JP4443549B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4443549B2
JP4443549B2 JP2006292233A JP2006292233A JP4443549B2 JP 4443549 B2 JP4443549 B2 JP 4443549B2 JP 2006292233 A JP2006292233 A JP 2006292233A JP 2006292233 A JP2006292233 A JP 2006292233A JP 4443549 B2 JP4443549 B2 JP 4443549B2
Authority
JP
Japan
Prior art keywords
semiconductor device
substrate
film
manufacturing
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006292233A
Other languages
Japanese (ja)
Other versions
JP2007067429A (en
Inventor
崇 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006292233A priority Critical patent/JP4443549B2/en
Publication of JP2007067429A publication Critical patent/JP2007067429A/en
Application granted granted Critical
Publication of JP4443549B2 publication Critical patent/JP4443549B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、半導体基板上に形成された金属パッドに対して、前記半導体基板の裏面から形成された開口部を介して接続される金属膜を有する半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device having a metal film connected to a metal pad formed on a semiconductor substrate through an opening formed from the back surface of the semiconductor substrate.

従来より表面実装型の半導体装置の一種としてBGA(Ball Grid Array)型の半導体装置がある。これは、半田等の金属部材から成るボール状の導電端子をパッケージ基板の一主面上に格子状に複数配列し、基板の他の主面上に搭載される半導体チップとボンディングしてパッケージングするものである。そして、電子機器に組み込まれる際には、各導電端子をプリント基板上の配線パターンに熱溶着し、半導体チップとプリント基板上に搭載される外部回路とを電気的に接続する。   Conventionally, there is a BGA (Ball Grid Array) type semiconductor device as a kind of surface mount type semiconductor device. This is done by arranging a plurality of ball-shaped conductive terminals made of a metal member such as solder in a grid pattern on one main surface of the package substrate, and bonding it to a semiconductor chip mounted on the other main surface of the substrate. To do. And when incorporating in an electronic device, each conductive terminal is heat-welded to the wiring pattern on a printed circuit board, and a semiconductor chip and the external circuit mounted on a printed circuit board are electrically connected.

このようなBGA型の半導体装置は、半導体装置の側面に突出したリードピンを有するSOP(Small Outline Package)やQFP(Quad Flat Package)等の他の表面実装型の半導体装置に比べ多数の接続端子を設置することができ、小型化が有利なものとして知られている。   Such a BGA type semiconductor device has a larger number of connection terminals than other surface mount type semiconductor devices such as SOP (Small Outline Package) and QFP (Quad Flat Package) having lead pins protruding from the side surface of the semiconductor device. It can be installed, and it is known that downsizing is advantageous.

近年において、このBGA型の半導体装置がCCDイメージセンサの分野にも取り入れられ、小型化の要望が強い携帯電話機に搭載されるデジタルカメラのイメージセンサチップとして用いられている。   In recent years, this BGA type semiconductor device has been incorporated into the field of CCD image sensors, and is used as an image sensor chip for a digital camera mounted on a mobile phone that is strongly demanded for miniaturization.

また、ウエハレベルのCSP(Chip Size Package)やシリコン(Si)貫通技術を用いた3次元実装技術が注目されてきている。これらの技術は、チップを何層にも貼り合わせた後、Siを貫通させたり、Siウエハを表面からSi貫通させた後、積み上げる方法等が研究されている。   Further, three-dimensional mounting technology using wafer level CSP (Chip Size Package) or silicon (Si) penetration technology has been attracting attention. In these techniques, a method of stacking chips after stacking layers and then penetrating Si, or passing Si wafers through Si from the surface and then stacking them has been studied.

しかし、従来の3次元実装技術は、表面からSi貫通等の加工を行い、銅(Cu)のビアホールを形成するため、表面側にCMP(Chemical Mechanical Polishing)処理が必要であったり、Cuビア形成後に当該Cuビアとパッドとを繋ぐための再配線が必要であるため、製造工数が多くなってしまう。従って、半導体装置自体も高コストとなっていた。   However, the conventional three-dimensional mounting technology performs processing such as Si penetration from the surface to form a copper (Cu) via hole, so that CMP (Chemical Mechanical Polishing) processing is necessary on the surface side, or Cu via formation Since rewiring for connecting the Cu via and the pad later is necessary, the number of manufacturing steps increases. Therefore, the semiconductor device itself is also expensive.

そこで、本発明の半導体装置の製造方法は、表面側に金属パッドが形成された半導体基板を用意し、前記半導体基板と当該半導体基板を支持する支持基板とを有機膜を介して貼り合わせる工程と、前記半導体基板の裏面から開口を形成する工程と、前記開口の側壁部に絶縁膜を形成した後に、当該開口を介して前記金属パッドに電気的に接続された金属層を形成する工程と、前記半導体基板の裏面から前記有機膜位置までダイシングする工程と、ダイシング後に、前記支持基板が貼り合わされた前記半導体基板を加熱することで、前記有機膜を溶かし、前記半導体基板と前記支持基板とを分離する工程とを有することを特徴とするものである。 Therefore, a method for manufacturing a semiconductor device according to the present invention includes a step of preparing a semiconductor substrate having a metal pad formed on the surface side, and bonding the semiconductor substrate and a support substrate supporting the semiconductor substrate through an organic film. A step of forming an opening from the back surface of the semiconductor substrate; a step of forming a metal layer electrically connected to the metal pad through the opening after forming an insulating film on a side wall portion of the opening; The step of dicing from the back surface of the semiconductor substrate to the position of the organic film, and after the dicing , heating the semiconductor substrate to which the support substrate is bonded, thereby melting the organic film, and the semiconductor substrate and the support substrate. And a step of separating.

また、前記金属層上に導電端子を形成する工程を有することを特徴とするものである。 Moreover, it has the process of forming a conductive terminal on the said metal layer, It is characterized by the above-mentioned.

更に、前記半導体基板の裏面から開口を形成する工程の前に、その裏面を研磨することを特徴とするものである。 Furthermore, before the step of forming the opening from the back surface of the semiconductor substrate, the back surface is polished .

また、前記支持基板として、Si基板、酸化膜、ガラス基板、セラミック基板を用いることを特徴とするものである。 Further, as the support substrate, a Si substrate, an oxide film, a glass substrate, or a ceramic substrate is used .

更に、前記金属パッド上に電極接続部を形成する工程を有することを特徴とするものである。 Furthermore, it has a process of forming an electrode connection part on the metal pad .

また、前記半導体装置と他の半導体装置とを積層する工程を有することを特徴とするものである。 The semiconductor device may further include a step of stacking the semiconductor device and another semiconductor device .

更に、前記半導体装置と他の半導体装置とを積層する工程は、一方の半導体装置の前記電極接続部と、もう一方の半導体装置の前記導電端子とを接続することを特徴とするものである。 Furthermore, the step of stacking the semiconductor device and another semiconductor device is characterized in that the electrode connection part of one semiconductor device and the conductive terminal of the other semiconductor device are connected .

本発明では、従来の3次元実装技術のように表面からSi貫通等の加工を行い、銅(Cu)のビアホールを形成するものではないため、表面側にCMP処理を必要としない。また、Cuビア形成後に当該Cuビアとパッドとを繋ぐための再配線が不要であるため、製造工数が増大することがない。   In the present invention, unlike the conventional three-dimensional mounting technique, processing such as Si penetration is performed from the surface and a via hole of copper (Cu) is not formed, and therefore CMP processing is not required on the surface side. In addition, since the rewiring for connecting the Cu via and the pad is not required after the Cu via is formed, the number of manufacturing steps does not increase.

また、支持板とSi基板の分離が容易である。   Further, the support plate and the Si substrate can be easily separated.

従って、低コスト化を実現した半導体装置を提供することができる。   Accordingly, it is possible to provide a semiconductor device that realizes cost reduction.

以下、本発明の半導体装置及びその製造方法に係る一実施形態について図面を参照しながら説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of a semiconductor device and a method for manufacturing the same according to the invention will be described with reference to the drawings.

先ず、図1(a)に示すようにおよそ600μmの膜厚のシリコンウエハ(以下、Si基板)1上に酸化膜が形成され、当該酸化膜上に金属(例えば、Al)パッド2が形成され、当該Alパッド2を被覆するようにプラズマCVD法によるSiO膜またはPSG膜から成る所定膜厚の酸化膜3を形成する。尚、特に平坦性を必要とする場合には酸化膜を例えばCMP研磨等しても良い。そして、不図示のフォトレジスト膜をマスクにAlパッド2上の酸化膜3をエッチングして当該Alパッド2の一部(表面部)を露出させる。尚、本実施形態では、前記酸化膜3の膜厚は、全体でおよそ5μm程度としている。 First, as shown in FIG. 1A, an oxide film is formed on a silicon wafer (hereinafter referred to as Si substrate) 1 having a thickness of about 600 μm, and a metal (for example, Al) pad 2 is formed on the oxide film. Then, an oxide film 3 having a predetermined thickness made of a SiO 2 film or a PSG film is formed by plasma CVD so as to cover the Al pad 2. In particular, when flatness is required, the oxide film may be subjected to, for example, CMP polishing. Then, using the photoresist film (not shown) as a mask, the oxide film 3 on the Al pad 2 is etched to expose a part (surface portion) of the Al pad 2. In the present embodiment, the thickness of the oxide film 3 is about 5 μm as a whole.

次に、図1(b)に示すように前記Alパッド2及び酸化膜3上にポリイミド膜を形成し、当該ポリイミド膜を不図示のフォトレジスト膜をマスクにエッチングして前記Alパッド2上に開口部を有するポリイミド膜4を形成する。そして、前記開口部内にニッケル(Ni)5、金(Au)6を形成した後に、その上に銅(Cu)メッキしてCu7を埋め込む。また、当該Cu7上に当該Cu7の腐食防止用としてAuをメッキ形成しても良い。尚、本実施形態では、前記開口部内に埋設された導電部材(Ni,Au,Cu,Au)の膜厚は、全体でおよそ25μm程度としている。   Next, as shown in FIG. 1B, a polyimide film is formed on the Al pad 2 and the oxide film 3, and the polyimide film is etched using a photoresist film (not shown) as a mask to form the polyimide film on the Al pad 2. A polyimide film 4 having an opening is formed. Then, after nickel (Ni) 5 and gold (Au) 6 are formed in the opening, copper (Cu) is plated thereon and Cu 7 is embedded. Further, Au may be plated on Cu7 for preventing corrosion of Cu7. In the present embodiment, the film thickness of the conductive member (Ni, Au, Cu, Au) embedded in the opening is about 25 μm as a whole.

ここで、本プロセスが、CCDイメージセンサに採用される場合には、前記ポリイミド膜4は透明性のポリイミド膜または透明ガラスエポキシ樹脂等をスクリーン印刷法を用いて形成する必要がある。   Here, when this process is employed in a CCD image sensor, the polyimide film 4 needs to be formed using a screen printing method, such as a transparent polyimide film or a transparent glass epoxy resin.

更に言えば、本プロセスを3次元プロセスに用いないCSPプロセスに適用するものである場合には、開口部を形成する必要はなく、ポリイミド膜4の全面塗布で構わない。   Furthermore, if the present process is applied to a CSP process that is not used in a three-dimensional process, it is not necessary to form an opening, and the entire surface of the polyimide film 4 may be applied.

また、図8(a)に示すように前記Alパッド2上を含む酸化膜3上にTiW21(もしくはTiW上にCuを形成しても良い。)を形成し、所定パターンと成るようにパターニングする。そして、ポリイミド膜4Aを介してCu7A(Au)を形成する、いわゆる再配線構造を採用しても良い。   Further, as shown in FIG. 8A, TiW21 (or Cu may be formed on TiW) is formed on the oxide film 3 including the Al pad 2 and patterned to a predetermined pattern. . A so-called rewiring structure in which Cu7A (Au) is formed via the polyimide film 4A may be employed.

続いて、図2(a)に示すように前記Cu7(Au)上を含むポリイミド膜4上に絶縁フィルム10を貼り、当該フィルム10を介して支持板11と前記Si基板1側を貼り合わせる。   Subsequently, as shown in FIG. 2A, an insulating film 10 is pasted on the polyimide film 4 including the Cu7 (Au), and the support plate 11 and the Si substrate 1 side are pasted through the film 10.

ここで、前記支持板11は、後述するSi基板1のBG(バックグラインド)時に、Si基板1の割れ等を防止するための支持体で、例えばSi基板や酸化膜(ガラス基板)やセラミック等を利用している。尚、本実施形態では、支持体として必要な膜厚として、およそ400μm程度としている。   Here, the support plate 11 is a support for preventing the Si substrate 1 from cracking or the like during BG (back grinding) of the Si substrate 1 to be described later. For example, the Si substrate, oxide film (glass substrate), ceramic, etc. Is used. In the present embodiment, the film thickness necessary for the support is about 400 μm.

また、前記フィルム10は、後述するSi基板1と支持板11との分離工程における作業性向上を図る目的で、アセトンに溶ける有機膜を採用している。尚、本実施形態では、フィルム10の膜厚をおよそ400μm程度としている。   The film 10 employs an organic film soluble in acetone for the purpose of improving workability in the process of separating the Si substrate 1 and the support plate 11 described later. In this embodiment, the film 10 has a thickness of about 400 μm.

更に、当該フィルム10の外周部には、図2(b)に示すようにエポキシ樹脂12を充填することで、当該フィルム10を密封し、固めている。これにより、各種作業中における有機溶媒等の薬液の浸入を防止している。   Furthermore, the film 10 is sealed and hardened by filling the outer peripheral portion of the film 10 with an epoxy resin 12 as shown in FIG. This prevents infiltration of chemicals such as organic solvents during various operations.

尚、Si基板1のBG工程におけるバックグラインド膜厚が少ない場合には、支持板11を貼り付ける工程は省略できる。   If the back grind film thickness in the BG process of the Si substrate 1 is small, the process of attaching the support plate 11 can be omitted.

次に、図3(a)に示すようにSi基板1側をBG処理して、当該Si基板1の膜厚をおよそ10〜100μm程度まで薄膜化できる。このとき、前記支持板11が、BG工程時にSi基板1を支持する。そして、BG処理したSi基板1の裏面側におよそ0.01μm程度の酸化膜13を形成する。尚、前記酸化膜13の代わりにシリコン窒化膜やポリイミドから成る有機系絶縁物を形成しても良い。更に言えば、前記BG工程において、Cu上の平坦性に左右されないため、そのままバックグラインド可能であり、作業性が良い。   Next, as shown in FIG. 3A, the Si substrate 1 side can be BG-processed to reduce the thickness of the Si substrate 1 to about 10 to 100 μm. At this time, the support plate 11 supports the Si substrate 1 during the BG process. Then, an oxide film 13 of about 0.01 μm is formed on the back side of the Si substrate 1 subjected to the BG treatment. Instead of the oxide film 13, an organic insulator made of a silicon nitride film or polyimide may be formed. Furthermore, since it does not depend on the flatness on Cu in the BG process, back grinding can be performed as it is, and workability is good.

更に、図3(b)に示すように不図示のフォトレジスト膜をマスクに前記酸化膜13及びSi基板1をエッチングして開口部14を形成する。続いて、図4(a)に示すように前記開口部14から露出した酸化膜3をエッチングして、前記Alパッド2を露出させる。そして、開口部14a内の前記Alパッド2上を含む酸化膜13上を、被覆するようにCVD法による酸化膜を形成し、当該酸化膜を異方性エッチングして開口部14aの側壁部に酸化膜を残膜させてサイドウォールスペーサ膜15を形成する。尚、酸化膜のCVD成膜処理温度は、200℃程度の低温度が良い。また、シリコン窒化膜を用いてサイドウォールスペーサ膜15を形成しても良い。   Further, as shown in FIG. 3B, the oxide film 13 and the Si substrate 1 are etched using a photoresist film (not shown) as a mask to form an opening 14. Subsequently, as shown in FIG. 4A, the oxide film 3 exposed from the opening 14 is etched to expose the Al pad 2. Then, an oxide film is formed by CVD so as to cover the oxide film 13 including the Al pad 2 in the opening 14a, and the oxide film is anisotropically etched to form a sidewall on the opening 14a. The sidewall spacer film 15 is formed by leaving the oxide film. Note that the CVD film forming temperature for the oxide film is preferably as low as about 200 ° C. Further, the sidewall spacer film 15 may be formed using a silicon nitride film.

次に、図4(b)に示すように前記開口部14a内にサイドウォールスペーサ膜15を介して窒化チタン(TiN)または窒化タンタル(TaN)等のバリア膜16をスパッタ形成し、当該バリア膜16を介して前記開口部14a内にCu17を埋設する。尚、本工程では、先ずバリア膜16上にCuシード、Cuメッキ処理を施し、当該Cuをアニール処理する。そして、当該Cuを開口部14a内に埋設させている。ここで、平坦性を特に必要とする場合は、当該CuをCMP研磨する。   Next, as shown in FIG. 4B, a barrier film 16 such as titanium nitride (TiN) or tantalum nitride (TaN) is formed by sputtering in the opening 14a through the sidewall spacer film 15, and the barrier film is formed. Cu 17 is embedded in the opening 14 a through 16. In this step, first, a Cu seed and Cu plating treatment is performed on the barrier film 16, and the Cu is annealed. And the said Cu is embed | buried in the opening part 14a. Here, when flatness is particularly required, the Cu is subjected to CMP polishing.

更に、図5(a)に示すように前記Cu17上に、当該Cu17が埋設された開口部14aの開口サイズよりも幾分広い開口を有するソルダーマスク18を形成し、当該マスク18を介して当該開口上に半田ペーストをスクリーン印刷し、当該半田ペーストをリフロー処理することで、Cu17上に半田ボール19を形成する。尚、本実施形態では、ソルダーマスク18として、200℃でイミド化可能なリカコートから成るポリイミド膜を用いている。   Further, as shown in FIG. 5A, a solder mask 18 having an opening that is somewhat wider than the opening size of the opening 14a in which the Cu 17 is embedded is formed on the Cu 17, and the A solder paste 19 is formed on the Cu 17 by screen printing a solder paste on the opening and reflowing the solder paste. In the present embodiment, as the solder mask 18, a polyimide film made of Rica coat that can be imidized at 200 ° C. is used.

尚、図8(b)に示すように前記Cu17上を含む酸化膜13上にAl膜31及びNi膜(Au膜)32を形成し、所定パターンと成るようにパターニングする。そして、ソルダーマスク18Aを介して半田ボール19Aを形成する構造を採用しても良い。   As shown in FIG. 8B, an Al film 31 and a Ni film (Au film) 32 are formed on the oxide film 13 including the Cu 17 and patterned to have a predetermined pattern. And you may employ | adopt the structure which forms 19A of solder balls via the solder mask 18A.

続いて、図5(b)に示すように前記Si基板1側を前記フィルム10に到達する位置までダイシングする。   Subsequently, as shown in FIG. 5B, the Si substrate 1 side is diced to a position reaching the film 10.

そして、不図示のアセトン溶液槽内に当該Si基板1を浸すことで、図6(b)に示すようにダイシングライン(D)からアセトンが浸入し、前記フィルム10を溶解する。従って、前記Si基板1(各チップ)と支持板11とが自動的に分離され、図6(a)に示すような単体のCSPチップ20が完成する。   Then, by immersing the Si substrate 1 in an acetone solution tank (not shown), acetone enters from the dicing line (D) and dissolves the film 10 as shown in FIG. Therefore, the Si substrate 1 (each chip) and the support plate 11 are automatically separated, and a single CSP chip 20 as shown in FIG. 6A is completed.

このように本実施形態では、アセトンに溶解する有機系のフィルム10を用いてSi基板1と支持板11とを貼り合わせているため、ダイシング後に、Si基板1をアセトンに浸すだけで両者を簡単に分離することができ、作業性が良い。   As described above, in the present embodiment, since the Si substrate 1 and the support plate 11 are bonded together using the organic film 10 that dissolves in acetone, after dicing, the both can be simply performed by immersing the Si substrate 1 in acetone. The workability is good.

また、前記フィルム10の代わりに粘着力の弱いフィルムを用いて、ダイシング後に、物理的にチップを剥がすものであっても良い。更に言えば、支持板11として透明ガラスを用いる場合には、有機系フィルム10としてUVテープを貼り、ダイシング後にUV照射をし、チップを剥がせば良い。   Further, instead of the film 10, a film having a weak adhesive force may be used to physically peel the chip after dicing. Furthermore, when transparent glass is used as the support plate 11, a UV tape is applied as the organic film 10, UV irradiation is performed after dicing, and the chip is peeled off.

加えて、ダイシングした後に、例えばウエハの裏面からホットプレートで熱を加えて、ウエハと支持板11で挟まれた有機膜(フィルム10)を溶かして軟化させることで両者を剥がすものであっても良い。このとき、フィルム10がアセトンに溶ける有機膜であるときは、200℃程度の加熱で、ポリイミド膜を利用した場合では400℃程度の加熱で当該フィルム10は溶ける。   In addition, after dicing, for example, by applying heat from the back surface of the wafer with a hot plate, the organic film (film 10) sandwiched between the wafer and the support plate 11 is melted and softened to peel off both. good. At this time, when the film 10 is an organic film that is soluble in acetone, the film 10 is melted by heating at about 200 ° C., and when a polyimide film is used, the film 10 is heated at about 400 ° C.

Si基板1と支持板11とを剥がす別形態としては、ダイシング前に、エッジのエポキシ樹脂を、ウエハを縦にして回転させ、外周だけ酸などの薬品に浸して剥がす方法もある。又、刃物をウエハとチップの間のエッジのエポキシ樹脂に入れて切り離す方法もある。そして、両方法の後、BGテープを貼ってダイシングする。   As another form of peeling the Si substrate 1 and the support plate 11, there is a method in which the epoxy resin at the edge is rotated with the wafer lengthwise before dicing and the outer periphery is immersed in a chemical such as acid. There is also a method of separating the blade by putting it in an epoxy resin at the edge between the wafer and the chip. And after both methods, a BG tape is stuck and it dices.

そして、図7に示すように前記単体のCSPチップ20をCu7(Au)と半田ボール19とを金属密着でCSPチップ20同士を密着(積層)させることで、3次元実装が(何層でも)可能となり、チップサイズの同じもの(メモリ等)であれば大容量化が図れる。   Then, as shown in FIG. 7, the CSP chip 20 is bonded (laminated) with Cu7 (Au) and the solder ball 19 by metal contact with Cu7 (Au), thereby enabling three-dimensional mounting (any number of layers). If the chip size is the same (memory or the like), the capacity can be increased.

本発明の一実施形態の半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device of one Embodiment of this invention. 本発明の一実施形態の半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device of one Embodiment of this invention. 本発明の一実施形態の半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device of one Embodiment of this invention. 本発明の一実施形態の半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device of one Embodiment of this invention. 本発明の一実施形態の半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device of one Embodiment of this invention. 本発明の一実施形態の半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device of one Embodiment of this invention. 本発明の一実施形態の半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device of one Embodiment of this invention. 本発明の他の実施形態の半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device of other embodiment of this invention.

Claims (7)

表面側に金属パッドが形成された半導体基板を用意し、
前記半導体基板と当該半導体基板を支持する支持基板とを有機膜を介して貼り合わせる工程と、
前記半導体基板の裏面から開口を形成する工程と、
前記開口の側壁部に絶縁膜を形成した後に、当該開口を介して前記金属パッドに電気的に接続された金属層を形成する工程と、
前記半導体基板の裏面から前記有機膜位置までダイシングする工程と、
ダイシング後に、前記支持体が貼り合わされた前記半導体基板を加熱することで、前記有機膜を溶かし、前記半導体基板と前記支持基板とを分離する工程とを有することを特徴とする半導体装置の製造方法
Prepare a semiconductor substrate with metal pads on the surface side,
Bonding the semiconductor substrate and a support substrate supporting the semiconductor substrate through an organic film;
Forming an opening from the back surface of the semiconductor substrate;
Forming an insulating film on the side wall of the opening and then forming a metal layer electrically connected to the metal pad through the opening;
Dicing from the back surface of the semiconductor substrate to the organic film position;
A method of manufacturing a semiconductor device comprising: a step of heating the semiconductor substrate to which the support is bonded after dicing, thereby melting the organic film and separating the semiconductor substrate and the support substrate. .
前記金属層上に導電端子を形成する工程を有することを特徴とする請求項1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, further comprising a step of forming a conductive terminal on the metal layer. 前記半導体基板の裏面から開口を形成する工程の前に、その裏面を研磨することを特徴とする請求項1または請求項2に記載の半導体装置の製造方法。 3. The method of manufacturing a semiconductor device according to claim 1, wherein the back surface is polished before the step of forming the opening from the back surface of the semiconductor substrate. 前記支持基板として、Si基板、酸化膜、ガラス基板、セラミック基板を用いることを特徴とする請求項1乃至請求項3のいずれか1項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, wherein an Si substrate, an oxide film, a glass substrate, or a ceramic substrate is used as the support substrate. 前記金属パッド上に電極接続部を形成する工程を有することを特徴とする請求項1乃至請求項4のいずれか1項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, further comprising a step of forming an electrode connection portion on the metal pad. 請求項1乃至請求項5のいずれか1項に記載の半導体装置と他の半導体装置とを積層する工程を有することを特徴とする積層型の半導体装置の製造方法。   A method for manufacturing a stacked semiconductor device, comprising a step of stacking the semiconductor device according to claim 1 and another semiconductor device. 請求項1乃至請求項5のいずれか1項に記載の半導体装置と他の半導体装置とを積層する工程は、一方の半導体装置の前記電極接続部と、もう一方の半導体装置の前記導電端子とを接続することを特徴とする積層型の半導体装置の製造方法。   The step of stacking the semiconductor device according to any one of claims 1 to 5 with another semiconductor device includes the electrode connection portion of one semiconductor device and the conductive terminal of the other semiconductor device. A method for manufacturing a stacked semiconductor device, characterized in that:
JP2006292233A 2006-10-27 2006-10-27 Manufacturing method of semiconductor device Expired - Lifetime JP4443549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006292233A JP4443549B2 (en) 2006-10-27 2006-10-27 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006292233A JP4443549B2 (en) 2006-10-27 2006-10-27 Manufacturing method of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002111571A Division JP4212293B2 (en) 2002-04-15 2002-04-15 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2007067429A JP2007067429A (en) 2007-03-15
JP4443549B2 true JP4443549B2 (en) 2010-03-31

Family

ID=37929192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006292233A Expired - Lifetime JP4443549B2 (en) 2006-10-27 2006-10-27 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4443549B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086477A (en) * 2012-10-22 2014-05-12 Nitto Denko Corp Semiconductor element manufacturing method

Also Published As

Publication number Publication date
JP2007067429A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP4212293B2 (en) Manufacturing method of semiconductor device
KR100552356B1 (en) Method of manufacturing semiconductor device
US7399683B2 (en) Manufacturing method of semiconductor device
TWI622144B (en) Fingerprint sensor device and method
KR100938970B1 (en) Semiconductor device and manufacturing method thereof
US8940581B2 (en) Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices
JP4139803B2 (en) Manufacturing method of semiconductor device
KR101157726B1 (en) Ultra-thin stacked chips packaging
JP2007180529A (en) Semiconductor device and method of manufacturing the same
JP2011009645A (en) Semiconductor device and method of manufacturing the same
JP2004055628A (en) Semiconductor device of wafer level and its manufacturing method
JP2007036060A (en) Semiconductor device and manufacturing method thereof
JP3459234B2 (en) Semiconductor device and manufacturing method thereof
JP2009033153A (en) Interconnecting structure for semiconductor device package and method of the same
JP5003023B2 (en) Substrate processing method and semiconductor device manufacturing method
JP4425235B2 (en) Semiconductor device and manufacturing method thereof
JP4215571B2 (en) Manufacturing method of semiconductor device
JP4334397B2 (en) Semiconductor device and manufacturing method thereof
JP2005005632A (en) Chip-like electronic component, its manufacturing method, and its packaging structure
JP4443549B2 (en) Manufacturing method of semiconductor device
JP4638614B2 (en) Method for manufacturing semiconductor device
JP4286264B2 (en) Semiconductor device and manufacturing method thereof
JP2004153260A (en) Semiconductor device and method of manufacturing same
JP4746342B2 (en) Semiconductor device and manufacturing method thereof
JP4371719B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100112

R151 Written notification of patent or utility model registration

Ref document number: 4443549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term