記載の絞り装置で
構成したことを特徴とするものである。
According to a fourth aspect of the present invention, there is provided the flow control device according to the first or second aspect, wherein the second throttle portion is constituted by the throttle device according to the third aspect. It is characterized by.

【0014】また、この発明の請求項5に係る流量制御
装置は、請求項1または請求項2記載の流量制御装置に
おいて、前記第2絞り部を、キャピラリーチューブと、
このキャピラリーチューブに並列に設けられ一方向の流
れのみを許可する逆止弁とで構成したことを特徴とする
ものである。
A flow control device according to a fifth aspect of the present invention is the flow control device according to the first or second aspect, wherein the second throttle portion is a capillary tube.
It is characterized in that it is constituted by a check valve which is provided in parallel with this capillary tube and permits only one-way flow.

【0015】また、この発明の請求項6に係る絞り装置
は、一端が第一流路、他端が第二流路に接続されて流路
に配設される筐体と、この筐体内の第一流路側に設けら
れ前記筐体内を流れる流体を減圧して通過させる第1絞
り部と、前記第1絞り部と第一流路の間および前記第1
絞り部と第二流路の間の少なくともいずれか一方の流路
に配設された前記流体を通過させる多孔質透過材と、前
記第1絞り部と前記第二流路の間の第1絞り部側に設け
た開口を有する弁座と、前記筐体内を流れる流体の流れ
方向に稼動する稼動弁と、前記稼動弁と前記第二流路の
間に設けたストッパと、前記稼動弁または前記弁座に設
けた第2絞り部と、を備え、前記第一流路から前記第二
流路方向へ流体が流れる時、前記稼動弁は前記ストッパ
で停止して前記流体は第1絞り部及び開口を流れ、前記
第二流路から第一流路へ流体が流れる時、前記稼動弁は
前記弁座で停止して前記開口を塞ぎ、前記流体は第2絞
り部及び第1絞り部を流れることにより、流体の流れ方
向で絞り量を異なるように構成したことを特徴とするも
のである。
According to a sixth aspect of the present invention, there is provided a case in which one end is connected to the first flow path and the other end is connected to the second flow path, and the case is disposed in the flow path. A first throttle portion which is provided on one flow passage side and reduces the pressure of a fluid flowing in the housing to pass through; a space between the first throttle portion and the first flow passage;
A porous permeable material, which is disposed in at least one of the flow passages between the throttle portion and the second flow passage, and allows the fluid to pass therethrough, and a first throttle between the first throttle portion and the second flow passage. A valve seat having an opening provided on the part side, an operating valve that operates in the flow direction of the fluid flowing in the housing, a stopper provided between the operating valve and the second flow path, the operating valve or the A second throttle portion provided on the valve seat, and when the fluid flows from the first flow passage toward the second flow passage, the operating valve is stopped by the stopper and the fluid flows through the first throttle portion and the opening. Flow through the second flow passage to the first flow passage, the operating valve stops at the valve seat to close the opening, and the fluid flows through the second throttle portion and the first throttle portion. It is characterized in that the throttling amount is different depending on the flow direction of the fluid.

【0016】また、この発明の請求項7に係る絞り装置
は、一端が第一流路、他端が第二流路に接続されて流路
に配設される筐体と、この筐体内を流れる流体を減圧し
て通過させる第1絞り部を有する弁体と、前記第1絞り
部と第一流路の間および前記第1絞り部と第二流路の間
の少なくともいずれか一方に配設された前記流体を通過
させる多孔質透過材と、前記筐体内を流れる流体の流れ
方向に稼動する稼動弁と、前記稼動弁と第二流路の間に
設けられ流路を有する仕切板と、前記稼動弁または前記
弁体に設けた第2絞り部と、を備え、前記第一流路から
前記第二流路へ流体が流れる時、前記稼動弁は前記仕切
板で停止して前記流体は第1絞り部及び前記仕切板の流
路を流れ、前記第二流路から前記第一流路へ流体が流れ
る時、前記稼動弁は前記弁体で停止して前記第1絞り部
を塞ぎ、前記流体は第2絞り部を流れることにより、流
体の流れ方向で絞り量を異なるように構成したことを特
徴とするものである。
According to a seventh aspect of the present invention, there is provided a case in which one end is connected to the first flow path and the other end is connected to the second flow path, and the case is disposed in the flow path. A valve body having a first throttle portion that reduces the pressure of the fluid to pass therethrough, and is disposed at least one of the first throttle portion and the first flow passage and between the first throttle portion and the second flow passage. A porous permeable material that allows the fluid to pass therethrough, an operating valve that operates in the flow direction of the fluid that flows in the housing, a partition plate that has a flow path provided between the operating valve and the second flow path, and An operating valve or a second throttle portion provided in the valve body, and when the fluid flows from the first flow path to the second flow path, the operating valve stops at the partition plate and the fluid flows into the first flow path. When the fluid flows through the flow passage of the throttle portion and the partition plate and the fluid flows from the second flow passage to the first flow passage, the operating valve Closing the first throttle portion is stopped at the valve body, the fluid is characterized in that by flowing through the second aperture unit and configured to different amounts squeezed in the direction of fluid flow.

【0017】また、この発明の請求項8に係る流量制御
装置は、第一流路と第二流路を連通する連通流路と、こ
の連通流路に並列に請求項6または請求項7記載の絞り
装置を接続して成る絞り流路と、前記連通流路と前記絞
り流路を切換える切換手段と、を備え、流体が前記絞り
流路の前記第一流路から前記第二流路へ流れる時、前記
絞り装置の第1絞り部で減圧し、流体が前記絞り流路の
前記第二流路から前記第一流路へ流れる時、前記絞り装
置の第2絞り部または前記第2絞り部と前記第1絞り部
で減圧して、前記絞り流路の流体の流れ方向で絞り量が
異なるように構成したことを特徴とするものである。
According to an eighth aspect of the present invention, there is provided the flow rate control device according to the sixth aspect or the seventh aspect, in which the communication channel connecting the first channel and the second channel is provided in parallel with the communication channel. When a fluid flows from the first flow passage of the throttle flow passage to the second flow passage, the throttle flow passage is formed by connecting a throttle device, and the switching passage that switches between the communication flow passage and the throttle flow passage. When the pressure is reduced in the first throttle portion of the throttle device and the fluid flows from the second flow passage of the throttle flow passage to the first flow passage, the second throttle portion of the throttle device or the second throttle portion and the It is characterized in that the pressure is reduced in the first throttle portion so that the throttle amount is different in the flow direction of the fluid in the throttle channel.

【0018】また、この発明の請求項9に係る絞り装置
は、空気調和装置は、圧縮機、室外熱交換器、第1流量
制御装置、第1室内熱交換器、第2流量制御装置、第2
室内熱交換器を順次接続した冷凍サイクルを備え、請求
項1または請求項2または請求項4または請求項5また
は請求項8に記載の流量制御装置を前記第2流量制御装
置とし、第1、第2室内熱交換器を共に蒸発器または凝
縮器として運転する際、前記第2流量制御装置は連通流
路を介して第1、第2室内熱交換器を接続するように
し、第1、第2室内熱交換器のうちの一方を蒸発器、他
方を凝縮器として運転する際、前記第2流量制御装置は
絞り流路を介して第1、第2室内熱交換器を接続するよ
うに前記切換手段を切換えるように構成したことを特徴
とするものである。
According to a ninth aspect of the present invention, in the air conditioner, the air conditioner includes a compressor, an outdoor heat exchanger, a first flow rate control device, a first indoor heat exchanger, a second flow rate control device, and a second flow rate control device. Two
A refrigeration cycle in which indoor heat exchangers are sequentially connected is provided, and the flow rate control device according to claim 1, 2 or 4 or 5 or 8 is used as the second flow control device. When the second indoor heat exchanger is operated as an evaporator or a condenser together, the second flow rate control device connects the first and second indoor heat exchangers through the communication passage, and the first and second indoor heat exchangers are connected. When one of the two indoor heat exchangers is operated as an evaporator and the other is operated as a condenser, the second flow rate control device connects the first and second indoor heat exchangers through a throttle channel. It is characterized in that the switching means is configured to be switched.

【0019】また、この発明の請求項10に係る空気調
和装置は、第1室内熱交換器を蒸発器とし第2室内熱交
換器を凝縮器とする暖房再熱除湿運転での第2流量制御
装置の絞り量を、第1室内熱交換器を凝縮器とし第2室
内熱交換器を蒸発器とする冷房再熱除湿運転での絞り量
よりも大きくしたことを特徴とするものである。
Further, in the air conditioner according to claim 10 of the present invention, the second flow rate control in the heating reheat dehumidification operation in which the first indoor heat exchanger is an evaporator and the second indoor heat exchanger is a condenser. The throttle amount of the device is set to be larger than the throttle amount in the cooling reheat dehumidification operation in which the first indoor heat exchanger is a condenser and the second indoor heat exchanger is an evaporator.

【0020】[0020]

【発明の実施の形態】実施の形態1.図1はこの発明の
実施の形態1による空気調和装置を示す冷媒回路図であ
る。空気調和装置は、冷凍サイクルの凝縮熱または蒸発
熱を利用して室内の冷房や暖房を行っている。図におい
て、1は圧縮機、2は冷房運転および暖房運転の冷媒の
流れを切換える流路切換手段で例えば四方弁、3は室外
熱交換器、4は第1流量制御装置、5は第1室内熱交換
器、6は第2流量制御装置、7は第2室内熱交換器であ
り、これらは配管によって順次接続され冷凍サイクルを
構成している。この冷凍サイクルの冷媒には、R32と
R125の混合冷媒であるR410Aが用いられ、冷凍
機油としてはアルキルベンゼン系油が用いられている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. 1 is a refrigerant circuit diagram showing an air conditioner according to Embodiment 1 of the present invention. The air conditioner uses the condensation heat or the evaporation heat of the refrigeration cycle to cool or heat the room. In the figure, 1 is a compressor, 2 is a flow path switching means for switching the flow of refrigerant in cooling operation and heating operation, for example, a four-way valve, 3 is an outdoor heat exchanger, 4 is a first flow rate control device, and 5 is a first indoor chamber. A heat exchanger, 6 is a second flow rate control device, and 7 is a second indoor heat exchanger, which are sequentially connected by piping to form a refrigeration cycle. R410A, which is a mixed refrigerant of R32 and R125, is used as the refrigerant of this refrigeration cycle, and alkylbenzene-based oil is used as the refrigerating machine oil.

【0021】図2は第2流量制御装置6を示す回路構成
図であり、(a)、(b)、(c)はそれぞれ作動状態
を示している。図において、8は切換手段で例えば開閉
弁、9aは第一流路でここでは第一流路接続配管、9b
は第二流路でここでは第二流路接続配管、13は絞り装
置、14は逆止弁、15はキャピラリーチューブ、16
a、16bは流路を構成する配管である。第一流路接続
配管9aは二つの流路、連通流路16aと絞り流路16
bに分かれ、一方の連通流路16aには開閉弁8が連結
され、開閉弁8を開とした時には連通流路16aに流体
が流れ、閉とした時には絞り流路16bに冷媒が流れ
る。絞り流路16bは第1絞り部を有する絞り装置13
と第2絞り部となるキャピラリーチューブ15が連結さ
れている。さらに、キャピラリーチューブ15に並列に
逆止弁14が連結され、配管16bは開閉弁8からの配
管16aと合流している。逆止弁14は第一流路接続配
管9aから第二流路接続配管9bへの流れ方向、即ちA
方向を順方向として流体を通過させ、B方向の流れを阻
止するように設置されている。ここで、連通流路とは、
流体の圧力損失がほぼ0である流路のことであり、第一
流路と第二流路を連通するとは、第一流路と第二流路と
を圧力損失がほぼ0の状態で接続することである。
FIG. 2 is a circuit diagram showing the second flow rate control device 6, in which (a), (b) and (c) show the operating states. In the figure, 8 is a switching means, for example, an on-off valve, 9a is a first flow passage, here a first flow passage connecting pipe, 9b
Is a second flow passage, here is a second flow passage connecting pipe, 13 is a throttle device, 14 is a check valve, 15 is a capillary tube, 16
Reference numerals a and 16b are pipes that form a flow path. The first flow path connecting pipe 9a includes two flow paths, a communication flow path 16a and a throttle flow path 16a.
The on-off valve 8 is connected to one of the communication channels 16a, and the fluid flows to the communication channel 16a when the on-off valve 8 is opened, and the refrigerant flows to the throttle channel 16b when the on-off valve 8 is closed. The throttle channel 16b is a throttle device 13 having a first throttle portion.
And the capillary tube 15 serving as the second throttle portion are connected. Further, the check valve 14 is connected in parallel to the capillary tube 15, and the pipe 16b joins with the pipe 16a from the opening / closing valve 8. The check valve 14 is in the flow direction from the first flow path connecting pipe 9a to the second flow path connecting pipe 9b, that is, A
It is installed so that the fluid flows through in the forward direction and blocks the flow in the B direction. Here, the communication channel is
A fluid having a pressure loss of almost zero, and communicating the first and second channels with each other means connecting the first channel and the second channel with a pressure loss of substantially zero. Is.

【0022】また、図3は絞り装置13を示す断面図で
あり、図において、11a、11bは多孔質透過材、1
2は第1絞り部となるオリフィス、17は筐体、18は
弁体である。多孔質透過材11a、11bは弁体18に
固定されている。この多孔質透過材11a、11bは、
例えば通気孔の気孔径が500μm程度のもので、オリ
フィス12と配管16bの間の流路に配設され、流体で
ある冷媒を透過させる際、冷媒蒸気スラグや蒸気気泡を
微細化する。その材質は、例えば発泡金属で、ウレタン
フォームに金属粉末あるいは合金粉末を塗布後、熱処理
をしてウレタンフォームを焼失させ、金属を3次元の格
子状に成形したものであり、材料はNi(ニッケル)で
ある。強度を上げるため、Cr(クロム)をメッキ処理
してもよい。そしてその形状は、円盤状あるいは多角形
状で、流路方向にある程度の厚みを有する。
FIG. 3 is a cross-sectional view showing the diaphragm device 13. In the figure, 11a and 11b are porous permeable materials, and 1
Reference numeral 2 is an orifice serving as a first throttle portion, 17 is a housing, and 18 is a valve body. The porous permeable materials 11a and 11b are fixed to the valve body 18. The porous permeable materials 11a and 11b are
For example, the air holes have a pore diameter of about 500 μm and are arranged in the flow path between the orifice 12 and the pipe 16b to make the refrigerant vapor slag and vapor bubbles fine when permeating the refrigerant which is a fluid. The material is, for example, foam metal, which is obtained by applying metal powder or alloy powder to urethane foam, heat-treating the urethane foam to burn it, and molding the metal into a three-dimensional lattice. ). In order to increase strength, Cr (chromium) may be plated. The shape is disk-like or polygonal, and has a certain thickness in the flow path direction.

【0023】また、多孔質透過材11a、11bとオリ
フィス12の間には、一定隙間19a、19bが生じる
ように段差がつけられている。この隙間19a、19b
は、例えば0〜3mmの間で設定される。多孔質透過材
11a、11bは厚さ1mm〜5mm、通過面積70m
2〜700mm2に設定されている。そして多孔質透過
材11a、オリフィス12、多孔質透過材11bが設置
された弁体18は筐体17に圧入され固定されている。
Further, a step is formed between the porous permeable materials 11a and 11b and the orifice 12 so that constant gaps 19a and 19b are formed. These gaps 19a and 19b
Is set, for example, between 0 and 3 mm. The porous permeable materials 11a and 11b have a thickness of 1 mm to 5 mm and a passage area of 70 m.
It is set to m 2 to 700 mm 2 . The valve body 18 provided with the porous permeable material 11a, the orifice 12, and the porous permeable material 11b is press-fitted and fixed to the housing 17.

【0024】図2(a)のように開閉弁8を開け、冷媒
をA方向に流すと、冷媒はほとんど連通流路16aに流
れ、流量制御装置6の内部を流れる冷媒には圧力損失が
ほとんどない状態になる。逆に冷媒をB方向に流しても
同様である。次に開閉弁8を閉じて図2(b)のように
A方向に冷媒を流すと、冷媒は絞り流路16bに流れて
絞り装置13で減圧される。このときに逆止弁14は圧
損がなく流れる方向に設置されているで、キャピラリー
チューブ15にはほとんど冷媒は流れない。次に開閉弁
8を閉じた状態で、B方向に冷媒を流すと(c)のよう
に絞り流路16bに流れるが、逆止弁14には流れずに
キャピラリーチューブ15に冷媒の全量が流れる。この
冷媒は、キャピラリーチューブ15で減圧され、さら
に、絞り装置13のオリフィス12を通って減圧され
る。即ち、(b)のように冷媒を流すときは、絞り装置
13でのオリフィス12によって絞られ、(c)のよう
に冷媒を流すときは、キャピラリーチューブ15と絞り
装置13でのオリフィス12によって絞られる。以上の
ように、この実施の形態による第2流量制御装置6は、
冷媒の流れ方向により冷媒の絞り量を変えることができ
る。
When the on-off valve 8 is opened and the refrigerant flows in the direction A as shown in FIG. 2A, most of the refrigerant flows through the communication passage 16a, and the refrigerant flowing inside the flow control device 6 has almost no pressure loss. There is no state. The same applies when the refrigerant flows in the B direction. Next, when the on-off valve 8 is closed and the refrigerant is caused to flow in the direction A as shown in FIG. 2B, the refrigerant flows into the throttle passage 16b and is reduced in pressure by the expansion device 13. At this time, the check valve 14 is installed in a direction in which there is no pressure loss, and therefore the refrigerant hardly flows into the capillary tube 15. Next, when the on-off valve 8 is closed and the refrigerant flows in the B direction, the refrigerant flows in the throttle channel 16b as shown in (c), but does not flow in the check valve 14 and the entire amount of the refrigerant flows in the capillary tube 15. . This refrigerant is decompressed by the capillary tube 15, and further decompressed through the orifice 12 of the expansion device 13. That is, when the refrigerant flows as in (b), it is throttled by the orifice 12 in the expansion device 13, and when the refrigerant flows as in (c), it is restricted by the capillary tube 15 and the orifice 12 in the expansion device 13. To be As described above, the second flow rate control device 6 according to this embodiment is
The throttle amount of the refrigerant can be changed depending on the flow direction of the refrigerant.

【0025】次にこの実施の形態による空気調和装置の
冷凍サイクルの動作について説明する。図1では冷房時
の冷媒の流れを実線矢印で示している。冷房運転は、起
動時や夏季時など部屋の空調顕熱負荷と潜熱負荷が共に
大きい場合に対応する通常冷房運転と、中間期や梅雨時
期のように空調顕熱負荷は小さいが潜熱負荷が大きな場
合に対応する冷房除湿運転がある。通常冷房運転は、第
2流量制御装置6の開閉弁8を開け、図2(a)のよう
に冷媒を流し、第1室内熱交換器5と第2室内熱交換器
7との間をほとんど圧力損失がない状態で接続する。
Next, the operation of the refrigeration cycle of the air conditioner according to this embodiment will be described. In FIG. 1, the flow of the refrigerant during cooling is indicated by a solid arrow. Cooling operation corresponds to normal cooling operation when the air conditioning sensible load and latent heat load of the room are both large at startup and during summer, and the air conditioning sensible heat load is small but the latent heat load is large, such as in the middle period and rainy season. There is a cooling and dehumidifying operation corresponding to the case. In the normal cooling operation, the opening / closing valve 8 of the second flow rate control device 6 is opened, the refrigerant is allowed to flow as shown in FIG. 2 (a), and the space between the first indoor heat exchanger 5 and the second indoor heat exchanger 7 is almost eliminated. Connect without pressure loss.

【0026】この時、空調負荷に応じた回転数で運転さ
れている圧縮機1を出た高温高圧の蒸気冷媒は四方弁2
を通過して、室外熱交換器3で凝縮液化する。そして、
第1流量制御装置4で減圧され低圧二相冷媒となって第
1室内熱交換器5に流入し蒸発気化する。さらに、第2
流量制御装置6をほとんど圧力損失なしに通過して再び
第2室内熱交換器7で蒸発気化し、低圧蒸気冷媒となっ
て再び四方弁2を介して圧縮機1に戻る。
At this time, the high-temperature and high-pressure vapor refrigerant leaving the compressor 1 operating at the number of revolutions according to the air conditioning load is the four-way valve 2.
And is condensed and liquefied in the outdoor heat exchanger 3. And
The pressure is reduced by the first flow rate control device 4, becomes a low-pressure two-phase refrigerant, flows into the first indoor heat exchanger 5, and is evaporated and vaporized. Furthermore, the second
After passing through the flow rate control device 6 with almost no pressure loss, it is vaporized again in the second indoor heat exchanger 7 to become low-pressure vapor refrigerant and returns to the compressor 1 again via the four-way valve 2.

【0027】この通常冷房運転では、第2流量制御装置
6は圧力損失がほとんどない状態になっているため、冷
房能力や効率低下などは起こらない。また、第1流量制
御装置4は例えば圧縮機1の吸入部分で冷媒の過熱度が
10℃となるように制御されている。このような冷凍サ
イクルでは室内熱交換器5、7は共に蒸発器として動作
し、ここで冷媒が蒸発することにより室内から熱を奪
う。そして、室外熱交換器3は凝縮器として動作し、こ
こで冷媒が凝縮することで室内で奪った熱を室外で放出
している。これにより室内の冷房が行われる。
In this normal cooling operation, since the second flow rate control device 6 is in a state where there is almost no pressure loss, cooling capacity and efficiency drop do not occur. Further, the first flow rate control device 4 is controlled so that the superheat degree of the refrigerant becomes 10 ° C. in the suction portion of the compressor 1, for example. In such a refrigeration cycle, both the indoor heat exchangers 5 and 7 operate as an evaporator, and the refrigerant evaporates here to remove heat from the room. The outdoor heat exchanger 3 operates as a condenser, and the refrigerant condenses here to release the heat taken indoors outdoors. This cools the room.

【0028】図4は冷房除湿運転時の動作状態を表わす
特性図で、圧力-エンタルピー線図である。冷房除湿運
転時の動作について、図4を用いて説明する。なお、図
4に示したA点〜G点は、図1に示したA点〜G点の部分で
の冷媒の状態をそれぞれの英文字と対応して示してい
る。この冷房除湿運転時は、第2流量制御装置6の開閉
弁8を閉じ、図2(b)のように冷媒を流す。
FIG. 4 is a characteristic diagram showing the operating state during the cooling / dehumidifying operation, and is a pressure-enthalpy diagram. The operation during the cooling / dehumidifying operation will be described with reference to FIG. It should be noted that points A to G shown in FIG. 4 indicate the state of the refrigerant at the points A to G shown in FIG. During this cooling / dehumidifying operation, the opening / closing valve 8 of the second flow rate control device 6 is closed and the refrigerant is flowed as shown in FIG.

【0029】この時、空調負荷に応じた回転数で運転さ
れている圧縮機1を出た高温高圧の蒸気冷媒は四方弁2
を通過して(A点)、室外熱交換器3で外気と熱交換し
て凝縮し気液二相冷媒となる(B点)。この高圧二相冷
媒は第1流量制御装置4で若干減圧され、中間圧の気液
二相冷媒となって第1室内熱交換器5に流入する(C
点)。そして第1室内熱交換器で、室内空気と熱交換を
行いさらに凝縮する(D点)。第1室内熱交換器5を流
出した気液二相冷媒は第2流量制御装置6に流入する。
At this time, the high-temperature and high-pressure vapor refrigerant leaving the compressor 1 operating at the number of revolutions according to the air conditioning load is the four-way valve 2.
After passing through (point A), heat is exchanged with the outside air in the outdoor heat exchanger 3 and condensed to become a gas-liquid two-phase refrigerant (point B). This high-pressure two-phase refrigerant is slightly decompressed by the first flow rate control device 4, becomes an intermediate-pressure gas-liquid two-phase refrigerant, and flows into the first indoor heat exchanger 5 (C
point). Then, in the first indoor heat exchanger, heat is exchanged with the indoor air and further condensed (point D). The gas-liquid two-phase refrigerant flowing out of the first indoor heat exchanger 5 flows into the second flow rate control device 6.

【0030】この時、第2流量制御装置6の絞り装置1
9を通る冷媒はオリフィス12で減圧されて、低圧の気
液二相冷媒となって、第2室内熱交換器7に流入する
(E点)。第2室内熱交換器7に流入した冷媒は、室内
空気の顕熱および潜熱を奪って蒸発する。第2室内熱交
換器7を出た低圧蒸気冷媒(F点)は再び四方弁2を通
り(G点)、圧縮機1に戻る。この冷房除湿運転では、
室内空気は、凝縮器として動作する第1室内熱交換器5
で加熱され、蒸発器として動作する第2室内熱交換器7
で冷却除湿されるため、部屋の室温低下を防ぎながら除
湿を行うことができる。このような冷房除湿運転は、第
1室内熱交換器5を再熱器として利用するため、冷房再
熱除湿運転とも称する。
At this time, the expansion device 1 of the second flow control device 6
The refrigerant passing through 9 is decompressed by the orifice 12, becomes a low pressure gas-liquid two-phase refrigerant, and flows into the second indoor heat exchanger 7 (point E). The refrigerant flowing into the second indoor heat exchanger 7 deprives the sensible heat and latent heat of the indoor air and evaporates. The low-pressure vapor refrigerant (point F) exiting the second indoor heat exchanger 7 passes through the four-way valve 2 (point G) again and returns to the compressor 1. In this cooling and dehumidifying operation,
The indoor air is the first indoor heat exchanger 5 that operates as a condenser.
The second indoor heat exchanger 7 that is heated by
Since it is cooled and dehumidified by, the dehumidification can be performed while preventing the room temperature from decreasing. Such a cooling and dehumidifying operation is also referred to as a cooling and reheating dehumidifying operation because the first indoor heat exchanger 5 is used as a reheater.

【0031】なお、この除湿運転では、圧縮機1の回転
周波数や室外熱交換器3のファン回転数を調整して、室
外熱交換器3の熱交換量を制御し、第1室内熱交換器5
による室内空気の加熱量を制御して吹出し温度を広範囲
に制御できる。また、第1流量制御装置4の開度や第1
室内熱交換器5のファン回転数を制御して第1室内熱交
換器5の凝縮温度を制御し、第1室内熱交換器5による
室内空気の加熱量を制御することもできる。また、第2
流量制御装置6は例えば圧縮機1の吸入部分で冷媒の過
熱度が10℃となるように制御される。
In this dehumidifying operation, the rotation frequency of the compressor 1 and the fan rotation speed of the outdoor heat exchanger 3 are adjusted to control the heat exchange amount of the outdoor heat exchanger 3 to control the first indoor heat exchanger. 5
The blowout temperature can be controlled in a wide range by controlling the amount of heating of the indoor air by. In addition, the opening of the first flow control device 4 and the first
It is also possible to control the fan rotation speed of the indoor heat exchanger 5 to control the condensing temperature of the first indoor heat exchanger 5, and to control the heating amount of the indoor air by the first indoor heat exchanger 5. Also, the second
The flow rate control device 6 is controlled, for example, so that the superheat degree of the refrigerant becomes 10 ° C. at the suction portion of the compressor 1.

【0032】図1において暖房時の冷媒の流れを点線矢
印で示している。暖房運転には通常暖房運転と暖房除湿
運転がある。この時四方弁2を点線のように接続して流
路を構成する。通常暖房運転は、第2流量制御装置6の
開閉弁8を開け、第1室内熱交換器5と第2室内熱交換
器7との間をほとんど圧力損失がない状態で接続する。
In FIG. 1, the flow of the refrigerant during heating is indicated by a dotted arrow. Heating operation includes normal heating operation and heating dehumidification operation. At this time, the four-way valve 2 is connected as a dotted line to form a flow path. In the normal heating operation, the opening / closing valve 8 of the second flow rate control device 6 is opened, and the first indoor heat exchanger 5 and the second indoor heat exchanger 7 are connected with almost no pressure loss.

【0033】この時、圧縮機1は空調負荷に応じた回転
数で運転されている。この圧縮機1を出た高温高圧の蒸
気冷媒は四方弁2を通過して、第2室内熱交換器7で凝
縮液化する。そして、第2流量制御装置6をほとんど圧
力損失なしに通過し、再び第1室内熱交換器5で液化す
る。さらに、第1流量制御装置4で減圧され低圧二相冷
媒となって室外熱交換器3に流入し蒸発気化し、低圧蒸
気冷媒となって再び四方弁2を介して圧縮機1に戻る。
At this time, the compressor 1 is operated at a rotational speed according to the air conditioning load. The high-temperature and high-pressure vapor refrigerant that has left the compressor 1 passes through the four-way valve 2 and is condensed and liquefied in the second indoor heat exchanger 7. Then, it passes through the second flow rate control device 6 with almost no pressure loss, and is liquefied again in the first indoor heat exchanger 5. Further, it is decompressed by the first flow rate control device 4, becomes a low-pressure two-phase refrigerant, flows into the outdoor heat exchanger 3 and is vaporized and evaporated, and becomes a low-pressure vapor refrigerant and returns to the compressor 1 again via the four-way valve 2.

【0034】この通常暖房運転では、第2流量制御装置
6は圧力損失がほとんどない状態になっているため、暖
房能力や効率低下などは起こらない。また、第1流量制
御装置4は例えば圧縮機1の吸入部分で冷媒の過熱度が
10℃となるように制御されている。このような冷凍サ
イクルでは、室外熱交換器3は蒸発器として動作し、こ
こで冷媒が蒸発することにより室外から熱を奪う。そし
て、室内熱交換器7、5は共に凝縮器として動作し、こ
こで冷媒が凝縮することによって室外で奪った熱を室内
に放出している。これにより室内の暖房が行われる。
In this normal heating operation, since the second flow rate control device 6 is in a state where there is almost no pressure loss, heating capacity and efficiency are not reduced. Further, the first flow rate control device 4 is controlled so that the superheat degree of the refrigerant becomes 10 ° C. in the suction portion of the compressor 1, for example. In such a refrigeration cycle, the outdoor heat exchanger 3 operates as an evaporator, in which the refrigerant evaporates to remove heat from the outside. The indoor heat exchangers 7 and 5 both operate as a condenser, and the heat condensed outside the room is radiated to the room by condensing the refrigerant. As a result, the room is heated.

【0035】図5は暖房除湿運転時の動作状態を表す特
性図で、圧力―エンタルピー線図である。暖房除湿運転
の動作について、図5を用いて説明する。図5中のA点
〜G点は、図1に示したA点〜G点の部分での冷媒の状
態をそれぞれの英文字に対応して示している。この暖房
除湿運転時は、開閉弁8を閉として図2(c)に示す状
態となり、冷房除湿運転時の冷媒の流れとは逆の流れに
なる。
FIG. 5 is a characteristic diagram showing an operating state during the heating dehumidifying operation, and is a pressure-enthalpy diagram. The operation of the heating dehumidifying operation will be described with reference to FIG. Points A to G in FIG. 5 indicate the states of the refrigerant at the points A to G shown in FIG. 1 corresponding to the respective English letters. During this heating / dehumidifying operation, the on-off valve 8 is closed to enter the state shown in FIG. 2C, which is the reverse flow of the refrigerant during the cooling / dehumidifying operation.

【0036】圧縮機1から吐出され、四方弁2を通った
冷媒は、F点から第2室内熱交換器7で室内空気と熱交
換して凝縮し気液二相冷媒または液冷媒となり(E
点)、第2流量制御弁6に流入する。第2流量制御装置
6のオリフィス12を通る冷媒は減圧され、D点となっ
て第1室内熱交換器5に流入する。そして第1室内熱交
換器5に流入した冷媒は、室内空気の顕熱および潜熱を
奪って蒸発する。この後C点を通りさらに第1流量制御
装置4を通って室外熱交換器3、圧縮機1の吸入側(G
点)に戻る冷凍サイクルとなる。なおこの例ではE点に
て過冷却がついている状態について説明したが、運転状
態によって、過冷却がつかない場合がありその時は図5
の点線となる。また第1流量制御装置4は全開となって
おり圧力損失がつかないようになっている。
The refrigerant discharged from the compressor 1 and passed through the four-way valve 2 exchanges heat with indoor air in the second indoor heat exchanger 7 from point F and is condensed to become a gas-liquid two-phase refrigerant or a liquid refrigerant (E
Point), and flows into the second flow control valve 6. The refrigerant passing through the orifice 12 of the second flow rate control device 6 is decompressed and becomes the point D and flows into the first indoor heat exchanger 5. Then, the refrigerant flowing into the first indoor heat exchanger 5 deprives the sensible heat and latent heat of the indoor air and evaporates. After this, the air passes through point C and further through the first flow rate control device 4, and the outdoor heat exchanger 3 and the suction side of the compressor 1 (G
It becomes a refrigeration cycle that returns to point). Note that, in this example, the state in which supercooling is attached at point E has been described, but depending on the operating state, there may be cases where subcooling does not occur.
It becomes the dotted line. Further, the first flow rate control device 4 is fully opened so that no pressure loss occurs.

【0037】この運転において冷媒が第1室内熱交換器
5で蒸発して除湿するには、第1室内熱交換器5での蒸
発温度が室内空気の露点温度以下にならなければいけな
いので、室内送風機の風量の調整や圧縮機回転数の調整
などにより蒸発温度を制御して、室内空気の露点温度以
下としてやればよい。これにより室内ユニット52で
は、外気温条件によらずに第1室内熱交換器5で冷却除
湿された空気と第2室内熱交換器7で加熱された空気が
混合されて吹き出される。また図5の場合で第1室内熱
交換器5での蒸発温度が低くなりすぎて、室内の吹き出
し温度が下がりすぎる場合は、第1流量制御装置4を調
整して図6の様に、蒸発温度を調整することもできる。
In this operation, in order for the refrigerant to evaporate and dehumidify in the first indoor heat exchanger 5, the evaporation temperature in the first indoor heat exchanger 5 must be lower than the dew point temperature of the indoor air. The evaporation temperature may be controlled by adjusting the air volume of the blower, adjusting the rotation speed of the compressor, or the like so as to be equal to or lower than the dew point temperature of the room air. As a result, in the indoor unit 52, the air cooled and dehumidified in the first indoor heat exchanger 5 and the air heated in the second indoor heat exchanger 7 are mixed and blown out regardless of the outside air temperature condition. In the case of FIG. 5, when the evaporation temperature in the first indoor heat exchanger 5 becomes too low and the temperature of the air blown out in the room becomes too low, the first flow rate control device 4 is adjusted and evaporation is performed as shown in FIG. The temperature can also be adjusted.

【0038】このような暖房除湿運転では、室内空気
は、凝縮器として動作する第2室内熱交換器7で加熱さ
れ、蒸発器として動作する第1室内熱交換器5で冷却除
湿されるため、部屋の室温低下を防ぎながら除湿を行う
ことができる。このような暖房除湿運転は、第2室内熱
交換器7を再熱器として利用するため、暖房再熱除湿運
転とも称する。暖房再熱除湿運転を行うことにより、室
温低下がない除湿、または室温を上げつつも除湿するこ
とが可能となる。
In such a heating / dehumidifying operation, the indoor air is heated by the second indoor heat exchanger 7 operating as a condenser and cooled and dehumidified by the first indoor heat exchanger 5 operating as an evaporator. Dehumidification can be performed while preventing the room temperature from dropping. Since such a heating dehumidifying operation uses the second indoor heat exchanger 7 as a reheater, it is also referred to as a heating reheat dehumidifying operation. By performing the heating reheat dehumidifying operation, it is possible to dehumidify without lowering the room temperature or to dehumidify while raising the room temperature.

【0039】即ち、外気温条件、冷房シーズン、暖房シ
ーズンに関わらずに、必要とされる空調負荷に応じて冷
房再熱除湿運転と暖房再熱除湿運転を切り換えれば、室
温を制御(低下、同等、上昇)しながらの除湿を行うこ
とができる。
That is, regardless of the outside temperature condition, the cooling season and the heating season, if the cooling reheat dehumidifying operation and the heating reheat dehumidifying operation are switched according to the required air conditioning load, the room temperature is controlled (lowered, Dehumidification can be performed while increasing (equal to, rising).

【0040】この実施の形態の第2流量制御装置6は冷
媒の流れが逆でも流量制御が可能なため、冷房再熱除
湿、暖房再熱除湿のともに実現できる。また図4の圧力
―エンタルピー曲線により、冷房除湿運転時は流量制御
装置5の入口(D点)では冷媒は気液2相状態である
が、図5の圧力―エンタルピー曲線により暖房除湿運転
時の流量制御装置6の入口(E点)は、冷媒が液の状態
である場合もある。同じ断面積のオリフィスを冷媒が通
過するときは、液状態よりも気液2相状態のほうが圧力
損失が大きい。このため、所定の冷媒量を流すために
は、暖房除湿運転時の絞り量は冷房除湿運転時よりも大
きくする必要がある。この実施の形態による流量制御装
置6では、冷媒の流れ方向によって冷媒の減圧量を異な
るように設定できる。このため冷房除湿運転時と暖房除
湿運転時で絞り量を変えることが可能となり、最適な除
湿運転が制御可能となる。
Since the second flow rate control device 6 of this embodiment can control the flow rate even if the flow of the refrigerant is reversed, both cooling reheat dehumidification and heating reheat dehumidification can be realized. Further, according to the pressure-enthalpy curve of FIG. 4, the refrigerant is in a gas-liquid two-phase state at the inlet (point D) of the flow rate control device 5 during the cooling / dehumidifying operation, but according to the pressure-enthalpy curve of FIG. The refrigerant at the inlet (point E) of the flow rate control device 6 may be in a liquid state. When the refrigerant passes through the orifice having the same cross-sectional area, the pressure loss is larger in the gas-liquid two-phase state than in the liquid state. Therefore, in order to flow a predetermined amount of refrigerant, the throttle amount during the heating dehumidifying operation needs to be larger than that during the cooling dehumidifying operation. In the flow rate control device 6 according to this embodiment, the pressure reduction amount of the refrigerant can be set to be different depending on the flow direction of the refrigerant. Therefore, the throttle amount can be changed during the cooling dehumidifying operation and the heating dehumidifying operation, and the optimum dehumidifying operation can be controlled.

【0041】流量制御装置6の絞り量を異なるように設
定する構成の具体例について示す。例えば、通常冷房運
転と通常暖房運転時は、流量制御装置6を、開閉弁8を
開けて図2(a)の状態にし、ほとんど圧力損失がない
状態にする。次に冷房除湿運転時は、開閉弁8を閉じ、
図2(b)の状態にする。この時、第2室内熱交換器7
での冷媒の蒸発温度が冷房除湿運転時に最適な絞り量に
なるように、絞り装置13のオリフィス12の断面積を
設定する。次に暖房除湿運転時は、流れ方向が逆になる
ため図2(c)の状態になる。このときはキャピラリー
チューブ15と絞り装置13に冷媒が流れるため、キャ
ピラリーチューブ15での絞り量分だけ、冷房除湿運転
時よりも絞り量が多くなる。そこで第1室内熱交換器5
の冷媒の蒸発温度が暖房除湿運転時に最適な絞り量にな
るように、オリフィス12の断面積と長さ、及びキャピ
ラリーチューブ15の断面積と長さを設定する。
A specific example of a configuration in which the throttle amount of the flow control device 6 is set to be different will be described. For example, during the normal cooling operation and the normal heating operation, the flow rate control device 6 is brought into the state of FIG. Next, during the cooling / dehumidifying operation, the on-off valve 8 is closed,
The state shown in FIG. At this time, the second indoor heat exchanger 7
The cross-sectional area of the orifice 12 of the expansion device 13 is set so that the evaporation temperature of the refrigerant in (3) becomes the optimum expansion amount during the cooling / dehumidifying operation. Next, during the heating dehumidification operation, the flow direction is reversed, and the state shown in FIG. At this time, since the refrigerant flows through the capillary tube 15 and the expansion device 13, the expansion amount is larger than that during the cooling / dehumidifying operation by the expansion amount in the capillary tube 15. Therefore, the first indoor heat exchanger 5
The cross-sectional area and the length of the orifice 12 and the cross-sectional area and the length of the capillary tube 15 are set so that the evaporation temperature of the refrigerant is the optimum throttle amount during the heating and dehumidifying operation.

【0042】通常、オリフィス12に気液二相冷媒が通
過する際には騒音が発生するが、この実施の形態による
絞り装置13では、オリフィス12の前後の絞り流路1
6bに多孔質透過材11a、11bがあるため、気液二
相冷媒が通過する際に発生する冷媒流動音を大幅に低減
できる。即ち、第一流路接続配管9aから第2流量制御
装置6に流れ込む気液二相状態または液状態の冷媒は、
多孔質透過材11aの微細で無数の通気孔を通過して流
れが整流される。このため、気液が断続して流れるスラ
グ流等の蒸気スラグ(大気泡)は小さな気泡になり冷媒
の流動状態が蒸気冷媒と液冷媒とがよく混合された均質
気液二相流となるため、蒸気冷媒と液冷媒が同時にオリ
フィス12を通過する。このため速度変動が生じず、圧
力も変動しない。またオリフィス12の下流の高速気液
二相噴流は多孔質透過材11bにより、その内部で冷媒
の流速が十分に減速され、速度分布も一様化されるた
め、高速気液二相冷媒が壁面に衝突することもなく、流
れに大きな渦が発生することもないので、噴流騒音を小
さくできる。従って従来装置では流量制御装置6の周囲
に遮音材や制振材を巻きつけるなどの対策が必要であっ
たが、この実施の形態による流量制御装置6においては
不要でコスト低減となり、さらに空気調和装置のリサイ
クル性も向上する。さらに、多孔質透過材11aとオリ
フィス12の間の空間19a、及び多孔質透過材11b
とオリフィス12の間の空間19bによって、多孔質透
過材11a、11bの大部分が冷媒流路となるので、絞
り装置としての機能を保つことができ、信頼性を確保で
きる。
Normally, noise is generated when the gas-liquid two-phase refrigerant passes through the orifice 12. However, in the throttling device 13 according to this embodiment, the throttling passages 1 before and after the orifice 12 are generated.
Since 6b has the porous permeable materials 11a and 11b, the refrigerant flow noise generated when the gas-liquid two-phase refrigerant passes can be significantly reduced. That is, the gas-liquid two-phase state or liquid state refrigerant flowing from the first flow path connecting pipe 9a into the second flow rate control device 6 is
The flow is rectified by passing through the minute and innumerable fine holes of the porous permeable material 11a. For this reason, vapor slag (large bubbles) such as slag flow in which gas and liquid flow intermittently becomes small bubbles, and the flow state of the refrigerant becomes a homogeneous gas-liquid two-phase flow in which the vapor refrigerant and the liquid refrigerant are well mixed. The vapor refrigerant and the liquid refrigerant simultaneously pass through the orifice 12. Therefore, the speed does not fluctuate and the pressure does not fluctuate. In the high-speed gas-liquid two-phase jet downstream of the orifice 12, the flow velocity of the refrigerant is sufficiently reduced inside the porous permeable material 11b, and the speed distribution is made uniform. Since it does not collide with and no large vortex is generated in the flow, jet noise can be reduced. Therefore, in the conventional device, it was necessary to take measures such as winding a sound insulating material or a vibration damping material around the flow control device 6, but in the flow control device 6 according to this embodiment, the cost is unnecessary and the air conditioning is further improved. The recyclability of the device is also improved. Furthermore, the space 19a between the porous permeable material 11a and the orifice 12, and the porous permeable material 11b.
Since the space 19b between the orifice 12 and most of the porous permeable materials 11a and 11b serves as the refrigerant flow path, the function as the expansion device can be maintained and the reliability can be ensured.

【0043】なお、この実施の形態では、暖房再熱除湿
運転時に室外熱交換器3にも冷媒を流す構成について説
明したが、図7のように第1室内熱交換器5から出た冷
媒が室外熱交換器3をバイパスし、流量制御装置10を
介して圧縮機1へ直接吸入されるバイパス回路を追加し
てもよい。このバイパス回路の追加により、外気温度に
左右されず、第1室内熱交換器5での蒸発温度の制御が
可能となり、除湿能力をより一層安定的に制御すること
ができる。
In the present embodiment, the structure in which the refrigerant also flows into the outdoor heat exchanger 3 during the heating reheat dehumidifying operation has been described. However, as shown in FIG. 7, the refrigerant discharged from the first indoor heat exchanger 5 is A bypass circuit that bypasses the outdoor heat exchanger 3 and is directly sucked into the compressor 1 via the flow rate control device 10 may be added. With the addition of this bypass circuit, the evaporation temperature in the first indoor heat exchanger 5 can be controlled without being affected by the outside air temperature, and the dehumidification capacity can be controlled more stably.

【0044】実施の形態2.図8は、この発明の実施の
形態2による第2流量制御装置6を示す回路構成図であ
り、(a)、(b)、(c)はそれぞれ作動状態を示し
ている。図において、8は切換手段で例えば開閉弁、9
aは第一流路でここでは第一流路接続配管、9bは第二
流路でここでは第二流路接続配管、13は第1絞り部を
有する第1絞り装置、16a、16bは流路を構成する
配管、20は第2絞り部を有する第2絞り装置である。
第一流路接続配管9aは二つの流路、連通流路16aと
絞り流路16bに分かれ、一方の連通流路16aには開
閉弁8が連結され、開閉弁8を開とした時には連通流路
16aに流体が流れ、閉とした時には絞り流路16bに
冷媒が流れる。絞り流路16bには第1絞り部を有する
絞り装置13と第2絞り部を有する第2絞り装置20が
直列に連結されている。配管16bは開閉弁8からの配
管16aと合流して第二流路接続配管9bに接続する。
Embodiment 2. FIG. 8 is a circuit configuration diagram showing a second flow rate control device 6 according to the second embodiment of the present invention, and (a), (b), and (c) respectively show operating states. In the figure, 8 is a switching means, for example, an on-off valve, 9
Reference numeral a is a first flow passage, here a first flow passage connecting pipe, 9b is a second flow passage here, a second flow passage connecting pipe, 13 is a first throttle device having a first throttle portion, and 16a and 16b are flow passages. The constituent piping, 20 is a second expansion device having a second expansion part.
The first flow passage connecting pipe 9a is divided into two flow passages, a communication flow passage 16a and a throttle flow passage 16b, and an open / close valve 8 is connected to one of the communication flow passages 16a. The fluid flows to 16a, and the refrigerant flows to the throttle channel 16b when closed. A throttle device 13 having a first throttle portion and a second throttle device 20 having a second throttle portion are connected in series to the throttle passage 16b. The pipe 16b joins the pipe 16a from the opening / closing valve 8 and is connected to the second flow path connecting pipe 9b.

【0045】第1絞り装置13は実施の形態1の図3に
示した絞り装置13と同様の構成であり、動作も同様で
ある。ただし、この実施の形態における第1絞り装置1
3は、実施の形態1の構成にあるキャピラリーチューブ
15との接続部はない。図3に示すように、多孔質透過
材11a、11bは弁体18に固定されている。また、
多孔質透過材11a、11bとオリフィス12の間に
は、一定隙間19a、19bが生じるように段差がつけ
られている。多孔質透過材11a、オリフィス12、多
孔質透過材11bが設置された弁体18は筐体17に圧
入され固定されている。
The first diaphragm device 13 has the same structure as that of the diaphragm device 13 shown in FIG. 3 of the first embodiment, and operates similarly. However, the first diaphragm device 1 in this embodiment
3 does not have a connecting portion with the capillary tube 15 in the configuration of the first embodiment. As shown in FIG. 3, the porous permeable materials 11 a and 11 b are fixed to the valve body 18. Also,
A step is formed between the porous permeable materials 11a and 11b and the orifice 12 so that constant gaps 19a and 19b are formed. The valve body 18 provided with the porous permeable material 11a, the orifice 12, and the porous permeable material 11b is press-fitted and fixed to the housing 17.

【0046】図9は第2絞り装置20を示す断面図であ
り、(a)、(b)はそれぞれ作動状態を示している。
また、図10は稼動弁23を示す平面図で、ストッパ2
4側から見た図である。第2絞り装置20は両端に流路
口を有し、絞り流路16bに配設される。図9におい
て、21は筐体、22は筐体21内の一端部に設けられ
た円錐状の開口を有する弁座、23は冷媒の流れにより
図に向かって左右に稼動する稼動弁、24は筐体21内
の他端部に設けられたストッパである。稼動弁23の図
に向かって左端である前面は、稼動弁23が左に移動し
た場合、弁座22の開口に密着してその開口を塞ぐ形状
になっている。稼動弁23の図に向かって右側である後
ろには、例えば4つの溝25が設けられている。そし
て、稼動弁23の中央には第2絞り部となるオリフィス
26を有する。図8に示すように第1絞り装置13は弁
座22の設置されている方向に直列に接続されている。
FIG. 9 is a sectional view showing the second diaphragm device 20, and FIGS. 9 (a) and 9 (b) show the operating state.
Further, FIG. 10 is a plan view showing the operating valve 23, and the stopper 2
It is the figure seen from the 4 side. The second expansion device 20 has flow path openings at both ends and is arranged in the expansion flow path 16b. In FIG. 9, 21 is a housing, 22 is a valve seat having a conical opening provided at one end in the housing 21, 23 is an operating valve that moves left and right toward the drawing by the flow of the refrigerant, and 24 is It is a stopper provided at the other end of the housing 21. The front surface, which is the left end in the drawing of the operating valve 23, is shaped so as to closely contact the opening of the valve seat 22 and close the opening when the operating valve 23 moves to the left. For example, four grooves 25 are provided behind the operating valve 23 on the right side in the drawing. Further, an orifice 26 that serves as a second throttle portion is provided at the center of the operating valve 23. As shown in FIG. 8, the first expansion device 13 is connected in series in the direction in which the valve seat 22 is installed.

【0047】つぎに動作について説明する。図8(a)
のように開閉弁8を開け、冷媒をA方向に流すと、冷媒
はほとんど連通流路16aに流れ、流量制御装置6の内
部を流れる冷媒には圧力損失がほとんどない状態にな
る。逆に冷媒をB方向に流しても同様である。次に開閉
弁8を閉じて図8(b)のようにA方向に冷媒を流す
と、冷媒は第1絞り装置13、第2絞り装置20の連結
されている絞り流路16bに流れて、まず第1絞り装置
13のオリフィス12で減圧される。この後、冷媒は第
2絞り装置20に流入するが、図9(a)のように稼動
弁23は冷媒の流れで向かって右方向に移動し、ストッ
パ24に当たって止まる。左方向から流入した冷媒は、
矢印のように、弁座22の開口を通過し稼動弁23に設
けられた溝25を通って流れる。溝25の断面積をオリ
フィス26に比べて十分大きく構成すれば、冷媒はほと
んど圧損がない状態で流れることになる。従って図8
(b)の状態では、冷媒は第1絞り装置13でのみ絞ら
れることになる。
Next, the operation will be described. Figure 8 (a)
When the on-off valve 8 is opened and the refrigerant is caused to flow in the A direction as described above, the refrigerant almost flows into the communication flow path 16a, and the refrigerant flowing inside the flow rate control device 6 has almost no pressure loss. The same applies when the refrigerant flows in the B direction. Next, when the on-off valve 8 is closed and the refrigerant is caused to flow in the direction A as shown in FIG. 8B, the refrigerant flows into the throttle passage 16b to which the first throttle device 13 and the second throttle device 20 are connected, First, the pressure is reduced by the orifice 12 of the first expansion device 13. After that, the refrigerant flows into the second expansion device 20, but as shown in FIG. 9A, the operating valve 23 moves rightward with the flow of the refrigerant and hits the stopper 24 to stop. The refrigerant flowing in from the left is
As indicated by the arrow, the gas flows through the opening of the valve seat 22 and through the groove 25 provided in the operating valve 23. If the cross-sectional area of the groove 25 is made sufficiently larger than that of the orifice 26, the refrigerant will flow with almost no pressure loss. Therefore, FIG.
In the state of (b), the refrigerant is throttled only by the first expansion device 13.

【0048】次に開閉弁8を閉じたまま図8(c)のよ
うにB方向に冷媒を流す。冷媒は第2絞り装置20、第
1絞り装置13の連結されている絞り流路16bに流れ
て、まず第2絞り装置20に流入する。この時、図9
(b)のように稼動弁23は冷媒の流れに押され、前面
の円錐状の部分で弁座22に密着して開口を塞ぐ。この
ため冷媒はオリフィス26を流れて絞られる。この後、
冷媒は第1絞り装置13に流入して多孔質透過材11
b、オリフィス12、多孔質透過材11aの順に流れ、
オリフィス12で減圧される。従って、図8(c)の状
態では、第1絞り装置13と第2絞り装置20の両方で
絞られることになる。以上のように、この実施の形態に
よる第2流量制御装置6は、図8(a)、(b)、
(c)のように冷媒の流れ方向によって、3通りの絞り
量で冷媒を流すことができる。
Next, with the on-off valve 8 closed, the refrigerant is caused to flow in the B direction as shown in FIG. 8 (c). The refrigerant flows into the throttle flow passage 16b in which the second expansion device 20 and the first expansion device 13 are connected, and first flows into the second expansion device 20. At this time, FIG.
As shown in (b), the operating valve 23 is pushed by the flow of the refrigerant, and the conical portion on the front surface is in close contact with the valve seat 22 to close the opening. Therefore, the refrigerant flows through the orifice 26 and is throttled. After this,
The refrigerant flows into the first expansion device 13 and the porous permeable material 11
b, the orifice 12, the porous permeable material 11a in this order,
The pressure is reduced at the orifice 12. Therefore, in the state of FIG. 8C, both the first diaphragm device 13 and the second diaphragm device 20 are used for diaphragming. As described above, the second flow rate control device 6 according to the present embodiment has the configuration shown in FIGS.
As shown in (c), the refrigerant can flow in three different throttle amounts depending on the flow direction of the refrigerant.

【0049】冷凍サイクル上での動作は実施の形態1と
同様であり、通常冷房運転および通常暖房運転時は、第
2流量制御装置6の開閉弁8を開けて図8(a)のよう
に冷媒を流して、ほとんど圧損がない状態にする。冷房
再熱除湿運転時は、開閉弁8を閉じ、図8(b)のよう
に冷媒を流す。この時、第2室内熱交換器7での冷媒の
蒸発温度が冷房再熱除湿運転に最適な絞り量になるよう
に、第1絞り装置13のオリフィス12の断面積を設定
する。暖房再熱除湿運転時は、流れ方向が逆になるため
図8(c)のように冷媒は流れる。この時、第1絞り装
置13、第2絞り装置20の両方に冷媒が流れるため、
第2絞り装置20での絞り量分だけ、冷房除湿運転時よ
りも絞り量が多くなる。そこで、第1室内熱交換器5の
冷媒の蒸発温度が暖房再熱除湿運転に最適な絞り量にな
るように、第1絞り装置13のオリフィス12の内径と
長さ及び第2絞り装置20のオリフィス26の内径と長
さを設定する。この流量制御装置6を空気調和装置の第
2流量制御装置6として用いることで、外気温条件、冷
房シーズン、暖房シーズンに関わらずに、必要とされる
空調負荷に応じて冷房再熱除湿運転と暖房再熱除湿運転
を切り換えれば、室温を制御(低下、同等、上昇)しな
がらの除湿を行うことができる。特に、この実施の形態
による第2流量制御装置6の絞り流路16bは、第1絞り
装置13と第2絞り装置20で別体に構成しているた
め、図24で示した従来装置の絞り流路に第2絞り装置
20を接続するという簡単な変更で、上記の効果を得る
ことができる。
The operation on the refrigerating cycle is the same as that of the first embodiment, and during the normal cooling operation and the normal heating operation, the opening / closing valve 8 of the second flow rate control device 6 is opened, as shown in FIG. 8 (a). The refrigerant is made to flow so that there is almost no pressure loss. During the cooling reheat dehumidifying operation, the on-off valve 8 is closed and the refrigerant is flown as shown in FIG. 8B. At this time, the cross-sectional area of the orifice 12 of the first expansion device 13 is set so that the evaporation temperature of the refrigerant in the second indoor heat exchanger 7 becomes the optimal throttle amount for the cooling reheat dehumidification operation. During the heating reheat dehumidification operation, the flow direction is opposite, so the refrigerant flows as shown in FIG. 8C. At this time, since the refrigerant flows through both the first expansion device 13 and the second expansion device 20,
The throttle amount becomes larger than that during the cooling / dehumidifying operation by the throttle amount of the second throttle device 20. Therefore, the inner diameter and the length of the orifice 12 of the first expansion device 13 and the second expansion device 20 are adjusted so that the evaporation temperature of the refrigerant in the first indoor heat exchanger 5 becomes the optimum expansion amount for the heating reheat dehumidification operation. The inner diameter and length of the orifice 26 are set. By using this flow rate control device 6 as the second flow rate control device 6 of the air conditioner, the cooling reheat dehumidification operation can be performed according to the required air conditioning load regardless of the outside air temperature condition, the cooling season, and the heating season. By switching the heating / reheat dehumidifying operation, dehumidification can be performed while controlling (decreasing, equalizing, increasing) the room temperature. In particular, the throttle channel 16b of the second flow control device 6 according to this embodiment is configured separately from the first throttle device 13 and the second throttle device 20, so that the throttle device of the conventional device shown in FIG. The above effect can be obtained by a simple modification in which the second expansion device 20 is connected to the flow path.

【0050】従来装置では冷房除湿運転時に、第1絞り
装置13のオリフィス12を気液二相冷媒が通過する際
には騒音が発生するが、この実施の形態による絞り装置
13では、オリフィス12の前後に多孔質透過材11
a、11bを設けているため、気液二相冷媒が通過する
際に発生する冷媒流動音を大幅に低減できる。また、暖
房除湿運転時においても、第2絞り装置20のオリフィ
ス26で絞られた冷媒は、第1絞り装置13の多孔質透
過材11a、11bを通るため、冷媒流動音を大幅に低
減できる。従って従来装置では流量制御装置6の周囲に
遮音材や制振材を巻きつけるなどの対策が必要であった
が、この実施の形態による流量制御装置6においては不
要となってコストを低減でき、さらに空気調和装置のリ
サイクル性も向上する。
In the conventional device, noise is generated when the gas-liquid two-phase refrigerant passes through the orifice 12 of the first expansion device 13 during the cooling and dehumidifying operation, but in the expansion device 13 according to this embodiment, the orifice 12 Porous permeable material 11 before and after
Since a and 11b are provided, the refrigerant flowing noise generated when the gas-liquid two-phase refrigerant passes can be significantly reduced. Further, even during the heating / dehumidifying operation, the refrigerant squeezed by the orifice 26 of the second expansion device 20 passes through the porous permeable materials 11a, 11b of the first expansion device 13, so that the refrigerant flow noise can be significantly reduced. Therefore, in the conventional device, it was necessary to take a measure such as winding a sound insulating material or a vibration damping material around the flow control device 6, but in the flow control device 6 according to this embodiment, the cost can be reduced because it is unnecessary. Furthermore, the recyclability of the air conditioner is also improved.

【0051】また、第2絞り装置20は配管16bとほ
ぼ同径にできるため、キャピラリーチューブ15で構成
した実施の形態1と比較して、小型化できる利点を有す
る。
Further, since the second expansion device 20 can be made to have almost the same diameter as the pipe 16b, it has an advantage that it can be downsized as compared with the first embodiment constituted by the capillary tube 15.

【0052】また、第2絞り装置20は図11のように
構成してもよい。この構成では、オリフィス26を稼動
弁23の中央に設ける代わりに弁座22に設けている。
動作及び作用効果は、図9の構成と同様である。また、
図12のように、弁座22に溝27を設置しても同様の
効果を得る。ただし、図11(b)、図12(b)にお
いて、稼動弁23が向かって左に移動して開口を塞ぐ
際、オリフィス26または溝27は稼動弁23に塞がれ
ることなく、冷媒が流れるように構成する必要がある。
さらに図9、図11のオリフィス26や図12の溝27
は、複数設けてもよいが、絞り量を増減するので、流動
抵抗が設定値内になるように考慮する必要がある。
The second diaphragm device 20 may be constructed as shown in FIG. In this configuration, the orifice 26 is provided in the valve seat 22 instead of being provided in the center of the operating valve 23.
The operation and effect are similar to those of the configuration of FIG. Also,
Even if the groove 27 is installed in the valve seat 22 as shown in FIG. 12, the same effect is obtained. However, in FIGS. 11B and 12B, when the operating valve 23 moves toward the left to close the opening, the orifice 26 or the groove 27 is not blocked by the operating valve 23 and the refrigerant flows. Need to be configured.
Further, the orifice 26 of FIGS. 9 and 11 and the groove 27 of FIG.
A plurality may be provided, but since the throttling amount is increased or decreased, it is necessary to consider so that the flow resistance is within the set value.

【0053】実施の形態3.図13は、この発明の実施
の形態3による第2流量制御装置6を示す回路構成図で
あり、(a)、(b)、(c)はそれぞれ作動状態を示
している。図において、8は切換手段で例えば開閉弁、
9aは第一流路でここでは第一流路接続配管、9bは第
二流路でここでは第二流路接続配管、16a、16bは
流路を構成する配管、28は第1絞り部と第2絞り部を有
する絞り装置である。第一流路接続配管9aは二つの流
路、連通流路16aと絞り流路16bに分かれ、一方の
連通流路16aには開閉弁8が連結され、開閉弁8を開
とした時には連通流路16aに流体が流れ、閉とした時
には絞り流路16bに冷媒が流れる。絞り流路16bに
は第1、第2絞り部を有する絞り装置28が連結されて
いる。配管16bは開閉弁8からの配管16aと合流し
て第二流路接続配管9bに接続する。
Embodiment 3. FIG. 13 is a circuit configuration diagram showing a second flow rate control device 6 according to the third embodiment of the present invention, in which (a), (b), and (c) show operating states. In the figure, 8 is a switching means, such as an on-off valve,
Reference numeral 9a is a first flow passage, here a first flow passage connecting pipe, 9b is a second flow passage here, a second flow passage connecting pipe, 16a and 16b are pipes constituting a flow passage, 28 is a first throttle portion and a second A diaphragm device having a diaphragm portion. The first flow passage connecting pipe 9a is divided into two flow passages, a communication flow passage 16a and a throttle flow passage 16b, and an open / close valve 8 is connected to one of the communication flow passages 16a. The fluid flows to 16a, and the refrigerant flows to the throttle channel 16b when closed. A throttle device 28 having first and second throttle portions is connected to the throttle channel 16b. The pipe 16b joins the pipe 16a from the opening / closing valve 8 and is connected to the second flow path connecting pipe 9b.

【0054】また、図14は絞り装置28を示す断面図
であり、(a)、(b)はそれぞれ作動状態を示してい
る。図において、実施の形態1または実施の形態2と同
一符号は同一、または相当部分を示している。絞り装置
28は実施の形態2における第1絞り装置13と第2絞
り装置20を一体化し、筐体17、21内に構成したも
のである。この絞り装置28は、両端に流路口を有し、
図に向かって左側に接続される第一流路接続配管9a、
向かって右側に接続される第二流路接続配管9bの間の
絞り流路16bに配設される。図において、11a、1
1bは多孔質透過材、12は弁体18の中央に空けられ
た第1絞り部となるオリフィス、17は筐体、18は弁
体、19a、19bはオリフィス12と多孔質透過材1
1a,11bの間に設けられている隙間である。また、
21は筐体17と一体で形成された筐体、22は円錐状
の開口を有する弁座、24は冷媒の流れにより稼動する
稼動弁23を停止させるストッパである。稼動弁23の
第一接続配管9a接続側である前面は、稼動弁23が左
に移動した場合、弁座22の開口に密着してその開口を
塞ぐ形状になっている。稼動弁23の第ニ接続配管9b
接続側である後ろには、例えば4つの溝25が設けられ
ている。そして、稼動弁23の中央には第2絞り部とな
るオリフィス26を有する。
FIG. 14 is a cross-sectional view showing the diaphragm device 28, and (a) and (b) show the operating state, respectively. In the figure, the same reference numerals as those in the first or second embodiment indicate the same or corresponding portions. The diaphragm device 28 is configured by integrating the first diaphragm device 13 and the second diaphragm device 20 in the second embodiment into the housings 17 and 21. This throttling device 28 has flow path openings at both ends,
A first flow path connecting pipe 9a connected to the left side of the drawing,
It is arranged in the throttle channel 16b between the second channel connecting pipes 9b connected to the right side. In the figure, 11a, 1
1b is a porous permeable material, 12 is an orifice serving as a first throttle portion opened in the center of the valve body 18, 17 is a casing, 18 is a valve body, 19a and 19b are the orifice 12 and the porous permeable material 1
It is a gap provided between 1a and 11b. Also,
Reference numeral 21 is a housing formed integrally with the housing 17, 22 is a valve seat having a conical opening, and 24 is a stopper that stops the operating valve 23 that operates by the flow of the refrigerant. The front surface of the operating valve 23, which is the connection side of the first connection pipe 9a, is shaped so as to closely contact the opening of the valve seat 22 and close the opening when the operating valve 23 moves to the left. Second connection pipe 9b of operating valve 23
For example, four grooves 25 are provided behind the connection side. Further, an orifice 26 that serves as a second throttle portion is provided at the center of the operating valve 23.

【0055】つぎに動作について説明する。図13
(a)のように開閉弁8を開け、冷媒をA方向に流す
と、冷媒はほとんど連通流路16aに流れ、流量制御装
置6の内部を流れる冷媒には圧力損失がほとんどない状
態になる。逆に冷媒をB方向に流しても同様である。次
に開閉弁8を閉じて図13(b)のようにA方向に冷媒
を流すと、冷媒は絞り装置28の連結されている絞り流
路16bに流れ、多孔質透過材11aを通って、オリフ
ィス12で減圧され、多孔質透過材11bを通る。この
後、冷媒は弁座22の開口から稼動弁23のある部分に
流入するが、図14(a)のように稼動弁23は冷媒の
流れで向かって右方向に移動し、ストッパ24に当たっ
て止まる。このため矢印のように、弁座22の開口を通
過した冷媒は、稼動弁23に設けられた溝25を通って
流れる。溝25の断面積をオリフィス12に比べ十分大
きく構成すれば、筐体21の部分では冷媒はほとんど圧
損がない状態で流れることになる。従って図13(b)
の状態では、絞り装置28に流入した冷媒は、第1絞り
部であるオリフィス12でのみ絞られることになる。
Next, the operation will be described. FIG.
When the on-off valve 8 is opened and the refrigerant is caused to flow in the direction A as shown in (a), the refrigerant almost flows into the communication passage 16a, and the refrigerant flowing inside the flow rate control device 6 is in a state where there is almost no pressure loss. The same applies when the refrigerant flows in the B direction. Next, when the on-off valve 8 is closed and the refrigerant is caused to flow in the direction A as shown in FIG. 13B, the refrigerant flows into the throttle flow passage 16b connected to the expansion device 28, passes through the porous permeable material 11a, The pressure is reduced by the orifice 12 and passes through the porous permeable material 11b. After this, the refrigerant flows from the opening of the valve seat 22 into the portion where the operating valve 23 is present, but as shown in FIG. 14A, the operating valve 23 moves to the right toward the flow of the refrigerant and hits the stopper 24 to stop. . Therefore, as shown by the arrow, the refrigerant that has passed through the opening of the valve seat 22 flows through the groove 25 provided in the operating valve 23. If the cross-sectional area of the groove 25 is made sufficiently larger than that of the orifice 12, the refrigerant will flow in the portion of the housing 21 with almost no pressure loss. Therefore, FIG. 13 (b)
In this state, the refrigerant flowing into the expansion device 28 is restricted only by the orifice 12 that is the first restriction part.

【0056】次に開閉弁8を閉じたまま図13(c)の
ようにB方向に冷媒を流す。冷媒は絞り装置28の連結
されている絞り流路16bに流れて、筐体21側に流入
する。この時、図14(b)のように稼動弁23は冷媒
の流れに押され、前面の円錐状の部分で弁座22に密着
して開口を塞ぐ。このため冷媒はオリフィス26を流れ
て絞られる。この後、冷媒は筐体17側に流入し、多孔
質透過材11b、オリフィス12、多孔質透過材11a
の順に流れ、オリフィス12で減圧される。従って、図
14(b)の状態では、冷媒は絞り装置28によって、
第2絞り部であるオリフィス26と、第1絞り部である
オリフィス12の両方で絞られることになる。以上のよ
うに、この実施の形態による第2流量制御装置6は、図
13(a)、(b)、(c)のように、冷媒の流れ方向
によって、3通りの絞り量で冷媒を流すことができる。
Next, with the on-off valve 8 closed, the refrigerant flows in the B direction as shown in FIG. 13 (c). The refrigerant flows into the throttle channel 16b connected to the throttle device 28 and flows into the housing 21 side. At this time, as shown in FIG. 14B, the operating valve 23 is pushed by the flow of the refrigerant, and the conical portion on the front surface closely contacts the valve seat 22 to close the opening. Therefore, the refrigerant flows through the orifice 26 and is throttled. After that, the refrigerant flows into the casing 17 side, and the porous permeable material 11b, the orifice 12, and the porous permeable material 11a.
And the pressure is reduced at the orifice 12. Therefore, in the state of FIG.
Both the orifice 26 which is the second throttle portion and the orifice 12 which is the first throttle portion are throttled. As described above, the second flow rate control device 6 according to this embodiment causes the refrigerant to flow in three different throttle amounts depending on the direction of the refrigerant flow, as shown in FIGS. 13A, 13B, and 13C. be able to.

【0057】冷凍サイクル上での動作は実施の形態1と
同様であり、通常冷房運転および通常暖房運転時は、第
2流量制御装置6の開閉弁8を開けて図13(a)のよ
うに冷媒を流して、ほとんど圧損がない状態にする。冷
房除湿運転時は、開閉弁8を閉じ、図13(b)のよう
に冷媒を流す。この時、第2室内熱交換器7での冷媒の
蒸発温度が冷房除湿運転時に最適な絞り量になるよう
に、絞り装置28のオリフィス12の断面積を設定す
る。暖房除湿運転時は、流れ方向が逆になるため図13
(c)のように冷媒は流れる。この時、オリフィス26
とオリフィス12の両方に冷媒が流れるため、冷房除湿
運転時よりも絞り量が多くなる。そこで、第1室内熱交
換器5の冷媒の蒸発温度が暖房除湿運転時に最適なよう
に、オリフィス12の内径と長さ及びオリフィス26の
内径と長さを設定する。図13で示した流量制御装置6
を空気調和装置の第2流量制御装置6として用いること
で、外気温条件、冷房シーズン、暖房シーズンに関わら
ずに、必要とされる空調負荷に応じて冷房再熱除湿運転
と暖房再熱除湿運転を切り換えれば、室温を制御(低
下、同等、上昇)しながらの除湿を行うことができる。
The operation on the refrigerating cycle is the same as that of the first embodiment, and during the normal cooling operation and the normal heating operation, the opening / closing valve 8 of the second flow rate control device 6 is opened as shown in FIG. 13 (a). The refrigerant is made to flow so that there is almost no pressure loss. During the cooling / dehumidifying operation, the on-off valve 8 is closed and the refrigerant is flown as shown in FIG. 13 (b). At this time, the cross-sectional area of the orifice 12 of the expansion device 28 is set so that the evaporation temperature of the refrigerant in the second indoor heat exchanger 7 has an optimum expansion amount during the cooling / dehumidifying operation. During the heating / dehumidifying operation, the flow direction is opposite, so that FIG.
The refrigerant flows as in (c). At this time, the orifice 26
Since the refrigerant flows in both the orifice 12 and the orifice 12, the throttle amount becomes larger than that during the cooling / dehumidifying operation. Therefore, the inner diameter and length of the orifice 12 and the inner diameter and length of the orifice 26 are set so that the evaporation temperature of the refrigerant in the first indoor heat exchanger 5 is optimal during the heating and dehumidifying operation. Flow control device 6 shown in FIG.
Is used as the second flow rate control device 6 of the air conditioner, the cooling reheat dehumidifying operation and the heating reheat dehumidifying operation are performed according to the required air conditioning load regardless of the outside air temperature condition, the cooling season, and the heating season. By switching between, it is possible to perform dehumidification while controlling (decreasing, equalizing, raising) the room temperature.

【0058】従来装置では冷房除湿運転時に、絞り装置
28のオリフィス12を気液二相冷媒が通過する際には
騒音が発生するが、この実施の形態による絞り装置28
では、オリフィス12の前後に多孔質透過材11a、1
1bを設けているため、気液二相冷媒が通過する際に発
生する冷媒流動音を大幅に低減できる。また、暖房除湿
運転時においても、オリフィス26で絞られた冷媒は、
多孔質透過材11a、11bを通るため、冷媒流動音を
大幅に低減できる。従って従来装置では流量制御装置6
の周囲に遮音材や制振材を巻きつけるなどの対策が必要
であったが、この実施の形態による流量制御装置6にお
いては不要となり、コストを低減でき、さらに空気調和
装置のリサイクル性も向上する。
In the conventional device, noise is generated when the gas-liquid two-phase refrigerant passes through the orifice 12 of the expansion device 28 during the cooling and dehumidifying operation, but the expansion device 28 according to this embodiment is used.
Then, before and after the orifice 12, the porous permeable materials 11a, 1
Since 1b is provided, the refrigerant flowing noise generated when the gas-liquid two-phase refrigerant passes can be significantly reduced. Further, even during the heating / dehumidifying operation, the refrigerant throttled by the orifice 26 is
Since it passes through the porous permeable materials 11a and 11b, the refrigerant flow noise can be significantly reduced. Therefore, in the conventional device, the flow rate control device 6
Although it was necessary to take measures such as wrapping a sound insulating material or a vibration damping material around the air conditioner, it is not necessary in the flow rate control device 6 according to this embodiment, the cost can be reduced, and the recyclability of the air conditioner is improved. To do.

【0059】また、この実施の形態における流量制御装
置6は、実施の形態2における第1、第2絞り装置を一
体化して構成しているため、実施の形態2における第2
流量制御装置6よりも小型化できる利点を有する。
Further, since the flow rate control device 6 in this embodiment is constructed by integrating the first and second throttle devices in the second embodiment, the second flow control device in the second embodiment.
It has the advantage that it can be made smaller than the flow control device 6.

【0060】また、絞り装置28は図15のように構成
してもよい。この構成では、オリフィス26を稼動弁2
3の中央に設ける代わりに弁座22に設けている。動作
及び作用効果は、図14の構成と同様である。また、図
16のように、弁座22に溝27を設けても同様の効果
を得る。ただし、図15(b)、図16(b)におい
て、稼動弁23が向かって左に移動して開口を塞ぐ際、
オリフィス26または溝27は稼動弁23に塞がれるこ
となく、冷媒が流れるように構成する必要がある。さら
に図14、図15のオリフィス26や図16の溝27
は、複数設けてもよいが、絞り量を増減するので、流動
抵抗が設定値内になるように考慮する必要がある。
Further, the diaphragm device 28 may be constructed as shown in FIG. In this configuration, the orifice 26 is connected to the operating valve 2
Instead of being provided at the center of 3, the valve seat 22 is provided. The operation and effect are similar to those of the configuration of FIG. Further, as shown in FIG. 16, the same effect can be obtained by providing the groove 27 in the valve seat 22. However, in FIGS. 15B and 16B, when the operating valve 23 moves toward the left to close the opening,
The orifice 26 or the groove 27 needs to be configured to allow the refrigerant to flow without being blocked by the operating valve 23. Further, the orifice 26 of FIGS. 14 and 15 and the groove 27 of FIG.
A plurality may be provided, but since the throttling amount is increased or decreased, it is necessary to consider so that the flow resistance is within the set value.

【0061】実施の形態4.図17は、この発明の実施
の形態4による第2流量制御装置を示す回路構成図であ
り、(a)、(b)、(c)はそれぞれ作動状態を示し
ている。図において、8は切換手段で例えば開閉弁、9
aは第一流路でここでは第一流路接続配管、9bは第二
流路でここでは第二流路接続配管、16a、16bは流
路を構成する配管、29は絞り装置である。第一流路接
続配管9aは二つの流路、連通流路16aと絞り流路1
6bに分かれ、一方の連通流路16aには開閉弁8が連
結され、開閉弁8を開とした時には連通流路16aに流
体が流れ、閉とした時には絞り流路16bに冷媒が流れ
る。絞り流路16bには第1、第2絞り部を有する絞り
装置29が連結されている。配管16bは開閉弁8から
の配管16aと合流して第二流路接続配管9bに接続す
る。
Fourth Embodiment FIG. 17 is a circuit configuration diagram showing a second flow rate control device according to Embodiment 4 of the present invention, in which (a), (b) and (c) respectively show operating states. In the figure, 8 is a switching means, for example, an on-off valve, 9
Reference numeral a is a first flow passage, here a first flow passage connecting pipe, 9b is a second flow passage here, a second flow passage connecting pipe, 16a and 16b are pipes forming a flow passage, and 29 is a diaphragm device. The first flow passage connecting pipe 9a includes two flow passages, a communication flow passage 16a and a throttle flow passage 1.
The on-off valve 8 is connected to one of the communication channels 16a, and the fluid flows to the communication channel 16a when the on-off valve 8 is opened, and the refrigerant flows to the throttle channel 16b when the on-off valve 8 is closed. A throttle device 29 having first and second throttle portions is connected to the throttle passage 16b. The pipe 16b joins the pipe 16a from the opening / closing valve 8 and is connected to the second flow path connecting pipe 9b.

【0062】また、図18は絞り装置29を示す断面図
であり、(a)、(b)はそれぞれ作動状態を示してい
る。図において、実施の形態1または実施の形態2また
は実施の形態3と同一符号は同一、または相当部分を示
している。絞り装置29は実施の形態2における第1絞
り装置13の中央に第2絞り装置20の稼動弁23の機
構を取り入れて構成したものである。この絞り装置29
は、両端に流路口を有し、図に向かって左側に接続され
る第一流路接続配管9a、向かって右側に接続される第
二流路接続配管9bの間の絞り流路16bに配設され
る。図において、11a、11bは多孔質透過材、12
は弁体18の中央に空けられた第1絞り部となる円錐状
のオリフィス、17は筐体、18は弁体、19a、19
bはオリフィス12と多孔質透過材11a,11bの間
に設けられている隙間である。弁体18のオリフィス1
2は、仕切板31で仕切られた空間32と接続されてい
る。この仕切板31には流路33が一つあるいは複数設
置され、空間32と隙間19bが連通されている。空間
32内には冷媒の流れにより稼動する稼動弁34があ
り、稼動弁34の第一接続配管9a接続側である前面
は、稼動弁34が左に移動した場合、円錐状のオリフィ
ス12の穴に密着して塞ぐ形状になっている。稼動弁3
4が右に移動した時に仕切板31に当たって止まる。ま
た、稼動弁34の中央部には第2絞り部となるオリフィ
ス35を有する。
FIG. 18 is a sectional view showing the diaphragm device 29, and FIGS. 18 (a) and 18 (b) respectively show the operating state. In the figure, the same reference numerals as those in the first embodiment, the second embodiment or the third embodiment indicate the same or corresponding portions. The expansion device 29 is configured by incorporating the mechanism of the operating valve 23 of the second expansion device 20 in the center of the first expansion device 13 in the second embodiment. This diaphragm device 29
Has a flow passage port at both ends, and is provided in the throttle flow passage 16b between the first flow passage connecting pipe 9a connected to the left side in the drawing and the second flow passage connecting pipe 9b connected to the right side in the figure. To be done. In the figure, 11a and 11b are porous permeable materials, and 12
Is a conical orifice serving as a first throttle portion formed in the center of the valve body 18, 17 is a housing, 18 is a valve body, and 19a, 19
Reference symbol b is a gap provided between the orifice 12 and the porous permeable materials 11a and 11b. Orifice 1 of valve body 18
2 is connected to a space 32 partitioned by a partition plate 31. One or a plurality of flow paths 33 are installed in the partition plate 31, and the space 32 and the gap 19b communicate with each other. In the space 32, there is an operating valve 34 that operates by the flow of the refrigerant, and the front surface of the operating valve 34, which is the connection side of the first connection pipe 9a, has a hole of the conical orifice 12 when the operating valve 34 moves to the left. It has a shape that closes and closes. Working valve 3
When 4 moves to the right, it hits the partition plate 31 and stops. Further, an orifice 35 serving as a second throttle portion is provided at the center of the operating valve 34.

【0063】つぎに動作について説明する。図17
(a)のように開閉弁8を開け、冷媒をA方向に流す
と、冷媒はほとんど連通流路16aに流れ、流量制御装
置6の内部を流れる冷媒には圧力損失がほとんどない状
態になる。逆に冷媒をB方向に流しても同様である。次
に開閉弁8を閉じて図17(b)のようにA方向に冷媒
を流すと、冷媒は絞り装置28の連結されている絞り流
路16bに流れる。この時、図18(a)のように稼動
弁23は冷媒の流れで向かって右方向に移動し、仕切板
31に当たって止まる。このため矢印のように、多孔質
透過材11a、オリフィス12を通過した冷媒は流路3
3、多孔質透過材11bを通って流れる。流路33の断
面積をオリフィス12に比べ十分大きく構成すれば、流
路33ではほとんど圧損がない状態で流れることにな
る。従って図17(b)の状態では、絞り装置29に流
入した冷媒は、第1絞り部であるオリフィス12で絞ら
れる。
Next, the operation will be described. FIG. 17
When the on-off valve 8 is opened and the refrigerant is caused to flow in the direction A as shown in (a), the refrigerant almost flows into the communication passage 16a, and the refrigerant flowing inside the flow rate control device 6 is in a state where there is almost no pressure loss. The same applies when the refrigerant flows in the B direction. Next, when the on-off valve 8 is closed and the refrigerant is caused to flow in the A direction as shown in FIG. 17B, the refrigerant flows into the throttle flow passage 16b to which the expansion device 28 is connected. At this time, as shown in FIG. 18A, the operating valve 23 moves rightward with the flow of the refrigerant, hits the partition plate 31, and stops. Therefore, as shown by the arrow, the refrigerant that has passed through the porous permeable material 11a and the orifice 12 has a flow path 3
3. Flow through the porous permeable material 11b. If the cross-sectional area of the flow path 33 is made sufficiently larger than that of the orifice 12, the flow path 33 will flow with almost no pressure loss. Therefore, in the state of FIG. 17B, the refrigerant flowing into the expansion device 29 is restricted by the orifice 12 which is the first restriction part.

【0064】次に開閉弁8を閉じたまま図17(c)の
ように冷媒をB方向に冷媒を流す。冷媒は絞り装置29
の連結されている絞り流路16bに流れて、筐体17に
向かって右側から流入する。この時、図18(b)のよ
うに稼動弁34は冷媒の流れに押され、前面の円錐状の
部分で弁体18に密着してオリフィス12を塞ぐ。この
ため、右方向から流入した冷媒は、多孔質透過材11
b、流路33から空間32を通り、オリフィス35を流
れて絞られる。従って、図17(b)の状態では、冷媒
は絞り装置29によって、第2絞り部であるオリフィス
35で絞られることになる。そこで、例えば第2絞り部
であるオリフィス35と第1絞り部であるオリフィス1
2の径や長さ等を異なるように構成し、オリフィス35
とオリフィス12の流動抵抗を変えれば、この実施の形
態による第2流量制御装置6は、図17(a)、
(b)、(c)のように、冷媒の流れ方向によって、3
通りの絞り量で冷媒を流すことができる。
Next, with the on-off valve 8 closed, the refrigerant is caused to flow in the B direction as shown in FIG. 17 (c). The refrigerant is the expansion device 29
Flows into the throttle channel 16b connected to the above, and flows into the housing 17 from the right side. At this time, as shown in FIG. 18B, the operating valve 34 is pushed by the flow of the refrigerant, and the conical portion on the front surface is in close contact with the valve body 18 to close the orifice 12. Therefore, the refrigerant that has flowed in from the right direction has a porous permeable material 11
b, the flow path 33 passes through the space 32, flows through the orifice 35, and is narrowed. Therefore, in the state of FIG. 17B, the refrigerant is throttled by the throttle device 29 at the orifice 35 that is the second throttle portion. Therefore, for example, the orifice 35 that is the second throttle portion and the orifice 1 that is the first throttle portion
The diameter and length of 2 are different, and the orifice 35
If the flow resistance of the orifice 12 is changed, the second flow rate control device 6 according to the present embodiment has the configuration shown in FIG.
As shown in (b) and (c), depending on the flow direction of the refrigerant, 3
The refrigerant can be made to flow with the same throttle amount.

【0065】冷凍サイクル上での動作は実施の形態1と
同様であり、通常冷房運転および通常暖房運転時は、第
2流量制御装置6の開閉弁8を開けて図17(a)のよ
うに冷媒を流して、ほとんど圧損がない状態にする。冷
房除湿運転時は、開閉弁8を閉じ、図17(b)のよう
に冷媒を流す。この時、第2室内熱交換器7での冷媒の
蒸発温度が冷房除湿運転時に最適な絞り量になるよう
に、絞り装置29のオリフィス12の断面積と長さを設
定する。暖房除湿運転時は、流れ方向が逆になるため図
17(c)のように冷媒は流れる。この時、流動抵抗
を、オリフィス12の流動抵抗<オリフィス35の流動
抵抗となるように構成すれば、冷房除湿運転時よりも絞
り量が多くなる。そこで、第1室内熱交換器5の冷媒の
蒸発温度が暖房除湿運転時に最適になるように、オリフ
ィス35の内径と長さを設定する。この流量制御装置6
を空気調和装置の第2流量制御装置6として用いること
で、外気温条件、冷房シーズン、暖房シーズンに関わら
ずに、必要とされる空調負荷に応じて冷房再熱除湿運転
と暖房再熱除湿運転を切り換えれば、室温を制御(低
下、同等、上昇)しながらの除湿を行うことができる。
The operation on the refrigerating cycle is the same as that of the first embodiment, and during the normal cooling operation and the normal heating operation, the opening / closing valve 8 of the second flow rate control device 6 is opened and as shown in FIG. 17 (a). The refrigerant is made to flow so that there is almost no pressure loss. During the cooling and dehumidifying operation, the on-off valve 8 is closed and the refrigerant is flown as shown in FIG. 17 (b). At this time, the cross-sectional area and the length of the orifice 12 of the expansion device 29 are set so that the evaporation temperature of the refrigerant in the second indoor heat exchanger 7 has the optimum expansion amount during the cooling / dehumidifying operation. During the heating / dehumidifying operation, the flow direction is opposite, so the refrigerant flows as shown in FIG. 17 (c). At this time, if the flow resistance is configured such that the flow resistance of the orifice 12 <the flow resistance of the orifice 35, the throttle amount becomes larger than that during the cooling / dehumidifying operation. Therefore, the inner diameter and the length of the orifice 35 are set so that the evaporation temperature of the refrigerant in the first indoor heat exchanger 5 is optimal during the heating / dehumidifying operation. This flow control device 6
Is used as the second flow rate control device 6 of the air conditioner, the cooling reheat dehumidifying operation and the heating reheat dehumidifying operation are performed according to the required air conditioning load regardless of the outside air temperature condition, the cooling season, and the heating season. By switching between, it is possible to perform dehumidification while controlling (decreasing, equalizing, raising) the room temperature.

【0066】ここで、流路33の径や長さをオリフィス
12の径や長さよりも小さく構成すると流路33でも冷
媒を絞ることになる。即ち、冷媒が図18(a)のよう
に流れる場合には、冷媒をオリフィス12と流路33で
絞り、冷媒が図18(b)のように流れる場合には、冷
媒をオリフィス35と流路33で絞る。このように構成
しても、オリフィス35とオリフィス12の流動抵抗を
変えれば、A方向とB方向の流れ方向で、絞り量の異な
る絞り装置29を得ることができる。この場合には、第
2室内熱交換器7での冷媒の蒸発温度が冷房除湿運転時
に最適な絞り量になるように、オリフィス12の断面積
及び流路33の内径と長さを設定する。また、暖房除湿
運転時には第1室内熱交換器5の冷媒の蒸発温度が暖房
除湿運転時に最適なように、オリフィス35の内径と長
さ及び流路33の内径と長さを設定する。
Here, if the diameter or length of the flow path 33 is set smaller than the diameter or length of the orifice 12, the refrigerant will be throttled in the flow path 33 as well. That is, when the refrigerant flows as shown in FIG. 18A, the refrigerant is throttled by the orifice 12 and the flow passage 33, and when the refrigerant flows as shown in FIG. Squeeze at 33. Even with this configuration, if the flow resistances of the orifice 35 and the orifice 12 are changed, it is possible to obtain the throttling device 29 having different throttling amounts in the A-direction and B-direction flow directions. In this case, the cross-sectional area of the orifice 12 and the inner diameter and length of the flow path 33 are set so that the evaporation temperature of the refrigerant in the second indoor heat exchanger 7 has the optimum throttle amount during the cooling / dehumidifying operation. Further, the inner diameter and length of the orifice 35 and the inner diameter and length of the flow path 33 are set so that the evaporation temperature of the refrigerant in the first indoor heat exchanger 5 is optimal during the heating dehumidifying operation during the heating dehumidifying operation.

【0067】従来装置では冷房除湿運転時に、絞り装置
29のオリフィス12を気液二相冷媒が通過する際には
騒音が発生するが、この実施の形態による絞り装置29
では、オリフィス12の前後に多孔質透過材11a、1
1bを設けているため、気液二相冷媒が通過する際に発
生する冷媒流動音を大幅に低減できる。また、暖房除湿
運転時においても同様、絞り装置29のオリフィス35
で絞られた冷媒は、多孔質透過材11a、11bを通る
ため、冷媒流動音を大幅に低減できる。従って従来装置
では流量制御装置6の周囲に遮音材や制振材を巻きつけ
るなどの対策が必要であったが、この実施の形態による
流量制御装置6においては不要となり、コストを低減で
き、さらに空気調和装置のリサイクル性も向上する。
In the conventional device, noise is generated when the gas-liquid two-phase refrigerant passes through the orifice 12 of the expansion device 29 during the cooling and dehumidifying operation, but the expansion device 29 according to this embodiment is used.
Then, before and after the orifice 12, the porous permeable materials 11a, 1
Since 1b is provided, the refrigerant flowing noise generated when the gas-liquid two-phase refrigerant passes can be significantly reduced. Also, during the heating / dehumidifying operation, the orifice 35 of the expansion device 29 is similarly provided.
Since the refrigerant squeezed by (4) passes through the porous permeable materials 11a and 11b, the refrigerant flow noise can be significantly reduced. Therefore, in the conventional device, it was necessary to take measures such as winding a sound insulating material or a vibration damping material around the flow control device 6, but in the flow control device 6 according to this embodiment, it is not necessary and the cost can be further reduced. The recyclability of the air conditioner is also improved.

【0068】また、実施の形態3と同様、この実施の形
態における第2流量制御装置6は、実施の形態2におけ
る第1、第2絞り装置を一体化して構成しているため、
実施の形態2における第2流量制御装置6よりも小型化
できる利点を有する。また、その構成から、実施の形態
3における第2流量制御装置6よりもさらに小型化でき
る。
Further, as in the third embodiment, the second flow rate control device 6 in this embodiment is constructed by integrating the first and second throttle devices in the second embodiment.
It has the advantage that it can be made smaller than the second flow rate control device 6 in the second embodiment. Further, due to its configuration, it can be made smaller than the second flow rate control device 6 in the third embodiment.

【0069】また、絞り装置29は図19のように構成
してもよい。この構成では、オリフィス35を稼動弁3
4の中央に設ける代わりに、弁体18のオリフィス12
を設けていない部分に設けている。動作及び作用効果
は、図18の構成と同様である。また、図20のよう
に、オリフィス12に溝36を設けても同様の効果を得
る。ただし、図19(b)、図20(b)において、稼
動弁34が向かって左に移動して開口を塞ぐ際、オリフ
ィス35または溝36は稼動弁34に塞がれることな
く、冷媒が流れるように構成する必要がある。さらに図
18、図19のオリフィス35や図20の溝36は、複
数設けてもよいが、絞り量を増減するので、流動抵抗が
設定値内になるように考慮する必要がある。
Further, the diaphragm device 29 may be constructed as shown in FIG. In this configuration, the orifice 35 is connected to the operating valve 3
4 instead of being provided in the center, the orifice 12 of the valve body 18
It is provided in the part where is not provided. The operation and effects are similar to those of the configuration of FIG. Further, as shown in FIG. 20, the same effect can be obtained by providing the groove 36 in the orifice 12. However, in FIGS. 19B and 20B, when the operating valve 34 moves to the left to close the opening, the orifice 35 or the groove 36 is not blocked by the operating valve 34 and the refrigerant flows. Need to be configured. Further, a plurality of orifices 35 in FIG. 18 and FIG. 19 or a plurality of grooves 36 in FIG. 20 may be provided, but it is necessary to consider so that the flow resistance is within the set value because the throttle amount is increased or decreased.

【0070】なお、実施の形態1〜実施の形態4では、
多孔質透過材11a、11bは、例えば通気孔の径を1
00μmから500μmで厚さを1mmから10mmと
し、例えばNiまたはNi−Crまたはステンレスから
なる発泡金属を使用している。なお、多孔質透過材は発
泡金属に限るものではなく、金属の粉末を焼結した焼結
金属、またはセラミックスの多孔質透過材、または金網
や、金網を数枚重ねたもの、また金網を数枚重ねて焼結
した焼結金網や積層金網でも同様の効果を得る。また、
冷媒を通過させる多孔質透過材11a、11bは、第1
絞り部であるオリフィス12と第一接続流路9a間、及
びオリフィス12と第二接続流路9bの間の少なくとも
いずれか一方の流路に設ければ、ある程度の低騒音効果
はある。さらに、多孔質透過材11a、11bを設けて
いるために、第2流量制御装置6を構成する配管をある
程度曲げても、曲げたことによって生じる冷媒流動音を
吸収できる。このため、第2流量制御装置6を室内ユニ
ット52に格納する際、その室内ユニット52の空きス
ペースに合わせて格納することができ、組み立てやすく
なる。
In the first to fourth embodiments,
The porous permeable materials 11a and 11b have, for example, a ventilation hole with a diameter of 1
The foam metal is made of Ni, Ni—Cr, or stainless steel, for example, having a thickness of 1 μm to 10 mm and a thickness of 00 μm to 500 μm. The porous permeable material is not limited to the foamed metal, but may be a sintered metal obtained by sintering a metal powder, or a ceramic porous permeable material, a wire mesh, or a stack of several wire meshes, or a number of wire meshes. The same effect can be obtained with a sintered wire net or a laminated wire net that is obtained by stacking and sintering one sheet. Also,
The porous permeable materials 11a and 11b that allow the refrigerant to pass through are the first
If it is provided in at least one of the narrowed portion between the orifice 12 and the first connection flow passage 9a and between the orifice 12 and the second connection flow passage 9b, there is some noise reduction effect. Further, since the porous permeable materials 11a and 11b are provided, even if the pipe forming the second flow rate control device 6 is bent to some extent, it is possible to absorb the refrigerant flowing sound caused by the bending. Therefore, when the second flow rate control device 6 is stored in the indoor unit 52, it can be stored according to the empty space of the indoor unit 52, which facilitates assembly.

【0071】また、実施の形態1〜実施の形態4におい
て、第2流量制御装置6を構成する配管16a、16b
で、絞り流路16bの内径を連通流路16aの内径より
も小さく構成すると、装置6自体を小さくすることがで
きる。ただし、絞り流路16bの内径を連通流路16a
の内径と比べて小さくしすぎると、その部分で冷媒流動
音を発生することになるので、冷媒流動音を発生しない
程度の配管径の差で構成するのが好ましい。
In addition, in the first to fourth embodiments, the pipes 16a and 16b constituting the second flow rate control device 6 are arranged.
If the inner diameter of the throttle channel 16b is smaller than the inner diameter of the communication channel 16a, the device 6 itself can be downsized. However, the inner diameter of the throttle channel 16b is set to the communication channel 16a.
If it is made too small as compared with the inner diameter of, the refrigerant flow noise will be generated at that portion, so it is preferable to configure the pipe diameter so that the refrigerant flow noise is not generated.

【0072】また、冷媒回路中の異物の問題も多孔質透
過材11a、11bの通気孔の径を一般的な冷媒回路で
使用されるフィルターよりも大きい100μm〜500
μmとすることにより、詰まることがなく、安定した動
作を行うことができる。
Also, the problem of foreign matter in the refrigerant circuit is 100 μm to 500, in which the diameter of the ventilation holes of the porous permeable materials 11a and 11b is larger than that of a filter used in a general refrigerant circuit.
By setting the thickness to μm, stable operation can be performed without clogging.

【0073】また、流量制御装置6の設置方向は冷媒の
流れに対して水平、垂直、斜めのどの設置方法でもよ
く、同様の効果がある。また垂直、斜め設置の場合、冷
媒は下から上、上から下のどちらの方向から流してもよ
い。
The flow control device 6 may be installed horizontally, vertically, or obliquely with respect to the flow of the refrigerant, with the same effect. In the case of vertical or oblique installation, the refrigerant may flow from either the bottom to the top or the top to the bottom.

【0074】冷凍サイクル装置の冷媒として、HFC系
冷媒のR410Aを用いた。この冷媒はオゾン層を破壊
しない地球環境保全に適した冷媒であると共に、従来冷
媒として用いられてきたR22に比べて、冷媒蒸気密度
が大きく冷媒の流速が速くなるため圧力損失が小さく、
第2流量制御装置6の絞り部に配置する多孔質透過材の
孔径を小さくでき、より一層冷媒流動音を低減できる。
ただし、冷媒としてR410Aに限るものではなく、H
FC系冷媒であるR407CやR404A、R507A
であっても良い。また、地球温暖化防止の観点から、地
球温暖化係数の小さなHFC系冷媒であるR32単独、
R152a単独、またはR32/R134aなどの混合
冷媒であっても良い。また、プロパンやブタン、イソブ
タンなどのHC系冷媒やアンモニア、二酸化炭素、エー
テルなどの自然系冷媒およびそれらの混合冷媒であって
も良い。特に、プロパンやブタン、イソブタンおよびそ
れらの混合冷媒はR410Aに比べて動作圧力が小さ
く、凝縮圧力と蒸発圧力の圧力差が小さいため、オリフ
ィスの内径を大きくすることが可能であり、詰まりに対
する信頼性をさらに向上させることができる。
As the refrigerant of the refrigeration cycle device, R410A of HFC type refrigerant was used. This refrigerant is a refrigerant suitable for global environment protection that does not destroy the ozone layer, and has a smaller refrigerant loss and a smaller pressure loss than R22, which has been used as a conventional refrigerant, because the refrigerant vapor density is large and the refrigerant flow velocity is high.
The pore diameter of the porous permeable material arranged in the throttle portion of the second flow rate control device 6 can be reduced, and the refrigerant flow noise can be further reduced.
However, the refrigerant is not limited to R410A, but H
FC refrigerants R407C, R404A, R507A
May be From the viewpoint of preventing global warming, R32 alone, which is an HFC-based refrigerant with a small global warming coefficient,
R152a alone or a mixed refrigerant such as R32 / R134a may be used. Further, HC-based refrigerants such as propane, butane, and isobutane, natural refrigerants such as ammonia, carbon dioxide, ether, and mixed refrigerants thereof may be used. In particular, propane, butane, isobutane, and their mixed refrigerants have a lower operating pressure than R410A, and the pressure difference between the condensation pressure and the evaporation pressure is small, so it is possible to increase the inner diameter of the orifice and improve the reliability against clogging. Can be further improved.

【0075】[0075]

【発明の効果】以上のように、この発明の請求項1に関
わる流量制御装置によれば、第一流路と第二流路を連通
する連通流路と、この連通流路に並列に設けられ第1絞
り部と第2絞り部を有する絞り流路と、前記連通流路と
前記絞り流路を切換える切換手段と、を備え、流体が前
記絞り流路の前記第一流路から前記第二流路へ流れる
時、前記第1絞り部で減圧し、流体が前記絞り流路の前
記第二流路から前記第一流路へ流れる時、前記第2絞り
部または前記第2絞り部と前記第1絞り部で減圧して、
前記絞り流路の流体の流れ方向で絞り量が異なるように
構成したことにより、第一、第二流路を連通する場合と
絞り部を介する場合とを切り替えることができ、さらに
正逆の流れ方向で異なる絞り量に設定できるという効果
が得られる。
As described above, according to the flow rate control device according to the first aspect of the present invention, the communication flow passage that connects the first flow passage and the second flow passage and the communication flow passage are provided in parallel with each other. A fluid flow path comprises: a throttle channel having a first throttle section and a second throttle section; and a switching means for switching the communication channel and the throttle channel, wherein a fluid flows from the first channel of the throttle channel to the second channel. When the fluid flows to the passage, the pressure is reduced by the first throttle portion, and when the fluid flows from the second passage of the throttle passage to the first passage, the second throttle portion or the second throttle portion and the first passage Reduce the pressure at the throttle,
Since the throttle amount is configured to be different in the flow direction of the fluid of the throttle channel, it is possible to switch between the case where the first and second channels are communicated with each other and the case where the throttle section is provided, and the forward and reverse flow It is possible to obtain the effect that different aperture amounts can be set depending on the direction.

【0076】また、この発明の請求項2に関わる流量制
御装置によれば、第1絞り部を、流体を減圧して通過さ
せるオリフィスで構成し、前記オリフィスと第一流路の
間および前記オリフィスと第二流路の間の少なくともい
ずれか一方の流路に、流体を通過させる多孔質透過材を
備えたことにより、第一、第二流路を連通する場合と絞
り部を介する場合とを切り替えることができ、また正逆
の流れ方向で異なる絞り量に設定でき、さらに流体の流
動音を低減できるという効果が得られる。
According to the second aspect of the flow control device of the present invention, the first throttle portion is constituted by an orifice for reducing the pressure of the fluid to pass therethrough, and between the orifice and the first flow path and between the orifice. At least one of the second flow passages is provided with a porous permeable material that allows a fluid to pass therethrough, thereby switching between the case where the first and second flow passages are connected and the case where the narrowed portion is provided. In addition, it is possible to set different throttle amounts in the forward and reverse flow directions, and it is possible to obtain the effect of reducing the flow noise of the fluid.

【0077】また、この発明の請求項3に関わる絞り装
置によれば、両端に流路口を有し流路に配設される筐体
と、この筐体内の一端部に設けた開口を有する弁座と、
前記筐体内を流れる流体の流れ方向に稼動する稼動弁
と、前記筐体内の他端部に設けたストッパと、前記稼動
弁または前記弁座に設けた絞り部とを備え、前記弁座側
から前記ストッパ側へ流体が流れる時、前記稼動弁は前
記ストッパで停止して前記流体は前記開口を流れ、前記
ストッパ側から前記弁座側へ流体が流れる時、前記稼動
弁は前記弁座で停止して前記開口を塞ぎ、前記流体は前
記絞り部を流れることにより、正逆の流れ方向で異なる
絞り量に設定できるという効果が得られる。
Further, according to the diaphragm device of the third aspect of the present invention, a valve having a flow path opening at both ends and disposed in the flow path, and an opening provided at one end of the flow path in the case. Zodiac,
An operating valve that operates in the flow direction of the fluid flowing in the housing, a stopper provided at the other end of the housing, and a throttle portion provided at the operating valve or the valve seat, and from the valve seat side. When the fluid flows to the stopper side, the operating valve stops at the stopper and the fluid flows through the opening. When the fluid flows from the stopper side to the valve seat side, the operating valve stops at the valve seat. Then, by closing the opening and flowing the fluid through the throttle portion, it is possible to obtain the effect that different throttle amounts can be set in the forward and reverse flow directions.

【0078】また、この発明の請求項4に関わる流量制
御装置によれば、請求項1または請求項2記載の流量制
御装置の第2絞り部を、請求項3記載の絞り装置で構成
したことにより、第一、第二流路を連通する場合と絞り
部を介する場合とを切り替えることができ、さらに正逆
の流れ方向で異なる絞り量に設定できるという効果が得
られる。
According to the flow rate control device of the fourth aspect of the present invention, the second throttle portion of the flow rate control device of the first or second aspect is constituted by the throttle device of the third aspect. As a result, it is possible to switch between the case where the first and second flow paths are communicated with each other and the case where the first and second flow paths are communicated with each other, and it is possible to obtain an effect that different throttle amounts can be set in the forward and reverse flow directions.

【0079】また、この発明の請求項5に関わる流量制
御装置によれば、前記第2絞り部を、キャピラリーチュ
ーブと、このキャピラリーチューブに並列に設けられ一
方向の流れのみを許可する逆止弁とで構成したことによ
り、第一、第二流路を連通する場合と絞り部を介する場
合とを切り換えることができ、さらに正逆の流れ方向で
異なる絞り量に設定できるという効果が得られる。
According to the fifth aspect of the flow control device of the present invention, the second throttle portion is provided in parallel with the capillary tube, and the check valve is provided in parallel with the capillary tube to permit only one-way flow. With the above configuration, it is possible to switch between the case where the first and second flow paths are communicated with each other and the case where the first and second flow paths are communicated with each other, and it is possible to obtain an effect that different throttle amounts can be set in the forward and reverse flow directions.

【0080】また、この発明の請求項6に関わる絞り装
置によれば、一端が第一流路、他端が第二流路に接続さ
れて流路に配設される筐体と、この筐体内の第一流路側
に設けられ前記筐体内を流れる流体を減圧して通過させ
る第1絞り部と、前記第1絞り部と第一流路の間および
前記第1絞り部と第二流路の間の少なくともいずれか一
方の流路に配設された前記流体を通過させる多孔質透過
材と、前記第1絞り部と前記第二流路の間の第1絞り部
側に設けた開口を有する弁座と、前記筐体内を流れる流
体の流れ方向に稼動する稼動弁と、前記稼動弁と前記第
二流路の間に設けたストッパと、前記稼動弁または前記
弁座に設けた第2絞り部と、を備え、前記第一流路から
前記第二流路方向へ流体が流れる時、前記稼動弁は前記
ストッパで停止して前記流体は第1絞り部及び開口を流
れ、前記第二流路から第一流路へ流体が流れる時、前記
稼動弁は前記弁座で停止して前記開口を塞ぎ、前記流体
は第2絞り部及び第1絞り部を流れることにより、流体
の流れ方向で絞り量を異なるように構成したことによ
り、小型で、低騒音で、正逆の流れ方向で異なる絞り量
に設定できるという効果が得られる。
Further, according to the diaphragm device of the sixth aspect of the present invention, there is provided a case in which one end is connected to the first flow path and the other end is connected to the second flow path, and the case is provided in the flow path. Between the first throttle portion and the first flow passage, and between the first throttle portion and the second flow passage, the first throttle portion provided on the first flow passage side of A valve seat having a porous permeable material disposed in at least one of the flow passages and allowing passage of the fluid, and an opening provided on the first throttle portion side between the first throttle portion and the second flow passage. An operating valve that operates in the flow direction of the fluid flowing in the housing; a stopper provided between the operating valve and the second flow path; and a second throttle portion provided on the operating valve or the valve seat. When the fluid flows from the first flow path toward the second flow path, the operating valve stops at the stopper. The fluid flows through the first throttle portion and the opening, and when the fluid flows from the second flow passage to the first passage, the operating valve stops at the valve seat to close the opening, and the fluid is the second throttle portion. Also, since the flow rate of the fluid flows through the first throttle portion so that the throttle amount varies depending on the flow direction of the fluid, it is possible to obtain an effect that the throttle amount is small, the noise is low, and different throttle amounts can be set in the forward and reverse flow directions. .

【0081】また、この発明の請求項7に関わる絞り装
置によれば、一端が第一流路、他端が第二流路に接続さ
れて流路に配設される筐体と、この筐体内を流れる流体
を減圧して通過させる第1絞り部を有する弁体と、前記
第1絞り部と第一流路の間および前記第1絞り部と第二
流路の間の少なくともいずれか一方に配設された前記流
体を通過させる多孔質透過材と、前記筐体内を流れる流
体の流れ方向に稼動する稼動弁と、前記稼動弁と第二流
路の間に設け流路を有する仕切板と、前記稼動弁または
前記弁体に設けた第2絞り部と、を備え、前記第一流路
から前記第二流路へ流体が流れる時、前記稼動弁は前記
仕切板で停止して前記流体は第1絞り部及び前記仕切板
の流路を流れ、前記第二流路から前記第一流路へ流体が
流れる時、前記稼動弁は前記弁体で停止して前記第1絞
り部を塞ぎ、前記流体は第2絞り部を流れることによ
り、流体の流れ方向で絞り量を異なるように構成したこ
とにより、小型で、低騒音で、正逆の流れ方向で異なる
絞り量に設定できるという効果が得られる。
According to the seventh aspect of the present invention, in the case where the one end is connected to the first flow path and the other end is connected to the second flow path, the case is disposed in the flow path. A valve body having a first throttle portion for depressurizing and passing the fluid flowing therethrough, and at least one of the first throttle portion and the first flow passage and the first throttle portion and the second flow passage. A porous permeable material that allows the fluid to pass therethrough, an operating valve that operates in the flow direction of the fluid that flows in the housing, and a partition plate that has a channel provided between the operating valve and the second channel. When the fluid flows from the first flow path to the second flow path, the working valve stops at the partition plate and the fluid is When the fluid flows from the second passage to the first passage through the passage of the throttle portion and the partition plate, The valve is stopped at the valve body to close the first throttle portion, and the fluid flows through the second throttle portion, so that the throttle amount is different depending on the flow direction of the fluid. Thus, there is an effect that different throttle amounts can be set in the forward and reverse flow directions.

【0082】また、この発明の請求項8に関わる流量制
御装置によれば、第一流路と第二流路を連通する連通流
路と、この連通流路に並列に請求項6または請求項7記
載の絞り装置を接続して成る絞り流路と、前記連通流路
と前記絞り流路を切換える切換手段と、を備え、流体が
前記絞り流路の前記第一流路から前記第二流路へ流れる
時、前記絞り装置の第1絞り部で減圧し、流体が前記絞
り流路の前記第二流路から前記第一流路へ流れる時、前
記絞り装置の第2絞り部または前記第2絞り部と前記第
1絞り部で減圧して、前記絞り流路の流体の流れ方向で
絞り量が異なるように構成したことにより、小型で、低
騒音で、第一、第二流路を連通する場合と絞り部を介す
る場合とを切り替えることができ、さらに正逆の流れ方
向で異なる絞り量に設定できるという効果が得られる。
According to the eighth aspect of the flow control device of the present invention, the communication passage connecting the first passage and the second passage and the communication passage arranged in parallel with the communication passage. A throttling flow path formed by connecting the throttling device described above, and a switching means for switching the communication flow path and the throttling flow path, wherein a fluid flows from the first flow path of the throttle flow path to the second flow path. When flowing, the pressure is reduced by the first throttle portion of the throttle device, and when the fluid flows from the second flow passage of the throttle flow passage to the first flow passage, the second throttle portion or the second throttle portion of the throttle device. In the case where the first and second flow paths are communicated with each other in a small size and with low noise, the pressure is reduced in the first throttle part and the throttle amount is different in the flow direction of the fluid in the throttle flow path. It is possible to switch between the flow rate and the flow rate through the throttle section. An effect that can be set is obtained.

【0083】また、この発明の請求項9に関わる空気調
和装置によれば、圧縮機、室外熱交換器、第1流量制御
装置、第1室内熱交換器、第2流量制御装置、第2室内
熱交換器を順次接続した冷凍サイクルを備え、請求項1
または請求項2または請求項4または請求項5または請
求項8に記載の流量制御装置を前記第2流量制御装置と
し、第1、第2室内熱交換器を共に蒸発器または凝縮器
として運転する際、前記第2流量制御装置は連通流路を
介して第1、第2室内熱交換器を接続するようにし、第
1、第2室内熱交換器のうちの一方を蒸発器、他方を凝
縮器として運転する際、前記第2流量制御装置は絞り流
路を介して第1、第2室内熱交換器を接続するように前
記切換手段を切換えるように構成したことにより、低騒
音で安定的に冷媒の流動抵抗を制御し、冷房再熱除湿運
転制御及び暖房再熱除湿運転制御に対応できるという効
果が得られる。
According to the air conditioner of claim 9 of the present invention, the compressor, the outdoor heat exchanger, the first flow rate control device, the first indoor heat exchanger, the second flow rate control device, the second indoor space. A refrigeration cycle in which heat exchangers are sequentially connected is provided, and
Alternatively, the flow control device according to claim 2, 4 or 5, or 8 is used as the second flow control device, and the first and second indoor heat exchangers are both operated as an evaporator or a condenser. At this time, the second flow rate control device connects the first and second indoor heat exchangers via a communication flow path, and one of the first and second indoor heat exchangers is an evaporator and the other is condensed. When operating as a heat exchanger, the second flow rate control device is configured to switch the switching means so as to connect the first and second indoor heat exchangers via the throttle passage, so that the noise is stable with low noise. In addition, the flow resistance of the refrigerant can be controlled, and it is possible to obtain the effect that the cooling reheat dehumidification operation control and the heating reheat dehumidification operation control can be supported.

【0084】また、この発明の請求項10に関わる空気
調和装置によれば、請求項9による空気調和装置におい
て、第1室内熱交換器を蒸発器とし第2室内熱交換器を
凝縮器とする暖房再熱除湿運転での第2流量制御装置の
絞り量を、第1室内熱交換器を凝縮器とし第2室内熱交
換器を蒸発器とする冷房再熱除湿運転での絞り量よりも
大きくしたことにより、低騒音で、流量を効率よく制御
でき、シーズンに関らず冷房再熱除湿運転、暖房再熱除
湿運転を制御性よく運転できるという効果が得られる。
According to the tenth aspect of the present invention, in the air conditioner according to the ninth aspect, the first indoor heat exchanger is an evaporator and the second indoor heat exchanger is a condenser. The throttle amount of the second flow control device in the heating reheat dehumidification operation is larger than the throttle amount in the cooling reheat dehumidification operation in which the first indoor heat exchanger is the condenser and the second indoor heat exchanger is the evaporator. As a result, there is an effect that the flow rate can be efficiently controlled with low noise, and the cooling reheat dehumidifying operation and the heating reheat dehumidifying operation can be operated with good controllability regardless of the season.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1による空気調和装置
を示す冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram showing an air conditioner according to Embodiment 1 of the present invention.

【図2】 実施の形態1に係る第2流量制御装置を示す
回路構成図である。
FIG. 2 is a circuit configuration diagram showing a second flow rate control device according to the first embodiment.

【図3】 実施の形態1に係る絞り装置を示す断面図で
ある。
FIG. 3 is a cross-sectional view showing a diaphragm device according to the first embodiment.

【図4】 実施の形態1に係わる空気調和装置の冷房除
湿運転時の動作状態を表す特性図である。
FIG. 4 is a characteristic diagram showing an operating state of the air-conditioning apparatus according to Embodiment 1 during a cooling / dehumidifying operation.

【図5】 実施の形態1に係わる空気調和装置の暖房除
湿運転時の動作状態を表す特性図である。
FIG. 5 is a characteristic diagram showing an operating state of the air-conditioning apparatus according to Embodiment 1 during a heating dehumidifying operation.

【図6】 実施の形態1に係わる空気調和装置の暖房除
湿運転時の他の動作状態を表す特性図である。
FIG. 6 is a characteristic diagram showing another operating state of the air-conditioning apparatus according to Embodiment 1 during the heating / dehumidifying operation.

【図7】 実施の形態1に係わる空気調和装置の他の例
を示す冷媒回路図である。
FIG. 7 is a refrigerant circuit diagram showing another example of the air-conditioning apparatus according to Embodiment 1.

【図8】 この発明の実施の形態2に係る第2流量制御
装置を示す回路構成図である。
FIG. 8 is a circuit configuration diagram showing a second flow rate control device according to Embodiment 2 of the present invention.

【図9】 実施の形態2に係る絞り装置を示す断面図で
ある。
FIG. 9 is a cross-sectional view showing a diaphragm device according to a second embodiment.

【図10】 実施の形態2に係る稼動弁を示す平面図で
ある。
FIG. 10 is a plan view showing an operating valve according to the second embodiment.

【図11】 実施の形態2に係る絞り装置の別の例を示
す断面図である。
FIG. 11 is a cross-sectional view showing another example of the diaphragm device according to the second embodiment.

【図12】 実施の形態2に係る絞り装置のさらに別の
例を示す断面図である。
FIG. 12 is a sectional view showing still another example of the diaphragm device according to the second embodiment.

【図13】 この発明の実施の形態3に係る流量制御装
置を示す回路構成図である。
FIG. 13 is a circuit configuration diagram showing a flow rate control device according to a third embodiment of the present invention.

【図14】 実施の形態3に係る絞り装置を示す断面図
である。
FIG. 14 is a cross-sectional view showing a diaphragm device according to a third embodiment.

【図15】 実施の形態3に係る絞り装置の他の例を示
す断面図である。
FIG. 15 is a cross-sectional view showing another example of the diaphragm device according to the third embodiment.

【図16】 実施の形態3に係る絞り装置のさらに他の
例を示す断面図である。
FIG. 16 is a cross-sectional view showing still another example of the diaphragm device according to the third embodiment.

【図17】 この発明の実施の形態4に係る流量制御装
置を示す回路構成図である。
FIG. 17 is a circuit configuration diagram showing a flow rate control device according to a fourth embodiment of the present invention.

【図18】 実施の形態4に係る絞り装置を示す断面図
である。
FIG. 18 is a sectional view showing a diaphragm device according to a fourth embodiment.

【図19】 実施の形態4に係る絞り装置の他の例を示
す断面図である。
FIG. 19 is a cross-sectional view showing another example of the diaphragm device according to the fourth embodiment.

【図20】 実施の形態4に係る絞り装置のさらに他の
例を示す断面図である。
FIG. 20 is a cross-sectional view showing still another example of the diaphragm device according to the fourth embodiment.

【図21】 従来の空気調和装置を示す冷媒回路図であ
る。
FIG. 21 is a refrigerant circuit diagram showing a conventional air conditioner.

【図22】 従来の第2流量制御装置を示す部分断面図
である。
FIG. 22 is a partial cross-sectional view showing a second conventional flow rate control device.

【図23】 従来の第2流量制御装置の他の例を示す断
面図である。
FIG. 23 is a sectional view showing another example of a conventional second flow rate control device.

【図24】 従来の第2流量制御装置のさらに他の例を
示す断面図である。
FIG. 24 is a sectional view showing still another example of a conventional second flow rate control device.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 流路切換手段、3 室外熱交換器、4
第1流量制御装置、5 第1室内熱交換器、6 第2
流量制御装置、7 第2室内熱交換器、8 切換手段、
9a 第一流路、9b 第二流路、10 逆止弁、11
a,11b 多孔質透過材、12 第1絞り部、13
第1絞り装置、14 逆止弁、15 キャピラリーチュ
ーブ、16a 連通流路、16b 絞り流路、17 筐
体、18弁体、19a,19b 空間、20 第2絞り
装置、21 筐体、22 弁座、23 稼動弁、24
ストッパ、25 溝、26 第2絞り部、27 溝、2
8 絞り装置、29 絞り装置、31 仕切板、32
空間、33 流路、34稼動弁、35 第2絞り部、3
6 溝、51 室外ユニット、52 室内ユニット。
1 compressor, 2 flow path switching means, 3 outdoor heat exchanger, 4
1st flow control device, 5 1st indoor heat exchanger, 6 2nd
Flow control device, 7 second indoor heat exchanger, 8 switching means,
9a 1st flow path, 9b 2nd flow path, 10 check valve, 11
a, 11b Porous permeable material, 12 First throttle part, 13
1st throttling device, 14 check valve, 15 capillary tube, 16a communication channel, 16b throttling channel, 17 casing, 18 valve body, 19a, 19b space, 20 2nd throttling device, 21 casing, 22 valve seat , 23 working valve, 24
Stopper, 25 groove, 26 2nd throttle part, 27 groove, 2
8 diaphragm device, 29 diaphragm device, 31 partition plate, 32
Space, 33 flow paths, 34 working valve, 35 second throttle part, 3
6 grooves, 51 outdoor units, 52 indoor units.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // F16K 47/04 F16K 47/04 A (72)発明者 隅田 嘉裕 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3H066 AA01 BA17 BA32 BA33 CA02 EA13 EA18 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // F16K 47/04 F16K 47/04 A (72) Inventor Yoshihiro Sumida 2-2 Marunouchi, Chiyoda-ku, Tokyo No. 3 F term in Sanryo Electric Co., Ltd. (reference) 3H066 AA01 BA17 BA32 BA33 CA02 EA13 EA18

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 第一流路と第二流路を連通する連通流路
と、この連通流路に並列に設けられ第1絞り部と第2絞
り部を有する絞り流路と、前記連通流路と前記絞り流路
を切換える切換手段と、を備え、流体が前記絞り流路の
前記第一流路から前記第二流路へ流れる時、前記第1絞
り部で減圧し、流体が前記絞り流路の前記第二流路から
前記第一流路へ流れる時、前記第2絞り部または前記第
2絞り部と前記第1絞り部で減圧して、前記絞り流路の
流体の流れ方向で絞り量が異なるように構成したことを
特徴とする流量制御装置。
1. A communication channel that connects the first channel and the second channel, a throttle channel that is provided in parallel with the communication channel and has a first throttle section and a second throttle section, and the communication channel. And a switching means for switching the throttle channel, when the fluid flows from the first channel of the throttle channel to the second channel, the pressure is reduced in the first throttle section, and the fluid is the throttle channel. When flowing from the second flow path to the first flow path, the pressure is reduced by the second throttle portion or the second throttle portion and the first throttle portion, and the throttle amount is reduced in the fluid flow direction of the throttle passage. A flow control device characterized by being configured differently.
【請求項2】 第1絞り部を、流体を減圧して通過させ
るオリフィスで構成し、前記オリフィスと第一流路の間
および前記オリフィスと第二流路の間の少なくともいず
れか一方の流路に、流体を通過させる多孔質透過材を備
えたことを特徴とする請求項1記載の流量制御装置。
2. The first throttle portion is constituted by an orifice for reducing the pressure of a fluid and allows the fluid to pass therethrough, and is provided in at least one of the passages between the orifice and the first passage and between the orifice and the second passage. The flow rate control device according to claim 1, further comprising a porous permeable material that allows the fluid to pass therethrough.
【請求項3】 両端に流路口を有し流路に配設される筐
体と、この筐体内の一端部に設けた開口を有する弁座
と、前記筐体内を流れる流体の流れ方向に稼動する稼動
弁と、前記筐体内の他端部に設けたストッパと、前記稼
動弁または前記弁座に設けた絞り部とを備え、前記弁座
側から前記ストッパ側へ流体が流れる時、前記稼動弁は
前記ストッパで停止して前記流体は前記開口を流れ、前
記ストッパ側から前記弁座側へ流体が流れる時、前記稼
動弁は前記弁座で停止して前記開口を塞ぎ、前記流体は
前記絞り部を流れることにより、流体の流れ方向で絞り
量を異なるように構成したことを特徴とする絞り装置。
3. A casing having flow passage openings at both ends and arranged in the flow passage, a valve seat having an opening provided at one end in the casing, and a valve seat operating in a flow direction of a fluid flowing in the casing. An operating valve, a stopper provided at the other end of the housing, and a throttle provided at the operating valve or the valve seat, and when the fluid flows from the valve seat side to the stopper side, the operation is performed. The valve stops at the stopper and the fluid flows through the opening. When the fluid flows from the stopper side to the valve seat side, the operating valve stops at the valve seat and closes the opening, and the fluid is A throttling device, wherein the throttling device is configured so that the throttling amount varies depending on the flow direction of the fluid by flowing through the throttling portion.
【請求項4】 前記第2絞り部を、請求項3記載の絞り
装置で構成したことを特徴とする請求項1または請求項
2記載の流量制御装置。
4. The flow rate control device according to claim 1 or 2, wherein the second throttle portion is constituted by the throttle device according to claim 3.
【請求項5】 前記第2絞り部を、キャピラリーチュー
ブと、このキャピラリーチューブに並列に設けられ一方
向の流れのみを許可する逆止弁とで構成したことを特徴
とする請求項1または請求項2記載の流量制御装置。
5. The first throttle portion is constituted by a capillary tube and a check valve which is provided in parallel with the capillary tube and permits only a one-way flow. 2. The flow control device according to 2.
【請求項6】 一端が第一流路、他端が第二流路に接続
されて流路に配設される筐体と、この筐体内の第一流路
側に設けられ前記筐体内を流れる流体を減圧して通過さ
せる第1絞り部と、前記第1絞り部と第一流路の間およ
び前記第1絞り部と第二流路の間の少なくともいずれか
一方の流路に配設された前記流体を通過させる多孔質透
過材と、前記第1絞り部と前記第二流路の間の第1絞り
部側に設けた開口を有する弁座と、前記筐体内を流れる
流体の流れ方向に稼動する稼動弁と、前記稼動弁と前記
第二流路の間に設けたストッパと、前記稼動弁または前
記弁座に設けた第2絞り部と、を備え、前記第一流路か
ら前記第二流路方向へ流体が流れる時、前記稼動弁は前
記ストッパで停止して前記流体は第1絞り部及び開口を
流れ、前記第二流路から第一流路へ流体が流れる時、前
記稼動弁は前記弁座で停止して前記開口を塞ぎ、前記流
体は第2絞り部及び第1絞り部を流れることにより、流
体の流れ方向で絞り量を異なるように構成したことを特
徴とする絞り装置。
6. A casing having one end connected to the first flow passage and the other end connected to the second flow passage and disposed in the flow passage, and a fluid which is provided on the first flow passage side in the casing and flows in the casing. A first throttle portion that is reduced in pressure and passes through, and the fluid disposed in at least one of the passages between the first throttle portion and the first passage and between the first throttle portion and the second passage. A porous permeable material, a valve seat having an opening provided on the first throttle portion side between the first throttle portion and the second flow path, and operating in the flow direction of the fluid flowing in the housing. An operating valve, a stopper provided between the operating valve and the second passage, and a second throttle portion provided in the operating valve or the valve seat, and the first passage to the second passage. When the fluid flows in the direction, the operating valve stops at the stopper, the fluid flows through the first throttle portion and the opening, and the second flow path When the fluid flows from the first flow passage to the first flow passage, the operating valve stops at the valve seat to close the opening, and the fluid flows through the second throttle portion and the first throttle portion, thereby reducing the throttle amount in the fluid flow direction. A diaphragm device having different configurations.
【請求項7】 一端が第一流路、他端が第二流路に接続
されて流路に配設される筐体と、この筐体内を流れる流
体を減圧して通過させる第1絞り部を有する弁体と、前
記第1絞り部と第一流路の間および前記第1絞り部と第
二流路の間の少なくともいずれか一方に配設された前記
流体を通過させる多孔質透過材と、前記筐体内を流れる
流体の流れ方向に稼動する稼動弁と、前記稼動弁と第二
流路の間に設け流路を有する仕切板と、前記稼動弁また
は前記弁体に設けた第2絞り部と、を備え、前記第一流
路から前記第二流路へ流体が流れる時、前記稼動弁は前
記仕切板で停止して前記流体は第1絞り部及び前記仕切
板の流路を流れ、前記第二流路から前記第一流路へ流体
が流れる時、前記稼動弁は前記弁体で停止して前記第1
絞り部を塞ぎ、前記流体は第2絞り部を流れることによ
り、流体の流れ方向で絞り量を異なるように構成したこ
とを特徴とする絞り装置。
7. A casing having one end connected to the first flow passage and the other end connected to the second flow passage and disposed in the flow passage, and a first throttle unit for decompressing and passing the fluid flowing in the casing. A valve body having, and a porous permeable material for passing the fluid, which is disposed between at least one of the first throttle portion and the first flow passage and between the first throttle portion and the second flow passage, An operating valve that operates in the flow direction of the fluid flowing in the housing, a partition plate having a flow passage provided between the operating valve and a second flow passage, and a second throttle portion provided in the operating valve or the valve body. When the fluid flows from the first flow path to the second flow path, the operating valve stops at the partition plate and the fluid flows through the flow paths of the first throttle section and the partition plate, When the fluid flows from the second flow path to the first flow path, the operation valve stops at the valve body and
A throttling device, wherein the throttling portion is closed and the fluid flows through the second throttling portion so that the throttling amount is different depending on the flow direction of the fluid.
【請求項8】 第一流路と第二流路を連通する連通流路
と、この連通流路に並列に請求項6または請求項7記載
の絞り装置を接続して成る絞り流路と、前記連通流路と
前記絞り流路を切換える切換手段と、を備え、流体が前
記絞り流路の前記第一流路から前記第二流路へ流れる
時、前記絞り装置の第1絞り部で減圧し、流体が前記絞
り流路の前記第二流路から前記第一流路へ流れる時、前
記絞り装置の第2絞り部または前記第2絞り部と前記第
1絞り部で減圧して、前記絞り流路の流体の流れ方向で
絞り量が異なるように構成したことを特徴とする流量制
御装置。
8. A communication channel that connects the first channel and the second channel, and a throttle channel that is formed by connecting the throttle device according to claim 6 or 7 in parallel to the communication channel, A switching passage for switching between the communication passage and the throttle passage, and when a fluid flows from the first passage of the throttle passage to the second passage, the pressure is reduced in the first throttle portion of the throttle device, When the fluid flows from the second flow passage of the throttle flow passage to the first flow passage, the pressure is reduced by the second throttle portion or the second throttle portion and the first throttle portion of the throttle device, and the throttle passage The flow rate control device is characterized in that the throttle amount is different depending on the flow direction of the fluid.
【請求項9】 圧縮機、室外熱交換器、第1流量制御装
置、第1室内熱交換器、第2流量制御装置、第2室内熱
交換器を順次接続した冷凍サイクルを備え、請求項1ま
たは請求項2または請求項4または請求項5または請求
項8に記載の流量制御装置を前記第2流量制御装置と
し、第1、第2室内熱交換器を共に蒸発器または凝縮器
として運転する際、前記第2流量制御装置は連通流路を
介して第1、第2室内熱交換器を接続するようにし、第
1、第2室内熱交換器のうちの一方を蒸発器、他方を凝
縮器として運転する際、前記第2流量制御装置は絞り流
路を介して第1、第2室内熱交換器を接続するように前
記切換手段を切換えるように構成したことを特徴とする
空気調和装置。
9. A refrigeration cycle in which a compressor, an outdoor heat exchanger, a first flow rate control device, a first indoor heat exchanger, a second flow rate control device, and a second indoor heat exchanger are sequentially connected, and Alternatively, the flow control device according to claim 2, 4 or 5, or 8 is used as the second flow control device, and the first and second indoor heat exchangers are both operated as an evaporator or a condenser. At this time, the second flow rate control device connects the first and second indoor heat exchangers via a communication flow path, and one of the first and second indoor heat exchangers is an evaporator and the other is condensed. When operating as an air conditioner, the second flow rate control device is configured to switch the switching means so as to connect the first and second indoor heat exchangers through the throttle passage. .
【請求項10】 第1室内熱交換器を蒸発器とし第2室
内熱交換器を凝縮器とする暖房再熱除湿運転での第2流
量制御装置の絞り量を、第1室内熱交換器を凝縮器とし
第2室内熱交換器を蒸発器とする冷房再熱除湿運転での
絞り量よりも大きくしたことを特徴とする請求項9記載
の空気調和装置。
10. The throttle amount of the second flow rate control device in the heating reheat dehumidification operation in which the first indoor heat exchanger is an evaporator and the second indoor heat exchanger is a condenser, The air conditioner according to claim 9, wherein the amount of throttle is larger than that in the cooling reheat dehumidifying operation in which the condenser is used and the second indoor heat exchanger is used as the evaporator.
JP2001271335A 2001-09-07 2001-09-07 Flow control device, throttle device, and air conditioner Expired - Lifetime JP4221922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001271335A JP4221922B2 (en) 2001-09-07 2001-09-07 Flow control device, throttle device, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001271335A JP4221922B2 (en) 2001-09-07 2001-09-07 Flow control device, throttle device, and air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008199736A Division JP2008261626A (en) 2008-08-01 2008-08-01 Flow control device, restricting device and air conditioner

Publications (2)

Publication Number Publication Date
JP2003083641A true JP2003083641A (en) 2003-03-19
JP4221922B2 JP4221922B2 (en) 2009-02-12

Family

ID=19096857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271335A Expired - Lifetime JP4221922B2 (en) 2001-09-07 2001-09-07 Flow control device, throttle device, and air conditioner

Country Status (1)

Country Link
JP (1) JP4221922B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250311A (en) * 2005-03-14 2006-09-21 Kayaba Ind Co Ltd Orifice with consolidated filter, slow return valve, and hydraulic drive unit
EP1959214A3 (en) * 2007-02-15 2010-10-27 Mitsubishi Electric Corporation Expansion valve mechanism and passage switching device
JP2011017532A (en) * 2004-04-22 2011-01-27 Ice Energy Inc Mixed-phase regulator for managing coolant in refrigerant based high efficiency energy storage and cooling system
WO2013061365A1 (en) * 2011-10-26 2013-05-02 三菱電機株式会社 Air conditioning device
CN104930763A (en) * 2014-03-19 2015-09-23 海尔集团公司 Air conditioner refrigerating system
CN107559433A (en) * 2016-06-30 2018-01-09 浙江盾安禾田金属有限公司 A kind of dehumidifying electric expansion valve of air-conditioning system
CN109631424A (en) * 2018-12-06 2019-04-16 珠海格力电器股份有限公司 Refrigerant distributor, three-pipe heating recovery air conditioning system and control method thereof
CN111623565A (en) * 2020-06-02 2020-09-04 青岛海尔空调器有限总公司 Throttling device, refrigerant circulation system and dehumidifier

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017532A (en) * 2004-04-22 2011-01-27 Ice Energy Inc Mixed-phase regulator for managing coolant in refrigerant based high efficiency energy storage and cooling system
JP2006250311A (en) * 2005-03-14 2006-09-21 Kayaba Ind Co Ltd Orifice with consolidated filter, slow return valve, and hydraulic drive unit
JP4616672B2 (en) * 2005-03-14 2011-01-19 カヤバ工業株式会社 Filter integrated orifice, slow return valve, hydraulic drive unit
EP1959214A3 (en) * 2007-02-15 2010-10-27 Mitsubishi Electric Corporation Expansion valve mechanism and passage switching device
WO2013061365A1 (en) * 2011-10-26 2013-05-02 三菱電機株式会社 Air conditioning device
CN104930763A (en) * 2014-03-19 2015-09-23 海尔集团公司 Air conditioner refrigerating system
CN107559433A (en) * 2016-06-30 2018-01-09 浙江盾安禾田金属有限公司 A kind of dehumidifying electric expansion valve of air-conditioning system
CN107559433B (en) * 2016-06-30 2020-11-06 重庆华超金属有限公司 Dehumidification electronic expansion valve of air conditioning system
CN109631424A (en) * 2018-12-06 2019-04-16 珠海格力电器股份有限公司 Refrigerant distributor, three-pipe heating recovery air conditioning system and control method thereof
CN111623565A (en) * 2020-06-02 2020-09-04 青岛海尔空调器有限总公司 Throttling device, refrigerant circulation system and dehumidifier

Also Published As

Publication number Publication date
JP4221922B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP3428516B2 (en) Aperture device
JP3918421B2 (en) Air conditioner, operation method of air conditioner
JP2007085730A (en) Air conditioner and method of operating air conditioner
WO2012085965A1 (en) Air conditioner
JP4103363B2 (en) Flow control device, refrigeration cycle device, and air conditioner
JP3901103B2 (en) Air conditioner
JP4221922B2 (en) Flow control device, throttle device, and air conditioner
JP2001082761A (en) Air conditioner
JP2002221353A (en) Air conditioner
JP3395761B2 (en) Throttling device, refrigeration cycle device.
JP3870768B2 (en) Air conditioner and method of operating air conditioner
JP3817981B2 (en) Refrigeration cycle apparatus and air conditioner
JP2000346493A5 (en)
JP2008261626A (en) Flow control device, restricting device and air conditioner
JP4269306B2 (en) Multi-room air conditioner
JP2000346493A (en) Throttle device, refrigerating cycle apparatus and air conditioner
JP2003050061A (en) Air conditioner
JP4151236B2 (en) Flow control device and air conditioner
JP4106867B2 (en) Flow control device, air conditioner
JP3417351B2 (en) Aperture device
JP3435759B2 (en) Air conditioner
JP3412602B2 (en) Refrigeration cycle device and air conditioner
JP4063465B2 (en) Air conditioner and multi-type air conditioner
JP4020705B2 (en) Heat pump and dehumidifying air conditioner
JP4608828B2 (en) Air conditioner, dehumidifier, and throttle mechanism

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R151 Written notification of patent or utility model registration

Ref document number: 4221922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term