JP4212293B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4212293B2
JP4212293B2 JP2002111571A JP2002111571A JP4212293B2 JP 4212293 B2 JP4212293 B2 JP 4212293B2 JP 2002111571 A JP2002111571 A JP 2002111571A JP 2002111571 A JP2002111571 A JP 2002111571A JP 4212293 B2 JP4212293 B2 JP 4212293B2
Authority
JP
Japan
Prior art keywords
film
semiconductor device
manufacturing
semiconductor wafer
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002111571A
Other languages
Japanese (ja)
Other versions
JP2003309221A5 (en
JP2003309221A (en
Inventor
崇 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002111571A priority Critical patent/JP4212293B2/en
Publication of JP2003309221A publication Critical patent/JP2003309221A/en
Publication of JP2003309221A5 publication Critical patent/JP2003309221A5/ja
Application granted granted Critical
Publication of JP4212293B2 publication Critical patent/JP4212293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/03001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/03002Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for supporting the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05025Disposition the internal layer being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05541Structure
    • H01L2224/05548Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/0557Disposition the external layer being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/11002Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for supporting the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13022Disposition the bump connector being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • H01L2225/06544Design considerations for via connections, e.g. geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造方法に関し、更に言えば、ボール状の導電端子を有するBGA(Ball Grid Array)型の半導体装置の製造方法に関する。
【0002】
【従来の技術】
従来より表面実装型の半導体装置の一種としてBGA型の半導体装置がある。これは、半田等の金属部材から成るボール状の導電端子をパッケージ基板一主面上に格子状に複数配列し、基板の他の主面上に搭載される半導体チップとボンディングしてパッケージングするものである。そして、電子機器に組み込まれる際には、各導電端子をプリント基板上の配線パターンに熱溶着し、半導体チップとプリント基板上に搭載される外部回路とを電気的に接続する。
【0003】
このようなBGA型の半導体装置は、半導体装置の側面に突出したリードピンを有するSOP(Small Outline Package)やQFP(Quad Flat Package)等の他の表面実装型の半導体装置に比べ多数の接続端子を設置することができ、小型化が有利なものとして知られている。
【0004】
近年において、このBGA型の半導体装置がCCDイメージセンサの分野にも取り入れられ、小型化の要望が強い携帯電話機に搭載されるデジタルカメラのイメージセンサチップとして用いられている。
【0005】
また、ウエハレベルのCSP(Chip Size Package)やシリコン(Si)貫通技術を用いた3次元実装技術が注目されてきている。これらの技術は、チップを何層にも貼り合わせた後、Siを貫通させたり、Siウエハを表面からSi貫通させた後、積み上げる方法等が研究されている。
【0006】
【発明が解決しようとする課題】
しかし、従来の3次元実装技術は、表面からSi貫通等の加工を行い、銅(Cu)のビアホールを形成するため、表面側にCMP(Chemical Mechanical Polishing)処理が必要であったり、Cuビア形成後に当該Cuビアとパッドとを繋ぐための再配線が必要であるため、製造工数が多くなってしまう。
【0007】
【課題を解決するための手段】
そこで、本発明の半導体装置の製造方法上記課題に鑑み、表面側に金属パッドが形成された半導体ウエハを準備し、前記半導体ウエハの前記金属パッドが形成された表面側に対して、当該半導体ウエハを支持する支持体を溶液に溶ける有機膜から成るフィルムを介して貼り合わせる工程と、前記支持体が貼り合わされた前記半導体ウエハの裏面から前記金属パッドまで貫通する開口を形成する工程と、前記開口の側壁部に絶縁膜を形成した後に、当該開口内に金属層を形成する工程と、前記支持体が貼り合わされた前記半導体ウエハの裏面から前記フィルムまでダイシングする工程と、前記半導体ウエハと前記支持体とを分離する工程とを有することを特徴とするものである。
【0008】
また、前記ウエハと当該ウエハを支持する支持とをフィルムを介して貼り合わせる工程が、前記ウエハと前記支持の外径よりも小さい外径を有するフィルムを前記ウエハと前記支持とで挟んだ状態で、その周端部のみエポキシ樹脂を用いて貼り合わせる工程であることを特徴とするものである。
【0010】
また、前記フィルムが、粘着性を有するフィルムであることを特徴とするものである。
【0012】
そして、前記金属上に電極を形成する工程が、当該金属上に金属配線を形成し、当該金属配線上に電極を形成する工程を有することを特徴とするものである。
【0013】
【発明の実施の形態】
以下、本発明の半導体装置の製造方法に係る一実施形態について図面を参照しながら説明する。
【0014】
先ず、図1(a)に示すようにおよそ600μmの膜厚のシリコンウエハ(以下、Si基板)1上に酸化膜が形成され、当該酸化膜上に金属(例えば、Al)パッド2が形成され、当該Alパッド2を被覆するようにプラズマCVD法によるSiO2膜またはPSG膜から成る所定膜厚の酸化膜3を形成する。尚、特に平坦性を必要とする場合には酸化膜を例えばCMP研磨等しても良い。そして、不図示のフォトレジスト膜をマスクにAlパッド2上の酸化膜3をエッチングして当該Alパッド2の一部(表面部)を露出させる。尚、本実施形態では、前記酸化膜3の膜厚は、全体でおよそ5μm程度としている。
【0015】
次に、図1(b)に示すように前記Alパッド2及び酸化膜3上にポリイミド膜を形成し、当該ポリイミド膜を不図示のフォトレジスト膜をマスクにエッチングして前記Alパッド2上に開口部を有するポリイミド膜4を形成する。そして、前記開口部内にニッケル(Ni)5、金(Au)6を形成した後に、その上に銅(Cu)メッキしてCu7を埋め込む。また、当該Cu7上に当該Cu7の腐食防止用としてAuをメッキ形成しても良い。尚、本実施形態では、前記開口部内に埋設された導電部材(Ni,Au,Cu,Au)の膜厚は、全体でおよそ25μm程度としている。
【0016】
ここで、本プロセスが、CCDイメージセンサに採用される場合には、前記ポリイミド膜4は透明性のポリイミド膜または透明ガラスエポキシ樹脂等をスクリーン印刷法を用いて形成する必要がある。
【0017】
更に言えば、本プロセスを3次元プロセスに用いないCSPプロセスに適用するものである場合には、開口部を形成する必要はなく、ポリイミド膜4の全面塗布で構わない。
【0018】
また、図8(a)に示すように前記Alパッド2上を含む酸化膜3上にTiW21(もしくはTiW上にCuを形成しても良い。)を形成し、所定パターンと成るようにパターニングする。そして、ポリイミド膜4Aを介してCu7A(Au)を形成する、いわゆる再配線構造を採用しても良い。
【0019】
続いて、図2(a)に示すように前記Cu7(Au)上を含むポリイミド膜4上に絶縁フィルム10を貼り、当該フィルム10を介して支持板11と前記Si基板1側を貼り合わせる。
【0020】
ここで、前記支持板11は、後述するSi基板1のBG(バックグラインド)時に、Si基板1の割れ等を防止するための支持で、例えばSi基板や酸化膜(ガラス基板)やセラミック等を利用している。尚、本実施形態では、支持として必要な膜厚として、およそ400μm程度としている。
【0021】
また、前記フィルム10は、後述するSi基板1と支持板11との分離工程における作業性向上を図る目的で、アセトンに溶ける有機膜を採用している。尚、本実施形態では、フィルム10の膜厚をおよそ400μm程度としている。
【0022】
更に、当該フィルム10の外周部には、図2(b)に示すようにエポキシ樹脂12を充填することで、当該フィルム10を密封し、固めている。これにより、各種作業中における有機溶媒等の薬液の侵入を防止している。
【0023】
尚、Si基板1のBG工程におけるバックグラインド膜厚が少ない場合には、支持板11を貼り付ける工程は省略できる。
【0024】
次に、図3(a)に示すようにSi基板1側をBG処理して、当該Si基板1の膜厚をおよそ10〜100μm程度まで薄膜化できる。このとき、前記支持板11が、BG工程時にSi基板1を支持する。そして、BG処理したSi基板1の裏面側におよそ0.01μm程度の酸化膜13を形成する。尚、前記酸化膜13の代わりにシリコン窒化膜やポリイミドから成る有機系絶縁物を形成しても良い。更に言えば、前記BG工程において、Cu上の平坦性に左右されないため、そのままバックグラインド可能であり、作業性が良い。
【0025】
更に、図3(b)に示すように不図示のフォトレジスト膜をマスクに前記酸化膜13及びSi基板1をエッチングして開口部14を形成する。続いて、図4(a)に示すように前記開口部14から露出した酸化膜3をエッチングして、前記Alパッド2を露出させる。そして、開口部14a内の前記Alパッド2上を含む酸化膜13上を被覆するようにCVD法による酸化膜を形成し、当該酸化膜を異方性エッチングして開口部14aの側壁部に酸化膜を残膜させてサイドウォールスペーサ膜15を形成する。尚、酸化膜のCVD成膜処理温度は、200℃程度の低温度が良い。また、シリコン窒化膜を用いてサイドウォールスペーサ膜15を形成しても良い。
【0026】
次に、図4(b)に示すように前記開口部14a内にサイドウォールスペーサ膜15を介して窒化チタン(TiN)または窒化タンタル(TaN)等のバリア膜16をスパッタ形成し、当該バリア膜16を介して前記開口部14a内にCu17を埋設する。尚、本工程では、先ずバリア膜16上にCuシード、Cuメッキ処理を施し、当該Cuをアニール処理する。そして、当該Cuを開口部14a内に埋設させている。ここで、平坦性を特に必要とする場合は、当該CuをCMP研磨する。
【0027】
更に、図5(a)に示すように前記Cu17上に、当該Cu17が埋設された開口部14aの開口サイズよりも幾分広い開口を有するソルダーマスク18を形成し、当該マスク18を介して当該開口上に半田ペーストをスクリーン印刷し、当該半田ペーストをリフロー処理することで、Cu17上に半田ボール19を形成する。尚、本実施形態では、ソルダーマスク18として、200℃でイミド化可能なリカコートから成るポリイミド膜を用いている。
【0028】
尚、図8(b)に示すように前記Cu17上を含む酸化膜13上にAl膜31及びNi膜(Au膜)32を形成し、所定パターンと成るようにパターニングする。そして、ソルダーマスク18Aを介して半田ボール19Aを形成する構造を採用しても良い。
【0029】
続いて、図5(b)に示すように前記Si基板1側を前記フィルム10に到達する位置までダイシングする。
【0030】
そして、不図示のアセトン溶液槽内に当該Si基板1を浸すことで、図6(b)に示すように前記ダイシングライン(D)からアセトンが侵入し、前記フィルム10を溶解する。従って、前記Si基板1(各チップ)と支持板11とが自動的に分離され、図6(a)に示すような単体のCSPチップ20が完成する。
【0031】
このように本実施形態では、アセトンに溶解する有機系のフィルム10を用いてSi基板1と支持板11とを貼り合わせているため、ダイシング後に、Si基板1をアセトンに浸すだけで両者を簡単に分離することができ、作業性が良い。
【0032】
また、前記フィルム10の代わりに粘着力の弱いフィルムを用いて、ダイシング後に、物理的にチップを剥がすものであっても良い。更に言えば、支持板11として透明ガラスを用いる場合には、有機系フィルム10としてUVテープを貼り、ダイシング後にUV照射をし、チップを剥がせば良い。
【0033】
加えて、ダイシングした後に、例えばウエハの裏面からホットプレートで熱を加えて、ウエハと支持基板11で挟まれた有機膜(フィルム10)を溶かして軟化させることで両者を剥がすものであっても良い。このとき、フィルム10がアセトンに溶ける有機膜であるときは、200℃程度の加熱、ポリイミド膜を利用した場合では400℃程度の加熱で当該フィルム10はける。
【0034】
Si基板1と支持板11とを剥がす別形態としては、ダイシング前に、エッジのエポキシ樹脂を、ウエハを縦にして回転させ、外周だけ酸などの薬品に浸して剥がす方法もある。又、刃物をウエハとチップの間のエッジのエポキシ樹脂に入れて切り離す方法もある。そして、両方法の後、BGテープを貼ってダイシングする。
【0035】
そして、図7に示すように前記単体のCSPチップ20をCu7(Au)と半田ボール19とを金属密着でCSPチップ20同士を密着(積層)させることで、3次元実装が(何層でも)可能となり、チップサイズの同じもの(メモリ等)であれば大容量化が図れる。
【0036】
【発明の効果】
本発明では、従来の3次元実装技術のように表面からSi貫通等の加工を行い、銅(Cu)のビアホールを形成するため、表面側にCMP(Chemical Mechanical Polishing)処理を必要としない。また、Cuビア形成後に当該Cuビアとパッドとを繋ぐための再配線が不要であるため、製造工数が増大することがない。
【0037】
更に言えば、Cu上の平坦性に左右されないため、そのままバックグラインド可能である。
【0038】
また、支持板11とSi基板1とは、り合わせた後にBG(バックグラインド)及びその後の処理をしているため、チップの膜厚は必要に応じて薄くできる。
【図面の簡単な説明】
【図1】本発明の一実施形態の半導体装置の製造方法を示す断面図である。
【図2】本発明の一実施形態の半導体装置の製造方法を示す断面図である。
【図3】本発明の一実施形態の半導体装置の製造方法を示す断面図である。
【図4】本発明の一実施形態の半導体装置の製造方法を示す断面図である。
【図5】本発明の一実施形態の半導体装置の製造方法を示す断面図である。
【図6】本発明の一実施形態の半導体装置の製造方法を示す断面図である。
【図7】本発明の一実施形態の半導体装置の製造方法を示す断面図である。
【図8】本発明の他の実施形態の半導体装置の製造方法を示す断面図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a BGA (Ball Grid Array) type semiconductor device having ball-shaped conductive terminals.
[0002]
[Prior art]
Conventionally, there is a BGA type semiconductor device as a kind of surface mount type semiconductor device. In this method, a plurality of ball-shaped conductive terminals made of a metal member such as solder are arranged in a grid pattern on one main surface of a package substrate, and bonded to a semiconductor chip mounted on the other main surface of the substrate for packaging. Is. And when incorporating in an electronic device, each conductive terminal is heat-welded to the wiring pattern on a printed circuit board, and a semiconductor chip and the external circuit mounted on a printed circuit board are electrically connected.
[0003]
Such a BGA type semiconductor device has a larger number of connection terminals than other surface mount type semiconductor devices such as SOP (Small Outline Package) and QFP (Quad Flat Package) having lead pins protruding from the side surface of the semiconductor device. It can be installed , and it is known that downsizing is advantageous.
[0004]
In recent years, this BGA type semiconductor device has been incorporated into the field of CCD image sensors, and is used as an image sensor chip for a digital camera mounted on a mobile phone that is strongly demanded for miniaturization.
[0005]
Further, three-dimensional mounting technology using wafer level CSP (Chip Size Package) and silicon (Si) penetration technology has been attracting attention. In these techniques, a method of stacking chips after stacking layers and then penetrating Si, or passing Si wafers through Si from the surface and then stacking them has been studied.
[0006]
[Problems to be solved by the invention]
However, the conventional three-dimensional mounting technology performs processing such as Si penetration from the surface to form a copper (Cu) via hole, so that CMP (Chemical Mechanical Polishing) processing is necessary on the surface side, or Cu via formation Since rewiring for connecting the Cu via and the pad later is necessary, the number of manufacturing steps increases.
[0007]
[Means for Solving the Problems]
Accordingly, in view of the above-described problem, a method for manufacturing a semiconductor device according to the present invention provides a semiconductor wafer having a metal pad formed on the surface side, and the semiconductor wafer is formed on the surface side of the semiconductor wafer on which the metal pad is formed. Bonding a support that supports the substrate through a film made of an organic film that dissolves in the solution, forming an opening that penetrates from the back surface of the semiconductor wafer to which the support is bonded to the metal pad, and the opening Forming a metal layer in the opening, forming a metal layer in the opening, dicing from the back surface of the semiconductor wafer to which the support is bonded to the film, the semiconductor wafer and the support And a step of separating the body.
[0008]
Further, the wafer and the step of bonding via a support film for supporting the wafer, across the film having a smaller outer diameter than the outer diameter of the support and the wafer and the support and the wafer In this state, only the peripheral end portion is bonded using an epoxy resin.
[0010]
Further, the film is a film having adhesiveness.
[0012]
The step of forming an electrode on the metal layer includes a step of forming a metal wiring on the metal layer and forming an electrode on the metal wiring.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment according to a method of manufacturing a semiconductor device of the present invention will be described with reference to the drawings.
[0014]
First, as shown in FIG. 1A, an oxide film is formed on a silicon wafer (hereinafter referred to as Si substrate) 1 having a thickness of about 600 μm, and a metal (for example, Al) pad 2 is formed on the oxide film. Then, an oxide film 3 having a predetermined thickness made of a SiO 2 film or a PSG film is formed by plasma CVD so as to cover the Al pad 2. In particular, when flatness is required, the oxide film may be subjected to, for example, CMP polishing. Then, using the photoresist film (not shown) as a mask, the oxide film 3 on the Al pad 2 is etched to expose a part (surface portion) of the Al pad 2. In the present embodiment, the thickness of the oxide film 3 is about 5 μm as a whole.
[0015]
Next, as shown in FIG. 1B, a polyimide film is formed on the Al pad 2 and the oxide film 3, and the polyimide film is etched using a photoresist film (not shown) as a mask to form the polyimide film on the Al pad 2. A polyimide film 4 having an opening is formed. Then, after nickel (Ni) 5 and gold (Au) 6 are formed in the opening, copper (Cu) is plated thereon and Cu 7 is embedded. Further, Au may be plated on Cu7 for preventing corrosion of Cu7. In the present embodiment, the film thickness of the conductive member (Ni, Au, Cu, Au) embedded in the opening is about 25 μm as a whole.
[0016]
Here, when this process is employed in a CCD image sensor, the polyimide film 4 needs to be formed using a screen printing method, such as a transparent polyimide film or a transparent glass epoxy resin.
[0017]
Furthermore, if the present process is applied to a CSP process that is not used in a three-dimensional process, it is not necessary to form an opening, and the entire surface of the polyimide film 4 may be applied.
[0018]
Further, as shown in FIG. 8A, TiW21 (or Cu may be formed on TiW) is formed on the oxide film 3 including the Al pad 2 and patterned to a predetermined pattern. . A so-called rewiring structure in which Cu7A (Au) is formed via the polyimide film 4A may be employed.
[0019]
Subsequently, as shown in FIG. 2A, an insulating film 10 is pasted on the polyimide film 4 including the Cu7 (Au), and the support plate 11 and the Si substrate 1 side are pasted through the film 10.
[0020]
Here, the support plate 11 is sometimes of the Si substrate 1 to be described later BG (back grinding), a support for preventing the cracks of the Si substrate 1, for example, Si substrate or an oxide film (glass substrate) or ceramic Is used. In the present embodiment, the film thickness necessary for the support is about 400 μm.
[0021]
The film 10 employs an organic film soluble in acetone for the purpose of improving workability in the process of separating the Si substrate 1 and the support plate 11 described later. In this embodiment, the film 10 has a thickness of about 400 μm.
[0022]
Furthermore, the film 10 is sealed and hardened by filling the outer peripheral portion of the film 10 with an epoxy resin 12 as shown in FIG. This prevents the entry of chemicals such as organic solvents during various operations.
[0023]
If the back grind film thickness in the BG process of the Si substrate 1 is small, the process of attaching the support plate 11 can be omitted.
[0024]
Next, as shown in FIG. 3A, the Si substrate 1 side can be BG-processed to reduce the thickness of the Si substrate 1 to about 10 to 100 μm. At this time, the support plate 11 supports the Si substrate 1 during the BG process. Then, an oxide film 13 of about 0.01 μm is formed on the back side of the Si substrate 1 subjected to the BG treatment. Instead of the oxide film 13, an organic insulator made of a silicon nitride film or polyimide may be formed. Furthermore, since it does not depend on the flatness on Cu in the BG process, it can be back-ground as it is and the workability is good.
[0025]
Further, as shown in FIG. 3B, the oxide film 13 and the Si substrate 1 are etched using a photoresist film (not shown) as a mask to form an opening 14. Subsequently, as shown in FIG. 4A, the oxide film 3 exposed from the opening 14 is etched to expose the Al pad 2. Then, an oxide film is formed by CVD so as to cover the oxide film 13 including the Al pad 2 in the opening 14a, and the oxide film is anisotropically etched to oxidize the side wall of the opening 14a. The sidewall spacer film 15 is formed with the film remaining. Note that the CVD film forming temperature for the oxide film is preferably as low as about 200 ° C. Further, the sidewall spacer film 15 may be formed using a silicon nitride film.
[0026]
Next, as shown in FIG. 4B, a barrier film 16 such as titanium nitride (TiN) or tantalum nitride (TaN) is formed by sputtering in the opening 14a through the sidewall spacer film 15, and the barrier film is formed. Cu 17 is embedded in the opening 14 a through 16. In this step, first, a Cu seed and Cu plating treatment is performed on the barrier film 16, and the Cu is annealed. And the said Cu is embed | buried in the opening part 14a. Here, when flatness is particularly required, the Cu is subjected to CMP polishing.
[0027]
Further, as shown in FIG. 5A, a solder mask 18 having an opening that is somewhat wider than the opening size of the opening 14a in which the Cu 17 is embedded is formed on the Cu 17, and the A solder paste 19 is formed on the Cu 17 by screen printing a solder paste on the opening and reflowing the solder paste. In the present embodiment, as the solder mask 18, a polyimide film made of Rica coat that can be imidized at 200 ° C. is used.
[0028]
As shown in FIG. 8B, an Al film 31 and a Ni film (Au film) 32 are formed on the oxide film 13 including the Cu 17 and patterned to have a predetermined pattern. And you may employ | adopt the structure which forms 19A of solder balls via the solder mask 18A.
[0029]
Subsequently, as shown in FIG. 5B, the Si substrate 1 side is diced to a position reaching the film 10.
[0030]
Then, by immersing the Si substrate 1 in an acetone solution tank (not shown), acetone enters from the dicing line (D) and dissolves the film 10 as shown in FIG. Therefore, the Si substrate 1 (each chip) and the support plate 11 are automatically separated, and a single CSP chip 20 as shown in FIG. 6A is completed.
[0031]
As described above, in the present embodiment, since the Si substrate 1 and the support plate 11 are bonded together using the organic film 10 that is dissolved in acetone, after dicing, the both can be simply performed by immersing the Si substrate 1 in acetone. The workability is good.
[0032]
Further, instead of the film 10, a film having a weak adhesive force may be used to physically peel the chip after dicing. Furthermore, when transparent glass is used as the support plate 11, a UV tape is applied as the organic film 10, UV irradiation is performed after dicing, and the chip is peeled off.
[0033]
In addition, after dicing, for example, heat is applied from the back surface of the wafer with a hot plate, and the organic film (film 10) sandwiched between the wafer and the support substrate 11 is melted and softened to peel off both. good. At this time, when the film 10 is an organic film soluble in acetone, by heating at about 200 ° C., in case of using the polyimide film the film 10 by heating at about 400 ° C. is Keru soluble.
[0034]
As another form of peeling the Si substrate 1 and the support plate 11, there is a method in which the epoxy resin at the edge is rotated with the wafer vertically and soaked in chemicals such as acid only on the outer periphery before dicing. There is also a method of separating the blade by putting it in an epoxy resin at the edge between the wafer and the chip. And after both methods, a BG tape is stuck and it dices.
[0035]
Then, as shown in FIG. 7, the CSP chip 20 is bonded (laminated) with Cu7 (Au) and the solder ball 19 by metal contact with the CSP chip 20, thereby enabling three-dimensional mounting (any number of layers). If the chip size is the same (memory or the like), the capacity can be increased.
[0036]
【The invention's effect】
In the present invention, processing such as Si penetration is performed from the surface as in the conventional three-dimensional mounting technique, and a copper (Cu) via hole is formed, so that CMP (Chemical Mechanical Polishing) processing is not required on the surface side. In addition, since the rewiring for connecting the Cu via and the pad is not required after the Cu via is formed, the number of manufacturing steps does not increase.
[0037]
Furthermore, since it does not depend on the flatness on Cu, it can be back ground as it is.
[0038]
Further, the support plate 11 and the Si substrate 1, since the a BG (back grinding) and subsequent treatment after a laminated adhered Ri, the thickness of the chip can be reduced as required.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
FIG. 7 is a cross-sectional view showing a method for manufacturing a semiconductor device of one embodiment of the present invention.
FIG. 8 is a cross-sectional view showing a method for manufacturing a semiconductor device according to another embodiment of the present invention.

Claims (9)

表面側に金属パッドが形成された半導体ウエハを準備し、
前記半導体ウエハの前記金属パッドが形成された表面側に対して、当該半導体ウエハを支持する支持体を溶液に溶ける有機膜から成るフィルムを介して貼り合わせる工程と、
前記支持体が貼り合わされた前記半導体ウエハの裏面から前記金属パッドまで貫通する開口を形成する工程と、
前記開口の側壁部に絶縁膜を形成した後に、当該開口内に金属層を形成する工程と、
前記支持体が貼り合わされた前記半導体ウエハの裏面から前記フィルムまでダイシングする工程と、
前記半導体ウエハと前記支持体とを分離する工程とを有することを特徴とする半導体装置の製造方法。
Prepare a semiconductor wafer with metal pads on the surface side,
Bonding the support for supporting the semiconductor wafer to the surface side of the semiconductor wafer on which the metal pads are formed via a film made of an organic film that dissolves in a solution ;
Forming an opening penetrating from the back surface of the semiconductor wafer to which the support is bonded to the metal pad;
Forming an insulating film on the side wall of the opening and then forming a metal layer in the opening;
Dicing from the back surface of the semiconductor wafer to which the support is bonded to the film;
A method for manufacturing a semiconductor device, comprising the step of separating the semiconductor wafer and the support.
前記半導体ウエハの前記金属パッドが形成された表面側に対して、当該半導体ウエハを支持する支持体をフィルムを介して貼り合わせる工程が、前記半導体ウエハと前記支持体の外径よりも小さい外径を有するフィルムを前記半導体ウエハと前記支持体とで挟んだ状態で、その周端部のみエポキシ樹脂を用いて貼り合わせる工程であることを特徴とする請求項1に記載の半導体装置の製造方法。  The step of bonding a support for supporting the semiconductor wafer via a film to the surface side of the semiconductor wafer on which the metal pad is formed has an outer diameter smaller than the outer diameter of the semiconductor wafer and the support. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the film is a step of bonding the peripheral edge portion of the film having an adhesive between the semiconductor wafer and the support using an epoxy resin. 前記フィルムが、粘着性を有するフィルムであることを特徴とする請求項1、2のいずれかに記載の半導体装置の製造方法。The method for manufacturing a semiconductor device according to claim 1, wherein the film is an adhesive film . 前記金属層上に電極を形成する工程を有することを特徴とする請求項1乃至請求項3のいずれかに記載の半導体装置の製造方法。 4. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of forming an electrode on the metal layer . 前記金属層上に電極を形成する工程が、当該金属層上に金属配線を形成し、当該金属配線上に電極を形成する工程を有することを特徴とする請求項4に記載の半導体装置の製造方法。 5. The method of manufacturing a semiconductor device according to claim 4, wherein the step of forming an electrode on the metal layer includes a step of forming a metal wiring on the metal layer and forming an electrode on the metal wiring. Method. 前記半導体ウエハ裏面に前記開口を形成する前に、その裏面を研磨することを特徴とする請求項1乃至請求項5のいずれかに記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the back surface is polished before forming the opening on the back surface of the semiconductor wafer . 前記金属パッド上に電極接続用の金属層を形成する工程を有することを特徴とする請求項1乃至請求項6のいずれかに記載の半導体装置の製造方法。7. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of forming a metal layer for electrode connection on the metal pad . 一方の半導体装置の前記金属層と他方の半導体装置の前記電極とを積層する工程を有することを特徴とする請求項7に記載の半導体装置の製造方法。 8. The method of manufacturing a semiconductor device according to claim 7 , further comprising a step of stacking the metal layer of one semiconductor device and the electrode of the other semiconductor device . 前記支持体は、Si基板、酸化膜、ガラス基板、セラミックのいずれかから成ることを特徴とする請求項1乃至請求項8のいずれかに記載の半導体装置の製造方法。 9. The method of manufacturing a semiconductor device according to claim 1, wherein the support is made of any one of a Si substrate, an oxide film, a glass substrate, and a ceramic .
JP2002111571A 2002-04-15 2002-04-15 Manufacturing method of semiconductor device Expired - Fee Related JP4212293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111571A JP4212293B2 (en) 2002-04-15 2002-04-15 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111571A JP4212293B2 (en) 2002-04-15 2002-04-15 Manufacturing method of semiconductor device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2006088904A Division JP4425235B2 (en) 2006-03-28 2006-03-28 Semiconductor device and manufacturing method thereof
JP2006292233A Division JP4443549B2 (en) 2006-10-27 2006-10-27 Manufacturing method of semiconductor device

Publications (3)

Publication Number Publication Date
JP2003309221A JP2003309221A (en) 2003-10-31
JP2003309221A5 JP2003309221A5 (en) 2005-09-22
JP4212293B2 true JP4212293B2 (en) 2009-01-21

Family

ID=29394327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111571A Expired - Fee Related JP4212293B2 (en) 2002-04-15 2002-04-15 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4212293B2 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4340517B2 (en) 2003-10-30 2009-10-07 Okiセミコンダクタ株式会社 Semiconductor device and manufacturing method thereof
TWI249767B (en) * 2004-02-17 2006-02-21 Sanyo Electric Co Method for making a semiconductor device
JP2005235860A (en) * 2004-02-17 2005-09-02 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
JP4850392B2 (en) 2004-02-17 2012-01-11 三洋電機株式会社 Manufacturing method of semiconductor device
CN101373747B (en) * 2004-03-16 2011-06-29 株式会社藤仓 Device with through-hole interconnection and method for manufacturing the same
JP2005303258A (en) * 2004-03-16 2005-10-27 Fujikura Ltd Device and method for manufacturing the same
JP2005277173A (en) * 2004-03-25 2005-10-06 Sanyo Electric Co Ltd Semiconductor device, and its manufacturing method
JP4544902B2 (en) * 2004-04-26 2010-09-15 三洋電機株式会社 Semiconductor device and manufacturing method thereof
JP4746847B2 (en) * 2004-04-27 2011-08-10 三洋電機株式会社 Manufacturing method of semiconductor device
TWI272683B (en) 2004-05-24 2007-02-01 Sanyo Electric Co Semiconductor device and manufacturing method thereof
JP4518995B2 (en) * 2004-05-24 2010-08-04 三洋電機株式会社 Semiconductor device and manufacturing method thereof
JP4376715B2 (en) 2004-07-16 2009-12-02 三洋電機株式会社 Manufacturing method of semiconductor device
JP4373866B2 (en) 2004-07-16 2009-11-25 三洋電機株式会社 Manufacturing method of semiconductor device
JP4524156B2 (en) * 2004-08-30 2010-08-11 新光電気工業株式会社 Semiconductor device and manufacturing method thereof
JP4139803B2 (en) 2004-09-28 2008-08-27 シャープ株式会社 Manufacturing method of semiconductor device
JP4966487B2 (en) 2004-09-29 2012-07-04 オンセミコンダクター・トレーディング・リミテッド Semiconductor device and manufacturing method thereof
TWI267183B (en) 2004-09-29 2006-11-21 Sanyo Electric Co Semiconductor device and manufacturing method of the same
JP4936695B2 (en) * 2004-09-29 2012-05-23 オンセミコンダクター・トレーディング・リミテッド Semiconductor device and manufacturing method thereof
JP4246132B2 (en) 2004-10-04 2009-04-02 シャープ株式会社 Semiconductor device and manufacturing method thereof
JP4845368B2 (en) * 2004-10-28 2011-12-28 オンセミコンダクター・トレーディング・リミテッド Semiconductor device and manufacturing method thereof
TWI303864B (en) 2004-10-26 2008-12-01 Sanyo Electric Co Semiconductor device and method for making the same
JP5036127B2 (en) * 2004-10-26 2012-09-26 オンセミコンダクター・トレーディング・リミテッド Manufacturing method of semiconductor device
JP4443379B2 (en) 2004-10-26 2010-03-31 三洋電機株式会社 Manufacturing method of semiconductor device
JP4873517B2 (en) * 2004-10-28 2012-02-08 オンセミコンダクター・トレーディング・リミテッド Semiconductor device and manufacturing method thereof
JP4783906B2 (en) 2004-11-30 2011-09-28 国立大学法人九州工業大学 Packaged stacked semiconductor device and manufacturing method thereof
US7485967B2 (en) 2005-03-10 2009-02-03 Sanyo Electric Co., Ltd. Semiconductor device with via hole for electric connection
JP2007036060A (en) * 2005-07-28 2007-02-08 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
JP4745007B2 (en) * 2005-09-29 2011-08-10 三洋電機株式会社 Semiconductor device and manufacturing method thereof
JP2007180395A (en) * 2005-12-28 2007-07-12 Sanyo Electric Co Ltd Manufacturing method of semiconductor device
JP4619308B2 (en) * 2006-03-07 2011-01-26 三洋電機株式会社 Semiconductor device manufacturing method and supporting tape
JP5242063B2 (en) * 2006-03-22 2013-07-24 株式会社フジクラ Wiring board manufacturing method
JP2007305960A (en) * 2006-04-14 2007-11-22 Sharp Corp Semiconductor device and manufacturing method
JP2008041987A (en) * 2006-08-08 2008-02-21 Tokyo Ohka Kogyo Co Ltd Method and equipment for peeling support plate and wafer
JP2009272490A (en) * 2008-05-08 2009-11-19 Oki Semiconductor Co Ltd Semiconductor device and method of manufacturing semiconductor device
US9245765B2 (en) 2009-10-16 2016-01-26 Empire Technology Development Llc Apparatus and method of applying a film to a semiconductor wafer and method of processing a semiconductor wafer
JP5258735B2 (en) * 2009-11-13 2013-08-07 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Semiconductor device
JP5412316B2 (en) 2010-02-23 2014-02-12 パナソニック株式会社 Semiconductor device, stacked semiconductor device, and manufacturing method of semiconductor device
JP2010251791A (en) * 2010-06-24 2010-11-04 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same
JP5870493B2 (en) * 2011-02-24 2016-03-01 セイコーエプソン株式会社 Semiconductor devices, sensors and electronic devices
JP2015115446A (en) 2013-12-11 2015-06-22 株式会社東芝 Semiconductor device manufacturing method
JP2019145737A (en) 2018-02-23 2019-08-29 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2003309221A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
JP4212293B2 (en) Manufacturing method of semiconductor device
KR100552356B1 (en) Method of manufacturing semiconductor device
US7399683B2 (en) Manufacturing method of semiconductor device
TWI622144B (en) Fingerprint sensor device and method
CN107026092B (en) Method of manufacturing fingerprint scanner and semiconductor device
KR100938970B1 (en) Semiconductor device and manufacturing method thereof
KR100671921B1 (en) Semiconductor device and manufacturing method thereof
US8922013B2 (en) Through via package
JP4544876B2 (en) Manufacturing method of semiconductor device
KR101157726B1 (en) Ultra-thin stacked chips packaging
US20050167812A1 (en) Semiconductor device, three-dimensional semiconductor device, and method of manufacturing semiconductor device
JP4522574B2 (en) Method for manufacturing semiconductor device
JP2004055628A (en) Semiconductor device of wafer level and its manufacturing method
JP2005072554A (en) Semiconductor device and its manufacturing method
US6989291B2 (en) Method for manufacturing circuit devices
JP3459234B2 (en) Semiconductor device and manufacturing method thereof
JP2009033153A (en) Interconnecting structure for semiconductor device package and method of the same
JP4425235B2 (en) Semiconductor device and manufacturing method thereof
JP4215571B2 (en) Manufacturing method of semiconductor device
JP4334397B2 (en) Semiconductor device and manufacturing method thereof
JP4638614B2 (en) Method for manufacturing semiconductor device
JP4443549B2 (en) Manufacturing method of semiconductor device
JP4286264B2 (en) Semiconductor device and manufacturing method thereof
JP2004153260A (en) Semiconductor device and method of manufacturing same
JP4371719B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4212293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees