JP4199972B2 - 電圧制御発振器の遅延セル - Google Patents

電圧制御発振器の遅延セル Download PDF

Info

Publication number
JP4199972B2
JP4199972B2 JP2002272354A JP2002272354A JP4199972B2 JP 4199972 B2 JP4199972 B2 JP 4199972B2 JP 2002272354 A JP2002272354 A JP 2002272354A JP 2002272354 A JP2002272354 A JP 2002272354A JP 4199972 B2 JP4199972 B2 JP 4199972B2
Authority
JP
Japan
Prior art keywords
transistors
load resistance
delay cell
bias current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002272354A
Other languages
English (en)
Other versions
JP2003179470A (ja
Inventor
ウィリアム アンドラシック スチェパン
エイチ パテル ラケッシュ
エイチ リー チョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altera Corp
Original Assignee
Altera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Altera Corp filed Critical Altera Corp
Publication of JP2003179470A publication Critical patent/JP2003179470A/ja
Application granted granted Critical
Publication of JP4199972B2 publication Critical patent/JP4199972B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/133Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0315Ring oscillators
    • H03K3/0322Ring oscillators with differential cells
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/354Astable circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0995Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Pulse Circuits (AREA)
  • Networks Using Active Elements (AREA)

Description

【0001】
この出願は、2001年9月18日に提出された暫定米国特許出願第60/323249号の権利を要求するものであり、これを全体的に参照に組み入れてある。
【0002】
【産業上の利用分野】
この発明は、電圧制御発振器(“VCO”)回路に係り、より具体的には広範な帯域の周波数レンジのうちからいずれかの複数の周波数レンジ内において動作するようにプログラムすることができる電圧制御発振器回路に関する。
【0003】
【従来の技術】
位相ロックループ(“PLL”)回路は、周波数および/または位相が変動する信号からデータを取り出すことを補助する目的でしばしば使用される。PLLは広範なレンジの周波数内のいずれかの周波数における信号化を補助することを必要とするプログラマブルロジックデバイス(“PLD”)等の比較的に汎用の回路内に使用され得る(例えば、2001年3月13日に提出されたオーグ氏等の米国特許出願第09/805843号のPLLを使用するPLDを参照)。PLLが動作することが要求される周波数のレンジは特にその上限が常に上昇(すなわちより高い周波数となる)している。同時に集積回路の電源電圧は低下しており、従ってPLL回路の動作レンジを拡大することが困難になっている。
【0004】
【発明が解決しようとする課題】
従って本発明の目的は、電源によって制限されることなく広範な動作帯域幅を達成することができる電圧制御発振器の遅延セルを提供することである。
【0005】
【課題を解決するための手段】
本発明によれば、遅延セル(例えばPLLの電圧制御発振器(“VCO”)に使用するもの)が、互いに並列接続可能な複数の負荷抵抗トランジスタと、互いに並列接続可能なバイアス電流トランジスタと、負荷抵抗トランジスタとバイアス電流トランジスタとの間に直列接続されたスイッチングトランジスタとを備えている。スイッチング回路は並列に動作する負荷抵抗トランジスタの数を選択することを可能にする。同様に別のスイッチング回路も並列に動作するバイアス電流トランジスタの数を選択することを可能にする。遅延セルを実質的に再構成することがこのように可能であるため、遅延セルの動作レンジ(すなわち時間遅延特性)を大幅に拡大することが可能になる。VCOは閉ループ列に接続されたこの種の遅延セルを複数含むことができる。拡大された遅延セルの動作レンジにより、これらの遅延セルによって構成されているVCOの動作周波数レンジも大幅に拡大される。このVCOを含んでいるPLLの動作レンジについても同様のことが該当する。
【0006】
各遅延セルは構造および動作に関して差動的なものとなる。
【0007】
本発明のその他の詳細、特徴、ならびに種々の利点は、添付図面を参照しながら以下に記述する詳細な説明によって理解される。
【0008】
【実施例】
図1に示された説明的な従来のPLL回路10において、位相/周波数検出器(“PFD”)回路20は入力リード8を介して入力信号を受信する。信号8はバイナリデジタル信号等の時間変化信号であり、異なった電圧レベル群によって、および/または電圧レベルの転換によって表現されるデータを伝送するものである。PFD20はこの信号8の位相および周波数を、リード32を介してVCO30からPFD20にフィードバックされた信号の位相および周波数と比較する。PFD20はこの比較に基づいてVCO30を制御するための1つまたは複数の信号を形成し、これによって信号32の位相および周波数が信号8の位相および周波数により近くなるように一致させる。例えば、信号8はCDR(クロックデータ復元)データ信号とし、PLL10はこのCDRデータ信号から復元されたクロック信号を提供するよう動作することができる。(この復元されたクロック信号は、適用形態に応じて信号32またはこの信号32に同期しているが位相シフトさせた信号とすることができる。)信号32の周波数が低過ぎるかあるいは信号8に対して位相が遅れていることをPFD信号20が検出した場合、PFD20はVCO30の周波数を上昇させるための出力信号あるいは信号22を形成する。他方、信号32の周波数が高過ぎるかあるいは信号8に対して位相が進んでいることをPFD信号20が検出した場合、PFD20はVCO30の周波数を低下させるための出力信号あるいは信号22を形成する。
【0009】
図2には説明的なVCO30の構造が示されている。この構成例においてVCO30は閉ループに直列接続された複数の差動遅延セル40を含んでいる。各遅延セル40は、直列閉ループ内において前置された遅延セルから付加された差動信号内の転位を受信した後時間遅延インタバルをおいてその差動出力信号内に転位を形成する。各遅延セル40の時間遅延インタバルは、PFD20(図1)の出力信号(群)22によって制御される変化に伴って少なくともある程度変化することが可能である。VCO30の発振周波数は遅延セル40の時間遅延に対して反比例するものとなる。PLL10が広範なレンジの周波数のうちの任意の周波数にロックすることを可能にするために、VCO30もこれに従った広範なレンジの発振周波数を有することが必要である。このことは遅延セル40が広範なレンジの遅延時間インタバルを有する必要があることを意味している。
【0010】
図3には、代表的な遅延セル40の説明的な構造がより詳細に示されている。図3には負荷抵抗器RL1およびRL2としてPMOSFETと入力トランジスタSW1/SW2および電流ミラー回路IBIASとしてNMOSFETが示されているが、負荷抵抗器RL1およびRL2としてNMOSFETと入力トランジスタSW1/SW2および電流ミラー回路IBIASとしてPMOSFETを使用しても同様な動作を達成し得ることが理解される。
【0011】
図1に示された回路において、RCONTおよびVCONTはPFD20(図1)からの制御信号である。信号VIN−およびVIN+は直列閉ループ内において前置された遅延セル40からの差動入力信号である(図2参照)。信号VO−および信号VO+は直列閉ループ内において後置された遅延セル40への差動出力信号である(図2参照)。
【0012】
遅延セル40の時間遅延は負荷抵抗器RL1およびRL2の抵抗に比例する。従って、広範な周波数レンジを達成するために負荷抵抗器RL1およびRL2はRCONTと共に変化するとともに広範な抵抗レンジを有するものとなる。さらに末端電流IBIASもVCONTによって制御されるとともに広範な電流レンジを有している。末端電流IBIASは出力電圧の変動を負荷抵抗の変化と同程度に維持するよう作用する。従来より、周波数を増加するためにはRCONTを低下させ、これはゲートソースバイアス電圧を増加させ従って抵抗RL1およびRL2を低下させる。同時にVCONTが増加し、これによってゲートソースバイアス電圧が増加し、これによって末端電流IBIASが増加する。最大のRL1およびRL2において負荷抵抗制御電圧RCONTはVDD−(VSW+|VTP|)から開始して略VSS+VDS(基礎反射電流をバイアスに使用すると仮定する)まで低下し、この点においてRL1およびRL2が最小となる。電流反射制御電圧VCONTは最小電流のために必要とされるVGSから開始して略VDD−VSD(基礎反射電流をバイアスに使用すると仮定する)まで増加し、この点においてIBIASが最大となる。
【0013】
両方の制御電圧(すなわちRCONTおよびVCONTの両方)に対して電源VDDが周波数を増加させるための限定要素となる。より高出力の電源によってより大きなバンド幅が達成される。残念なことに将来の集積回路の電源は縮小する傾向にある。そのため別の設計手法が必要とされている。
【0014】
PLD等の多機能集積回路において、広域の周波数で動作する種々の高速I/O規格に対してPLLを設計する必要がある。しかしながら、電源が縮小しているためこのことは極めて困難となっている。本発明に係るプログラマブル遅延セルの概念(例えば図4)により、例えば高速通信用途のための多機能集積回路広域周波数動作を達成する課題が解決される。
【0015】
図4に示されている本発明に係る説明的なプログラマブル遅延セル40′は従来の遅延セルと同様な原理で動作するが、初期のデバイスと並列に選択可能な数の追加的なトランジスタをターンオンする選択肢が含まれている。例えば、図3の負荷抵抗器RL1は図4においては互いに並列に接続された(ソースからドレインへ)複数の負荷抵抗器RL1a,RL1b,・・・,RL1nによって代替されている。同様にIBIASトランジスタICONTは互いに並列に接続された(ソースからドレインへ)複数のトランジスタICONTa,ICONTb,・・・,ICONTnによって代替されている。いずれの場合においても“a”トランジスタ(すなわちRL1a,RL2a,およびICONTa)は初期デバイスまたはトランジスタである。
【0016】
各並列トランジスタグループ内の各トランジスタ(初期トランジスタ以外)は、別の結合された回路によって制御されるマルチプレクサを介して能動化/非能動化される。例えば、RL1bおよびRL2bはマルチプレクサ110bの出力信号によって直列に制御される。このマルチプレクサはVDD(これはトランジスタRL1bおよびRL2bをターンオフする)またはRCONT(これはRL1bおよびRL2bに対してRL1aおよびRL2aと全く同一の制御を提供する)のいずれかを出力するように制御することができる。この後者のマルチプレクサ110bの状態はRL1aおよびRL1bが並列に動作することを誘引し、また同様にRL2aおよびRL2bが並列に動作することを誘引する。グループ110b−110n内の他のマルチプレクサはグループRL1b−RL1nおよびRL2b−RL2n内の他のトランジスタを選択的に初期トランジスタRL1aおよびRL2aとの並列動作に追加することを可能にする。
【0017】
同様にマルチプレクサ120b−120nは任意の数の追加的なトランジスタICONTb−ICONTnを初期トランジスタICONTaとの並列動作に追加することを可能にする。例えば、マルチプレクサ120bはトランジスタICONTbのゲートにVSSまたはVCONTに付加するように制御することができる。他方、VCONTを付加することによってトランジスタICONTbにトランジスタICONTaと同じ動作が付与される。
【0018】
図4に示されている説明的な実施例において、各マルチプレクサ110/120は結合されたプログラマブルメモリセル112/122によってプログラム制御される。例えば、マルチプレクサ110bはメモリセル112bのプログラム状態によってVDDまたはRCONTのいずれかを出力するように制御される。メモリセル112/122等は場合によって機能制御要素(“FCE”)と呼ばれることもある。
【0019】
マルチプレクサ110/120のプログラマブル(従って一般的に静的な)制御に代えて、これらのデバイスをより動的な信号形式によって制御することもできる。例えば、この種のより動的な信号はPFD20(図1)あるいは本発明の回路を含んだPLD上のロジック回路のいずれかの部分から受信することができる。図5には静的あるいは動的のいずれかによって制御される代表的なマルチプレクサ110/120の制御を可能にする説明的な回路が示されている。図5において、マルチプレクサ110/120はマルチプレクサ130の出力信号によって制御される。マルチプレクサ130はFCE132の出力信号によって制御され、これが受信する他の2つの入力信号のうちのいずれかを出力する。これらの他の2つの信号はいわゆる動的制御信号およびFCE134の出力信号である。マルチプレクサ130がFCE134の出力信号をマルチプレクサ110/120へルート付けすると、マルチプレクサ110/120はFCE134のプログラム状態に応じてそれの2つの非制御入力のいずれか一方または他方のいずれかを常に出力するように制御される。他方、動的制御信号をマルチプレクサ110/120にルート付けするようマルチプレクサ130がFCE132によって制御される場合、マルチプレクサ110/120は動的制御信号の現状の論理状態に応じてそれの2つの非制御入力の一方または他方を異なった時点において出力するように制御される。
【0020】
110、120、および130等の回路要素は場合によってプログラマブルロジックコネクタ(“PLC”)と呼ばれることもあり、このPLC技術は回路がプログラムによってあるいは動的に制御されるかにかかわらず使用することができる。
【0021】
図4に戻ると、説明的なプログラマブル差動遅延セル40′全ての動作レンジ(すなわちレンジa−n)は従来の遅延セルと同様にRCONTおよびVCONT上に動作限界点を有する。しかしながら、追加的なデバイスをターンオンすることによって大幅に高い周波数群を達成することもできる(レンジb−n)。これは低減された負荷抵抗器のためであり、前述したようにこれによって遅延セル時間が低減される。電流反射における追加トランジスタによってより大きな総合末端電流IBIASが提供され、これによって出力の振幅が保持され、同時に追加的な負荷トランジスタは負荷抵抗器を削減するためにより多くの抵抗を並列に追加する。プログラマブルロジックセル内において、負荷抵抗RLは等式1/RL=1/RLa+1/RLb+・・・+1/RLnに従って複数の負荷抵抗器の並列の組み合わせとなる。全ての抵抗器が抵抗値Rをもって同等である場合、総抵抗は単純にR/nとなり、これはより多くの追加トランジスタが付勢されるに従って負荷抵抗が低下することを示している。全ての抵抗器が等しくはない場合、任意の数の並列抵抗器の総抵抗は常に組み合わせ内における最小の抵抗器よりも小さいものとなる。
【0022】
図6Aおよび図7Aには、図3に示された従来の遅延セルの比較的限定された動作レンジが示されている。図6Aには、従来の付加セルにおいては到達可能な負荷抵抗レンジが電源によって制限されることが示されている。同様に、図7Aには従来の付加セルにおいては末端電流レンジが電源によって制限されることが示されている。これに対して、図6Bおよび図7Bには本発明に係るプログラマブル遅延セル(例えば図4参照)の大幅に大きな動作レンジが示されている。図6Bにはプログラマブル遅延セル(例えば40′)において到達可能な負荷抵抗レンジが設計者によって提供された並列トランジスタの数によってのみ制限されることが示されている。図7Bにはプログラマブル遅延セル40′等の末端電流レンジに対して同等な点が示されている。
【0023】
前述したいくつかの点を短く繰り返すと、動的VCO差動遅延セル内において必要とされる動作レンジはPLD等のデバイスの絶え間なく増強される特性によって直接的に生成される(例えば、多機能高速シリアル通信規格の動作におけるこれらの装置の必要性)。ギガビットイサーネット、インフィニバンド、Xaui、またはSONET等の規格を組み込むために、高速PLLは数百MHzから1ないし2GHzの動作帯域幅に拡張する必要がある。集積回路電源の継続的な低減とも重なって、従来の手法によって広域PLLを設計することは困難あるいは不可能になっている。ここに図示および説明されている新しいプログラマブル方式によって、PLDを製造するために特に有効な解決方式が提供される。プログラマブルVCO遅延セルを含んだPLLの帯域幅は物理的な処理限界に達するまでに拡大される。しかしながら、この処理限界内において帯域幅は電源によっては制限されず技術者の設計に従ったものとなる。
【0024】
図8にはデータプロセッシングシステム202内におけるプログラマブルロジックデバイス(“PLD”)14(PLL10およびプログラマブルロジック12を含む)が示されている。PLL10は、本発明に従って構成されたVCO30遅延セル(例えば図4に示された遅延セル40′)を含んでいることを除いて図1のPLL10と同様である。プログラマブルロジック12は従来のものとすることができ、PLL10によって出力された信号(群)を使用するか、および/またはPLL10の動作の特定の要素を制御する(例えば図4におけるPLC110および/または120の制御)信号を形成することができる。データ処理システム202は、さらに:プロセッサ204;メモリ206;I/O回路208;ならびに周辺機器210うちの1つまたは複数を含むことができる。これらの構成要素はシステムバス220によって互いに結合されるとともにエンドユーザシステム240内に含まれた回路基板230上に実装されている。
【0025】
システム202は、コンピュータネットワーキング、データネットワーキング、ビデオ処理、デジタル信号処理、またはプログラマブルあるいはリプログラマブルロジックデバイスの利点を活用することが望まれる、広範な適用形態で使用することができる。プログラマブルロジックデバイス14は多様なロジック機能を広範囲に実行するために使用することができる。例えば、プログラマブルロジックデバイス14はプロセッサ204と組合されて動作するプロセッサまたはコントローラとして構成することができる。プログラマブルロジックデバイス14は、さらにシステム202内の共有リソースへのアクセスを仲介するアービタとして構成することもできる。さらに別の例として、プログラマブルロジックデバイス14は、プロセッサ204とシステム202内の他の構成要素との間のインタフェースとして構成することもできる。システム202は1つの例であり、本発明の範囲ならびに精神は請求の範囲によってのみ定義されることは勿論である。
【0026】
本発明の特徴を有するプログラマブルロジックデバイス14、ならびにこれらのデバイスの種々の構成要素(例えば、先述したPLLおよびプログラマブルロジック回路10および12、ならびにその中に使用されるPLCおよびFCE等の回路要素)を実施するために多様な技術を使用することができる。例えば、各PLCは、いくつかの入力を1つの出力に接続するためのスイッチまたはスイッチ群等の比較的単純なプログラマブルコネクタとすることができる。他方、各PLCは、接続を行うだけでなくロジック(例えば、複数の入力のロジック結合によって)を実行することができるより複雑な要素とすることもできる。後者において、各PLCはAND、NAND、OR、またはNOR等の機能を実施するp項ロジックとすることができる。PLCを構成するために適した要素の例としては、EPROM、EEPROM、パストランジスタ、伝達ゲート、アンチヒューズ、レーザヒューズ、メタルオプショナルリンク等が挙げられる。前述したように、種々のPLCの構成要素は、多様なプログラマブル機能制御要素(“FCE”)によって制御することができる。(特定の実施形態(例えばヒューズおよびメタルオプショナルリンク)については独立したFCEデバイスは必要でない。)FCEもいくつかの異なった方式で実施することができる。例えば、FCEは、SRAM、DRAM、先入れ先出し(“FIFO”)メモリEPROM、EEPROM、機能制御レジスタ(例えば、ウォールストロームの米国特許第3473160号に記載)、強誘電メモリ、ヒューズ、アンチヒューズ等から構成することができる。前述の多様な例から、本発明は一回のみプログラム可能なデバイスおよびリプログラム可能なデバイスの両方に適用可能であることが理解される。
【0027】
以上の記述は単に本発明の原理を説明したものであり、当業者においては本発明の範囲および精神を逸脱することなく種々の設計変更をなし得ることは勿論である。例えば、図4にはPLC110とPLC120の制御信号源が別々に図示されているが、必要に応じて共通または共有信号を使用することもできる。この共通または共有制御は特にPLC110bおよび120bに対して同じ制御が使用され、PLC110cおよび120c(以下同様)に対して同じ制御が使用されることを意味している。本発明の範囲内における別の変更例として、各グループのRL1a−n,RL2a−n,ICONTa−nに任意の数の並列トランジスタを含むことができる。一般的には差動遅延セルが好適であるが、本発明はさらに非差動遅延セルを使用することもできる。例えば、この種の非差動遅延セルは1つのスイッチングトランジスタSW1またはSW2、ならびに1セットのみの負荷抵抗トランジスタRL1a−nまたはRL2a−nを有している。この種の非差動遅延セルは例えば図4に示されているように構成することができる。
【図面の簡単な説明】
【図1】従来の説明的な位相ロックループ(“PLL”)回路を示す概略ブロック線図である。
【図2】従来の説明的な電圧制御発振器(“VCO”)回路を示す概略ブロック線図である。
【図3】従来の説明的な差動遅延セル回路を示す概略ブロック線図である。
【図4】本発明に係る説明的なプログラマブル差動遅延セル回路を示す概略ブロック線図である。
【図5】図4の代表的な部分の代替的な実施例を示す概略ブロック線図である。
【図6】(A)は本発明の一つの特徴を説明するために有効な説明的な概略回路特性図であり、(B)は(A)と同様であるが本発明によって達成される拡大された動作レンジを示す概略回路特性図である。
【図7】(A)は本発明の別の特徴を説明するために有効な説明的な概略回路特性図であり、(B)は(A)と同様であるが本発明によって達成される拡大された動作レンジを示す概略回路特性図である。
【図8】本発明に係る遅延セルを使用するVCOを備えたPLL回路を含んだPLDを使用する説明的なシステムを示す概略ブロック線図である。
【符号の説明】
8,32 リード
10 PLL
14 PLD
20 PFD
30 VCO
40,40′ 遅延セル
110,120,130 マルチプレクサ
112,122 メモリセル
132,134 FCE
202 データ処理システム
204 プロセッサ
206 メモリ
208 I/O回路
210 周辺機器
230 回路基板
240 エンドユーザシステム

Claims (24)

  1. 互いに並列接続可能な複数の負荷抵抗トランジスタと;
    互いに並列接続可能なバイアス電流トランジスタと;
    前記複数の負荷抵抗トランジスタと前記複数のバイアス電流トランジスタとの間に直列接続されたスイッチングトランジスタと;
    負荷抵抗トランジスタ群の中の少なくとも1つを負荷抵抗トランジスタ群の中の別の少なくとも1つと選択的に動作可能に並列接続するように構成されたスイッチング回路、とを備える可変遅延セルであって、
    スイッチング回路は少なくとも1つの負荷抵抗トランジスタに対して非能動化制御信号または可変制御信号のいずれかを選択的に付加するよう構成された可変遅延セル。
  2. 可変制御信号はさらに少なくとも1つの負荷抵抗トランジスタを制御するために使用される請求項1に記載の可変遅延セル。
  3. 別のスイッチング回路は少なくとも1つのバイアス電流トランジスタに対して非能動化制御信号または可変能動化制御信号のいずれかを選択的に付加するよう構成された請求項1に記載の可変遅延セル。
  4. 可変能動化制御信号はさらに少なくとも1つのバイアス電流トランジスタを制御するために使用される請求項3に記載の可変遅延セル。
  5. 互いに並列接続可能な別の複数の負荷抵抗トランジスタと;
    この別の複数の負荷抵抗トランジスタと複数のバイアス電流トランジスタとの間に直列接続された別のスイッチングトランジスタとを備え、スイッチングトランジスタとこの別のスイッチングトランジスタとが相補的な入力信号によってそれぞれ制御される請求項1記載の可変遅延セル。
  6. スイッチング回路が別の負荷抵抗トランジスタ群の中の少なくとも1つを別の負荷抵抗トランジスタ群の中の他の少なくとも1つと選択的に動作可能に並列接続するように構成された請求項5に記載の可変遅延セル。
  7. スイッチング回路がプログラム可能である請求項1記載の可変遅延セル。
  8. 別のスイッチング回路がプログラム可能である請求項1記載の可変遅延セル。
  9. 互いに並列接続可能な複数の負荷抵抗トランジスタと;
    互いに並列接続可能な複数のバイアス電流トランジスタと;
    これら複数の負荷抵抗トランジスタと複数のバイアス電流トランジスタとの間に直列接続されたスイッチングトランジスタと;
    負荷抵抗トランジスタ群の中の少なくとも1つに対して実質的に固定された非能動化制御信号または可変能動化制御信号のいずれかを選択的に付加するように構成されたスイッチング回路と
    を含むプログラマブル遅延セル。
  10. 負荷抵抗トランジスタ群の中の別の少なくとも1つに対して可変能動化制御信号を付加するよう構成された制御回路をさらに含む請求項9に記載のプログラマブル遅延セル。
  11. バイアス電流トランジスタ群の中の少なくとも1つに対して実質的に固定された非能動化制御信号または可変能動化制御信号のいずれかを選択的に付加するように構成された別のスイッチング回路をさらに含む請求項9に記載のプログラマブル遅延セル。
  12. バイアス電流トランジスタ群の中の別の少なくとも1つに対して可変能動化制御信号を付加するよう構成された別の制御回路をさらに含む請求項11に記載のプログラマブル遅延セル。
  13. 互いに並列接続可能な別の複数の負荷抵抗トランジスタと;
    この別の複数の負荷抵抗トランジスタと複数のバイアス電流トランジスタとの間に直列接続された別のスイッチングトランジスタとを備え、スイッチングトランジスタとこの別のスイッチングトランジスタとが相補的な入力信号によってそれぞれ制御される請求項9に記載のプログラマブル遅延セル。
  14. スイッチング回路はさらに少なくとも1つの負荷抵抗トランジスタに対して実質的に固定された非能動化制御信号または可変能動化制御信号のいずれかを選択的に付加するよう構成された請求項13に記載のプログラマブル遅延セル。
  15. 互いに並列接続可能な第1の複数の負荷抵抗トランジスタと;
    互いに並列接続可能な第2の複数の負荷抵抗トランジスタと;
    互いに並列接続可能な複数のバイアス電流トランジスタと;
    第1の複数の負荷抵抗トランジスタと複数のバイアス電流トランジスタとの間に直列接続された第1のスイッチングトランジスタと;
    第2の複数の負荷抵抗トランジスタと複数のバイアス電流トランジスタとの間に直列接続された第2のスイッチングトランジスタと;
    第1および第2の差動入力信号を第1および第2のスイッチング回路に対して制御信号として付加するよう構成された入力回路と;
    第1および第2の負荷抵抗トランジスタ群の中のそれぞれから少なくとも1つを第1および第2の負荷抵抗トランジスタ群の中のそれぞれからの別の少なくとも1つとそれぞれ並列動作するように選択的に能動化するよう構成された第1のスイッチング回路と;
    バイアス電流トランジスタ群の中の少なくとも1つをバイアス電流トランジスタ群の中の別の少なくとも1つと並列動作するように選択的に能動化するよう構成された第2のスイッチング回路と
    を含む請求項9に記載のプログラマブル差動遅延セル。
  16. 第1および第2のスイッチングトランジスタによって制御された電流から第1および第2の差動出力信号をそれぞれ抽出するよう構成された出力回路をさらに備える請求項15に記載のプログラマブル差動遅延セル。
  17. 直列閉ループ内に接続された請求項16に記載の複数のプログラマブル差動遅延セルを備え、各セルの入力信号は前置されたセルの出力信号である電圧制御発振器回路。
  18. 請求項17記載の電圧制御発振器回路と;
    この電圧制御発振器回路内の位相および周波数を時間変化入力信号の位相および周波数と比較して第1および第2の負荷抵抗トランジスタならびにバイアス電流トランジスタを少なくとも部分的に制御するための出力制御信号を形成するよう構成された位相/周波数検出回路と
    を含む位相ロックループ回路。
  19. 請求項18に記載された位相ロックループ回路を備えるプログラマブルロジックデバイス。
  20. 位相ロックループ回路の動作の結果として形成された信号を使用するよう構成されたプログラマブルロジック回路をさらに備える請求項19に記載のプログラマブルロジックデバイス。
  21. 処理回路と;
    前記処理回路に結合されたメモリと;
    この処理回路およびメモリに結合された請求項20に記載のプログラマブルロジックデバイスと
    を含むデジタル処理システム。
  22. 請求項20に記載のプログラマブルロジックデバイスが実装されたプリント回路基板。
  23. プリント回路基板上に装着されプログラマブルロジックデバイスに結合されたメモリをさらに備える請求項22に記載のプリント回路基板。
  24. プリント回路基板上に装着されプログラマブルロジックデバイスに結合された処理回路をさらに備える請求項22に記載のプリント回路基板。
JP2002272354A 2001-09-18 2002-09-18 電圧制御発振器の遅延セル Expired - Fee Related JP4199972B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US32324901P 2001-09-18 2001-09-18
US60/323249 2001-09-18
US10/099707 2002-03-13
US10/099,707 US6771105B2 (en) 2001-09-18 2002-03-13 Voltage controlled oscillator programmable delay cells

Publications (2)

Publication Number Publication Date
JP2003179470A JP2003179470A (ja) 2003-06-27
JP4199972B2 true JP4199972B2 (ja) 2008-12-24

Family

ID=26796404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002272354A Expired - Fee Related JP4199972B2 (ja) 2001-09-18 2002-09-18 電圧制御発振器の遅延セル

Country Status (4)

Country Link
US (2) US6771105B2 (ja)
EP (1) EP1294093B1 (ja)
JP (1) JP4199972B2 (ja)
DE (1) DE60210387T2 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227918B2 (en) * 2000-03-14 2007-06-05 Altera Corporation Clock data recovery circuitry associated with programmable logic device circuitry
US20040199522A1 (en) * 2001-01-25 2004-10-07 Hanna Edpalm Method and apparatus for optimised indexing records of static data with different lengths
US7272677B1 (en) 2003-08-08 2007-09-18 Altera Corporation Multi-channel synchronization for programmable logic device serial interface
US7131024B1 (en) 2003-09-24 2006-10-31 Altera Corporation Multiple transmit data rates in programmable logic device serial interface
US6888376B1 (en) 2003-09-24 2005-05-03 Altera Corporation Multiple data rates in programmable logic device serial interface
US7263152B2 (en) * 2003-11-18 2007-08-28 Analog Devices, Inc. Phase-locked loop structures with enhanced signal stability
US7486752B1 (en) 2003-12-17 2009-02-03 Altera Corporation Alignment of clock signal with data signal
US7143312B1 (en) 2003-12-17 2006-11-28 Altera Corporation Alignment of recovered clock with data signal
US6970020B1 (en) 2003-12-17 2005-11-29 Altera Corporation Half-rate linear quardrature phase detector for clock recovery
US7304521B2 (en) * 2005-01-28 2007-12-04 Altera Corporation Delay circuit for synchronizing arrival of a clock signal at different circuit board points
US7208991B2 (en) * 2005-01-28 2007-04-24 Altera Corporation Digitally programmable delay circuit with process point tracking
US7515669B2 (en) * 2005-09-15 2009-04-07 Etron Technology, Inc. Dynamic input setup/hold time improvement architecture
US20070236269A1 (en) * 2006-04-10 2007-10-11 Texas Instruments Incorporated Non-linear current mode digital to analog converter for controlling a current starved delay stage
US7728674B1 (en) * 2006-05-19 2010-06-01 Altera Corporation Voltage-controlled oscillator methods and apparatus
KR100795007B1 (ko) * 2006-06-27 2008-01-16 주식회사 하이닉스반도체 동기회로의 지연 장치 및 그 제어방법
US7403057B2 (en) * 2006-11-06 2008-07-22 International Business Machines Corporation CML delay cell with linear rail-to-rail tuning range and constant output swing
JP2008147940A (ja) * 2006-12-08 2008-06-26 Toshiba Corp 半導体集積回路
US7961026B2 (en) * 2007-03-31 2011-06-14 Hynix Semiconductor Inc. Delay cell and phase locked loop using the same
US7956695B1 (en) * 2007-06-12 2011-06-07 Altera Corporation High-frequency low-gain ring VCO for clock-data recovery in high-speed serial interface of a programmable logic device
JP2009177778A (ja) * 2008-01-25 2009-08-06 Elpida Memory Inc Dll回路及びこれを用いた半導体装置、並びに、dll回路の制御方法
JP6044106B2 (ja) * 2012-04-25 2016-12-14 富士ゼロックス株式会社 情報処理装置及びプログラム
JP6436169B2 (ja) * 2013-12-20 2018-12-12 インテル・コーポレーション 構成可能なトランシーバ回路アーキテクチャ
US9172384B1 (en) 2014-09-29 2015-10-27 Altera Corporation Low-noise voltage regulator for voltage-controlled oscillator
JP6439367B2 (ja) 2014-10-10 2018-12-19 富士通株式会社 遅延回路,遅延回路を有する位相同期回路,及び位相同期回路を有するプロセッサ
US10796058B1 (en) * 2018-09-25 2020-10-06 Xilinx, Inc. Partial reconfiguration of integrated circuits using shell representation of platform design
US10963613B1 (en) 2019-07-26 2021-03-30 Xilinx, Inc. Partial reconfiguration of integrated circuits using shell representation of platform design with extended routing region
US12119823B2 (en) * 2021-11-30 2024-10-15 Alphawave Semi, Inc. Wide frequency range voltage controlled oscillator

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US805843A (en) * 1904-02-27 1905-11-28 Henry Latham Doherty Air or gas compressor.
US3473160A (en) 1966-10-10 1969-10-14 Stanford Research Inst Electronically controlled microelectronic cellular logic array
US5121014A (en) 1991-03-05 1992-06-09 Vlsi Technology, Inc. CMOS delay circuit with controllable delay
US5208557A (en) 1992-02-18 1993-05-04 Texas Instruments Incorporated Multiple frequency ring oscillator
DE69411217T2 (de) * 1993-04-05 1999-02-04 Philips Electronics N.V., Eindhoven Verzögerungsschaltung zum Verzögern von differentiellen Signalen
JPH08330912A (ja) * 1995-06-05 1996-12-13 Mitsubishi Electric Corp リングオシレータ
US5691669A (en) * 1996-01-11 1997-11-25 Hewlett-Packard Co. Dual adjust current controlled phase locked loop
FR2750268B1 (fr) 1996-06-19 1998-07-31 Bull Sa Procede pour obtenir un signal a frequence variable et cellule a retard variable adaptee a la mise en oeuvre de ce procede
JPH10215156A (ja) 1997-01-29 1998-08-11 Nec Corp 遅延時間可変装置
WO1999012316A2 (en) * 1997-09-04 1999-03-11 Silicon Image, Inc. Controllable delays in multiple synchronized signals for reduced electromagnetic interference at peak frequencies
US6072372A (en) * 1997-11-07 2000-06-06 Oki Electric Industry Co., Ltd. Ring-type voltage-controlled oscillator having a sub-frequency band selection circuit
US6157266A (en) * 1998-02-12 2000-12-05 Hewlett-Packard Company Delay elements arranged for a signal controlled oscillator
JP2990171B1 (ja) 1998-08-24 1999-12-13 日本電気アイシーマイコンシステム株式会社 Pll回路とその制御方法
JP3512676B2 (ja) 1999-04-30 2004-03-31 Necエレクトロニクス株式会社 電圧制御発振器
US6462623B1 (en) * 1999-05-19 2002-10-08 Parthus Ireland Limited Method and apparatus for PLL with improved jitter performance
US6411150B1 (en) * 2001-01-30 2002-06-25 Cypress Semiconductor Corp. Dynamic control of input buffer thresholds

Also Published As

Publication number Publication date
EP1294093A1 (en) 2003-03-19
US7151397B2 (en) 2006-12-19
JP2003179470A (ja) 2003-06-27
DE60210387D1 (de) 2006-05-18
EP1294093B1 (en) 2006-04-05
DE60210387T2 (de) 2007-01-04
US20050024158A1 (en) 2005-02-03
US20030155955A1 (en) 2003-08-21
US6771105B2 (en) 2004-08-03

Similar Documents

Publication Publication Date Title
JP4199972B2 (ja) 電圧制御発振器の遅延セル
US7839177B1 (en) Techniques for phase detection with fast reset
US5426384A (en) Voltage controlled oscillator (VCO) with symmetrical output and logic gate for use in same
US6057739A (en) Phase-locked loop with variable parameters
US6356158B1 (en) Phase-locked loop employing programmable tapped-delay-line oscillator
US7977984B1 (en) High-speed charge pump circuits
EP1528684A2 (en) Programmable phase-locked loop circuitry for programmable logic device
US8054139B2 (en) Voltage-controlled oscillator topology
US5463353A (en) Resistorless VCO including current source and sink controlling a current controlled oscillator
KR102463655B1 (ko) Cmos 회로들을 사용하여 정밀하고 pvt-안정적인 시간 지연 또는 주파수를 생성하는 방법
EP0908013B1 (en) Delay circuit and method
EP1992068A1 (en) Hybrid current-starved phase-interpolation circuit for voltage-controlled devices
US6624668B1 (en) Digitally programmable phase-lock loop for high-speed data communications
US20010043101A1 (en) Semiconductor integrated circuit, delay-locked loop having the same circuit, self-synchronizing pipeline type system, voltage-controlled oscillator, and phase-locked loop
US5739726A (en) High-speed voltage controlled oscillator having a level shifter for providing rail-to-rail output
US8030964B1 (en) Techniques for level shifting signals
US5994968A (en) VCO having a low sensitivity to noise on the power supply
US7504891B1 (en) Initialization circuit for a phase-locked loop
US6509803B2 (en) Voltage-controlled oscillator having short synchronous pull-in time
US6034570A (en) Gallium arsenide voltage-controlled oscillator and oscillator delay cell
US7642868B2 (en) Wide range interpolative voltage controlled oscillator
US7477111B2 (en) Digitally controlled oscillator
KR100274154B1 (ko) 고속저잡음링발진기용지연셀
JPH1093405A (ja) コモンモード発振及び入力ヒステリシス防止用差分遅延要素
US6472944B2 (en) Voltage controlled oscillator with delay circuits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071010

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080109

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080603

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees