JP4194085B2 - プロトン導電体ガスセンサの自己診断方法とガス検出装置 - Google Patents

プロトン導電体ガスセンサの自己診断方法とガス検出装置 Download PDF

Info

Publication number
JP4194085B2
JP4194085B2 JP2003073172A JP2003073172A JP4194085B2 JP 4194085 B2 JP4194085 B2 JP 4194085B2 JP 2003073172 A JP2003073172 A JP 2003073172A JP 2003073172 A JP2003073172 A JP 2003073172A JP 4194085 B2 JP4194085 B2 JP 4194085B2
Authority
JP
Japan
Prior art keywords
turned
gas sensor
self
power
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003073172A
Other languages
English (en)
Other versions
JP2004279293A (ja
Inventor
智弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP2003073172A priority Critical patent/JP4194085B2/ja
Publication of JP2004279293A publication Critical patent/JP2004279293A/ja
Priority to US11/025,992 priority patent/US7033482B2/en
Application granted granted Critical
Publication of JP4194085B2 publication Critical patent/JP4194085B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/4175Calibrating or checking the analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/007Arrangements to check the analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors

Description

【0001】
【発明の利用分野】
この発明は、プロトン導電体ガスセンサを用いたガス検出装置の自己診断に関する。
【0002】
【従来技術】
【特許文献1】
米国特許5650054号
【特許文献2】
米国特許6200443号
プロトン導電体ガスセンサの構造として、特許文献1に記載のものがある。このガスセンサでは、金属缶の下部を水溜とし、上部にくびれ部を介してCOセンサの本体を保持する。COセンサの本体は、プロトン導電体膜とその表裏の電極とからなるMEAと、ガスの拡散と導電性コンタクトとを兼ねた多孔質の炭素シートとで構成されている。センサ本体の底部を水蒸気導入孔を設けた金属ワッシャに接触させ、上部を拡散制御孔を設けた金属ワッシャに接触させる。また底部のワッシャを金属缶のくびれで支え、上部のワッシャと金属缶との間にガスケットを設け、金属缶の上部をかしめて、上下の金属板(ワッシャ)とその間のセンサ本体を、金属缶に取り付ける。かしめによる加圧でセンサ本体を保持し、また上下の金属板とセンサ本体の炭素シートとの接続を保つ。
【0003】
プロトン導電体ガスセンサの自己診断が、例えば特許文献2により提案されている。ガスセンサの検知極/対極間に短時間の弱い電圧パルスを加え、パルスをオフした後のキャパシタンスを測定する。キャパシタンスは正常なセンサと不良なセンサとで異なるので、自己診断ができるとされている。プロトン導電体ガスセンサの内部抵抗はΩオーダーで低く、短時間の微弱なパルスとはいえ両極間に電圧を加えると、プロトン導電体やその電極に変化が生じたり、ヒステリシスが生じたりする恐れがある。また自己診断用にパルス電源が必要で、パルスを加えた後のヒステリシスが解消するまでの間、検出が不能になる。
【0004】
【発明の課題】
この発明の課題は、プロトン導電体ガスセンサの増幅回路の電源を用いて自己診断ができるようにし、かつ自己診断によるプロトン導電体やその電極への影響を小さくすることにある。
【0005】
【発明の構成】
この発明のプロトン導電体ガスセンサの自己診断方法は、プロトン導電体膜に検知極と対極とが接続され、かつガス検出装置に組み込まれたプロトン導電体ガスセンサの自己診断方法において、前記ガス検出装置の電源をオフした後に再度オンした際の、前記ガスセンサの出力のピークあるいはボトムの有無から、前記ガスセンサを自己診断することを特徴とする。
【0006】
好ましくは、前記出力のピークが存在する際に前記ガスセンサを正常、ピークが存在しない際に前記ガスセンサを不良とする。
特に好ましくは、前記電源を第1の頻度で所定時間未満の時間オフした後に再度オンして、該電源オン後の前記ガスセンサ出力のボトムの有無からガスセンサを自己診断し、さらに、前記電源を第2の頻度で所定時間超の時間オフした後に再度オンして、該電源オン後の前記ガスセンサ出力のピークの有無からガスセンサをさらに自己診断する。
【0007】
この発明のガス検出装置は、プロトン導電体膜に検知極と対極とを接続したガスセンサと、前記検知極と前記対極間の電流を増幅するための増幅回路と、前記増幅回路を駆動するための電源とを備えた、ガス検出装置において、
該電源をオフした後に再度オンするためのスイッチと、
前記電源のオフ後に再度オンした後の、前記増幅回路の出力のピークまたはボトムを検出して、前記ボトムまたはピークが検出された際にガスセンサを正常、そうでない際に不良として、自己診断するための自己診断手段と、
自己診断の結果を表示するための表示手段、とを設けたことを特徴とする。
【0008】
好ましくは、前記自己診断手段は、前記電源を所定時間超オフした後に再度電源をオンした際に、出力のピークを検出すると前記ガスセンサを正常、ピークを検出しないと前記ガスセンサを不良とする。
特に好ましくは、前記電源を第1の頻度で所定時間未満の時間オフした後に再度オンし、かつ前記電源を第2の頻度で所定時間超の時間オフした後に再度オンするように、前記スイッチを駆動するための手段を設け、 かつ
前記所定時間未満の時間電源をオフした後の、前記ガスセンサ出力のボトムの有無からガスセンサを自己診断し、
さらに、前記所定時間超の時間オフした後の、前記ガスセンサ出力のピークの有無からガスセンサをさらに自己診断する。
また好ましくは、前記電源が電池電源で、前記自己診断手段を内蔵したマイクロコンピュータを設けて、前記表示手段を駆動すると共に、前記スイッチを所定の条件でオン/オフする。
【0009】
この明細書において、プロトン導電体ガスセンサの出力は、センサ内を検知極から対極へ電流が流れる際に+、対極から検知極へ電流が流れる際に−とする。出力が+はCOやH2等の存在に対応し、例えばCOが存在すると、検知極で、CO+H2O→CO2+2H+2e
対極で
2H+2e+1/2O2→H2O
の反応が進行する。従って出力のピークは還元性ガスに接触したときの出力の向きと同じ方向の出力で、出力のボトムは、対極と検知極を逆にして付帯回路にセットして、COが存在したときの出力の方向と同じで、あるいはあたかも還元性ガス濃度が負になった時の出力の向きとなる。なお実施例ではガスセンサの特定の構造や材料、特定の増幅回路を示すが、これらは任意である。
【0010】
【発明の作用と効果】
この発明では、プロトン導電体ガスセンサとその増幅回路との電源をオフし、再度オンした後の出力波形からガスセンサを自己診断する。このため自己診断用の特別の電源は不要で、またセンサの検知極と対極間に電圧を加えるわけではないので、自己診断用の電圧パルスでセンサを劣化させる恐れがない。発明者の実験では、電源を再度オンした後に検出が可能になるまでのデッドタイムは例えば20秒以下で、電圧パルスを加える場合よりも、自己診断に伴うデッドタイムを短くできる。この発明の自己診断では、検知極や対極と外部端子との接触不良や断線、検知極と対極のショートなどの他に、センサ感度の低下や、0ガスレベルが異常な位置にシフトする、などのことも検出できる。
【0011】
電源を再度オンした際の過渡波形には2種類有り、短時間、例えば1分以下の間、電源をオフして再度オンすると、出力のボトムが観測された。これに対して長時間、例えば5分以上、電源をオフして再度オンすると、出力のピークが検出された。短時間の電源オフ後の出力のボトムは、感度不良なガスセンサでも観察され、正常なガスセンサと感度不良なガスセンサとの判別は難しかった。しかし断線やショートなどの単純な不良は確実に検出できた。次に長時間電源をオフした後の出力のピークでは、正常なガスセンサと感度不良なガスセンサとを判別できた。この場合、出力のピークが生じるのは正常なガスセンサに限られ、感度不良や0ガスベルのシフト、断線、ショートなどがあると、出力のピークは生じなかった。
【0012】
そこで、短時間でも長時間でも、電源をオフした後に再度電源をオンした際の特性(ボトムやピークの有無)を用いると、断線やショートなどの単純な不良を確実に検出でき、感度不良などもある程度検出できる。長時間オフした後の出力のピークを用いると、感度不良なども確実に検出できる。また長時間オフさせると検出が行われない時間(デッドタイム)が増すので、長時間オフさせる自己診断を月に1回などの低い頻度で行い、短時間オフさせる自己診断を1日に1回などの頻度で行うと、確実な自己診断ができる。あるいは短時間オフさせるモードを繰り返して行っても、検出の信頼性を増すことができる。
【0013】
ガス検出装置を電池電源で駆動する場合、電力の節約のために、所定時間毎に増幅回路や信号処理用のマイクロコンピュータなどを起動し、これ以外の時間はこれらの動作を停止することが行われている。この発明は、このような増幅回路の動作停止とその後の電力供給とを利用して、電源のオフやオンとして利用できる。
【0014】
【実施例】
図1にプロトン導電体ガスセンサ2の構造を示し、図2はガスセンサ2を用いたガス検出装置のブロック図である。図3は、プロトン導電体ガスセンサの自己診断アルゴリズムを示すフローチャートである。
【0015】
図4〜図6は正常なガスセンサ(図4、センサ数5)、不良なガスセンサ(図5、センサ数3,図6、センサ数2)の感度パターン(CO30〜400ppm)を示す。図7〜図9は、これらのガスセンサとその付帯回路との電源を5秒間オフした後に、電源を再投入した際の出力の波形図である。短時間電源をオフすると、正常なセンサでは出力のボトム(負のピーク)が生じ、このボトムはあたかも検知対象のCO濃度が負になったような出力波形である。このボトムを用いることにより、図6の不良センサと図4の正常センサとの識別ができるが、図5の不良センサと図4の正常センサとの識別は難しい。
【0016】
図10〜図12は、図4〜図6のプロトン導電体ガスセンサの電源を(付帯回路を含めて)1時間オフした後に、電源を再投入した際の出力を示している。正常なセンサでは出力のピークが生じ、不良センサではピークが生じない。従ってセンサの正常/不良を確実に識別できるが、電源を長時間オフするため、検出のデッドタイムが生じる。
【0017】
図13は、正常なプロトン導電体ガスセンサ12個に対して、5秒間電源をオフした後に、再度電源をオンした際の出力波形を示す。各センサは出力のボトムを示す。図14は断線やショートなどのある3個のセンサに対する、同じ条件での出力波形を示す。図15は図13のガスセンサの電源を5分オフした後にオンした際の出力波形で、図10に比べると小さいものの、全センサで出力のピークが生じる。
【0018】
図16、図17は、正常なプロトン導電体ガスセンサ8個に対して、検知極/対極間に、±50mV×4秒間の電圧パルスを加えた後の出力波形を示す。出力が定常値に復帰するまでに500秒程度必要で、自己診断に要する検出のデッドタイムが長い。
【0019】
図1において、2はプロトン導電体ガスセンサで、4はセンサ本体であり、MEA10と拡散制御板12並びに封孔体14,金属ワッシャ28で構成されている。MEA10は、図1の右側に示すように、プロトン導電体膜42の両面に検知極43と対極44とを設け、これらを導電性炭素シート45,46(膜厚約40μm)で被覆したものである。プロトン導電体膜42には、ここではパースルホン酸系の固体ポリマー電解質(SPE)、例えばゴア社製のもので膜厚約20μmの膜を用いた。検知極43や対極44はいずれも、炭素にPtを分散させ、プロトン導電体ポリマーを含浸させたものである(膜厚各約10μm)。また導電性炭素シート45,46は設けなくても良い。MEA10の材質や膜厚などは任意である。
【0020】
拡散制御板12はチタンなどの薄板からなり、厚さは例えば0.1mm程度で、打ち抜きなどにより直径0.1mm程度の拡散制御孔26を設けてある。封孔体14は拡散制御板12の上流側で、被毒物質や誤報の原因となるガスを除去するためのもので、金属のキャップ16と金属の底板18とから成り、その間にガス吸着用の活性炭やシリカゲル、ゼオライトなどから成るフィルタ材20を充填してある。
【0021】
底板18の例えば中央部に開口22があり、キャップ16の側面に開口24を設け、開口22と開口24とは封孔体14の軸方向に沿って重ならないように配置する。そして開口22,24の少なくとも一方を、複数設けることが好ましい。ワッシャ28はステンレスやチタンなどの金属板から成り、拡散制御板12に比べて肉厚の例えば0.5mm厚とし、1箇所〜複数箇所に水蒸気導入孔30を設けて、水溜からの水蒸気を対極へ供給する。水蒸気導入孔30は、例えば直径0.5mm程度と、拡散制御孔26よりも大きくする。
【0022】
32は金属缶で、ここでは純水をゲル化したゲル34を水溜に用いる。36は凹部で、金属ワッシャ28を支持し、38はガスケットで、封孔体14と金属缶32との間に配置してある。そして金属缶32の上部をかしめることにより、センサ本体を金属缶32に対して固定し、封孔体14を金属缶32から絶縁し、センサ本体4の各部での電気的導通とシールとを行う。
【0023】
COの検出機構を示す。封孔体14を通過した周囲の雰囲気は、拡散制御孔26から検知極43へと達する。この間に、周囲雰囲気中のCOは、検知極43で、 CO + H2O → CO2 + 2H+ + 2e-
の反応により、プロトンを発生させる。この反応に必要な水は、水蒸気導入孔から供給される。対極14では、
2H+ + 1/2 O2 + 2e- → H2O
の反応が生じる。周囲雰囲気中の酸素濃度はCO濃度に比べてはるかに高いので、対極44には常時COを完全に酸化できるだけの酸素がある。
【0024】
図2にガス検出装置の構成を示すと、50は電池などを用いた電源で、51はリセットスイッチである。スイッチ52は、ガスセンサ2やその増幅回路への電力の供給をオン/オフするためのもので、R1〜R9は抵抗で、C1〜C4はコンデンサである。また増幅回路の電源を+Vccで表す。
【0025】
ガスセンサ2の対極Cには、抵抗R1/R2で定まるバイアス電圧、ここでは1Vが集積回路IC1を介して加えられる。なお集積回路IC1の主な作用は、電源中のリップルの除去であり、電池電源50を用いる場合は設けなくてもよい。ガスセンサ2の検知極Dから対極Cへ流れる電流は、抵抗R5により電圧に変換される。検知極Dと対極C間の内部抵抗は1Ω程度で、抵抗R5の抵抗値を100KΩ程度する。集積回路IC3では、抵抗R6と抵抗R8との抵抗比で定まる倍率により、増幅が行われる。ここでは抵抗R6を約3KΩ、抵抗R8を約100KΩとする。これらの結果、検知極Dから対極Cへ1nAの電流が流れると、集積回路IC3の出力電圧Voutは3mVとなる。例えばCO600ppmの存在時に、集積回路IC3の出力は0ガスレベルから3V増加し、ガスセンサ2では検知極Dから対極Cへ1 μA程度の電流が流れることになる。なお集積回路IC3に接続した抵抗R9は、0ガスレベルで出力Voutが1Vになるようにするための調整抵抗である。
【0026】
実施例では、電流増幅用に2段の集積回路IC2,IC3を用いたが、これらを1段にしても良い。また実施例では対極Cに+1Vのバイアス電位を加えたが、バイアス電位は例えば100mV〜2V程度の間で変化させることができ、+5Vなどの片電源を回路電源+Vccに用いる代わりに、集積回路IC1〜IC3を±5Vなどの両電源で駆動すると、バイアス電位を例えば0にできる。実施例では、検知極Dと対極C間のキャパシタンスを用いて自己診断を行うというよりも、検知極Dや対極Cでの、分極や局部電位の発生、混成電位の発生などの現象を用いて、自己診断する。
【0027】
抵抗R1,R2〜R9と、集積回路IC1〜IC3などにより、ガスセンサ2の増幅用の付帯回路を構成する。マイクロコンピュータ54により、出力信号Voutの信号処理を行う。55はADコンバータで、56はCO検出部で、出力Voutを所定のいき値と比較することによりCO濃度を算出する。57は自己診断部で、電源52を所定時間オフした後オンした際の、出力Voutの過渡的な波形から、ガスセンサ2の自己診断を行う。また増幅回路に不良があれば、出力Voutは異常な値を示すので、増幅回路の点検も行える。
【0028】
58は電源制御部で、スイッチ52をオン/オフさせる。マイクロコンピュータ54には動作モードと待機モードの2つのモードがあり、待機モードでは例えばタイマ68のみを動作させて待機時間を管理し、他にRAM69に電力を供給してデータを保存する他は、停止している。そして待機モードに移行すると同期してスイッチ52をオフし、ガスセンサ2や増幅回路への電力供給を遮断する。タイマ68で所定の時間スイッチ52をオフさせると、待機モードから動作モードへマイクロコンピュータ54が移行し、これと同期してスイッチ52を閉じて、ガスセンサ2やその増幅回路の電源をオンする。そして電源をオンした後の所定時間、例えば5秒〜15秒程度の間の出力波形から、ガスセンサ2の自己診断を行う。
【0029】
59はLED駆動部で、複数のLEDからなるLED群60を駆動し、LED群60の表示状態には、正常/ガス検出装置が正常動作していない/低濃度のCOが存在する/高濃度のCOが存在する、の例えば4種類がある。ブザー駆動部61はブザー62を駆動し、例えば高濃度のCOの存在時、あるいは低濃度のCOが許容時間を超えて存在する際に、ブザー62を駆動する。LCD駆動部63はLCD64を駆動し、CO濃度を表示する他に、ガス検出装置が正常動作していない、リセットが必要である、などを表示する。
【0030】
EEPROM65は、リセットスイッチ51で電源を遮断しても、主なデータが保存されるようにするためのものである。主なデータとしては、COの検出の履歴やガス検出装置の自己診断の履歴、電源の延べ使用時間、などがある。リセット制御部66は、リセットスイッチ51により電源が投入された際の、マイクロコンピュータ54の初期化などを行う。バッテリーチェック部67は、回路電源+Vccの値などをチェックし、電源50の交換の要否をチェックする。なおバッテリーチェック部67には図示しないADコンバータを介し、回路電源+Vccが入力されているものとする。
【0031】
タイマ68は、マイクロコンピュータ54の各種の動作周期を定め、特にスイッチ52のオン/オフ周期を定める。例えばスイッチ52を40秒間オフした後に、スイッチ52を20秒間オンし、1周60秒でスイッチ52を駆動する。そしてスイッチ20秒のオン時間のうち、最初の15秒間などを用いて、ガスセンサ2の自己診断を行い、最後の5秒間を用いてCOの検出を行う。常時はガスセンサ2は1分周期で動作し、例えば1カ月に1回、即ち前記の1分周期よりも長い間隔で、例えば1時間スイッチ52をオフし、スイッチ52をオフからオンした後の15秒間を用いて、ガスセンサ2の自己診断を行う。前記のようにスイッチ52がオフしている際には、マイクロコンピュータ54も待機モードにある。RAM69は、マイクロコンピュータ54の動作に必要な種々のデータを記憶する。
【0032】
図3に、実施例での自己診断アルゴリズムを示す。スイッチ52をオフしている時間をチェックし、この時間が1分以下の場合、例えば実施例の場合40秒では、スイッチをオンした際の出力のボトムの有無から異常をチェックする。またオフ時間が例えば5分以上の場合、電源をオフからオンに変化させた際の出力のピークの有無から異常のチェックする。実施例では長い側の電源のオフ時間として、例えば1時間を用いる。長い側の電源のオフ時間は例えば3分以上24時間以下が好ましく、より好ましくは5分以上12時間以下とし、さらに好ましくは5分以上で1時間以下とする。短い側の電源のオフ時間は例えば1分以下で0.1秒以上が好ましく、より好ましくは1分以下で1秒以上とし、さらに好ましくは40秒以下3秒以上とする。オフ時間が長い側と短い側との間の境界は例えば3分とし、3分よりも長いことを例えば所定時間超とし、3分よりも短いことを例えば所定時間未満とする。
【0033】
ガスセンサに異常が検出された場合、その旨をEEPROMやRAMに記憶する。短い側のオフで異常が検出された場合、自動的に再度例えば40秒間スイッチ52により電源をオフし、再度自己診断を行う。このようにして2回続けて異常が検出されると、LCD64にリセットを要求する表示などを行う。EEPROMに異常が記録された状態でリセットされると、リセットからの復帰時に例えば5分間スイッチ52をオフして、強制的に長い時間のオフを実行する。その後の出力パターンから異常を確認し、ここでも異常が確認されると、EEPROMに永久不良の旨を記録し、LED60やLCD64での異常表示をオフしないようにする。
【0034】
また長い時間の間スイッチ52をオフした後に異常を検出すると、同様にEEPROMに異常を書き込み、リセットを要求する。そしてリセット後に、再度長い時間の間スイッチ52により電源をオフし、ここでも異常が検出されると、永久異常をEEPROMに書き込み、LCDやLEDでその旨を表示する。
【0035】
異常が検出されなかった場合、あるいは異常が検出されてもリセットなどを行うと異常が再現しなかった場合、COの検出を行い、所定時間毎に電源をオフして、待機モードへ移行する。
【0036】
図4は正常な5個のガスセンサの出力波形を示し、検知極Dから対極Cへ流れる電流はCO400ppmで0.7μmAである。またセンサ出力はCO濃度に比例する。図5は3個のセンサの波形を示し、2個のセンサの波形が出力1Vラインの上で重なっている。これらのセンサはCO感度が不良、もしくはCO感度を示さないものである。図6は2個のガスセンサの波形を示し、これらは0レベルが異常で、CO感度も小さい。
【0037】
図7〜図9は、これらのガスセンサに対して、5秒間スイッチ52をオフして、電源を遮断した後、再度電源をオンした後の特性を示している。図4の正常なガスセンサと、図5の異常なガスセンサ中の2個のガスセンサでは(図8)、電源を投入すると出力のボトムが表れる。これに対して図6のガスセンサでは出力のボトムは生じない(図9)。
【0038】
ボトムの検出には、例えば0.95Vなどの電圧にいき値を設け、電源投入後例えば15秒以内の窓内で、出力がいき値を上から下へと通過した後、下から上へ通過することを検出すればよい。あるいは電源を投入し、出力が1Vのピークを示した後の、出力電圧の時間微分を用いてもよい。出力のボトムの検出方法自体は任意である。
【0039】
図10〜図12は、図4〜図6のガスセンサを、1時間電源をオフした後に、再度電源をオンした際の特性を示す。時刻5秒に電源をオンしたものとする。図4のガスセンサでは、全数出力のピークを示す。これに対して図5のガスセンサでは、出力のピークは生じず、電源をオフする時間を長くすると、図4のガスセンサと図5のガスセンサとの判別ができる。また図6のガスセンサは、電源のオフ時間が長くても短くても、同じ挙動を示す(図9,図12)。
【0040】
図13は、正常なガスセンサ12個に対して、電源を5秒間オフした後にオンした際の特性を示す。いずれのセンサでも、電源をオフからオンに変化させると、出力のボトムが生じる。図14のガスセンサは、検知極と対極とがショートしたり、検知極や対極が端子から浮いているものである。この場合の出力波形は、バイアス電圧の1Vがそのまま表れるか、アース電圧の0ボルトや回路電圧の+Vcc 5Vがそのまま表れるかの3種類である。いずれの場合も電源をオフからオンに変化させた後の過渡波形は見られない。
【0041】
図15は、図13の正常センサ12個に対して、5分間電源をオフした後にオンさせた際の波形を示す。電源をオフからオンに変化させると、12個の全センサで出力のピークが生じた。
【0042】
以上のように、電源をオフからオンに変化させた後の過渡波形から、プロトン導電体ガスセンサ2の自己診断ができる。電源のオフ時間が短い場合、例えば5秒の場合、過渡波形では出力のボトムが生じ、電源のオン時間が長い場合、例えば5分以上の場合、出力のピークが生じる。これらの2つの自己診断では、電源のオフ時間が長い方が信頼性がある。しかしながら電源のオフ時間を長くすると、CO検出のデッドタイムが長くなる。このためオフ時間が短い自己診断とオフ時間が長い自己診断の双方を行い、オフ時間が短い自己診断は比較的高い頻度で、オフ時間が長い自己診断は比較的小さな頻度で行うのがよい。また自己診断に必要な電源のオフは、電池電源50を休ませるための待機モードを利用して行うことができる。
【0043】
図16,図17は別の正常なプロトン導電体ガスセンサ8個に対して、±50mVの電位を4秒間加えた後の波形を示している。図16は検知極を+として、検知極/対極間に50mVの電圧を加えた際の波形で、図17は逆に検知極に−50mVの電圧を加えた際の波形である。
【0044】
50mV×4秒の電圧を加えると、その後500秒程度の間センサ信号が安定しない。このため検出のデッドタイムが長くなる。次に検知極と対極との間に50mVの電圧を加えると、10mA以上の電流が両極間に流れる。ガスセンサ2では、CO600ppmで1μmA程度の電流を流すようにしてあるため、10mA以上の電流が流れると、電極とプロトン導電体膜との界面に影響が生じたり、そのヒステリシスが残ったりする恐れがある。
【0045】
以上のように実施例では、待機モードと動作モードとの間の電源のオン/オフを利用し、プロトン導電体ガスセンサの自己診断を行うことができる。この自己診断では、ショートや短絡などの単純なものに限らず、感度不良やセンサ出力が浮いている(フロートしている)ものも検出できる。
【図面の簡単な説明】
【図1】 プロトン導電体ガスセンサの断面図
【図2】 プロトン導電体ガス検出装置のブロック図
【図3】 プロトン導電体ガスセンサの、自己診断アルゴリズムのフローチャート
【図4】 正常なプロトン導電体ガスセンサの感度特性を示す図
【図5】 不正常なプロトン導電体ガスセンサの感度特性を示す図
【図6】 他の不正常なプロトン導電体ガスセンサの、感度特性を示す図
【図7】 図4のプロトン導電体ガスセンサを、5秒間電源をオフした後に電源をオンした際に表れる、出力のボトムを示す図
【図8】 図5のプロトン導電体ガスセンサを、5秒間電源をオフした後に電源をオンした際に表れる、出力のボトムを示す図
【図9】 図6のプロトン導電体ガスセンサを、5秒間電源をオフした後に電源をオンした際に表れる、出力パターンを示す図
【図10】 図4のプロトン導電体ガスセンサを、1時間電源をオフした後に電源をオンした際に表れる、出力のピークを示す図
【図11】 図5のプロトン導電体ガスセンサを、1時間電源をオフした後に電源をオンした際の出力パターンを示す図
【図12】 図6のプロトン導電体ガスセンサを、1時間電源をオフした後に電源をオンした際の出力パターンを示す図
【図13】 正常なプロトン導電体ガスセンサの電源を、5秒間オフした後にオンした際の、出力のボトムを示す図
【図14】 短絡や断線のあるプロトン導電体ガスセンサの電源を、5秒間オフした後にオンした際の、出力のボトムを示す図
【図15】 図13のプロトン導電体ガスセンサの電源を、5分間オフした後にオンした際の、出力のボトムを示す図
【図16】 図13のプロトン導電体ガスセンサの検知極/対極間に、50mVの電圧を4秒間加えた際の応答特性図
【図17】 図13のプロトン導電体ガスセンサの検知極/対極間に、50mVの電圧(図16とは逆極性)を4秒間加えた際の応答特性図
【符号の説明】
2 プロトン導電体ガスセンサ
4 センサ本体
10 MEA
12 拡散制御板
14 封孔体
16 キャップ
18 底板
20 フィルタ材
22,24 開口
26 拡散制御孔
28 ワッシャ
30 水蒸気導入孔
32 金属缶
34 ゲル
36 凹部
38 ガスケット
42 プロトン導電体膜
43 検知極
44 対極
45,46 導電性炭素シート
50 電源
51 リセットスイッチ
52 スイッチ
54 マイクロコンピュータ
55 ADコンバータ
56 CO検出部
57 自己診断部
58 電源制御部
59 LED駆動部
60 LED群
61 ブザー駆動部
62 ブザー
63 LCD駆動部
64 LCD
65 EEPROM
66 リセット制御部
67 バッテリーチェック部
68 タイマ
69 RAM
R1〜R9 抵抗
C1〜C4 コンデンサ
IC1〜IC3 集積回路
+Vcc 回路電源

Claims (7)

  1. プロトン導電体膜に検知極と対極とが接続され、かつガス検出装置に組み込まれたプロトン導電体ガスセンサの自己診断方法において、
    前記ガス検出装置の電源をオフした後に再度オンした際の、前記ガスセンサの出力のピークあるいはボトムの有無から、前記ガスセンサを自己診断することを特徴とする、プロトン導電体ガスセンサの自己診断方法。
  2. 前記出力のピークが存在する際に前記ガスセンサを正常、ピークが存在しない際に前記ガスセンサを不良とすることを特徴とする、請求項1のプロトン導電体ガスセンサの自己診断方法。
  3. 前記電源を第1の頻度で所定時間未満の時間オフした後に再度オンして、該電源オン後の前記ガスセンサ出力のボトムの有無からガスセンサを自己診断し、
    さらに、前記電源を第2の頻度で所定時間超の時間オフした後に再度オンして、該電源オン後の前記ガスセンサ出力のピークの有無からガスセンサをさらに自己診断することを特徴とする、請求項1または2のプロトン導電体ガスセンサの自己診断方法。
  4. プロトン導電体膜に検知極と対極とを接続したガスセンサと、前記検知極と前記対極間の電流を増幅するための増幅回路と、前記増幅回路を駆動するための電源とを備えた、ガス検出装置において、
    該電源をオフした後に再度オンするためのスイッチと、
    前記電源のオフ後に再度オンした後の、前記増幅回路の出力のピークまたはボトムを検出して、前記ボトムまたはピークが検出された際にガスセンサを正常、そうでない際に不良として、自己診断するための自己診断手段と、
    自己診断の結果を表示するための表示手段、とを設けたことを特徴とする、ガス検出装置。
  5. 前記自己診断手段は、前記電源を所定時間超オフした後に再度電源をオンした際に、出力のピークを検出すると前記ガスセンサを正常、ピークを検出しないと前記ガスセンサを不良とすることを特徴とする、請求項4のガス検出装置。
  6. 前記電源を第1の頻度で所定時間未満の時間オフした後に再度オンし、かつ前記電源を第2の頻度で所定時間超の時間オフした後に再度オンするように、前記スイッチを駆動するための手段を設け、 かつ
    前記所定時間未満の時間電源をオフした後の、前記ガスセンサ出力のボトムの有無からガスセンサを自己診断し、
    さらに、前記所定時間超の時間オフした後の、前記ガスセンサ出力のピークの有無からガスセンサをさらに自己診断するように、前記自己診断手段を構成したことを特徴とする、請求項4または5のガス検出装置。
  7. 前記電源が電池電源で、
    前記自己診断手段を内蔵したマイクロコンピュータを設けて、前記表示手段を駆動すると共に、前記スイッチを所定の条件でオン/オフするようにしたことを特徴とする、請求項4〜6のいずれかのガス検出装置。
JP2003073172A 2003-03-18 2003-03-18 プロトン導電体ガスセンサの自己診断方法とガス検出装置 Expired - Fee Related JP4194085B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003073172A JP4194085B2 (ja) 2003-03-18 2003-03-18 プロトン導電体ガスセンサの自己診断方法とガス検出装置
US11/025,992 US7033482B2 (en) 2003-03-18 2005-01-03 Self-diagnostic method for electrochemical gas sensor and gas detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073172A JP4194085B2 (ja) 2003-03-18 2003-03-18 プロトン導電体ガスセンサの自己診断方法とガス検出装置

Publications (2)

Publication Number Publication Date
JP2004279293A JP2004279293A (ja) 2004-10-07
JP4194085B2 true JP4194085B2 (ja) 2008-12-10

Family

ID=33289136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073172A Expired - Fee Related JP4194085B2 (ja) 2003-03-18 2003-03-18 プロトン導電体ガスセンサの自己診断方法とガス検出装置

Country Status (2)

Country Link
US (1) US7033482B2 (ja)
JP (1) JP4194085B2 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7090755B2 (en) * 2004-10-28 2006-08-15 Figaro Engineering Inc. Gas detecting device with self-diagnosis for electrochemical gas sensor
JP4721341B2 (ja) * 2005-11-18 2011-07-13 フィガロ技研株式会社 ガス検出装置用の0ガス空気の発生装置
JP2007178420A (ja) * 2005-11-30 2007-07-12 Denso Corp 容量式物理量センサおよびその診断方法
JP2007240484A (ja) * 2006-03-13 2007-09-20 Yazaki Corp Co警報器および電気化学式センサ
JP4714612B2 (ja) * 2006-03-20 2011-06-29 矢崎総業株式会社 ガス濃度測定装置
JP4820193B2 (ja) * 2006-03-20 2011-11-24 矢崎総業株式会社 ガス濃度測定装置
JP4800908B2 (ja) * 2006-03-20 2011-10-26 矢崎総業株式会社 電気化学式ガスセンサ内蔵ガス警報器
JP4842789B2 (ja) * 2006-06-09 2011-12-21 矢崎総業株式会社 ガス濃度測定装置
JP2008164305A (ja) * 2006-12-26 2008-07-17 Yazaki Corp 電気化学式センサ、対象ガス監視装置、及び、電気化学式センサの濃度検出方法
JP4943887B2 (ja) * 2007-02-21 2012-05-30 矢崎総業株式会社 ガス警報器
JP4834616B2 (ja) * 2007-06-15 2011-12-14 矢崎総業株式会社 警報器
JP4834617B2 (ja) * 2007-06-15 2011-12-14 矢崎総業株式会社 警報器
JP2008309712A (ja) * 2007-06-15 2008-12-25 Yazaki Corp 警報器
US8097146B2 (en) 2008-03-27 2012-01-17 Sensor Electronics Corporation Device and method for monitoring an electrochemical gas sensor
JP5478101B2 (ja) * 2009-03-31 2014-04-23 シスメックス株式会社 試薬調製装置および検体処理システム
EP2239562B1 (en) * 2009-04-06 2013-11-13 Life Safety Distribution AG Checking electrochemical gas sensors
JP5276604B2 (ja) * 2010-01-06 2013-08-28 大阪瓦斯株式会社 電気化学式センサの診断方法及び電気化学式センサ
JP5395782B2 (ja) * 2010-01-06 2014-01-22 大阪瓦斯株式会社 電気化学式センサの診断方法及び電気化学式センサ
JP5693496B2 (ja) * 2011-04-05 2015-04-01 フィガロ技研株式会社 電気化学ガスセンサ及びそのカシメ方法
US8736274B2 (en) 2011-04-26 2014-05-27 Osaka Gas Co., Ltd. Method and apparatus for diagnosing electrochemical sensor
JP5822566B2 (ja) * 2011-07-05 2015-11-24 大阪瓦斯株式会社 電気化学式センサの使用方法及び電気化学式センサを用いた警報装置
CN102445485B (zh) * 2011-09-26 2013-10-23 华瑞科学仪器(上海)有限公司 气体传感器的检测方法及设备
DE102011089383A1 (de) * 2011-12-21 2013-06-27 Robert Bosch Gmbh Verfahren zur Korrektur von Messwerten eines Sensorelements
JP5825294B2 (ja) * 2013-05-08 2015-12-02 トヨタ自動車株式会社 燃料性状センサの異常判定装置
GB2516893A (en) * 2013-08-05 2015-02-11 Crowcon Detection Instr Ltd Gas sensor measurements
US9588092B2 (en) * 2014-11-03 2017-03-07 Wagner Electronic Products, Inc. Relative humidity saturated salt generator
US10203302B2 (en) 2015-08-13 2019-02-12 Carrier Corporation State of health monitoring and restoration of electrochemical sensor
US10466296B2 (en) * 2017-01-09 2019-11-05 Analog Devices Global Devices and methods for smart sensor application
CN109298033B (zh) * 2018-09-06 2020-12-04 赛特威尔电子股份有限公司 一种电化学气体传感器及其诊断方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970010317B1 (ko) * 1989-06-16 1997-06-25 니뽄 도꾸슈 도교오 가부시끼가이샤 공연비 제어장치
US5423963A (en) * 1992-09-30 1995-06-13 The Foxboro Company Fouling compensation in an oxygen analyzer
DE19510574C1 (de) * 1995-03-23 1996-06-05 Testo Gmbh & Co Verfahren zur Zustandsbestimmung eines elektrochemischen Gassensors
US6200443B1 (en) * 1998-09-29 2001-03-13 Atwood Industries, Inc. Gas sensor with a diagnostic device

Also Published As

Publication number Publication date
US7033482B2 (en) 2006-04-25
US20050121338A1 (en) 2005-06-09
JP2004279293A (ja) 2004-10-07

Similar Documents

Publication Publication Date Title
JP4194085B2 (ja) プロトン導電体ガスセンサの自己診断方法とガス検出装置
EP1806576B1 (en) Gas detecting device provided with electochemical gas sensor and capable of self-diagnosis
EP0990895B1 (en) Gas sensor with electrically conductive hydrophobic membranes
US20040238378A1 (en) Nox measurement device, nox sensor self-diagnosis device, and self-diagnosis method thereof
EP0840112B1 (en) Condition monitoring of a gas detector
JP4834616B2 (ja) 警報器
US6742382B2 (en) Combustible gas detector and method for its operation
JP4834617B2 (ja) 警報器
JPH11250372A (ja) 電池式警報器
EP1410006B1 (en) Monitoring of gas sensors
JP4573514B2 (ja) 定電位電解式ガス測定方法
JP2011086074A (ja) 警報器
US5405512A (en) Gas sensor and method
JP5115992B2 (ja) 一酸化炭素ガス計測装置及び警報器
JP5308312B2 (ja) 電気化学式センサの診断方法及び電気化学式センサの診断装置
US20120125790A1 (en) Electrochemical sensor for measuring the oxygen partial pressure in a process fluid and a method for testing its function
JP2002245570A (ja) ガス漏れ警報器
JP3144427B2 (ja) ガス検知装置
WO2006022003A1 (ja) 電気化学式ガスセンサの自己診断方法とガス検出装置
US20120274337A1 (en) Method and Apparatus for Diagnosing Electrochemical Sensor
JP4345282B2 (ja) ガス遮断装置
CN110264688B (zh) 报警器以及报警器故障检测方法
JP5297969B2 (ja) 警報器
JP3866390B2 (ja) ガス漏れ警報器
JP5065332B2 (ja) 一酸化炭素ガス計測装置及び警報器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080919

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141003

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees