JP4186573B2 - 容量負荷変動体の充放電装置 - Google Patents

容量負荷変動体の充放電装置 Download PDF

Info

Publication number
JP4186573B2
JP4186573B2 JP2002285228A JP2002285228A JP4186573B2 JP 4186573 B2 JP4186573 B2 JP 4186573B2 JP 2002285228 A JP2002285228 A JP 2002285228A JP 2002285228 A JP2002285228 A JP 2002285228A JP 4186573 B2 JP4186573 B2 JP 4186573B2
Authority
JP
Japan
Prior art keywords
discharge
capacitive load
charging
switch
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002285228A
Other languages
English (en)
Other versions
JP2003234517A (ja
Inventor
昇 長瀬
精二 森野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002285228A priority Critical patent/JP4186573B2/ja
Priority to DE10251685.5A priority patent/DE10251685B4/de
Publication of JP2003234517A publication Critical patent/JP2003234517A/ja
Application granted granted Critical
Publication of JP4186573B2 publication Critical patent/JP4186573B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • H02N2/065Large signal circuits, e.g. final stages
    • H02N2/067Large signal circuits, e.g. final stages generating drive pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2031Control of the current by means of delays or monostable multivibrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、容量負荷変動体の充放電装置に関するものであり、例えば、アクチュエータとして用いられるピエゾ素子(容量負荷変動体の一例)の充放電装置に用いて好適な技術である。
【0002】
【従来の技術】
ピエゾ素子は、温度等によって容量負荷が変動する。このため、ピエゾ素子を一定電流で一定時間充電しても、ピエゾ素子に蓄えられる電気エネルギーが温度によって変動してしまい、ピエゾ素子の出力(伸び等)が一定にならない。
そこで、ピエゾ素子に一定の電気エネルギーを充電させるには、温度補償を行う必要がある。
【0003】
温度特性を補償するピエゾ素子の充電方法としてマルチスイッチング方式が知られている。この充電方法は、図10に示すように、ピエゾ素子を充電する指示が与えられると(充電開始信号に相当するものであり、例えば噴射信号IJTのON)、先ず、充電スイッチをONしてピエゾ素子を通電する。ピエゾ素子の通電電流Ipztが所定電流(例えば25A)に達したら、充電スイッチをOFF する。この1回目の充電スイッチのON時間を記憶しておく。充電スイッチのOFF 後、エネルギー蓄積コイル(あるいは、フライバックトランス)に蓄えられた電気エネルギーがダイオードを介してピエゾ素子に与えられ、ピエゾ素子の充電が継続する。
1回目の充電スイッチのOFF 後に電流Ipztが0Aまで低下すると、1回目で記憶されたON時間だけ充電スイッチをONし、その後に電流Ipztが0Aに低下すると再び1回目で記憶されたON時間だけ充電スイッチをONすることを複数回繰り返す。
このように、1回目で記憶したON時間で充電スイッチを繰り返してONすることにより、時間当たりの電気エネルギーが一定となり、ピエゾ素子の温度補償充電が可能となる。
【0004】
一方、放電も従来では図10に示すようにマルチスイッチング方式によって実行されている。この放電方法は、ピエゾ素子を放電する指示が与えられると(放電開始信号に相当するものであり、例えば噴射信号IJTのOFF )、先ず、放電スイッチをONしてピエゾ素子に蓄えられた電気エネルギーをエネルギー蓄積コイル(あるいは、フライバックトランス)を介して放電させる。放電電流Ipztが所定の遮断電流(例えば20A)に達したら、放電スイッチをOFF する。すると、エネルギー蓄積コイルに蓄えられた電気エネルギーがダイオードを介して電源に回収される。
1回目の放電スイッチのOFF 後に放電電流Ipztが0Aまで低下すると、放電スイッチをONし、上記の作動を複数回繰り返す(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平10−308542号公報
【0006】
【発明が解決しようとする課題】
上記に示した充電方法は、充電スイッチの多数のON-OFFによって充電を行うため、1回のON-OFFに要する時間のズレがマルチスイッチングによって大きくなり、ピエゾ素子のエネルギー充電の精度が悪くなってしまう。
同様に、従来の放電方法も、放電スイッチの多数のON-OFFによって放電を行うため、1回のON-OFFに要する時間のズレがマルチスイッチングによって大きくなり、ピエゾ素子からエネルギーを放出させる精度が悪くなってしまう。
また、マルチスイッチング方式では、高電流をON-OFFする多数のスイッチングによってノイズの発生量も多くなってしまう。
【0007】
一方、従来の放電方法では、放電の最後は、負荷電圧が下がり、放電電流Ipztが遮断電流まで達しなくなる。このため、時間ガードを設けて放電スイッチをOFF させていた。このため、ピエゾ素子に残る電圧が変動してしまう不具合がある。
このように、ピエゾ素子に残る電圧が変動すると、次回の充電時間に影響がでてしまう。具体的に例えば、ピエゾ素子を用いたインジェクタでは、次回の充電開始から充電完了時の時間が変動することになり、インジェクタの噴射時間が変化し、噴射量が変化する不具合が発生してしまう。
【0008】
また、従来の放電方法では、ピエゾ素子に電圧が残ることにより、ピエゾ素子に蓄えられていた電気エネルギーの電源への回収効率が劣化してしまう。
さらに、従来の放電方法では、マルチスイッチング方式によって短時間で放電スイッチのON-OFFが繰り返されるため、ピエゾ素子のキャパシタCとエネルギー蓄積コイルのインダクタンスLで発振が発生し、その発振によってピエゾ素子が破損する可能性がある。
【0009】
【発明の目的】
本発明の容量負荷変動体の充放電装置は、上記に示したマルチスイッチング方式の充電方法や放電方法によって生じる不具合を解決することを目的とする。
具体的には、容量負荷変動体(例えば、ピエゾ素子)のエネルギーの充電精度およびエネルギーの放出精度を高めるとともに、充放電時のノイズを減らし、放電時における電源への電気エネルギーの回収効率を高め、さらには発振を防止して容量負荷変動体が破損する不具合を無くすことを本発明の目的とする。
【0010】
【課題を解決するための手段】
〔請求項1の手段〕
容量負荷変動体を充電する際は、充電開始信号が与えられると充電スイッチが所定の1次コイル通電時間に亘ってONし、直流電源からフライバックトランスに電気エネルギーが与えられ、フライバックトランスが電気エネルギーを蓄える。充電スイッチがOFF すると、フライバックトランスに蓄えられた電気エネルギーが2次コイルに与えられ、2次コイルに接続された容量負荷変動体が充電される。
【0011】
容量負荷変動体を放電する際は、放電開始信号が与えられると放電スイッチが所定の2次コイル通電時間に亘ってONし、容量負荷変動体に蓄えられていた電気エネルギーがフライバックトランスに蓄積する。放電スイッチがOFF すると、フライバックトランスに蓄えられた電気エネルギーが1次コイルに与えられ、1次コイルに接続された直流電源に電気エネルギーが回生される。
【0012】
上記に示したように、充電時は1回の充電スイッチのON-OFFによって充電が行われるとともに、放電時も1回の放電スイッチのON-OFFによって放電が行われる。このため、マルチスイッチングによる時間のズレを無くすことができ、容量負荷変動体の充電精度、充電効率、放電精度および放電効率を高めることが可能になる。
具体的には、充放電時間Tは、次の数式(数1)で表され、
【数1】
Figure 0004186573
充電エネルギーEは、次の数式(数2)で表される。
【数2】
Figure 0004186573
なお、上記の式中におけるL1 は1次コイルのインダクタンス、L2 は2次コイルのインダクタンス、I1 は1次コイルの電流値、Cpzt は容量負荷変動体の容量を示す。
上記の式で表されるように充放電時間Tは、容量負荷変動体の容量Cpzt の変動により変化するが、回路要因のばらつきが少なく、時間モニター等により安定した制御が可能となる。また、充電エネルギーEも変動要因が1次コイルのインダクタンスL1 のみであり、高精度となる。
【0013】
一方、従来のマルチスイッチング方式では、1回の充放電時に充電スイッチおよび放電スイッチが多数回ON-OFFして数多くのノイズが発生するのに対し、請求項1を採用する容量負荷変動体の充放電装置では、1回の充放電時に充電スイッチおよび放電スイッチが1回づつしかON-OFFしない。
このため、請求項1を採用する容量負荷変動体の充放電装置では、ノイズの発生回数を従来に比較して大幅に減らすことができる。
【0014】
そして、請求項1を採用する容量負荷変動体の充放電装置では、放電スイッチをOFF するタイミングは、容量負荷変動体の負荷電圧が所定の放電停止電圧に低下したタイミングであるため、容量負荷変動体の放電精度を高めることができる。この結果、次回の充電時間が変動する不具合が発生しない。
つまり、容量負荷変動体の放電終了時の電圧を高い精度で一定にすることができるため、次の容量負荷変動体の充電開始電圧も一定にできる。これにより、容量負荷変動体に充電される充電エネルギーが一定となり、容量負荷変動体の伸縮変化を一定にすることが可能になる。
具体的な例では、ピエゾインジェクタのピエゾ素子の充放電装置に適用した場合、常に高い精度で安定してピエゾ素子を放電できるため、次回の充電電圧が変動する不具合がなく、インジェクタの噴射量が変化する不具合を抑えることができる。
【0015】
また、放電時は、一度の放電スイッチのON-OFFで容量負荷変動体を放電できるとともに、容量負荷変動体の電圧が所定の放電停止電圧に低下した時に放電スイッチをOFF するため、容量負荷変動体を高い精度で且つ高効率で放電できる。このため、容量負荷変動体の電気エネルギーを高効率で直流電源に回収することができる。
【0016】
さらに、従来のマルチスイッチング方式では、1回の充放電時に充電スイッチおよび放電スイッチが多数回ON-OFFして、容量負荷変動体のキャパシタCとコイルのインダクタンスLで発振する可能性があった。これに対し、請求項1を採用する容量負荷変動体の充放電装置では、1回の充放電時に充電スイッチおよび放電スイッチが1回づつしかON-OFFしない。
このため、請求項1を採用する容量負荷変動体の充放電装置では、容量負荷変動体のキャパシタCとフライバックトランスの2次コイルのインダクタンスLで発振する可能性を無くすことができ、発振の発生によって容量負荷変動体が破損する不具合がない。
【0017】
〔請求項2の手段〕
請求項2の手段を採用する容量負荷変動体の充放電装置は、放電スイッチをOFF するタイミングを、2次コイルを流れる放電電流が、所定の放電停止電流(例えば、容量負荷変動体の放電がほぼ終了する電流値)に達したタイミングにしたものであり、上記請求項1の手段と同様な作用効果を得ることができる。
【0018】
〔請求項3の手段〕
請求項3の手段を採用する容量負荷変動体の充放電装置は、所定の1次コイル通電時間を、充電スイッチをONしてから1次コイルを流れる電流が充電開始電流(容量負荷変動体の充電に適した電流値)に達するまでの時間とするものである。
つまり、充電スイッチをOFF するタイミングは、安定した所定のタイミングであるため、容量負荷変動体を常に安定した高い精度で充電できる。この結果、容量負荷変動体の放電精度とともに、容量負荷変動体の充電精度を高めることができる。
具体的な例では、ピエゾインジェクタのピエゾ素子の充放電装置に適用した場合、常に高い精度で安定してピエゾ素子を充電できるため、充電電圧が変動する不具合がなく、インジェクタの噴射量が変化する不具合がない。
【0019】
〔請求項4の手段〕
従来のマルチスイッチング方式では、1回の充放電時に充電スイッチおよび放電スイッチが多数回ON-OFFするものであった。このため、フライバックトランスには高磁束密度で且つ高い周波数特性が要求され、アモルファス等の高価なコアが必要になり、フライバックトランスのコストが高くなってしまう。
これに対し、請求項4を採用する容量負荷変動体の充放電装置では、1回の充放電時に充電スイッチおよび放電スイッチが1回づつしかON-OFFしないため、フライバックトランスには、マルチスイッチング方式のような高磁束密度で且つ高い周波数特性は要求されない。
そこで、請求項4の手段を採用し、珪素鋼板を多数積層したコアを用いたトランスをフライバックトランスとして用いてコストを抑えても良い。
【0020】
〔請求項5の手段〕
請求項5の手段を採用し、珪素鋼板の板厚を0.1mm以下に設けて渦流によって生じる鉄損を抑え、珪素鋼板のコアを用いたフライバックトランスの周波数特性を高めても良い。
【0021】
〔請求項6の手段〕
請求項6の手段を採用し、所定の放電停止電圧を容量負荷変動体の満充電時の電圧の5%以下に設定することにより、容量負荷変動体に充電された殆どの電気エネルギーを放電させることができる。
【0022】
〔請求項7の手段〕
請求項7の手段を採用し、所定の放電停止電流を2次コイルを流れる最大電流値の95%以上に設定することにより、容量負荷変動体に充電された殆どの電気エネルギーを放電させることができる。
【0023】
〔請求項8の手段〕
請求項8の手段を採用する容量負荷変動体の直流電源は、主電源と、この主電源から与えられる電圧を昇圧する昇圧回路と、この昇圧回路で昇圧された直流電圧を蓄えるとともに、放電スイッチのオフ後にフライバックトランスの1次コイルから回生される電気エネルギーを蓄えるバッファコンデンサとを備えるものである。
容量負荷変動体に充電した電気エネルギーを効率良くバッファコンデンサに回生できるため、昇圧回路がバッファコンデンサに補充する電気エネルギーを少なくすることができ、昇圧回路の負担を減らすことができる。この結果、昇圧回路を小型化することが可能になる。
【0024】
また、容量負荷変動体の充電精度が高まるため、昇圧回路の昇圧無駄が抑えられ、この結果からも昇圧回路を小型化できる。あるいは、昇圧回路による昇圧無駄が抑えられるため、1次コイルの通電電圧を高めて1次コイル通電時間を短縮することが可能になる。
さらに、容量負荷変動体の放電精度および放電効率が高まるため、バッファコンデンサの蓄える電気エネルギーの変動が抑えられ、バッファコンデンサを小型化することができる。
【0025】
〔請求項9の手段〕
請求項9の手段を採用し、容量負荷変動体を、エンジン燃料噴射システムのインジェクタにおいて燃料の噴射と停止を切り替えるアクチュエータとして用いても良い。
容量負荷変動体の放電精度および放電効率が高まり、容量負荷変動体の伸縮変化を一定にできるため、インジェクタの噴射開始と噴射停止の精度を高めることができる。
【0026】
【発明の実施の形態】
本発明の実施の形態を、複数の実施例と変形例を用いて説明する。
〔第1実施例〕
図1〜図7を参照して第1実施例(ピエゾインジェクタに搭載されたピエゾ素子の充放電装置)を説明する。なお、下記実施例では、容量負荷変動体の一例としてピエゾ素子1を用いる例を示す。また、下記実施例では、ピエゾ素子1をエンジン燃料噴射システムにおけるピエゾインジェクタ2のアクチュエータとして用いる場合を例に示す。
【0027】
ピエゾ素子1は、図6、図7に示すように、各気筒に取り付けられるピエゾインジェクタ2に取り付けられて燃料の噴射と停止を切り替えるアクチュエータとして作動するものであり、複数の板状ピエゾが電極を介して多数積層された構造を呈する。このピエゾ素子1は、充電に応動して伸長し、放電に応動して収縮するものである。
【0028】
ピエゾ素子1が搭載されるピエゾインジェクタ2は、例えばコモンレール式のエンジン燃料噴射システムに適用される。
この燃料噴射システムの一例を図6を参照して説明する。
ピエゾインジェクタ2は、エンジンの各気筒に対応して取り付けられている(図6ではピエゾインジェクタ2を1つのみ図示)。各ピエゾインジェクタ2のピエゾ素子1の充放電を制御する充放電回路3は、ECU(エンジンコントロールユニットの略)4から与えられる噴射信号IJTによってピエゾ素子1の充放電を行うように設けられている。
【0029】
つまり、ECU4から与えられる噴射開始信号(充電開始信号に相当するものであり、噴射信号IJTのON)によって充放電回路3がピエゾインジェクタ2内に搭載されたピエゾ素子1を充電すると、ピエゾ素子1が伸長してピエゾインジェクタ2が開いてコモンレール5に蓄えられた高圧燃料を各気筒の燃焼室内に噴射する。噴射後、ECU4から与えられる噴射停止信号(放電開始信号に相当するものであり、噴射信号IJTのOFF )によって充放電回路3がピエゾインジェクタ2内に搭載されたピエゾ素子1を放電すると、ピエゾ素子1が収縮してピエゾインジェクタ2が閉じて燃料噴射が停止する。
【0030】
コモンレール5には、燃料タンク6の燃料が高圧サプライポンプ7により圧送されており、コモンレール5の内部に高圧燃料が蓄えられる。また、コモンレール5からピエゾインジェクタ2に供給される燃料は、燃焼室への噴射の他に、ピエゾインジェクタ2の制御油圧としても用いられるものであり、ピエゾインジェクタ2から低圧のドレーンライン8を経て燃料タンク6に還流するようになっている。
コモンレール5には、燃料圧力を検出するための圧力センサ9が取り付けられている。ECU4は、圧力センサ9の出力に基づいて調整弁10の開度を制御してコモンレール5への燃料の圧送量を調整し、コモンレール5の内圧を適正な圧力に保っている。
【0031】
ピエゾインジェクタ2の構造を図7を参照して説明する。
ピエゾインジェクタ2は、棒状体を呈するもので、図中下側がエンジンの燃焼室壁を貫通し、先端部が燃焼室内に突出するものである。ピエゾインジェクタ2は、下側から上に向かって順に、ノズル部11、背圧制御部12、ピエゾ駆動部13となっている。
【0032】
ノズル部11は、ニードル14の大径部15がノズルホルダー16内に摺動自在に支持されるものであり、ニードル14の先端円錐部17がノズルホルダー16の先端部に形成された環状シート18に着座または離座する。ニードル14の先端側の外周空間19には、上述したコモンレール5から高圧通路20を介して高圧燃料が導入され、ニードル14の離座時に噴孔21から燃料が噴射される。ニードル14の先端側の外周空間19に供給される高圧燃料は、大径部15の段差面15aに作用して、ニードル14を上向き(離座方向)にリフトするように作用している。
【0033】
大径部15の上側の背圧室22には、高圧通路20からインオリフィス23を介して燃料が供給されており、背圧室22に供給される高圧燃料は大径部15の上面15bに作用して、スプリング24とともにニードル14を下向き(着座方向)に押しつけるように作用している。
背圧室22の背圧は、背圧制御部12で切り替えられるものであり、その背圧制御部12はピエゾ駆動部13によって駆動される。
【0034】
背圧室22は、アウトオリフィス25を介して、背圧制御部12の弁室26に連通している。
この弁室26は、天井面26aが上向きの円錐形状に形成されており、天井面26aの最上部で低圧室27とつながっている。この低圧室27は、低圧通路28を介して上述したドレーンライン8に通じている。
【0035】
また、弁室26の底面26bには、高圧通路20から分岐する高圧制御通路29が開口している。
さらに、弁室26内には、下面が水平にカットされたボール弁30が配置されている。このボール弁30は、上下動可能な弁体であり、下降時にはカット面が弁室26の底面26bに着座して弁室26と高圧制御通路29の連通を閉じ、上昇時には上の球面で弁室26の天井面26aに着座して弁室26と低圧室27の連通を閉じる。
【0036】
このように、ボール弁30が下降して弁室26と高圧制御通路29の連通が閉じられると、背圧室22が弁室26、低圧室27、低圧通路28を介してドレーンライン8に連通し、結果的に背圧室22の圧力が下がり、ニードル14が離座する。
逆に、ボール弁30が上昇して弁室26と低圧室27の連通が閉じられると、背圧室22と低圧室27の連通が遮断されて、背圧室22が高圧通路20のみと連通し、ニードル14の背圧が高まり、ニードル14が着座する。
【0037】
ピエゾ駆動部13は、ピエゾ素子1の伸長によってボール弁30を押し下げるものであり、低圧室27の上方に形成された変位拡大室31の上側に大径ピストン32、変位拡大室31の下側に小径ピストン33を備え、大径ピストン32の上側に多数積層されたピエゾ素子1が配置されている。
大径ピストン32は、その下方に配置したスプリング34によってピエゾ素子1に押しつけられており、積層されたピエゾ素子1の伸縮量と同じだけ上下方向に変位する。
【0038】
変位拡大室31には、燃料が充填されており、ピエゾ素子1の伸長によって上側の大径ピストン32が下降し、変位拡大室31の燃料が加圧されると、その加圧力によって下側の小径ピストン33が下方へ押し下げられる。この時、小径ピストン33は大径ピストン32よりも小径となっているため、ピエゾ素子1の伸長量が拡大されて小径ピストン33に伝えられる。
【0039】
噴射開始時は、先ず、ピエゾ素子1が充電されてピエゾ素子1が伸長する。すると、大径ピストン32および小径ピストン33が下降してボール弁30が押し下げられ、背圧室22の背圧が低下する。これにより、ニードル14が離座して燃料の噴射が開始される。
噴射停止時は、先ず、ピエゾ素子1が放電されてピエゾ素子1が収縮する。すると、大径ピストン32および小径ピストン33が上昇してボール弁30の押し下げを解除する。ボール弁30には、高圧制御通路29から高圧燃料が作用しているため、ボール弁30が上昇して、弁室26と低圧室27の連通を遮断する。すると、背圧室22の背圧が上昇し、ニードル14が着座して燃料の噴射が停止する。
【0040】
各気筒毎のピエゾ素子1を充電および放電させるための充放電回路3を図5を参照して説明する。
充放電回路3は、直流電源40と、ピエゾ素子1を充電させるための充電スイッチ41と、ピエゾ素子1を放電させるための放電スイッチ42と、充放電されるピエゾ素子1を選択するための選択スイッチ43と、フライバックトランス44と、複数のダイオード45とから構成されている。
【0041】
直流電源40は、車載のバッテリ46(主電源に相当する)から数十〜数百Vの直流電圧を発生させるDC/DCコンバータ47(昇圧回路に相当する)、このDC/DCコンバータ47に並列接続されたバッファコンデンサ48を備える。
このバッファコンデンサ48は、DC/DCコンバータ47で昇圧された直流電圧を蓄えるとともに、放電スイッチ42のオフ後にフライバックトランス44の1次コイル44aから回生される電気エネルギーを蓄える。そして、このバッファコンデンサ48は、比較的静電容量が大きく、ピエゾ素子1の充電作動時にも一定の電圧を保つようになっている。
【0042】
充電スイッチ41、放電スイッチ42および選択スイッチ43は、充放電コントローラ50によってON-OFF制御されるものであり、MOSFET等の半導体スイッチング素子でも良いし、機械的なリレースイッチであっても良い。
フライバックトランス44は、1次コイル44aおよび2次コイル44bを備えるものであり、1次コイル44aは充電スイッチ41のONによって直流電源40と電気的に接続され、2次コイル44bは放電スイッチ42のONによってピエゾ素子1と電気的に接続されるものである。
【0043】
先ず、ピエゾ素子1の充電について、図1、図2を参照して説明する。
ECU4から充放電コントローラ50へ与えられる噴射信号IJTがONすると、充放電コントローラ50は、充電スイッチ41をONする。すると、図1、図2▲1▼に示すように、1次コイル44aに電流が流れる。充放電コントローラ50は、信号線51によって1次コイル44aの電流▲1▼をモニタしており、1次コイル44aの電流▲1▼が所定の充電開始電流I1 に達したら充電スイッチ41をOFF する。
【0044】
充電スイッチ41がOFF すると、フライバックトランス44に蓄えられた電気エネルギーによって、図1、図2▲2▼に示すように、2次コイル44bに充電電流が流れる。この充電電流▲2▼がピエゾインジェクタ2のピエゾ素子1に与えられて、ピエゾ素子1の充電が完了する。
このように、1回の1次コイル通電作動(一回の充電スイッチ41のON-OFF作動)でピエゾ素子1の充電が完了する。
【0045】
次に、ピエゾ素子1の放電について説明する。
ECU4から充放電コントローラ50へ与えられる噴射信号IJTがONからOFF へ反転すると、充放電コントローラ50は、放電スイッチ42をONする。すると、図1、図2▲3▼に示すように、ピエゾ素子1に蓄えられた電気エネルギーが2次コイル44bへ流れる。充放電コントローラ50は、信号線52によってピエゾ素子1の負荷電圧▲4▼をモニタしており、ピエゾ素子1の負荷電圧▲4▼が所定の放電停止電圧VC(≒0V)に低下したら放電スイッチ42をOFF する。
なお、放電停止電圧VCは、ピエゾ素子1の満充電電圧の5%以下に設定されるものであり、放電停止電圧VCを満充電電圧の5%以下に設定することによって、ピエゾ素子1に充電された殆どの電気エネルギーを放電させることができる。
【0046】
放電スイッチ42がOFF すると、フライバックトランス44に蓄えられた電気エネルギーによって、図1、図2▲5▼に示すように、1次コイル44aに放電電流が流れる。この放電電流▲5▼が直流電源40のバッファコンデンサ48に回生される。
このように、1回の2次コイル通電作動(一回の放電スイッチ42のON-OFF作動)でピエゾ素子1の放電が完了する。
【0047】
次に、充電スイッチ41をON-OFFさせる充放電コントローラ50の回路を図3を参照して説明する。
充放電コントローラ50は、噴射信号IJTの信号を反転させるノット回路53と、噴射信号IJTがLo信号に反転した時にノット回路53によってセットされてHi信号を発生するフィリップフロップ54と、噴射信号IJTのHi信号によって所定の時間に亘ってHi信号を発生する時間リミット55と、フィリップフロップ54と時間リミット55が共にHiの時のみ充電スイッチ41をONさせるアンド回路56とを備える。
【0048】
また、この充放電コントローラ50は、信号線51によって検出される1次コイル44aの電流値が、基準電圧57によって設定されている所定の充電開始電流I1 (開弁しきい値)に達したらHi信号を発生するコンパレータ58を備えており、このコンパレータ58の出力によって上記フィリップフロップ54がリセットされ、充電スイッチ41をOFF させるように設けられている。
【0049】
上記回路による充電スイッチ41のON-OFF作動を、図4上側のタイムチャートを参照して説明する。
この作動はピエゾ素子1の放電開始時から始まる。実線Aに示すようにECU4から与えられる噴射信号IJTが時間t1 においてHiからLoに反転すると、その出力が実線Bに示すようにノット回路53で反転される。このノット回路53で反転されたHi信号によって実線Cに示すようにフィリップフロップ54がHi信号を出力する。
【0050】
燃料噴射のために、ECU4から与えられる噴射信号IJTが実線Aに示すように時間t2 においてLoからHiに反転すると、フィリップフロップ54とともに時間リミット55もHi信号を出力するため、アンド回路56が実線Dに示すようにHiの信号を出力し、充電スイッチ41をONさせる。
信号線51によって検出される1次コイル44aの電流値が、実線Eに示すように、時間t3 において充電開始電流I1 に達すると、コンパレータ58が実線Fに示すようにHi信号を出力し、実線Cに示すようにフィリップフロップ54をリセットする。この結果、実線Dに示すようにアンド回路56がLoに反転し、充電スイッチ41をOFF させる。
【0051】
次に、放電スイッチ42をON-OFFさせる充放電コントローラ50の回路を図3を参照して説明する。
充放電コントローラ50は、信号線52によって検出されるピエゾ素子1の負荷電圧が、基準電圧60によって設定されている所定の放電停止電圧VCより高い場合にHi信号を発生するコンパレータ61と、このコンパレータ61と上述したノット回路53が共にHiの時のみに放電スイッチ42をONさせるアンド回路62とを備える。
このように設けられることにより、ECU4から与えられる噴射信号IJTがLoに反転し、且つピエゾ素子1の負荷電圧が所定の放電停止電圧VC(閉弁しきい値)よりも高い場合にのみ、放電スイッチ42をONする。
【0052】
上記回路による放電スイッチ42のON-OFF作動を、図4のタイムチャートを参照して説明する。
実線Aに示すようにECU4から与えられる噴射信号IJTが時間t1 においてHiからLoに反転すると、その出力が実線Bに示すようにノット回路53で反転されてHiの信号を出力する。
この時、ピエゾ素子1は充電された状態にあるため、実線Gに示すようにピエゾ素子1の負荷電圧は放電停止電圧VCより高い状態にあり、実線Hに示すようにコンパレータ61がHiの信号を出力する。
このように、ノット回路53およびコンパレータ61が共にHiの信号を出力すると、実線Iに示すようにアンド回路62がHiの信号を出力し、放電スイッチ42をONさせる。
信号線52によって検出されるピエゾ素子1の負荷電圧が、実線Gに示すように時間t4 において放電停止電圧VC(≒0V)に低下すると、実線Hに示すようにコンパレータ61がLoに反転する。この結果、実線Iに示すようにアンド回路62がLoに反転し、放電スイッチ42をOFF させる。
【0053】
〔実施例の効果〕
上述したように、充電時は1回の充電スイッチ41のON-OFFによって充電が行われるとともに、放電時も1回の放電スイッチ42のON-OFFによって放電が行われる。このため、従来のマルチスイッチング方式による時間のズレを無くすことができるとともに、ピエゾ素子1の充電効率、充電精度、放電効率、放電精度を高めることができる。
また、ピエゾ素子1に充電を行う電流値を一定にすることができるとともに、ピエゾ素子1の放電終了時の電圧も一定にすることができる。この結果、ピエゾ素子1に充電される充電エネルギーを一定にすることが可能になり、ピエゾ素子1の伸縮変化を一定にできる。
これによって、ピエゾ素子1を用いたピエゾインジェクタ2の噴射開始時期および噴射停止時期の精度を高めることができ、エンジン内に噴射される燃料噴射量の精度を高めることができる。即ち、ピエゾ素子1を用いた燃料噴射システムの噴射精度を高めることができる。
【0054】
一方、従来のマルチスイッチング方式では、1回の充放電時に充電スイッチ41および放電スイッチ42が多数回ON-OFFして数多くのノイズが発生するのに対し、本発明を採用する充放電装置では、1回の充放電時に充電スイッチ41および放電スイッチ42が1回づつしかON-OFFしない。
このため、ノイズの発生回数を従来に比較して大幅に減らすことができる。
【0055】
また、従来のマルチスイッチング方式では、1回の充放電時に充電スイッチ41および放電スイッチ42を多数回ON-OFFして、ピエゾ素子1の充電および放電を行うものであったため、多数のスイッチングの際に電気エネルギーの伝送効率の悪い不感帯が多数回発生し、充電時間および放電時間が長くなってしまう。
これに対し、本実施例では、1回の充放電時に充電スイッチ41および放電スイッチ42が1回づつしかON-OFFしないため、不感帯域の使用回数が少なく、充電時間および放電時間の短縮を図ることが可能になる。
ここで、従来のマルチスイッチング方式で充電時間および放電時間の短縮を図ろうとすると、1次コイル44aおよび2次コイル44bの通電電流値を高める必要がある。すると、充電スイッチ41および放電スイッチ42が高電流を多数回断続するため、発生ノイズが大きくなる不具合を招くが、本発明ではこのような不具合も解消できる。
【0056】
さらに、放電スイッチ42をOFF するタイミングは、ピエゾ素子1の負荷電圧が零に近い放電停止電圧VCに低下したタイミングであるため、放電終了時においてピエゾ素子1を高い精度で放電できる。このため、次回の充電時間が変動する不具合が発生せず、ピエゾインジェクタ2の噴射時間が変化して噴射量が変化する不具合がない。つまり、ピエゾインジェクタ2の噴射精度を高めることができる。
【0057】
ピエゾ素子1を高効率で且つ高精度に放電できるため、ピエゾ素子1に蓄えられていた電気エネルギーを高効率で且つ高精度に直流電源40に回収できる。つまり、ピエゾ素子1に充電した電気エネルギーを効率良くバッファコンデンサ48に回生できる。
このため、DC/DCコンバータ47が次回の充電作動のためにバッファコンデンサ48に補充する電気エネルギーを少なくすることができる。この結果、DC/DCコンバータ47の負担を減らすことができ、DC/DCコンバータ47を小型化することが可能になる。
【0058】
また、ピエゾ素子1の充電精度が高まるため、DC/DCコンバータ47の昇圧無駄が抑えられ、この結果からもDC/DCコンバータ47を小型化できる。あるいは、DC/DCコンバータ47による昇圧無駄が抑えられるため、1次コイル44aの通電電圧を高めて1次コイル44aの通電時間を短縮することが可能になる。
さらに、ピエゾ素子1の放電精度および放電効率が高まるため、バッファコンデンサ48の蓄える電気エネルギーの変動が抑えられ、バッファコンデンサ48の無駄な容量アップが不要となり、結果的にバッファコンデンサ48を小型化することができる。
【0059】
従来のマルチスイッチング方式では、1回の充放電時に充電スイッチ41および放電スイッチ42が多数回ON-OFFするために、ピエゾ素子1のキャパシタCとコイルのインダクタンスLで発振する可能性があった。しかし、この発明では、1回の充放電時に充電スイッチ41および放電スイッチ42が1回づつしかON-OFFしないため、ピエゾ素子1のキャパシタCとフライバックトランス44の2次コイル44bのインダクタンスLで発振しない。このため、発振によってピエゾ素子1が破損し、ピエゾインジェクタ2が噴射不良を起こす不具合を回避できる。
【0060】
〔第2実施例〕
上記の第1実施例では、ピエゾ素子1の負荷電圧が放電停止電圧VCに低下した時に、放電スイッチ42をOFF する例を示した。
しかるに、この第2実施例では、ピエゾ素子1の放電時、2次コイル44bに発生する2次電流が、放電停止電流IC(図2参照)に達した時に、放電スイッチ42をOFF するものである。
【0061】
放電停止電流ICによって放電スイッチ42をOFF させる回路を図8を参照して説明する。
充放電コントローラ50は、噴射信号IJTを反転させるノット回路71と、噴射信号IJTのHi信号によってセットされてHi信号を発生するフィリップフロップ72と、ノット回路71とフィリップフロップ72が共にHiの時のみ放電スイッチ42をONさせるアンド回路73とを備える。
つまり、噴射信号IJTがHi信号を出力した後、噴射信号IJTがLo信号を出力すると、放電スイッチ42がONされる。
【0062】
また、この充放電コントローラ50は、信号線74によって検出される2次コイル44bの電流値を、噴射信号IJTが与えられる毎に保持するとともに、保持する電流値をマイナスオフセット電源75によって設定される所定値だけマイナス側にオフセットして出力するピークホールド回路76と、信号線74によって検出される2次コイル44bの電流値が、ピークホールド回路76でオフセットされた値よりもマイナス側に大きくなった場合にHi信号を発生するコンパレータ77とを備えており、このコンパレータ77の出力によって上記フィリップフロップ72がリセットされ、放電スイッチ42をOFF させるように設けられている。
【0063】
放電スイッチ42をOFF する放電停止電流ICは、2次コイル44bを流れる最大電流値の95%以上に設定されており、ここではマイナスオフセット電源75によって設定された電流値(2次コイルを流れる最大電流値の95%以上)だけ放電すると、放電スイッチ42がOFF するように設けられている。
なお、2次コイルを流れる最大電流値の95%以上に放電停止電流ICを設定したことによって、ピエゾ素子1に充電された殆どの電気エネルギーを放電させることができる。
【0064】
上記回路による放電スイッチ42のON-OFF作動を、図9のタイムチャートを参照して説明する。
この作動はピエゾ素子1の充電開始時から始まる。ECU4から与えられる噴射信号IJTが時間t2 においてLoからHiに反転すると、その出力によって実線Jに示すようにフィリップフロップ72がHi信号を出力する。ECU4から与えられる噴射信号IJTが実線Kに示すように時間t1 においてHiからLoに反転すると、その出力が実線Lに示すようにノット回路71で反転されてHiの信号を出力する。この結果、アンド回路73がHiの信号を出力し、実線Mに示すように放電スイッチ42をONさせる。
【0065】
実線Nに示す2次コイル44bの電流値が、実線O1 と破線O2 の間のオフセット値だけ低下すると、実線Pに示すようにコンパレータ77が時間t4 においてHiの出力を発生してフィリップフロップ72をリセットする。これにより、アンド回路73がLoに反転し、実線Mに示すように放電スイッチ42がOFF される。
この第2実施例のように設けても、第1実施例と同じ効果を得ることができる。
【0066】
〔第3実施例〕
従来のマルチスイッチング方式の充放電装置を燃料噴射システムに適用し、充電時間および放電時間をそれぞれ500μs以下で行う場合、1次コイル44aおよび2次コイル44bを通電する時間は、同等以下が要求される。従来のマルチスイッチング方式では、1回の充放電時に充電スイッチおよび放電スイッチが多数回ON-OFFするものであったため、電気エネルギーが50mJを越える場合、フライバックトランス44に高磁束密度と、高い周波数特性が要求される。
このため、マルチスイッチング方式に対応したフライバックトランス44では、アモルファス等の高価な大型のコアを使用する必要があり、フライバックトランス44のコストが高くなってしまう。
【0067】
これに対し、本発明が適用されたピエゾ素子1の充放電装置では、1回の充放電時に充電スイッチ41および放電スイッチ42が1回づつしかON-OFFしないため、フライバックトランス44には、マルチスイッチング方式のような高い周波数特性が要求されず、低い周波数特性のトランスを使用できる。
【0068】
そこで、この第3実施例では、珪素鋼板を多数積層したコアを用いたトランスをフライバックトランス44として用い、フライバックトランス44のコストを抑えた。
特に、第1、第2実施例のように、本発明を燃料噴射システムに適用し、充放電時間がそれぞれ500μs以下で、電気エネルギーが50mJを越える場合は、珪素鋼板の板厚を0.1mm以下に設ける。このように設けることにより、渦流によって生じる鉄損を低く抑えることができ、珪素鋼板のコアを用いたフライバックトランス44を燃料噴射システムに用いることができる。
【0069】
〔変形例〕
上記の実施例では、容量負荷変動体の一例としてピエゾ素子1を例に示したが、温度によって容量負荷が変動する他の容量負荷変動体の充放電装置に本発明を適用しても良い。
上記の実施例では、ピエゾ素子1を用いたアクチュエータを、燃料噴射システムにおけるピエゾインジェクタ2に適用した例を示したが、ピエゾ素子1を他のアクチュエータ(例えば、光学系計測装置における光軸可変用のアクチュエータ等)に適用しても良い。
【0070】
上記の実施例では、主電源として直流電源であるバッテリ46を用い、昇圧回路としてバッテリ46の電圧を昇圧するDC/DCコンバータ47を用いる例を示したが、主電源に交流電源(例えば交流100Vの商用電源)を用い、昇圧回路として交流の電圧を昇圧するとともに直流に変換するAC/DCコンバータを用いても良い。
【図面の簡単な説明】
【図1】ピエゾ素子の充放電装置の概略回路図である(第1実施例)。
【図2】充放電の基本作動を示すタイムチャートである(第1実施例)。
【図3】充電スイッチおよび放電スイッチの制御回路図である(第1実施例)。
【図4】充電時および放電時の作動説明のためのタイムチャートである(第1実施例)。
【図5】充放電回路の電気回路図である(第1実施例)。
【図6】燃料噴射システムの概略図である(第1実施例)。
【図7】ピエゾインジェクタの断面図である(第1実施例)。
【図8】放電スイッチの制御回路図である(第2実施例)。
【図9】放電時の作動説明のためのタイムチャートである(第2実施例)。
【図10】ピエゾ素子を流れる電流の説明図である(従来例)。
【符号の説明】
1 ピエゾ素子(容量負荷変動体)
2 ピエゾインジェクタ
40 直流電源
41 充電スイッチ
42 放電スイッチ
44 フライバックトランス
44a 1次コイル
44b 2次コイル
46 バッテリ(主電源)
47 DC/DCコンバータ(昇圧回路)
48 バッファコンデンサ
VC 放電停止電圧
IC 放電停止電流
I1 充電開始電流

Claims (9)

  1. (a)直流電源の電流をフライバックトランスの1次コイルに与えるための充電スイッチを具備し、
    温度によって容量負荷が変動する容量負荷変動体に電気エネルギーを蓄えるための充電開始信号が与えられてから前記充電スイッチを所定の1次コイル通電時間だけオンさせ、
    前記充電スイッチのオフ後、前記フライバックトランスに蓄えられた電気エネルギーが、前記フライバックトランスの2次コイルから前記容量負荷変動体に与えられて、この容量負荷変動体の充電が1回の1次コイル通電作動で完了する充電動作を行うとともに、
    (b)前記容量負荷変動体に蓄えられた電気エネルギーを前記フライバックトランスの2次コイルに与えるための放電スイッチを具備し、
    前記容量負荷変動体に蓄えられた電気エネルギーを放電させるための放電開始信号が与えられてから前記放電スイッチを所定の2次コイル通電時間だけオンさせて、前記容量負荷変動体に蓄えられた電気エネルギーを前記2次コイルに与えて前記容量負荷変動体の放電を1回の2次コイル通電作動で完了し、
    前記放電スイッチのオフ後、前記フライバックトランスに蓄えられた電気エネルギーを前記フライバックトランスの1次コイルから前記直流電源に回生する容量負荷変動体の充放電装置であって、
    (c)前記所定の2次コイル通電時間は、前記放電スイッチがオンしてから、前記容量負荷変動体の負荷電圧が、所定の放電停止電圧に低下するまでの時間であり、
    前記容量負荷変動体の充放電装置は、前記放電スイッチのオン後において前記容量負荷変動体の負荷電圧が前記放電停止電圧に低下したことを検出するための検出手段を備えることを特徴とする容量負荷変動体の充放電装置。
  2. (d)直流電源の電流をフライバックトランスの1次コイルに与えるための充電スイッチを具備し、
    温度によって容量負荷が変動する容量負荷変動体に電気エネルギーを蓄えるための充電開始信号が与えられてから前記充電スイッチを所定の1次コイル通電時間だけオンさせ、
    前記充電スイッチのオフ後、前記フライバックトランスに蓄えられた電気エネルギーが、前記フライバックトランスの2次コイルから前記容量負荷変動体に与えられて、この容量負荷変動体の充電が1回の1次コイル通電作動で完了する充電動作を行うとともに、
    (e)前記容量負荷変動体に蓄えられた電気エネルギーを前記フライバックトランスの2次コイルに与えるための放電スイッチを具備し、
    前記容量負荷変動体に蓄えられた電気エネルギーを放電させるための放電開始信号が与えられてから前記放電スイッチを所定の2次コイル通電時間だけオンさせて、前記容量負荷変動体に蓄えられた電気エネルギーを前記2次コイルに与えて前記容量負荷変動体の放電を1回の2次コイル通電作動で完了し、
    前記放電スイッチのオフ後、前記フライバックトランスに蓄えられた電気エネルギーを前記フライバックトランスの1次コイルから前記直流電源に回生する容量負荷変動体の充放電装置であって、
    (f)前記所定の2次コイル通電時間は、前記放電スイッチがオンしてから、前記2次コイルを流れる放電電流が、所定の放電停止電流に達するまでの時間であり、
    前記容量負荷変動体は、前記放電スイッチのオン後において前記2次コイルを流れる放電電流が前記放電停止電流に達したことを検出するための検出手段を備えることを特徴とする容量負荷変動体の充放電装置。
  3. 請求項1または請求項2の容量負荷変動体の充放電装置において、
    前記所定の1次コイル通電時間は、前記充電スイッチをオンしてから、前記1次コイルの通電電流が所定の充電開始電流に達するまでの時間であり、
    前記充電スイッチのオン後において前記1次コイルの通電電流が前記充電開始電流に達したことを検出するための検出手段を備えることを特徴とする容量負荷変動体の充放電装置。
  4. 請求項1〜請求項3のいずれかの容量負荷変動体の充放電装置において、
    前記フライバックトランスは、珪素鋼板を多数積層したコアを用いたことを特徴とする容量負荷変動体の充放電装置。
  5. 請求項4の容量負荷変動体の充放電装置において、
    前記珪素鋼板の板厚は、0.1mm以下であることを特徴とする容量負荷変動体の充放電装置。
  6. 請求項1の容量負荷変動体の充放電装置において、
    前記所定の放電停止電圧とは、前記容量負荷変動体の満充電時の電圧の5%以下であることを特徴とする容量負荷変動体の充放電装置。
  7. 請求項2の容量負荷変動体の充放電装置において、
    前記所定の放電停止電流とは、前記2次コイルを流れる最大電流値の95%以上であることを特徴とする容量負荷変動体の充放電装置。
  8. 請求項1〜請求項7のいずれかの容量負荷変動体の充放電装置において、
    前記直流電源は、主電源と、
    この主電源から与えられる電圧を昇圧する昇圧回路と、
    この昇圧回路で昇圧された直流電圧を蓄えるとともに、前記放電スイッチのオフ後に前記フライバックトランスの1次コイルから回生される電気エネルギーを蓄えるバッファコンデンサと、
    を備えることを特徴とする容量負荷変動体の充放電装置。
  9. 請求項1〜請求項8のいずれかの容量負荷変動体の充放電装置において、
    前記容量負荷変動体は、エンジン燃料噴射システムのインジェクタにおいて燃料の噴射と停止を切り替えるアクチュエータとして用いられることを特徴とする容量負荷変動体の充放電装置。
JP2002285228A 2001-11-07 2002-09-30 容量負荷変動体の充放電装置 Expired - Fee Related JP4186573B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002285228A JP4186573B2 (ja) 2001-11-07 2002-09-30 容量負荷変動体の充放電装置
DE10251685.5A DE10251685B4 (de) 2001-11-07 2002-11-06 Vorrichtung zum Laden und Entladen einer variablen kapazitiven Last

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001342178 2001-11-07
JP2001-342178 2001-11-07
JP2002285228A JP4186573B2 (ja) 2001-11-07 2002-09-30 容量負荷変動体の充放電装置

Publications (2)

Publication Number Publication Date
JP2003234517A JP2003234517A (ja) 2003-08-22
JP4186573B2 true JP4186573B2 (ja) 2008-11-26

Family

ID=26624396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285228A Expired - Fee Related JP4186573B2 (ja) 2001-11-07 2002-09-30 容量負荷変動体の充放電装置

Country Status (2)

Country Link
JP (1) JP4186573B2 (ja)
DE (1) DE10251685B4 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004028516B3 (de) * 2004-06-11 2006-02-23 Siemens Ag Steuergerät für Piezo-Aktoren von Kraftstoff-Einspritzventilen
GB0610225D0 (en) * 2006-05-23 2006-07-05 Delphi Tech Inc Method of controlling a piezoelectric actuator
DE102008020004A1 (de) * 2008-04-21 2009-10-22 Akwa Gmbh Verfahren zur Stromentnahme aus elektrochemischen Zellen mittels Frequenzimpulsen und seine Anwendung in einer Stromquelle
DE102009003768A1 (de) * 2009-04-08 2010-10-14 Akwa Gmbh Verfahren zum gleichzeitigen Laden einer wiederaufladbaren elektrochemischen Stromquelle durch eine externe Stromquelle während der Stromentnahme mittels Frequenzimpulsen und seine Anwendung in einer Stromquelle
WO2013020127A2 (en) * 2011-08-04 2013-02-07 President And Fellows Of Harvard College System and method for efficient drive of capacitive actuators with voltage amplification
WO2019235606A1 (ja) 2018-06-07 2019-12-12 新電元工業株式会社 インバータ回路、インバータ回路の制御方法、制御装置、及び、負荷駆動装置
CN111654187B (zh) * 2020-06-09 2021-12-14 矽力杰半导体技术(杭州)有限公司 压电驱动电路和压电驱动方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662585A (ja) * 1992-08-04 1994-03-04 Fujitsu Ltd 圧電素子駆動回路
JP3214961B2 (ja) * 1993-08-31 2001-10-02 株式会社デンソー 圧電素子駆動装置
DE19944733B4 (de) * 1999-09-17 2007-01-04 Siemens Ag Vorrichtung zum Ansteuern wenigstens eines kapazitiven Stellgliedes
DE10113801B4 (de) * 2001-03-21 2007-04-05 Siemens Ag Vorrichtung zum Ansteuern wenigstens eines kapazitiven Stellgliedes und Verfahren zum Betreiben einer solchen Vorrichtung

Also Published As

Publication number Publication date
JP2003234517A (ja) 2003-08-22
DE10251685B4 (de) 2014-09-25
DE10251685A1 (de) 2003-06-26

Similar Documents

Publication Publication Date Title
JP4348710B2 (ja) ピエゾインジェクタの駆動装置
JP4353781B2 (ja) ピエゾアクチュエータ駆動回路
JP4372722B2 (ja) 燃料噴射装置
JP4183376B2 (ja) ピエゾアクチュエータ駆動回路および燃料噴射装置
JP4186573B2 (ja) 容量負荷変動体の充放電装置
JP4306769B2 (ja) ピエゾアクチュエータ駆動装置
KR100662145B1 (ko) 하나 이상의 용량성 제어소자를 구동하는 방법 및 장치
JP3913687B2 (ja) ピエゾアクチュエータ駆動回路および燃料噴射装置
JP3842665B2 (ja) ピエゾアクチュエータ制御装置およびそれを用いた燃料噴射制御システム
JP4414079B2 (ja) ピエゾアクチュエータ駆動回路
JP3873716B2 (ja) ピエゾインジェクタの充放電装置
JP3922206B2 (ja) ピエゾアクチュエータ駆動回路
JP4626112B2 (ja) ピエゾ素子の放電装置
JP3744407B2 (ja) 容量負荷変動体の充放電装置
JP2003111448A (ja) ピエゾアクチュエータ駆動回路
JP4604356B2 (ja) ピエゾアクチュエータ駆動回路および燃料噴射装置
JP2003111446A (ja) ピエゾインジェクタの充電装置および放電装置
JP4346806B2 (ja) 燃料噴射装置
JP4483822B2 (ja) 燃料噴射制御装置
JP2003088145A (ja) 容量負荷変動体の充電装置
JP2513011B2 (ja) 圧電素子の駆動装置
JP2005171800A (ja) 容量負荷素子の駆動装置
JP4882729B2 (ja) 圧電素子の駆動回路
JP4306133B2 (ja) 燃料噴射装置
JP2006217693A (ja) ピエゾアクチュエータの制御態様の調整方法、及びピエゾアクチュエータの駆動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees