JP4182868B2 - 感放射線性樹脂組成物 - Google Patents

感放射線性樹脂組成物 Download PDF

Info

Publication number
JP4182868B2
JP4182868B2 JP2003392514A JP2003392514A JP4182868B2 JP 4182868 B2 JP4182868 B2 JP 4182868B2 JP 2003392514 A JP2003392514 A JP 2003392514A JP 2003392514 A JP2003392514 A JP 2003392514A JP 4182868 B2 JP4182868 B2 JP 4182868B2
Authority
JP
Japan
Prior art keywords
group
meth
acrylic acid
polymer
ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003392514A
Other languages
English (en)
Other versions
JP2005156726A (ja
Inventor
英司 米田
浩光 中島
敦 中村
勇 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2003392514A priority Critical patent/JP4182868B2/ja
Publication of JP2005156726A publication Critical patent/JP2005156726A/ja
Application granted granted Critical
Publication of JP4182868B2 publication Critical patent/JP4182868B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は感放射線性樹脂組成物に関し、特にKrFエキシマレーザーあるいはArFエキシマレーザー等の遠紫外線、シンクロトロン放射線等のX線、電子線等の荷電粒子線の如き各種の放射線を使用する微細加工に有用な化学増幅型レジストとして好適に使用できる感放射線性樹脂組成物に関する。
る。
集積回路素子の製造に代表される微細加工の分野においては、より高い集積度を得るために、最近ではArFエキシマレーザー(波長193nm)、F2エキシマレーザー(波長157nm)等を用いた200nm程度以下のレベルでの微細加工が可能なリソグラフィー技術が必要とされている。このようなエキシマレーザーによる照射に適した感放射線性樹脂組成物として、酸解離性官能基を有する成分と放射線の照射により酸を発生する成分である酸発生剤とによる化学増幅効果を利用した化学増幅型感放射線性組成物が数多く提案されている。例えば、樹脂成分として、ノルボルナン環誘導体を有する単量体ユニットを含む特定の構造を樹脂成分とするフォトレジスト用高分子化合物が知られている(特許文献1、特許文献2)。
特開2002−201232号公報 特開2002−145955号公報
一方、特殊な連鎖移動剤を用いてラジカル重合を制御するリビングラジカル重合が知られており、その連鎖移動剤も提案されている(特許文献3〜特許文献6、非特許文献1)。
国際公開公報WO98/01478号 国際公開公報WO99/05099号 米国特許公報 6,395,850号 米国特許公報 6,380,335号 Macromolecules 1999, 32, 6977-6980
しかしながら、半導体分野において、より高い集積度が求められるようになると、レジストである感放射線性樹脂組成物は、レジストの感度、解像度、焦点深度(DOF)など基本性能は勿論のこと、それら以外の性能についても厳しく要求されるようになってきた。例えば、レジストの露光量とフォーカス一定条件における、マスクサイズ変化量によるパターンサイズ(CD)変化量の比(パターンサイズ(CD)変化量/マスクサイズ(CD)変化量)であるマスクエラーファクター(以下、MEFと略称する)が重要視され、感放射線性樹脂組成物は、このMEFを小さくすることが微細化進行につれ強く望まれている。
解決しようとする課題は、放射線に対する透明性が高く、感度、解像度、ドライエッチング耐性、パターンプロファイル等のレジストとしての基本物性に優れ、さらにMEFも改良された化学増幅型レジストとして有用な感放射線性樹脂組成物が得られていない点にある。
本発明の感放射線性樹脂組成物は、酸の作用によりアルカリ易溶性となるアルカリ不溶性またはアルカリ難溶性の酸解離性基含有重合体を少なくとも2種類混合した混合酸解離性基含有重合体(以下、重合体(A)と略称する)と、感放射線性酸発生剤(以下、酸発生剤(B)と略称する)とを含有する感放射線性樹脂組成物であって、
上記重合体(A)に混合される少なくとも1つの酸解離性基含有重合体が式(X−1)で表される連鎖移動剤を用いるリビングラジカル重合により重合されてなることを特徴とする。
Figure 0004182868
式(X−1)において、Raは、置換または非置換の炭化水素基を表し、Zは置換または非置換のヘテロ原子を含む基を表す。
また、上記Zは式(X−2)で表される置換基であることを特徴とする。
Figure 0004182868
式(X−2)中、Rb、RcおよびRdは、相互に独立に水素原子、置換または非置換の炭化水素基、置換または非置換のヘテロ原子を含む炭化水素基またはこれらの基の組み合わせで形成される基、または、Rb、RcおよびRdのいずれか二つが相互に結合して形成される3〜50の非水素原子を含む環を表す。
また、上記重合体(A)が式(X−1)で表される連鎖移動剤を用いるリビングラジカル重合により重合される酸解離性基含有重合体(以下、重合体(A1)と略称する)と、式(X−1)で表される連鎖移動剤を用いないラジカル重合により重合される酸解離性基含有重合体(以下、重合体(A2)と略称する)との混合物であることを特徴とする。
また、重合体(A1)は分子鎖末端の全てまたはその一部に式(X−1)で表される連鎖移動剤由来の残基を有することを特徴とする。
本発明の感放射線性樹脂組成物は、活性光線、例えばKrFエキシマレーザー(波長248nm)あるいはArFエキシマレーザー(波長193nm)に代表される遠紫外線に感応する化学増幅型レジストとして、特に放射線に対する透明性が高く、高解像度であり、かつ感度、ドライエッチング耐性、パターンプロファイル等を含めたレジストとしての基本物性に優れるとともに、MEFを小さくすることができる。
本発明は特殊な連鎖移動剤を用いるリビングラジカル重合により得られる重合体(A1)と、この連鎖移動剤を用いない通常のラジカル重合により得られる重合体(A2)との混合物を用いることにより、レジストとしての基本物性に優れ、解像性能が高く、パターンのラインエッジラフネスが小さく、並びにMEFも小さくできる感放射線性樹脂組成物が得られるとの知見に基づくものである。
本発明のリビングラジカル重合に用いられる連鎖移動剤は可逆的付加開裂連鎖移動剤である場合もある。ここでいう可逆的付加連鎖移動剤は文献に一般にRAFT(Reversible Addition−Fragmentation Chain Transfer)Agentと呼ばれているものを指す(非特許文献1参照)。可逆的付加開裂連鎖移動剤におけるZは窒素原子、硫黄原子、または酸素原子を介して式(X−1)で表される分子中の>C=S基と結合することが好ましい。窒素原子の場合はジチオカルバメイトを、硫黄原子の場合はジチオカルボネートをそれぞれ形成する。
aは、式(X−1)で表される連鎖移動剤において、Raラジカルとして解裂可能な有機基であることが好ましい。Raとして、具体的には、−CH2Ph、−CH(CH3)CO2CH2CH3、−CH(CO2CH2CH32、−C(CH32CN、−CH(Ph)CN、−C(CH32CO2R’(R’はアルキル、アリール基等を表す)、−C(CH32Phが挙げられる。
式(X−2)において、Rb、RcおよびRdとして表される置換または非置換の炭化水素基としては、置換または非置換のアルキル基、置換または非置換のアリール基、置換または非置換のアルケニル基を、置換または非置換のヘテロ原子を含む炭化水素基としては、置換または非置換のアシル基、置換または非置換のアロイル基、置換または非置換のアルコキシ基、置換または非置換のへテロアリール基、置換または非置換のへテロシクロ基、置換または非置換のアルキルスルホニル基、置換または非置換のアルキルスルフィニル基、置換または非置換のアリールスルフィニル基等の一価有機基が挙げられる。
式(X−2)において、Rb、RcおよびRdのいずれか二つが相互に結合して形成される3〜50の非水素原子を含む環の例としては、置換または非置換のピラゾール環構造が挙げられる。一例として式(X−3)で表されるピラゾール環の例を示す。
Figure 0004182868
式(X−3)において、R、RとRはそれぞれ独立で水素原子、置換または非置換の炭化水素基、置換または非置換の炭化水素基から選ばれる基である。
本発明で使用できる連鎖移動剤の具体例を式(CTA−1)〜式(CTA−4)として、以下に表す。
Figure 0004182868
本発明に用いられる連鎖移動剤は通常のラジカル重合開始剤と併用できる。
本発明で使用できる通常のラジカル重合開始剤は、例えば、高分子学会編、"新高分子実験学2、高分子の合成・反応(1)付加系高分子の合成"(共立出版株式会社、1995)第1章の30〜36頁に記載されているようなラジカル開始剤が挙げられる。このラジカル開始剤による重合はリビング特性のない付加重合である。
通常のラジカル重合開始剤は、熱重合開始剤、レドックス重合開始剤、光重合開始剤が挙げられる。例えばパーオキシドやアゾ化合物等の重合開始剤が挙げられる。特に限定しないが、具体的なラジカル重合開始剤としては、t−ブチルハイドロパーオキサイド、t−ブチルパーベンゾエート、ベンゾイルパーオキサイド、2,2'−アゾビス(2,4−ジメチルバレロニトリル)、2,2'−アゾビスイソブチロニトリル(AIBN)、1,1'−アゾビス(シクロヘキサンカルボニトリル)、ジメチル−2,2'−アゾビスイソブチレート(MAIB)等が挙げられる。
本発明において重合体(A1)は、上述した通常のラジカル重合開始剤と式(X−1)で表される連鎖移動剤とを用いるリビングラジカル重合により得られる重合体である。また、重合体(A2)は、上述した通常のラジカル重合開始剤を用い、式(X−1)で表される連鎖移動剤を用いないラジカル重合により得られる重合体である。
本発明における重合体(A)は酸の作用によりアルカリ易溶性となるアルカリ不溶性またはアルカリ難溶性の重合体である。
ここでいう「アルカリ不溶性またはアルカリ難溶性」とは、重合体(A)を含有する感放射線性樹脂組成物から形成されたレジスト被膜からレジストパターンを形成する際に採用されるアルカリ現像条件(好ましくはpHが8〜14のアルカリ水溶液、さらに好ましくはpHが9〜14のアルカリ水溶液で現像する条件)下で、当該レジスト被膜の代わりに重合体(A)のみを用いた被膜を現像した場合に、当該被膜の初期膜厚の50%以上が現像後に残存する性質を意味する。「アルカリ易溶性」とは、同様の処理で被膜が溶解して初期膜厚の50%未満が失われる性質を意味する。
重合体(A1)および重合体(A2)は、用いる重合開始剤および連鎖移動剤等を異にするが、酸の作用によりアルカリ易溶性となる観点から、酸解離性基で保護されたカルボン酸基含有繰返し単位を有する重合体が好適である。具体的には下記式(1)で表される繰返し単位を含むことができる。
Figure 0004182868
式(1)において、Rは水素、メチル基、トリフロロメチル基あるいはヒドロキシメチル基を表し、R1は相互に独立に炭素数4〜20の1価の脂環式炭化水素基もしくはその誘導体または炭素数1〜4の直鎖状もしくは分岐状のアルキル基を表し、かつR1の少なくとも1つが該脂環式炭化水素基もしくはその誘導体であるか、あるいは何れか2つのR1が相互に結合して、それぞれが結合している炭素原子とともに炭素数4〜20の2価の脂環式炭化水素基もしくはその誘導体を形成し、残りのR1が炭素数1〜4の直鎖状もしくは分岐状のアルキル基または炭素数4〜20の1価の脂環式炭化水素基もしくはその誘導体を表す。
また、重合体(A)は、下記式(2)〜(8)で示される繰り返し単位から選ばれる少なくとも1種の繰り返し単位を、さらに含むことができる。
Figure 0004182868
上記式(2)〜(8)において、Rは式(1)におけるRと同一である。
式(2)において、Aは単結合もしくは炭素数1〜6の置換基を有していてもよい直鎖状もしくは分岐状のアルキレン基、モノまたはジアルキレングリコール基、アルキレンエステル基を表し、Bは単結合もしくは炭素数1〜3の置換基を有していてもよいアルキレン基、アルキルオキシ基、酸素原子を表す。
式(3)において、Eは単結合もしくは炭素数1〜3の2価のアルキル基を表し、R2は相互に独立に水酸基、シアノ基、カルボキシル基、−COOR4、または−Y−R5を表し、R4は水素原子あるいは炭素数1〜4の直鎖状もしくは分岐状のアルキル基、または炭素数3〜20の脂環式のアルキル基、Yは相互に独立に単結合もしくは炭素数1〜3の2価のアルキレン基を表し、R5は相互に独立に水素原子、水酸基、シアノ基、または−COOR6基を表す。ただし、少なくとも1つのR2が水素原子ではない。EおよびYとしては、単結合、メチレン基、エチレン基、プロピレン基が挙げられる。
また、−COOR6基におけるR6としては、水素原子あるいは炭素数1〜4の直鎖状もしくは分岐状のアルキル基、または炭素数3〜20の脂環式のアルキル基を表す。炭素数1〜4の直鎖状もしくは分岐状のアルキル基としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、2−メチルプロピル基、1−メチルプロピル基、t−ブチル基を例示できる。炭素数3〜20の脂環式のアルキル基としては、−Cn2n-1(nは3〜20の整数)で表されるシクロアルキル基、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が、また、多環型脂環式アルキル基、例えばビシクロ[2.2.1]ヘプチル基、トリシクロ[5.2.1.02,6]デシル基、トリシクロ[6.2.13,6.02,7]ドデカニル基、アダマンチル基等、または、直鎖状、分岐状または環状のアルキル基の1種以上あるいは1個以上でシクロアルキル基または多環型脂環式アルキル基の一部を置換した基等が挙げられる。
式(4)において、Gは単結合、炭素数1〜6の直鎖状もしくは分岐状のアルキレン基または炭素数4〜20の脂環式炭化水素基、アルキレングリコール基、アルキレンエステル基を表す。炭素数1〜6の直鎖状もしくは分岐状のアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、シクロヘキシレン基等が挙げられる。
式(5)において、Jは単結合、炭素数1〜20の置換基を有していてもよい直鎖状、分岐状、環状のアルキレン基、アルキレングリコール基、アルキレンエステル基を表す。
式(6)において、Lは単結合、炭素数1〜20の置換基を有していてもよい直鎖状、分岐状、環状のアルキレン基、アルキレングリコール基、アルキレンエステル基を表し、R3は水素原子、炭素数1〜4の直鎖状もしくは分岐状のアルキル基、アルコキシ基、ヒドロキシアルキル基、炭素数3〜20の2価の脂環式炭化水素基もしくはその誘導体を形成したものを表す。qは1または2である。
式(7)において、N、M’はそれぞれ独立して単結合、炭素数1〜20の置換基を有していてもよい直鎖状、分岐状、環状のアルキレン基、アルキレングリコール基、アルキレンエステル基を表す。直鎖状もしくは分岐状のアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、シクロヘキシレン基等が挙げられる。pは0または1である。
式(8)において、Xは炭素数7〜20の極性基を含まない炭素および水素のみからなる多環型脂環式炭化水素基を表す。このような多環型脂環式炭化水素基としては、例えば、ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2]オクタン、トリシクロ[5.2.1.02,6]デカン、テトラシクロ[4.4.0.12,6.17,10]ドデカン、テトラシクロ[3.3.1.13,7]デカン等のシクロアルカン類に由来する脂環族環からなる炭化水素基が挙げられる。また、これらの脂環族環は、置換基を有していてもよく、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、2−メチルプロピル基、1−メチルプロピル基、t−ブチル基等の炭素数1〜4の直鎖状、分岐状または環状のアルキル基の1種以上あるいは1個以上で置換した骨格等が挙げられる。
式(1)で表される繰り返し単位を生じさせる単量体としては、式(1−1)で表される(メタ)アクリル酸エステルが挙げられる。
Figure 0004182868
上記式(1−1)中、RおよびR1は、それぞれ式(1)におけるRおよびR1と同一である。
1における、炭素数4〜20の1価の脂環式炭化水素基もしくはその誘導体、または少なくとも1つが脂環式炭化水素基もしくはその誘導体であるか、あるいは何れか2つのR1が相互に結合して、それぞれが結合している炭素原子とともに炭素数4〜20の2価の脂環式炭化水素基もしくはその誘導体としては、例えばビシクロ[2.2.1]ヘプタン、トリシクロ[5.2.1.02,6]デカン、トリシクロ[6.2.13,6.02,7]ドデカン、アダマンタン、シクロペンタン、シクロヘキサン等のシクロアルカン類等に由来する脂環族環からなる基;これら脂環族環からなる基を例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、2−メチルプロピル基、1−メチルプロピル基、t−ブチル基等の炭素数1〜4の直鎖状、分岐状または環状のアルキル基の1種以上あるいは1個以上で置換した基等が挙げられる。
また、R1の1価または2価の脂環式炭化水素基の誘導体としては、例えば、ヒドロキシル基;カルボキシル基;オキソ基(即ち、=O基);ヒドロキシメチル基、1−ヒドロキシエチル基、2−ヒドロキシエチル基、1−ヒドロキシプロピル基、2−ヒドロキシプロピル基、3−ヒドロキシプロピル基、2−ヒドロキシブチル基、3−ヒドロキシブチル基、4−ヒドロキシブチル基等の炭素数1〜4のヒドロキシアルキル基;メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、2−メチルプロポキシ基、1−メチルプロポキシ基、t−ブトキシ基等の炭素数1〜4のアルコキシル基;シアノ基;シアノメチル基、2−シアノメチル基、3−シアノプロピル基、4−シアノブチル基等の炭素数2〜5のシアノアルキル基等の置換基を1種以上あるいは1個以上有する基が挙げられる。
これらの置換基のうち、ヒドロキシル基、カルボキシル基、ヒドロキシメチル基、シアノ基、シアノメチル基等が好ましい。
また、R1の炭素数1〜4の直鎖状もしくは分岐状のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、2−メチルプロピル基、1−メチルプロピル基、t−ブチル基等が挙げられる。
これらのアルキル基のうち、メチル基、エチル基、n−プロピル基、i−プロピル基が好ましい。
式(1)および式(1−1)中の−C(R13を形成する官能基側鎖として好ましいものを挙げると、
1−メチル−1−シクロペンチル基、1−エチル−1−シクロペンチル基、1−メチル−1−シクロヘキシル基、1−エチル−1−シクロヘキシル基、2−メチルアダマンタン−2−イル基、2−メチル−3−ヒドロキシアダマンタン−2−イル基、2−エチルチルアダマンタン−2−イル基、2−エチル−3−ヒドロキシアダマンタン−2−イル基、2−n−プロピルアダマンタン−2−イル基、2−n−プロピル−3−ヒドロキシアダマンタン−2−イル基、2−イソプロピルアダマンタン−2−イル基、2−イソプロピル−3−ヒドロキシアダマンタン−2−イル基、2−メチルビシクロ[2.2.1]ヘプト−2−イル基、2−エチルビシクロ[2.2.1]ヘプト−2−イル基、8−メチルトリシクロ[5.2.1.02,6]デカ−8−イル基、8−エチルトリシクロ[5.2.1.02,6]デカ−8−イル基、4−メチル−テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−イル基、4−エチル−テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−イル基、1−(ビシクロ[2.2.1]ヘプト−2−イル)−1−メチルエチル基、1−(トリシクロ[5.2.1.02,6]デカ−8−イル)−1−メチルエチル基、1−(テトラシクロ[6.2.1.13,6.02,7]デカ−4−イル)−1−メチルエチル基、1−(アダマンタン−1−イル)−1−メチルエチル基、1−(3−ヒドロキシアダマンタン−1−イル)−1−メチルエチル基、1,1−ジシクロヘキシルエチル基、1,1−ジ(ビシクロ[2.2.1]ヘプト−2−イル)エチル基、1,1−ジ(トリシクロ[5.2.1.02,6]デカ−8−イル)エチル基、1,1−ジ(テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−イル)エチル基、1,1−ジ(アダマンタン−1−イル)エチル基等が挙げられる。
また、式(1−1)で表される繰り返し単位を与える単量体の中で、好適な例を以下に挙げる。
(メタ)アクリル酸1−メチル−1−シクロペンチルエステル、(メタ)アクリル酸1−エチル−1−シクロペンチルエステル、(メタ)アクリル酸1−メチル−1−シクロヘキシルエステル、(メタ)アクリル酸1−エチル−1−シクロヘキシルエステル、(メタ)アクリル酸2−メチルアダマンタン−2−イルエステル、(メタ)アクリル酸2−メチル3−ヒドロキシアダマンタン−2−イルエステル、(メタ)アクリル酸2−エチルアダマンタン−2−イルエステル、(メタ)アクリル酸2−エチル3−ヒドロキシアダマンタン−2−イルエステル、(メタ)アクリル酸2−n−プロピル−アダマンタン−2−イルエステル、(メタ)アクリル酸2−n−プロピル3−ヒドロキシアダマンタン−2−イルエステル、(メタ)アクリル酸2−イソプロピルアダマンタン−2−イルエステル、(メタ)アクリル酸2−イソプロピル3−ヒドロキシアダマンタン−2−イルエステル、(メタ)アクリル酸2−メチルアダマンタン−2−イルエステル、(メタ)アクリル酸2−メチルビシクロ[2.2.1]ヘプト−2−イルエステル、(メタ)アクリル酸2−エチルビシクロ[2.2.1]ヘプト−2−イルエステル、(メタ)アクリル酸8−メチルトリシクロ[5.2.1.02,6]デカ−8−イルエステル、(メタ)アクリル酸8−エチルトリシクロ[5.2.1.02,6]デカ−8−イルエステル、(メタ)アクリル酸4−メチルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−イルエステル、(メタ)アクリル酸4−エチルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−イルエステル、(メタ)アクリル酸1−(ビシクロ[2.2.1]ヘプト−2−イル)−1−メチルエステル、(メタ)アクリル酸1−(トリシクロ[5.2.1.02,6]デカ−8−イル)−1−メチルエステル、(メタ)アクリル酸1−(テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−イル)−1−メチルエチルエステル、(メタ)アクリル酸1−(アダマンタン−1−イル)−1−メチルエチルエステル、(メタ)アクリル酸1−(3−ヒドロキシアダマンタン−1−イル)−1−メチルエチルエステル、(メタ)アクリル酸1,1−ジシクロヘキシルエチルエステル、(メタ)アクリル酸1,1−ジ(ビシクロ[2.2.1]ヘプト−2−イル)エチルエステル、(メタ)アクリル酸1,1−ジ(トリシクロ[5.2.1.02,6]デカ−8−イル)エチルエステル、(メタ)アクリル酸1,1−ジ(テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−イル)エチルエステル、(メタ)アクリル酸1,1−ジ(アダマンタン−1−イル)エチルエステルが挙げられる。
上記式(1−1)で表される繰り返し単位を与える単量体の中で、特に好適な単量体としては、(メタ)アクリル酸1−メチル−1−シクロペンチルエステル、(メタ)アクリル酸1−エチル−1−シクロペンチルエステル、(メタ)アクリル酸1−メチル−1−シクロヘキシルエステル、(メタ)アクリル酸1−エチル−1−シクロヘキシルエステル、(メタ)アクリル酸2−メチルアダマンタン−2−イルエステル、(メタ)アクリル酸2−エチルアダマンタン−2−イルエステル、(メタ)アクリル酸2−n−プロビルアダマンタン−2−イルエステル、(メタ)アクリル酸2−イソプロビルアダマンタン−2−イルエステル、(メタ)アクリル酸1−(アダマンタン−1−イル)−1−メチルエチルエステルが挙げられる。これらは単独でも混合しても使用できる。
式(2)で表される繰り返し単位を生じさせる単量体としては、式(2−1)で表される化合物が挙げられる。
Figure 0004182868
式(2−1)におけるRは水素原子あるいはメチル基を表し、AおよびBは、式(2)におけるAおよびBと同一である。なお、Aにおける炭素数1〜6の直鎖状もしくは分岐状のアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、シクロヘキシレン基を例示できる。
式(2−1)で表される単量体の中で好ましい単量体としては、下記式(2−1−1)〜(2−1−7)で表される単量体が挙げられる。
Figure 0004182868
Figure 0004182868
ここでRは水素原子、メチル基、トリフルオロメチル基、ヒドロキシメチル基のいずれかであり、またノルボルナンの橋頭にあたる7位が、上記メチレン基に代わり酸素原子になったものも好ましい単量体として挙げられる。
式(3)で表される繰り返し単位を生じさせる単量体としては、式(3−1)で表される化合物が挙げられる。
Figure 0004182868
式(3−1)において、Rは水素原子あるいはメチル基を表し、EおよびR2は式(3)におけるEおよびR2と同一である。
式(3−1)で表される単量体の中で好ましい単量体を以下に挙げる。
(メタ)アクリル酸3−ヒドロキシアダマンタンエステル、(メタ)アクリル酸3−ヒドロキシアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3、5−ジヒドロキシアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−シアノアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−カルボキシルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−メトキシカルボニルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシメチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3、5−ジヒドロキシメチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−ヒドロキシメチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノ−5−ヒドロキシメチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5−カルボキシルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5−メトキシカルボニルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3、5−ジシアノアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノ−5−カルボキシルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノ−5−メトキシカルボニルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−カルボキシルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3、5−ジカルボキシルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−カルボキシル−5−メトキシカルボニルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−メトキシカルボニルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3、5−ジメトキシカルボニルアダマンタン−1−イルメチルエステル、
(メタ)アクリル酸3−ヒドロキシ−5−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3、5−ジヒドロキシ−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシ−5−シアノ−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシ−5−カルボキシル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシ−5−メトキシカルボニル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3、5−ジヒドロキシメチル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシ−5−ヒドロキシメチル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−シアノ−5−ヒドロキシメチル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5−カルボキシル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5−メトキシカルボニル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−シアノ−5−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3、5−ジシアノ−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−シアノ−5−カルボキシル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−シアノ−5−メトキシカルボニル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−カルボキシル−5−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3、5−ジカルボキシル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−カルボキシル−5−メトキシカルボニル−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−メトキシカルボニル−5−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3、5−ジメトキシカルボニル−7−メチルアダマンタン−1−イルエステル、
(メタ)アクリル酸3−ヒドロキシ−5−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3、5−ジヒドロキシ−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−シアノ−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−カルボキシル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−メトキシカルボニル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3、5−ジヒドロキシメチル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−ヒドロキシメチル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノ−5−ヒドロキシメチル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5−カルボキシル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5−メトキシカルボニル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノ−5−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3、5−ジシアノ−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノ−5−カルボキシル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノ−5−メトキシカルボニル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−カルボキシル−5−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3、5−ジカルボキシル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−カルボキシル−5−メトキシカルボニル−7−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−メトキシカルボニル−5−メチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3、5−ジメトキシカルボニル−7−メチルアダマンタン−1−イルメチルエステル、
(メタ)アクリル酸3−ヒドロキシ−5、7−ジメチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5、7−ジメチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−シアノ−5、7−ジメチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−カルボキシル−5、7−ジメチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−メトキシカルボニル−5、7−ジメチルアダマンタン−1−イルエステル、
(メタ)アクリル酸3−ヒドロキシ−5、7−ジメチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシメチル−5、7−ジメチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノ−5、7−ジメチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−カルボキシル−5、7−ジメチルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−メトキシカルボニル−5、7−ジメチルアダマンタン−1−イルメチルエステル等が挙げられる。
式(3−1)で表される単量体の中で、特に好適な単量体としては、(メタ)アクリル酸3−ヒドロキシアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3、5−ジヒドロキシアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−シアノアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−カルボキシルアダマンタン−1−イルメチルエステル、(メタ)アクリル酸3−ヒドロキシ−5−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3、5−ジヒドロキシ−7−メチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシ−5、7−ジメチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−カルボキシル−5、7−ジメチルアダマンタン−1−イルエステル、(メタ)アクリル酸3−ヒドロキシ−5、7−ジメチルアダマンタン−1−イルメチルエステル、等が挙げられる。
式(4)で表される繰り返し単位を生じさせる単量体としては、式(4−1)で表される化合物が挙げられる。
Figure 0004182868
式(4−1)において、Rは水素原子、メチル基、トリフルオロメチル基またはヒドロキシメチル基を表し、Gは式(4)におけるGと同一である。
式(4−1)で表される単量体の中で、特に好適な単量体としては、下記式(4−1−1)〜式(4−1−8)で表される単量体が挙げられる。
Figure 0004182868
Figure 0004182868
上式において、Rは水素原子、メチル基、トリフルオロメチル基またはヒドロキシメチル基のいずれかであり、またノルボルナンの橋頭にあたる7位が、上記メチレン基に代わり酸素原子になったものも好ましい単量体として挙げられる。
式(5)で表される繰り返し単位を生じさせる単量体としては、式(5−1)で表される化合物が挙げられる。
Figure 0004182868
式(5−1)において、Rは水素原子あるいはメチル基を表し、Jは式(5)におけるJと同一である。
式(5−1)で表される単量体の中で、特に好適な単量体としては、下記式(5−1−1)〜式(5−1−4)で表される単量体が挙げられる。
Figure 0004182868
上式において、Rは水素原子、メチル基、トリフルオロメチル基またはヒドロキシメチル基のいずれかである。
式(6)で表される繰り返し単位を生じさせる単量体としては、式(6−1)で表される化合物が挙げられる。
Figure 0004182868
式(6−1)において、Rは水素原子、メチル基、トリフルオロメチル基またはヒドロキシメチル基を表し、q、LおよびR3は式(6)におけるq、LおよびR3と同一である。
式(6−1)で表される単量体の中で、特に好適な単量体としては、下記式(6−1−1)〜式(6−1−15)で表される単量体が挙げられる。
Figure 0004182868
Figure 0004182868
Figure 0004182868
上式において、R3の好ましい具体例としては、水素原子、メチル基、エチル基、プロピル基、ブチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヒドロキシメチル基、ヒドロキシエチル基等が挙げられる。
式(7)で表される繰り返し単位を生じさせる単量体としては、式(7−1)で表される化合物が挙げられる。
Figure 0004182868
式(7−1)において、Rは水素原子、メチル基、トリフルオロメチル基またはヒドロキシメチル基を表し、N、M’およびpは式(7)におけるN、M’およびpと同一である。
式(7−1)で表される単量体の中で、特に好適な単量体としては、下記式(7−1−1)〜式(7−1−12)で表される単量体が挙げられる。
Figure 0004182868
Figure 0004182868
Figure 0004182868
Figure 0004182868
式(8)で表される繰り返し単位を生じさせる単量体としては、式(8−1)で表される化合物が挙げられる。
Figure 0004182868
式(8−1)において、Rは水素原子、メチル基、トリフルオロメチル基またはヒドロキシメチル基を表し、Xは式(8)におけるXと同一である。
式(8−1)で表される単量体の中で、特に好適な単量体としては、下記式(8−1−1)〜式(8−1−12)で表される単量体が挙げられる。またこれらは単独でも、2種以上を混合して用いることができる。
Figure 0004182868
Figure 0004182868
Figure 0004182868
本発明に係る重合体(A)は、式(3)および式(2)〜式(8)で表される繰り返し単位以外にさらに他の繰り返し単位を含むことができる。
他の繰り返し単位を与える単量体としては、例えば(メタ)アクリル酸ヒドロキシメチルエステル、1−(メタ)アクリル酸−2−ヒドロキシメチルエステル、(メタ)アクリル酸、(メタ)アクリル酸−5(6)−ヒドロキシビシクロ[2.2.1]ヘプト−2−イルエステル、(メタ)アクリル酸−9(10)−ヒドロキシテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−イル、(メタ)アクリル酸カルボキシルメチルエステル、(メタ)アクリル酸−2−カルボキシルエチルエステル、(メタ)アクリル酸−3−カルボキシアダマンタン−1−イルエステル、(メタ)アクリル酸−5(6)−カルボキシビシクロ[2.2.1]ヘプト−2−イルエステル、(メタ)アクリル酸−9(10)−カルボキシテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−イルエステル、(メタ)アクリル酸シアノメチルエステル、1−(メタ)アクリル酸−2−シアノエチルエステル、(メタ)アクリル酸−3−シアノアダマンタン−1−イル、(メタ)アクリル酸−5(6)−シアノビシクロ[2.2.1]ヘプト−2−イルエステル、(メタ)アクリル酸−9(10)−シアノテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−イルエステル、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸アダマンタン−1−イルエステル、(メタ)アクリル酸ビシクロ[2.2.1]ヘプト−2−イルエステル、(メタ)アクリル酸−7,7−ジメチルビシクロ[2.2.1]ヘプタ−1−イルエステル、(メタ)アクリル酸トリシクロ[5.2.1.02,6]デカ−8−イルエステル;
(メタ)アクリル酸−7−オキソ−6−オキサービシクロ[3.2.1]オクタ−4−イルエステル、(メタ)アクリル酸−2−メトキシカルボニル−7−オキソ−6−オキサビシクロ[3.2.1]オクタ−4−イルエステル、(メタ)アクリル酸−2−オキソテトラヒドロピラン−4−イルエステル、(メタ)アクリル酸−4−メチルー2−オキソテトラヒドロピラン−4−イルエステル、(メタ)アクリル酸−5−オキソテトラヒドロフラン−3−イルエステル、(メタ)アクリル酸−2,2−ジメチル−5−オキソテトラヒドロフラン−3−イルエステル、(メタ)アクリル酸−4,4−ジメチル−5−オキソテトラヒドロフラン−3−イルエステル、(メタ)アクリル酸−2−オキソテトラヒドロフラン−3−イルエステル、(メタ)アクリル酸−4,4−ジメチル−2−オキソテトラヒドロフラン−3−イルエステル、(メタ)アクリル酸−5,5−ジメチル−2−オキソテトラヒドロフラン−3−イルエステル、(メタ)アクリル酸−5−オキソテトラヒドロフラン−2−イルメチルエステル、(メタ)アクリル酸−3,3−ジメチル−5−オキソテトラヒドロフラン−2−イルメチルエステル、
N,N−ジメチル(メタ)アクリルアミド、クロトンアミド、マレインアミド、フマルアミド、メサコンアミド、シトラコンアミド、イタコンアミド等;メチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、2,5−ジメチル−2,5−ヘキサンジオールジ(メタ)アクリレート、1,2−アダマンタンジオールジ(メタ)アクリレート、1,3−アダマンタンジオールジ(メタ)アクリレート、1,4−アダマンタンジオールジ(メタ)アクリレート、トリシクロデカニルジメチロールジ(メタ)アクリレート等を挙げることができる。
本発明に係る重合体(A)は、式(1)で表される繰り返し単位とともに、式(2)ないし式(8)で表される繰り返し単位の少なくとも1つの繰り返し単位で構成することが好ましい。
繰り返し単位(1)の共重合体中での割合は、全繰り返し単位に対して、5〜85mol%、好ましくは10〜70mol%である。5mol%未満では、レジストとしての解像性が劣化する傾向であり、85mol%をこえるとレジストとしての現像性が低下する傾向にある。
繰り返し単位(2)を共重合体中に有する場合における、繰り返し単位(2)の割合は、全繰り返し単位に対して、2〜80mol%、好ましくは5〜60mol%;繰り返し単位(3)を共重合体中に有する場合における、繰り返し単位(3)の割合は、全繰り返し単位に対して、2〜70mol%、好ましくは5〜50mol%;繰り返し単位(4)を共重合体中に有する場合における、繰り返し単位(4)の割合は、全繰り返し単位に対して、2〜85mol%、好ましくは5〜70mol%;繰り返し単位(5)を共重合体中に有する場合における、繰り返し単位(5)の割合は、全繰り返し単位に対して、2〜70mol%、好ましくは5〜50mol%;繰り返し単位(6)を共重合体中に有する場合における、繰り返し単位(6)の割合は、全繰り返し単位に対して、2〜80mol%、好ましくは5〜70mol%;繰り返し単位(7)を共重合体中に有する場合における、繰り返し単位(7)の割合は、全繰り返し単位に対して、2〜80mol%、好ましくは5〜70mol%;繰り返し単位(8)を共重合体中に有する場合における、繰り返し単位(8)の割合は、全繰り返し単位に対して、1〜70mol%、好ましくは3〜50mol%である。
繰り返し単位(2)の含有率が80mol%をこえると解像度の劣化およびレジスト溶媒への溶解性が低下する傾向にある。繰り返し単位(3)の含有率が70mol%をこえると現像性が低下する傾向にある。繰り返し単位(4)の含有率が85mol%をこえるとドライエッチング耐性が低下する傾向にある。繰り返し単位(5)の含有率が70mol%をこえると解像度が低下する傾向にある。繰り返し単位(6)の含有率が80mol%をこえると現像性が低下する傾向にある。繰り返し単位(7)の含有率が80mol%をこえると現像性が低下する傾向にある。繰り返し単位(8)の含有率が70mol%をこえると現像性が低下する傾向にある。
重合体(A)を構成する重合体(A1)および重合体(A2)は、それぞれ上記繰り返し単位で構成されるが、重合体(A1)と重合体(A2)との混合割合は、重量%[(A1/(A1+A2))×100]で、1〜97%、好ましくは5〜90%、さらに好ましいのは10〜80%である。混合割合が1%未満の場合はMEF改良の効果が顕著ではなく、97%をこえると現像の際レジストパターンが倒れ易い傾向にある。
本発明に使用できる重合体(A1)はラジカル重合開始剤に加えて式(X−1)で表される連鎖移動剤を用いるリビングラジカル重合により重合される。
十分な重合速度を実現するために、十分高い濃度のラジカル重合開始剤を添加することが必要である。ただしラジカル重合開始剤量と連鎖移動剤量との比率が高すぎると、ラジカル−ラジカルカップリング反応が発生し望ましくない非リビングラジカル重合体が生成するので、得られた重合体は分子量および分子量分布などの高分子特性においてコントロールされていない特性を有する部分が含まれてしまう。ラジカル重合開始剤量と連鎖移動剤量とのモル比率は、(1:1)〜(0.005:1)である。
また、本発明に使用できる重合体(A2)は、ラジカル重合開始剤単独、あるいは重合体(A2)の分子量をコントロールするなどの目的でリビングラジカル重合性のない連鎖移動剤、例えばチオール、ジスルフィド類化合物等をラジカル重合開始剤と併用できる。
重合体(A1)および重合体(A2)は、通常のバッチ重合、滴下重合などの方法で合成できる。例えば、必要な単量体量を有機溶媒に溶解させ、ラジカル重合開始剤、連鎖移動剤の存在下で重合することにより酸解離性基含有重合体が得られる。
重合溶媒は単量体、ラジカル重合開始剤、連鎖移動剤を溶解できる有機溶剤が用いられる。有機溶剤としてケトン系溶剤、エーテル系溶剤、非プロトン系極性溶剤、エステル系溶剤、芳香族系溶剤、線状または環状脂肪族系溶剤が挙げられる。ケトン系溶剤としては、メチルエチルケトン、アセトンなどが挙げられる。エーテル系溶剤としてはアルコキシアルキルエーテル、例えば、メトキシメチルエーテル、エチルエーテル、テトラヒドロフラン、1,4−ジオキサンなどが挙げられる。非プロトン系極性溶剤はジメチルホルムアミド、ジメチルスルホオキサイドなどが挙げられる。エステル系溶剤は酢酸アルキル、例えば酢酸エチル、酢酸メチルなどが挙げられる。芳香族系溶剤はアルキルアリール溶剤、例えばトルエン、キシレン、およびハロゲン化芳香族溶剤、例えばクロロベンゼンなどが挙げられる。脂肪族系溶剤はヘキサン、シクロヘキサンなどが挙げられる。
重合温度は20〜120℃、好ましくは50〜110℃、さらに好ましくは60〜100℃である。通常の大気雰囲気でも重合できる場合もあるが、窒素やアルゴンなどの不活性ガス雰囲気下での重合が好ましい。重合体の分子量は単量体量と連鎖移動剤量との比率を制御することで調整できる。
重合時間は一般に0.5〜144時間、好ましくは1〜72時間、より好ましくは2〜24時間である。
リビングラジカル重合法で得られる重合体(A1)は、下記(9)式で示すように、その分子鎖末端に連鎖移動剤由来の残基を有する。本発明においては、この残基であるチオカルボニルチオ誘導体基を有する重合体を重合体(A1)として利用できる。
Figure 0004182868
また、上記チオカルボニルチオ誘導体基を除去して使用することができる。連鎖移動剤由来の残基は、例えば下記(10)式で示すように、過剰なラジカル重合開始剤を利用して除去できる。
Figure 0004182868
以下その処理方法について説明する。
末端処理は樹脂の溶液に行なう。使用できる溶媒は上記重合操作に挙げられたものを使用できる。
使用できるラジカル重合開始剤は、重合体末端基処理の条件でラジカルが発生できるものであれば使用できる。ラジカル発生条件としては、熱、光、ガンマ線または電子ビームなどのような高エネルギー放射線が挙げられる。
ラジカル重合開始剤の具体例としてはパーオキシドやアゾ化合物などの開始剤が挙げられる。特に限定しないが、具体的なラジカル重合開始剤としては、t−ブチルハイドロパーオキサイド、t−ブチルパーベンゾエート、ベンゾイルパーオキサイド、2,2'−アゾビス(2,4−ジメチルバレロニトリル)、2,2'−アゾビスイソブチロニトリル(AIBN)、1,1'−アゾビス(シクロヘキサンカルボニトリル)、ジメチル−2,2'−アゾビスイソブチレート(MAIB)、ベンゾインエーテル、ベンゾフェノン等が挙げられる。
重合体末端処理はリビングラジカル重合反応終了後、その重合反応終了物に対して行なうか、またはいったん生成した重合体を精製した後で重合体末端処理を行なうことができる。
末端処理反応において、ラジカル重合開始剤は反応容器に一度に添加することも、また徐々に添加することもできる。徐々に添加する場合、複数回に分割して添加しても、また連続的に添加してもよい。
熱ラジカル重合開始剤が用いられる場合は、樹脂末端基処理反応の温度が約20〜200℃、好ましくは40〜150℃、さらに好ましくは50〜100℃である。反応の雰囲気は、窒素やアルゴンなどの不活性雰囲気、または大気雰囲気である。反応の圧力は常圧または加圧することができる。ラジカル重合開始剤の量は、ラジカル重合開始剤が発生するラジカル量として、末端処理される重合体に存在する残基の総モル数の1〜800%モル、好ましくは50〜400%モル、より好ましくは100〜300%モル、さらにより好ましくは200〜300%モルになるように導入できる。連鎖移動剤由来の残基のより完全な除去を望む場合は過剰量のラジカル重合開始剤が用いられる。
末端処理の反応時間は0.5〜72時間、好ましくは1〜24時間、より好ましくは2〜12時間である。重合体末端からチオグループなどの残基の除去は少なくとも50%、好ましくは少なくとも75%、より好ましくは85%、さらにより好ましくは95%である。末端処理された重合体は末端に新しいラジカル種、例えば末端処理反応で使用されたラジカル開始剤から由来するラジカル開始剤の断片に置換される。得られた重合体は末端に新しいグループがあり、用途に応じて使用できる。
なお、重合体末端処理は国際公開公報WO02/090397に記載の方法によっても連鎖移動剤由来の残基を除去できる。
本発明においては、重合体(A1)は、分子鎖末端に連鎖移動剤由来の残基を有する重合体、分子鎖末端に連鎖移動剤由来の残基を有さない重合体、分子鎖末端に連鎖移動剤由来の残基が一部残存する重合体のいずれも利用できる。
本発明に使用できる重合体(A)は、ハロゲン、金属等の不純物が少ないのは当然のことながら、残留単量体やオリゴマー成分が既定値以下、例えばHPLCで0.1重量%以下等であることが好ましく、それにより、レジストとしての感度、解像度、プロセス安定性、パターン形状等をさらに改善できるだけでなく、液中異物や感度等の経時変化がないレジストとして使用できる感放射線性組成物が得られる。
重合体(A)、重合体(A1)または重合体(A2)の精製法としては、例えば以下の方法が挙げられる。金属等の不純物を除去する方法としては、ゼータ電位フィルターを用いて樹脂溶液中の金属を吸着させる方法や蓚酸やスルホン酸等の酸性水溶液で樹脂溶液を洗浄することで金属をキレート状態にして除去する方法等が挙げられる。また、残留単量体やオリゴマー成分を規定値以下に除去する方法としては、水洗や適切な溶剤を組み合わせることにより残留単量体やオリゴマー成分を除去する液々抽出法、特定の分子量以下のもののみを抽出除去する限外ろ過等の溶液状態での精製方法や、重合体(A)溶液等を貧溶媒へ滴下することで重合体を貧溶媒中に凝固させることにより残留単量体等を除去する再沈澱法やろ別した重合体スラリーを貧溶媒で洗浄する等の固体状態での精製方法がある。また、これらの方法を組み合わせることもできる。上記再沈澱法に用いられる貧溶媒としては、精製する重合体(A)等の物性等に左右され一概には例示することはできない。適宜、貧溶媒は選定されるものである。
重合体(A1)および重合体(A2)のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(以下、「Mw」という。)は、通常、2,000〜30,000、好ましくは3,000〜20,000、さらに好ましくは3,000〜12,000である。この場合、重合体(A)のMwが2,000未満では、レジストとしたときの耐熱性が低下する傾向があり、一方30,000をこえると、レジストとしたときの現像性が低下する傾向がある。
また、重合体(A1)および重合体(A2)のMwとゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算数平均分子量(以下、「Mn」という。)との比(Mw/Mn)は、通常、1〜2、好ましくは1〜1.6である。
なお、重合体(A)は、ハロゲン、金属等の不純物が少ないほど好ましく、それにより、レジストとしたときの感度、解像度、プロセス安定性、パターンプロファイル等をさらに改善することができる。重合体(A)の精製法としては、例えば、水洗、液々抽出等の化学的精製法や、これらの化学的精製法と限外ろ過、遠心分離等の物理的精製法との組み合わせ等を挙げることができる。
本発明において、重合体(A1)および重合体(A2)は、それぞれ単独でまたは2種以上を混合しても使用することができる。
上記重合体(A)を酸解離性基含有樹脂として用い、放射線の照射により酸を発生する成分である酸発生剤(B)と組み合わせることにより感放射線性樹脂組成物が得られる。
酸発生剤(B)は、露光により発生した酸の作用によって、重合体(A)中に存在する酸解離性基を解離させ、その結果レジスト被膜の露光部がアルカリ現像液に易溶性となり、ポジ型のレジストパターンを形成する作用を有するものである。
本発明における酸発生剤(B)としては、スルホニウム塩やヨードニウム塩等のオニウム塩、有機ハロゲン化合物、ジスルホン類やジアゾメタンスルホン類等のスルホン化合物を挙げることができる。
酸発生剤として好ましいものとしては、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ−n−ブタンスルホネート、トリフェニルスルホニウムパーフルオロ−n−オクタンスルホネート、トリフェニルスルホニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、トリフェニルスルホニウムカンファースルホネート等のトリフェニルスルホニウム塩化合物;
4−シクロヘキシルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4−シクロヘキシルフェニルジフェニルスルホニウムノナフルオロ−n−ブタンスルホネート、4−シクロヘキシルフェニルジフェニルスルホニウムパーフルオロ−n−オクタンスルホネート、4−シクロヘキシルフェニルジフェニルスルホニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、4−シクロヘキシルフェニルジフェニルスルホニウムカンファースルホネート等の4−シクロヘキシルフェニルジフェニルスルホニウム塩化合物;
4−メタンスルホニルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4−メタンスルホニルフェニルジフェニルスルホニウムノナフルオロ−n−ブタンスルホネート、4−メタンスルホニルフェニルジフェニルスルホニウムパーフルオロ−n−オクタンスルホネート、4−メタンスルホニルフェニルジフェニルスルホニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、4−メタンスルホニルフェニルジフェニルスルホニウムカンファースルホネート等の4−シクロヘキシルフェニルジフェニルスルホニウム塩化合物;
ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ−n−ブタンスルホネート、ジフェニルヨードニウムパーフルオロ−n−オクタンスルホネート、ジフェニルヨードニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、ジフェニルヨードニウムカンファースルホネート等のジフェニルヨードニウム塩化合物;
ビス(4−t−ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムノナフルオロ−n−ブタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムパーフルオロ−n−オクタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムカンファースルホネート等のビス(4−t−ブチルフェニル)ヨードニウム塩化合物;
1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムパーフルオロ−n−オクタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムカンファースルホネート等の1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウム塩化合物;
1−(6−n−ブトキシナフタレン−2−イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(6−n−ブトキシナフタレン−2−イル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、1−(6−n−ブトキシナフタレン−2−イル)テトラヒドロチオフェニウムパーフルオロ−n−オクタンスルホネート、1−(6−n−ブトキシナフタレン−2−イル)テトラヒドロチオフェニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、1−(6−n−ブトキシナフタレン−2−イル)テトラヒドロチオフェニウムカンファースルホネート等の1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウム塩化合物;
1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムパーフルオロ−n−オクタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムカンファースルホネート等の1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウム塩化合物;
N−(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(ノナフルオロ−n−ブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(パーフルオロ−n−オクタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−(3−テトラシクロ[4.4.0.12,5.17,10]ドデカニル)−1,1−ジフルオロエタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(カンファースルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド等のビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド類化合物等が挙げられる。
本発明において、酸発生剤は、単独でまたは2種以上を混合して使用できる。
酸発生剤の使用量は、レジストとしての感度および現像性を確保する観点から、重合体(A)100重量部に対して、通常、0.1〜30重量部、好ましくは0.1〜20重量部である。この場合、酸発生剤の使用量が0.1重量部未満では、感度および現像性が低下する傾向があり、一方30重量部をこえると、放射線に対する透明性が低下して、矩形のレジストパターンを得られ難くなる傾向がある。
本発明の感放射線性樹脂組成物には、必要に応じて、酸拡散制御剤、酸解離性基を有する脂環族添加剤、酸解離性基を有しない脂環族添加剤、界面活性剤、増感剤等の各種の添加剤を配合できる。
上記酸拡散制御剤は、照射により酸発生剤から生じる酸のレジスト被膜中における拡散現象を制御し、非照射領域における好ましくない化学反応を抑制する作用を有する成分である。
このような酸拡散制御剤を配合することにより、得られる感放射線性樹脂組成物の貯蔵安定性が向上し、またレジストとしての解像度がさらに向上するとともに、照射から現像処理までの引き置き時間(PED)の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れた組成物が得られる。
上記酸拡散制御剤としては、レジストパターンの形成工程中の照射や加熱処理により塩基性が変化しない含窒素有機化合物が好ましい。
このような含窒素有機化合物としては、「3級アミン化合物」、「アミド基含有化合物」、「4級アンモニウムヒドロキシド化合物」、「含窒素複素環化合物」等が挙げられる。
「3級アミン化合物」としては、例えば、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリ−n−ペンチルアミン、トリ−n−ヘキシルアミン、トリ−n−ヘプチルアミン、トリ−n−オクチルアミン、シクロヘキシルジメチルアミン、トリシクロヘキシルアミン等のトリ(シクロ)アルキルアミン類;トリエタノールアミン、ジエタノールアニリンなどのアルカノールアミン類;N,N,N',N'−テトラメチルエチレンジアミン、N,N,N',N'−テトラキス(2−ヒドロキシプロピル)エチレンジアミン、1,3−ビス[1−(4−アミノフェニル)−1−メチルエチル]ベンゼンテトラメチレンジアミン、2,2−ビス(4−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、2−(4−アミノフェニル)−2−(3−ヒドロキシフェニル)プロパン、2−(4−アミノフェニル)−2−(4−ヒドロキシフェニル)プロパン、1,4−ビス[1−(4−アミノフェニル)−1−メチルエチル]ベンゼン、1,3−ビス[1−(4−アミノフェニル)−1−メチルエチル]ベンゼン、ビス(2−ジメチルアミノエチル)エーテル、ビス(2−ジエチルアミノエチル)エーテル等が挙げられる。
「アミド基含有化合物」としては、例えば、N−t−ブトキシカルボニルジ−n−オクチルアミン、N−t−ブトキシカルボニルジ−n−ノニルアミン、N−t−ブトキシカルボニルジ−n−デシルアミン、N−t−ブトキシカルボニルジシクロヘキシルアミン、N−t−ブトキシカルボニル−1−アダマンチルアミン、N−t−ブトキシカルボニル−N−メチル−1−アダマンチルアミン、N,N−ジ−t−ブトキシカルボニル−1−アダマンチルアミン、N,N−ジ−t−ブトキシカルボニル−N−メチル−1−アダマンチルアミン、N−t−ブトキシカルボニル−4,4'−ジアミノジフェニルメタン、N,N'−ジ−t−ブトキシカルボニルヘキサメチレンジアミン、N,N,N',N'−テトラ−t−ブトキシカルボニルヘキサメチレンジアミン、N,N'−ジ−t−ブトキシカルボニル−1,7−ジアミノヘプタン、N,N'−ジ−t−ブトキシカルボニル−1,8−ジアミノオクタン、N,N'−ジ−t−ブトキシカルボニル−1,9−ジアミノノナン、N,N'−ジ−t−ブトキシカルボニル−1,10−ジアミノデカン、N,N'−ジ−t−ブトキシカルボニル−1,12−ジアミノドデカン、N,N'−ジ−t−ブトキシカルボニル−4,4'−ジアミノジフェニルメタン、N−t−ブトキシカルボニルベンズイミダゾール、N−t−ブトキシカルボニル−2−メチルベンズイミダゾール、N−t−ブトキシカルボニル−2−フェニルベンズイミダゾール、N−t−ブトキシカルボニル−ピロリジン、N−t−ブトキシカルボニル−ピペリジン、N−t−ブトキシカルボニル−4−ヒドロキシ−ピペリジン、N−t−ブトキシカルボニル−モルホリン等のN−t−ブトキシカルボニル基含有アミノ化合物のほか、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N−メチルピロリドン等が挙げられる。
「4級アンモニウムヒドロキシド化合物」としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラ−n−プロピルアンモニウムヒドロキシド、テトラ−n−ブチルアンモニウムヒドロキシド等が挙げられる。
「含窒素複素環化合物」としては、例えば、イミダゾール、4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、4−メチル−2−フェニルイミダゾール、ベンズイミダゾール、2−フェニルベンズイミダゾール等のイミダゾール類;ピペラジン、1−(2−ヒドロキシエチル)ピペラジン等のピペラジン類のほか、ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、3−ピペリジノ−1,2−プロパンジオール、モルホリン、4−メチルモルホリン、1,4−ジメチルピペラジン、1,4−ジアザビシクロ[2.2.2]オクタン等が挙げられる。
上記含窒素複素環化合物のうち、3級アミン化合物、アミド基含有化合物、含窒素複素環化合物が好ましく、また、アミド基含有化合物の中ではN−t−ブトキシカルボニル基含有アミノ化合物が好ましく、含窒素複素環化合物の中ではイミダゾール類が好ましい。
上記酸拡散制御剤は、単独でまたは2種以上を混合して使用できる。酸拡散制御剤の配合量は、重合体(A)100重量部に対して、通常、15重量部以下、好ましくは10重量部以下、さらに好ましくは5重量部以下である。この場合、酸拡散制御剤の配合量が15重量部をこえると、レジストとしての感度および放射線照射部の現像性が低下する傾向がある。なお、酸拡散制御剤の配合量が0.001重量部未満であると、プロセス条件によってはレジストとしてのパターン形状や寸法忠実度が低下するおそれがある。
また、酸解離性基を有する脂環族添加剤、または酸解離性基を有しない脂環族添加剤は、ドライエッチング耐性、パターン形状、基板との接着性等をさらに改善する作用を示す成分である。
このような脂環族添加剤としては、例えば、1−アダマンタンカルボン酸t−ブチル、1−アダマンタンカルボン酸t−ブトキシカルボニルメチル、1−アダマンタンカルボン酸αブチロラクトンエステル、1,3−アダマンタンジカルボン酸ジ−t−ブチル、1−アダマンタン酢酸t−ブチル、1−アダマンタン酢酸t−ブトキシカルボニルメチル、1,3−アダマンタンジ酢酸ジ−t−ブチル、2,5−ジメチル−2,5−ジ(アダマンチルカルボニルオキシ)ヘキサン等のアダマンタン誘導体類;デオキシコール酸t−ブチル、デオキシコール酸t−ブトキシカルボニルメチル、デオキシコール酸2−エトキシエチル、デオキシコール酸2−シクロヘキシルオキシエチル、デオキシコール酸3−オキソシクロヘキシル、デオキシコール酸テトラヒドロピラニル、デオキシコール酸メバロノラクトンエステル等のデオキシコール酸エステル類;リトコール酸t−ブチル、リトコール酸t−ブトキシカルボニルメチル、リトコール酸2−エトキシエチル、リトコール酸2−シクロヘキシルオキシエチル、リトコール酸3−オキソシクロヘキシル、リトコール酸テトラヒドロピラニル、リトコール酸メバロノラクトンエステル等のリトコール酸エステル類;アジピン酸ジメチル、アジピン酸ジエチル、アジピン酸ジプロピル、アジピン酸ジn−ブチル、アジピン酸ジt−ブチル等のアルキルカルボン酸エステル類等が挙げられる。
これらの脂環族添加剤は、単独でまたは2種以上を混合して使用できる。脂環族添加剤の配合量は、重合体(A)100重量部に対して、通常、50重量部以下、好ましくは30重量部以下である。この場合、脂環族添加剤の配合量が50重量部をこえると、レジストとしての耐熱性が低下する傾向がある。
また、添加剤としての界面活性剤は、塗布性、ストリエーション、現像性等を改良する作用を示す成分である。
このような界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn−オクチルフェニルエーテル、ポリオキシエチレンn−ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤のほか、以下商品名で、KP341(信越化学工業(株)製)、ポリフローNo.75,同No.95(共栄社化学(株)製)、エフトップEF301,同EF303,同EF352(トーケムプロダクツ(株)製)、メガファックスF171,同F173(大日本インキ化学工業(株)製)、フロラードFC430,同FC431(住友スリーエム(株)製)、アサヒガードAG710,サーフロンS−382,同SC−101,同SC−102,同SC−103,同SC−104,同SC−105,同SC−106(旭硝子(株)製)等が挙げられる。
これらの界面活性剤は、単独でまたは2種以上を混合して使用できる。界面活性剤の配合量は、重合体(A)100重量部に対して、通常、2重量部以下である。
また、添加剤としての増感剤は、放射線のエネルギーを吸収して、そのエネルギーを酸発生剤に伝達し、それにより酸の生成量を増加する作用を示すもので、感放射線性樹脂組成物のみかけの感度を向上させる効果を有する。
このような増感剤としては、例えば、カルバゾール類、ベンゾフェノン類、ローズベンガル類、アントラセン類、フェノール類等が挙げられる。
これらの増感剤は、単独でまたは2種以上を混合して使用できる。増感剤の配合量は、重合体(A)100重量部に対して、好ましくは50重量部以下である。
さらに、上記以外の添加剤としては、ハレーション防止剤、接着助剤、保存安定化剤、消泡剤等が挙げられる。
本発明の感放射線性樹脂組成物は、普通、その使用に際して、全固形分濃度が、通常、3〜50重量%、好ましくは5〜25重量%となるように、溶剤に溶解したのち、例えば孔径0.2μm程度のフィルターでろ過し組成物溶液として調製される。
上記組成物溶液の調製に使用される溶剤としては、例えば、2−ペンタノン、2−ヘキサノン、2−ヘプタノン、2−オクタノン等の直鎖状もしくは分岐状のケトン類;シクロペンタノン、シクロヘキサノン等の環状のケトン類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;2−ヒドロキシプロピオン酸メチル、2−ヒドロキシプロピオン酸エチル等の2−ヒドロキシプロピオン酸アルキル類;3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル等の3−アルコキシプロピオン酸アルキル類のほか、
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、酢酸n−ブチル、ピルビン酸メチル、ピルビン酸エチル、N−メチルピロリドン、γ−ブチロラクトン等が挙げられる。
これらの溶剤は、単独でまたは2種以上を混合して使用できるが、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、2−ヘプタノン、シクロヘキサノン、γ−ブチロラクトン、2−ヒドロキシプロピオン酸エチル、3−エトキシプロピオン酸エチルから選ばれる少なくとも1種を含有することが好ましい。ただし、シクロヘキサノンは溶解性の点からは、有効な溶剤であるが、その毒性からは使用はできるだけ避けることが好ましい。
本発明の感放射線性樹脂組成物は、特に化学増幅型レジストとして有用である。特に現像後のパターンのラインエッジラフネスを低減できるポジ型レジストとして有用である。
化学増幅型レジストにおいては、放射線照射により酸発生剤から発生した酸の作用によって、樹脂中の酸解離性基が解離して、カルボキシル基を生じ、その結果、レジストの照射部のアルカリ現像液に対する溶解性が高くなり、該照射部がアルカリ現像液によって溶解、除去され、ポジ型のレジストパターンが得られる。
本発明の感放射線性樹脂組成物からレジストパターンを形成する際には、組成物溶液を、回転塗布、流延塗布、ロール塗布等の適宜の塗布手段によって、例えば、シリコンウエハー、アルミニウムで被覆されたウエハー等の基板上に塗布することにより、レジスト被膜を形成し、場合により予め加熱処理(以下、「PB」という。)を行なったのち、所定のレジストパターンを形成するように該レジスト被膜に照射する。その際に使用される放射線としては、例えば、紫外線、KrFエキシマレーザー(波長248nm)、ArFエキシマレーザー(波長193nm)、F2エキシマレーザー(波長157nm)、EUV(極紫外線、波長13nm等)等の遠紫外線、電子線等の荷電粒子線、シンクロトロン放射線等のX線等を適宜選択して使用できるが、これらのうち遠紫外線、電子線が好ましい。また、照射量等の照射条件は、感放射線性樹脂組成物の配合組成、各添加剤の種類等に応じて、適宜選定される。
本発明においては、高精度の微細パターンを安定して形成するために、PEBを行なうことが好ましい。このPEBにより、重合体(A)中の酸解離性有機基の解離反応が円滑に進行する。PEBの加熱条件は、感放射線性樹脂組成物の配合組成によって変わるが、通常、30〜200℃、好ましくは50〜170℃である。
本発明においては、感放射線性樹脂組成物の潜在能力を最大限に引き出すため、例えば特公平6−12452号公報等に開示されているように、使用される基板上に有機系あるいは無機系の反射防止膜を形成しておくこともでき、また環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、例えば特開平5−188598号公報等に開示されているように、レジスト被膜上に保護膜を設けることもでき、あるいはこれらの技術を併用することもできる。
次いで、照射されたレジスト被膜をアルカリ現像液を用いて現像することにより、所定のレジストパターンを形成する。
上記アルカリ現像液としては、例えば、テトラメチルアンモニウムヒドロキシドを溶解したアルカリ性水溶液が好ましい。
上記アルカリ性水溶液の濃度は、通常、10重量%以下である。この場合、アルカリ性水溶液の濃度が10重量%をこえると、非照射部も現像液に溶解するおそれがあり好ましくない。
また、上記アルカリ性水溶液には、界面活性剤等を適量添加することもできる。なお、アルカリ現像液で現像したのちは、一般に、水で洗浄して乾燥する。
以下、重合体(A1)および重合体(A2)の合成例、感放射線性樹脂組成物の実施例を挙げて、本発明をさらに具体的に説明する。但し、本発明は、これらの例に何ら制約されるものではない。ここで、部は、特記しない限り重量基準である。
合成例における各測定・評価は、下記の要領で行なった。
各重合体の13C−NMR分析は、日本電子(株)製「JNM−EX270」を用い、測定溶媒としてCDCL3を使用して実施した。また、Mwは東ソー(株)製GPCカラム(G2000HXL 2本、G3000HXL 1本、G4000HXL 1本)を用い、流量1.0ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定した。
合成例1
Figure 0004182868
化合物(11−1)48.84g(50モル%)、化合物(11−2)38.21g(35モル%)、化合物(11−3)12.94g(15モル%)を2−ブタノン187gに溶解した単量体溶液(1)、ジメチル2,2'−アゾビス(2−メチルプロピオネート)4.22gを2−ブタノン80gに溶解した溶液(2)を準備し、さらに前述したCTA−3で表される化合物を3.52g、2−ブタノンを19g投入した1000mlの三口フラスコに前に準備した単量体溶液(1)28.77g、溶液(2)5.29gを投入し、その後減圧置換法にて窒素パージする。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、15分後、単量体溶液(1)258.98g、溶液(2)24.64gを送液ポンプを用いて3時間かけて滴下した。滴下終了後さらに4時間攪拌した。重合終了後、重合溶液は放冷することにより30℃以下に冷却した。その後ジメチル2,2'−アゾビス(2−メチルプロピオネート)10.12gを重合溶液に加え、80℃に加熱し3時間攪拌した。反応終了後、溶液は放冷し30℃以下に冷却し、4000gのイソプロピルアルコールへ投入し、析出した白色粉末をろ別する。
ろ別された白色粉末を2度2000gのイソプロピルアルコールにてスラリー上で洗浄した後、ろ別し、60℃にて17時間乾燥し、白色粉末の重合体を得た(84g、収率84%)。この重合体はMwが7400であり、13C−NMR分析の結果、化合物(11−1)、化合物(11−2)、化合物(11−3)で表される繰り返し単位、各繰り返し単位の含有率が54.1:32.1:13.8(モル%)の共重合体であった。この重合体を重合体(A1−1)とする。
合成例2
Figure 0004182868
化合物(12−1)40.00g(40モル%)、化合物(12−2)48.51g(46モル%)、化合物(12−3)11.48g(14モル%)を2−ブタノン187gに溶解した単量体溶液(1)、ジメチル2,2'−アゾビス(2−メチルプロピオネート)4.22gを2−ブタノン80gに溶解した溶液(2)を準備し、さらに前述したCTA−3で表される化合物を3.52g、2−ブタノンを19g投入した1000mlの三口フラスコに前に準備した単量体溶液(1)28.77g、溶液(2)5.29gを投入し、その後減圧置換法にて窒素パージする。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、15分後、単量体溶液(1)258.98g、溶液(2)24.64gを送液ポンプを用いて3時間かけて滴下した。滴下終了後さらに4時間攪拌した。重合終了後、重合溶液は放冷することにより30℃以下に冷却した。その後ジメチル2,2'−アゾビス(2−メチルプロピオネート)10.36gを重合溶液に加え、80℃に加熱し3時間攪拌した。反応終了後、溶液は放冷し30℃以下に冷却し、4000gのイソプロピルアルコールへ投入し、析出した白色粉末をろ別する。
ろ別された白色粉末を2度2000gのイソプロピルアルコールにてスラリー上で洗浄した後、ろ別し、60℃にて17時間乾燥し、白色粉末の重合体を得た(82g、収率82%)。この重合体はMwが6100であり、13C−NMR分析の結果、化合物(12−1)、化合物(12−2)、化合物(12−3)で表される繰り返し単位、各繰り返し単位の含有率が45.9:39.4:14.7(モル%)の共重合体であった。この重合体を重合体(A1−2)とする。
合成例3
Figure 0004182868
化合物(13−1)54.99g(50モル%)、化合物(13−2)11.70g(10モル%)、化合物(13−3)33.30g(40モル%)を2−ブタノン187gに溶解した単量体溶液(1)、ジメチル2,2'−アゾビス(2−メチルプロピオネート)3.16gを2−ブタノン60gに溶解した溶液(2)を準備し、さらに前述したCTA−3で表される化合物を2.64g、2−ブタノンを14g投入した1000mlの三口フラスコに前に準備した単量体溶液(1)28.77g、溶液(2)3.97gを投入し、その後減圧置換法にて窒素パージする。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、15分後、単量体溶液(1)287.76g、溶液(2)23.10gを送液ポンプを用いて3時間かけて滴下した。滴下終了後さらに4時間攪拌した。重合終了後、溶液は放冷し30℃以下に冷却し、4000gのイソプロピルアルコールへ投入し、析出した白色粉末をろ別する。
ろ別された白色粉末を2度2000gのイソプロピルアルコールにてスラリー上で洗浄した後、ろ別し、60℃にて17時間乾燥し、白色粉末の重合体を得た(87g、収率87%)。この重合体はMwが7700であり、13C−NMR分析の結果、化合物(13−1)、化合物(13−2)、化合物(13−3)で表される繰り返し単位、各繰り返し単位の含有率が51.2:11.0:37.8(モル%)の共重合体であった。この重合体を重合体(A1−3)とする。
合成例4
化合物(12−1)50.16g(50モル%)、化合物(12−2)39.14g(37モル%)、化合物(12−3)10.69g(13モル%)を2−ブタノン187gに溶解した単量体溶液(1)、ジメチル2,2'−アゾビス(2−メチルプロピオネート)4.22gを2−ブタノン80gに溶解した溶液(2)を準備し、さらに前述したCTA−3で表される化合物を3.52g、2−ブタノンを19g投入した1000mlの三口フラスコに前に準備した単量体溶液(1)28.77g、溶液(2)5.29gを投入し、その後減圧置換法にて窒素パージする。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、15分後、単量体溶液(1)258.98g、溶液(2)30.80gを送液ポンプを用いて3時間かけて滴下した。滴下終了後さらに4時間攪拌した。重合終了後、重合溶液は放冷することにより30℃以下に冷却した。その後ジメチル2,2'−アゾビス(2−メチルプロピオネート)10.39gを重合溶液に加え、80℃に加熱し3時間攪拌した。反応終了後、溶液は放冷し30℃以下に冷却し、4000gのイソプロピルアルコールへ投入し、析出した白色粉末をろ別する。
ろ別された白色粉末を2度2000gのイソプロピルアルコールにてスラリー上で洗浄した後、ろ別し、60℃にて17時間乾燥し、白色粉末の重合体を得た(85g、収率85%)。この重合体はMwが6200であり、13C−NMR分析の結果、化合物(12−1)、化合物(12−2)、化合物(12−3)で表される繰り返し単位、各繰り返し単位の含有率が54.1:31.9:13.9(モル%)の共重合体であった。この重合体を重合体(A1−4)とする。
合成例5
化合物(12−1)50.16g(50モル%)、化合物(12−2)39.14g(37モル%)、化合物(12−3)10.69g(13モル%)を2−ブタノン187gに溶解した単量体溶液(1)、ジメチル2,2'−アゾビス(2−メチルプロピオネート)8.44gを2−ブタノン80gに溶解した溶液(2)を準備し、さらに前述したCTA−3で表される化合物を7.04g、2−ブタノンを38g投入した1000mlの三口フラスコに前に準備した単量体溶液(1)28.77g、溶液(2)10.58gを投入し、その後減圧置換法にて窒素パージする。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、15分後、単量体溶液(1)258.98g、溶液(2)61.60gを送液ポンプを用いて3時間かけて滴下した。滴下終了後さらに4時間攪拌した。重合終了後、重合溶液は放冷することにより30℃以下に冷却した。その後ジメチル2,2'−アゾビス(2−メチルプロピオネート)10.39gを重合溶液に加え、80℃に加熱し3時間攪拌した。反応終了後、溶液は放冷し30℃以下に冷却し、4000gのイソプロピルアルコールへ投入し、析出した白色粉末をろ別する。
ろ別された白色粉末を2度2000gのイソプロピルアルコールにてスラリー上で洗浄した後、ろ別し、60℃にて17時間乾燥し、白色粉末の重合体を得た(85g、収率85%)。この重合体はMwが4100であり、13C−NMR分析の結果、化合物(12−1)、化合物(12−2)、化合物(12−3)で表される繰り返し単位、各繰り返し単位の含有率が52.1:30.1:17.8(モル%)の共重合体であった。この重合体を重合体(A1−5)とする。
合成例6
化合物(12−1)50.16g(50モル%)、化合物(12−2)39.14g(37モル%)、化合物(12−3)10.69g(13モル%)を2−ブタノン187gに溶解した単量体溶液(1)、ジメチル2,2'−アゾビス(2−メチルプロピオネート)4.22gを2−ブタノン80gに溶解した溶液(2)を準備し、さらに前述したCTA−2で表される化合物を3.52g、2−ブタノンを19g投入した1000mlの三口フラスコに前に準備した単量体溶液(1)28.77g、溶液(2)5.29gを投入し、その後減圧置換法にて窒素パージする。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、15分後、単量体溶液(1)258.98g、溶液(2)30.80gを送液ポンプを用いて3時間かけて滴下した。滴下終了後さらに4時間攪拌した。重合終了後、溶液は放冷し30℃以下に冷却し、4000gのイソプロピルアルコールへ投入し、析出した白色粉末をろ別する。
ろ別された白色粉末を2度2000gのイソプロピルアルコールにてスラリー上で洗浄した後、ろ別し、60℃にて17時間乾燥し、白色粉末の重合体を得た(85g、収率85%)。この重合体はMwが6200であり、13C−NMR分析の結果、化合物(12−1)、化合物(12−2)、化合物(12−3)で表される繰り返し単位、各繰り返し単位の含有率が51.1:32.1:16.8(モル%)の共重合体であった。この重合体を重合体(A1−6)とする。
合成例7
Figure 0004182868
化合物(14−1)53.92g(50モル%)、化合物(14−2)10.69g(10モル%)、化合物(14−3)35.38g(40モル%)を2−ブタノン187gに溶解した単量体溶液(1)、ジメチル2,2'−アゾビス(2−メチルプロピオネート)3.37gを2−ブタノン64gに溶解した溶液(2)を準備し、さらに前述したCTA−3で表される化合物を2.81g、2−ブタノンを15g投入した1000mlの三口フラスコに前に準備した単量体溶液(1)28.77g、溶液(2)4.23gを投入し、その後減圧置換法にて窒素パージする。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、15分後、単量体溶液(1)258.98g、溶液(2)24.64gを送液ポンプを用いて3時間かけて滴下した。滴下終了後さらに4時間攪拌した。重合終了後、重合溶液は放冷することにより30℃以下に冷却した。その後ジメチル2,2'−アゾビス(2−メチルプロピオネート)11.17gを重合溶液に加え、80℃に加熱し3時間攪拌した。反応終了後、溶液は放冷し30℃以下に冷却し、4000gのイソプロピルアルコールへ投入し、析出した白色粉末をろ別する。
ろ別された白色粉末を2度2000gのイソプロピルアルコールにてスラリー上で洗浄した後、ろ別し、60℃にて17時間乾燥し、白色粉末の重合体を得た(85g、収率85%)。この重合体はMwが7600であり、13C−NMR分析の結果、化合物(14−1)、化合物(14−2)、化合物(14−3)で表される繰り返し単位、各繰り返し単位の含有率が53.1:8.5:38.4(モル%)の共重合体であった。この重合体を重合体(A1−7)とする。
合成例8
Figure 0004182868
化合物(15−1)53.25g(50モル%)、化合物(15−2)11.80g(10モル%)、化合物(15−3)34.93g(40モル%)を2−ブタノン187gに溶解した単量体溶液(1)、ジメチル2,2'−アゾビス(2−メチルプロピオネート)3.37gを2−ブタノン64gに溶解した溶液(2)を準備し、さらに前述したCTA−3で表される化合物を2.81g、2−ブタノンを15g投入した1000mlの三口フラスコに前に準備した単量体溶液(1)28.77g、溶液(2)4.23gを投入し、その後減圧置換法にて窒素パージする。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、15分後、単量体溶液(1)258.98g、溶液(2)24.64gを送液ポンプを用いて3時間かけて滴下した。滴下終了後さらに4時間攪拌した。重合終了後、重合溶液は放冷することにより30℃以下に冷却した。その後ジメチル2,2'−アゾビス(2−メチルプロピオネート)11.03gを重合溶液に加え、80℃に加熱し3時間攪拌した。反応終了後、溶液は放冷し30℃以下に冷却し、4000gのイソプロピルアルコールへ投入し、析出した白色粉末をろ別する。
ろ別された白色粉末を2度2000gのイソプロピルアルコールにてスラリー上で洗浄した後、ろ別し、60℃にて17時間乾燥し、白色粉末の重合体を得た(84g、収率84%)。この重合体はMwが7400であり、13C−NMR分析の結果、化合物(15−1)、化合物(15−2)、化合物(15−3)で表される繰り返し単位、各繰り返し単位の含有率が54.1:7.5:38.4(モル%)の共重合体であった。この重合体を重合体(A1−8)とする。
合成例9
Figure 0004182868
化合物(16−1)47.79g(50モル%)、化合物(16−2)9.47g(10モル%)、化合物(16−3)42.73g(40モル%)を2−ブタノン187gに溶解した単量体溶液(1)、ジメチル2,2'−アゾビス(2−メチルプロピオネート)3.37gを2−ブタノン64gに溶解した溶液(2)を準備し、さらに前述したCTA−1で表される化合物を2.81g、2−ブタノンを15g投入した1000mlの三口フラスコに前に準備した単量体溶液(1)28.77g、溶液(2)4.23gを投入し、その後減圧置換法にて窒素パージする。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、15分後、単量体溶液(1)258.98g、溶液(2)24.64gを送液ポンプを用いて3時間かけて滴下した。滴下終了後さらに4時間攪拌した。重合終了後、重合溶液は放冷することにより30℃以下に冷却した。その後ジメチル2,2'−アゾビス(2−メチルプロピオネート)9.90gを重合溶液に加え、80℃に加熱し3時間攪拌した。反応終了後、溶液は放冷し30℃以下に冷却し、4000gのイソプロピルアルコールへ投入し、析出した白色粉末をろ別する。
ろ別された白色粉末を2度2000gのイソプロピルアルコールにてスラリー上で洗浄した後、ろ別し、60℃にて17時間乾燥し、白色粉末の重合体を得た(83g、収率83%)。この重合体はMwが7700であり、13C−NMR分析の結果、化合物(16−1)、化合物(16−2)、化合物(16−3)で表される繰り返し単位、各繰り返し単位の含有率が55.1:8.5:36.4(モル%)の共重合体であった。この重合体を重合体(A1−9)とする。
合成例10
化合物(14−1)53.93g(50モル%)、化合物(14−2)10.69g(10モル%)、化合物(14−3)35.38g(40モル%)を2−ブタノン200gに溶かし、さらにジメチル2,2'−アゾビス(2−メチルプロピオネート)5.58gを投入した単量体溶液を準備し、100gの2−ブタノンを投入した1000mlの三口フラスコを30分窒素パージする。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、事前に準備した上記単量体溶液を滴下漏斗を用いて3時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。重合終了後、重合溶液は水冷することにより30℃以下に冷却し、2000gのメタノールへ投入し、析出した白色粉末をろ別する。
ろ別された白色粉末を2度400gのメタノールにてスラリー上で洗浄した後、ろ別し、50℃にて17時間乾燥し、白色粉末の重合体を得た(72g、収率72%)。この重合体はMwが7400であり、13C−NMR分析の結果、化合物(14−1)、化合物(14−2)、化合物(14−3)で表される繰り返し単位、各繰り返し単位の含有率が52.2:8.6:39.2(モル%)の共重合体であった。この重合体を重合体(A2−1)とする。
合成例11
Figure 0004182868
化合物(17−1)53.88g(50モル%)、化合物(17−2)10.78g(10モル%)、化合物(17−3)35.34g(40モル%)を2−ブタノン200gに溶解し、さらにジメチル2,2'−アゾビス(2−メチルプロピオネート)5.58gを投入した単量体溶液を準備し、100gの2−ブタノンを投入した1000mlの三口フラスコを30分窒素パージする。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、事前に準備した上記単量体溶液を滴下漏斗を用いて3時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。重合終了後、重合溶液は水冷することにより30℃以下に冷却し、2000gのメタノールへ投入し、析出した白色粉末をろ別する。
ろ別された白色粉末を2度400gのメタノールにてスラリー上で洗浄した後、ろ別し、50℃にて17時間乾燥し、白色粉末の重合体を得た(72g、収率72%)。この重合体はMwが7100であり、13C−NMR分析の結果、化合物(17−1)、化合物(17−2)、化合物(17−3)で表される繰り返し単位、各繰り返し単位の含有率が52.6:8.2:39.2(モル%)の共重合体であった。この重合体を重合体(A2−2)とする。
合成例12
Figure 0004182868
化合物(18−1)59.76g(50モル%)、化合物(18−2)10.23g(10モル%)、化合物(18−3)30.02g(40モル%)を2−ブタノン200gに溶解し、さらにジメチル2,2'−アゾビス(2−メチルプロピオネート)4.74gを投入した単量体溶液を準備し、100gの2−ブタノンを投入した1000mlの三口フラスコを30分窒素パージする。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、事前に準備した上記単量体溶液を滴下漏斗を用いて3時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。重合終了後、重合溶液は水冷することにより30℃以下に冷却し、2000gのメタノールへ投入し、析出した白色粉末をろ別する。
ろ別された白色粉末を2度400gのメタノールにてスラリー上で洗浄した後、ろ別し、50℃にて17時間乾燥し、白色粉末の重合体を得た(73g、収率73%)。この重合体はMwが7200であり、13C−NMR分析の結果、化合物(18−1)、化合物(18−2)、化合物(18−3)で表される繰り返し単位、各繰り返し単位の含有率が53.0:8.5:38.5(モル%)の共重合体であった。この重合体を重合体(A2−3)とする。
合成例13
化合物(12−1)42.40g(40モル%)、化合物(12−2)12.37g(15モル%)、化合物(12−3)45.24g(45モル%)を2−ブタノン200gに溶解し、さらにジメチル2,2'−アゾビス(2−メチルプロピオネート)8.33gを投入した単量体溶液を準備し、100gの2−ブタノンを投入した1000mlの三口フラスコを30分窒素パージする。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、事前に準備した上記単量体溶液を滴下漏斗を用いて3時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。重合終了後、重合溶液は水冷することにより30℃以下に冷却し、2000gのメタノールへ投入し、析出した白色粉末をろ別する。
ろ別された白色粉末を2度400gのメタノールにてスラリー上で洗浄した後、ろ別し、50℃にて17時間乾燥し、白色粉末の重合体を得た(73g、収率73%)。この重合体はMwが7200であり、13C−NMR分析の結果、化合物(12−1)、化合物(12−2)、化合物(12−3)で表される繰り返し単位、各繰り返し単位の含有率が37.6:13.4:49.0(モル%)の共重合体であった。この重合体を重合体(A2−4)とする。
合成例14
Figure 0004182868
化合物(19−1)44.48g(40モル%)、化合物(19−2)198.22g(10モル%)、化合物(19−3)45.60g(50モル%)を2−ブタノン200gに溶解し、さらにジメチル2,2'−アゾビス(2−メチルプロピオネート)5.76gを投入した単量体溶液を準備し、100gの2−ブタノンを投入した1000mlの三口フラスコを30分窒素パージする。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、事前に準備した上記単量体溶液を滴下漏斗を用いて3時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。重合終了後、重合溶液は水冷することにより30℃以下に冷却し、2000gのメタノールへ投入し、析出した白色粉末をろ別する。
ろ別された白色粉末を2度400gのメタノールにてスラリー上で洗浄した後、ろ別し、50℃にて17時間乾燥し、白色粉末の重合体を得た(73g、収率73%)。この重合体はMwが7200であり、13C−NMR分析の結果、化合物(19−1)、化合物(19−2)、化合物(19−3)で表される繰り返し単位、各繰り返し単位の含有率が41.5:10.2:48.3(モル%)の共重合体であった。この重合体を重合体(A2−5)とする。
実施例1〜実施例16、比較例1、比較例2
合成例1〜合成例14で得られた各重合体と、以下に示す酸発生剤と、他の成分とを表1に示す割合で配合して各感放射線性樹脂組成物溶液を得た。得られた感放射線性樹脂組成物溶液を表2に示す条件にて露光して各種評価を行なった。評価結果を表2に示す。ここで、部は、特記しない限り重量基準である。
酸発生剤(B)
(B−1):トリフェニルスルホニウム・ノナフルオロ−n−ブタンスルホネート
(B−2):1,4−ブチレン−(1−n−ブトキシナフタ−4−イル)スルホニウム1,1,2,2−テトラフルオロ−2−(ノルボルナン−2−イル)エタンスルホネート
(B−3):6−ブトキシナフタレンー2−イルーテトラヒドロチオフェニウム・ノナフルオロブタンスルホナート
酸拡散制御剤(C)
(C−1):ピロリジン―1−ニルー酢酸t−ブチルエステル
(C−2):(4−ヒドロキシーピペリジンー1−ニル)−酢酸t−ブチルエステル
脂環式化合物(D)
(D−1):デオキシコール酸t−ブトキシカルボニルメチル
溶剤(E)
(E−1):プロピレングリコールメチルエーテルアセテート
(E−2):シクロヘキサノン
評価方法
(1)感度:
ArF光源にて露光を行なう場合、ウエハー表面に膜厚77nmのARC29((Brewer Science)社製)膜を形成したシリコンウエハー(ARC29)を用い、各組成物溶液を、基板上にスピンコートにより塗布し、ホットプレート上にて、表3に示す条件でPBを行ない、冷却して形成した膜厚250nmのレジスト被膜に、ニコン製ArFエキシマレーザー露光装置(開口数0.75)を用い、マスクパターンを介して露光した。その後、表2に示す条件でPEBを行ない、冷却後に、2.38重量%のテトラメチルアンモニウムヒドロキシド水溶液により、23℃で30秒間現像し、水洗し、乾燥して、ポジ型のレジストパターンを形成した。このとき、線幅90nmのライン・アンド・スペースパターン(1L1S)を1対1の線幅に形成する露光量を最適露光量とし、この最適露光量を感度とした。
(2)解像度:
最適露光量で解像される最小のライン・アンド・スペースパターンの寸法を解像度とした。
(3)パターンプロファイル:
線幅 100nmのライン・アンド・スペースパターン(1L1S)の長方形状断面の下辺寸法L1と上辺寸法L2とを走査型電子顕微鏡により測定し、0.85≦L2/L1≦1を満足し、かつパターンプロファイルが裾を引いていない場合を、パターンプロファイルが「良好」であるとした。
(4)パターンの倒れ:
感度の測定に記載の方法に準じて、形成されるライン・アンド・スペースパターン(1L1S)の線幅が90nmとなるような寸法のマスクを選択した。次いで、上記のとおり形成されるライン・アンド・スペースパターンのパターンが保持される場合の焦点深度の範囲を測定した。上記範囲が、300nm以上であれば良好であると評価し、300nm未満であれば不良であると評価した。
(5)MEF(マスクファクターエラー):
85nmの線幅のマスクを用いてライン・アンド・スペースパターン(1L1.2S)の線幅が80nmとなるように、最適露光量感度を測定し、次いで、その感度でマスクサイズを2nmずつづらし、ライン・アンド・スペースパターン(1L1.2S)の線幅を測定した。その結果を横軸にマスクサイズ、縦軸に線幅をとり、プロットし、最小二乗法により直線を作成し、傾きをマスクファクターエラー(MEF)とした。
Figure 0004182868
Figure 0004182868
表2に示すように、レジスト基本性能である感度、解像度、パターンファイル等に優れるだけでなく、特にマスクエラーファクター(MEF)、パターンの倒れ特性に優れた感放射線性樹脂組成物が得られる。
本発明の感放射線性樹脂組成物は、放射線に対する透明性が高く、高解像度であり、パターンプロファイル、マスクエラーファクター(MEF)等を含めたレジストとしての基本物性に優れているので、これからさらに微細化が進行すると予想される半導体デバイス製造用の化学増幅型レジストとして極めて有用である。

Claims (4)

  1. 酸の作用によりアルカリ易溶性となるアルカリ不溶性またはアルカリ難溶性の酸解離性基含有重合体を少なくとも2種類混合した混合酸解離性基含有重合体と、感放射線性酸発生剤とを含有する感放射線性樹脂組成物であって、
    前記混合酸解離性基含有重合体に混合される少なくとも1つの酸解離性基含有重合体が式(X−1)で表される連鎖移動剤を用いるリビングラジカル重合により重合されてなることを特徴とする感放射線性樹脂組成物。
    Figure 0004182868
    (式(X−1)において、Raは、置換または非置換の炭化水素基を表し、Zは置換または非置換のヘテロ原子を含む基を表す。)
  2. 前記Zは式(X−2)で表される置換基であることを特徴とする請求項1記載の感放射線性樹脂組成物。
    Figure 0004182868
    (式(X−2)中、Rb、RcおよびRdは、相互に独立に水素原子、置換または非置換の炭化水素基、置換または非置換のヘテロ原子を含む炭化水素基またはこれらの基の組み合わせで形成される基、または、Rb、RcおよびRdのいずれか二つが相互に結合して形成される3〜50の非水素原子を含む環を表す。)
  3. 前記混合酸解離性基含有重合体が前記リビングラジカル重合により重合される酸解離性基含有重合体と、式(X−1)で表される連鎖移動剤を用いないラジカル重合により重合される酸解離性基含有重合体との混合物であることを特徴とする請求項1または請求項2記載の感放射線性樹脂組成物。
  4. 前記リビングラジカル重合により重合される酸解離性基含有重合体は分子鎖末端の全てまたはその一部に前記連鎖移動剤由来の残基を有することを特徴とする請求項1、請求項2または請求項3記載の感放射線性樹脂組成物。
JP2003392514A 2003-11-21 2003-11-21 感放射線性樹脂組成物 Expired - Lifetime JP4182868B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003392514A JP4182868B2 (ja) 2003-11-21 2003-11-21 感放射線性樹脂組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003392514A JP4182868B2 (ja) 2003-11-21 2003-11-21 感放射線性樹脂組成物

Publications (2)

Publication Number Publication Date
JP2005156726A JP2005156726A (ja) 2005-06-16
JP4182868B2 true JP4182868B2 (ja) 2008-11-19

Family

ID=34719192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003392514A Expired - Lifetime JP4182868B2 (ja) 2003-11-21 2003-11-21 感放射線性樹脂組成物

Country Status (1)

Country Link
JP (1) JP4182868B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7774217B1 (en) 2004-11-19 2010-08-10 Allstate Insurance Company Systems and methods for customizing automobile insurance
US8090598B2 (en) 1996-01-29 2012-01-03 Progressive Casualty Insurance Company Monitoring system for determining and communicating a cost of insurance
US8140358B1 (en) 1996-01-29 2012-03-20 Progressive Casualty Insurance Company Vehicle monitoring system
US9875508B1 (en) 2004-11-19 2018-01-23 Allstate Insurance Company Systems and methods for customizing insurance
US10282785B1 (en) 2004-11-19 2019-05-07 Allstate Insurance Company Delivery of customized insurance products and services

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4861767B2 (ja) 2005-07-26 2012-01-25 富士フイルム株式会社 ポジ型レジスト組成物およびそれを用いたパターン形成方法
KR101213358B1 (ko) * 2005-09-08 2012-12-17 제이에스알 가부시끼가이샤 감방사선성 수지 조성물 및 컬러 필터
JP4663460B2 (ja) * 2005-09-13 2011-04-06 東京応化工業株式会社 ポジ型レジスト組成物およびレジストパターン形成方法
JP4961707B2 (ja) * 2005-09-29 2012-06-27 Jsr株式会社 樹脂の合成法
EP3537217B1 (en) 2005-12-09 2022-08-31 FUJIFILM Corporation Positive resist composition, resin used for the positive resist composition, compound used for synthesis of the resin and pattern forming method using the positive resist composition
JP4991326B2 (ja) * 2006-01-24 2012-08-01 富士フイルム株式会社 ポジ型感光性組成物及びそれを用いたパターン形成方法
TWI477909B (zh) 2006-01-24 2015-03-21 Fujifilm Corp 正型感光性組成物及使用它之圖案形成方法
JP4688697B2 (ja) * 2006-03-03 2011-05-25 東洋合成工業株式会社 ジチオエステル誘導体及び連鎖移動剤並びにこれを用いたラジカル重合性重合体の製造方法
JP4682073B2 (ja) * 2006-03-27 2011-05-11 富士フイルム株式会社 ポジ型感光性組成物及びそれを用いたパターン形成方法
JP5162290B2 (ja) 2007-03-23 2013-03-13 富士フイルム株式会社 レジスト組成物及びそれを用いたパターン形成方法
JP5039581B2 (ja) * 2007-03-28 2012-10-03 富士フイルム株式会社 ポジ型レジスト組成物及びこれを用いたパターン形成方法
US8182975B2 (en) * 2007-03-28 2012-05-22 Fujifilm Corporation Positive resist composition and pattern forming method using the same
JP5233995B2 (ja) * 2007-06-05 2013-07-10 Jsr株式会社 感放射線性樹脂組成物
JP2009230063A (ja) * 2008-03-25 2009-10-08 Jsr Corp 感放射線性樹脂組成物
JP5469820B2 (ja) * 2008-03-28 2014-04-16 富士フイルム株式会社 ポジ型レジスト組成物およびそれを用いたパターン形成方法
JP4743450B2 (ja) * 2008-09-05 2011-08-10 信越化学工業株式会社 ポジ型レジスト材料及びパターン形成方法
TWI526454B (zh) 2011-05-30 2016-03-21 三菱麗陽股份有限公司 聚合物及其製造方法
JP6260222B2 (ja) * 2013-11-19 2018-01-17 日油株式会社 チオエーテル含有ウレア誘導体、及びこれを含有する密着性向上剤

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8595034B2 (en) 1996-01-29 2013-11-26 Progressive Casualty Insurance Company Monitoring system for determining and communicating a cost of insurance
US8311858B2 (en) 1996-01-29 2012-11-13 Progressive Casualty Insurance Company Vehicle monitoring system
US8140358B1 (en) 1996-01-29 2012-03-20 Progressive Casualty Insurance Company Vehicle monitoring system
US8090598B2 (en) 1996-01-29 2012-01-03 Progressive Casualty Insurance Company Monitoring system for determining and communicating a cost of insurance
US8219427B1 (en) 2004-11-19 2012-07-10 Allstate Insurance Company Processing an application for insurance coverage
US8219426B1 (en) 2004-11-19 2012-07-10 Allstate Insurance Company Processing an application for insurance coverage
US8046246B1 (en) 2004-11-19 2011-10-25 Allstate Insurance Company Processing an application for insurance coverage
US7774217B1 (en) 2004-11-19 2010-08-10 Allstate Insurance Company Systems and methods for customizing automobile insurance
US8046244B1 (en) 2004-11-19 2011-10-25 Allstate Insurance Company Systems and methods for customizing insurance
US9875508B1 (en) 2004-11-19 2018-01-23 Allstate Insurance Company Systems and methods for customizing insurance
US10282785B1 (en) 2004-11-19 2019-05-07 Allstate Insurance Company Delivery of customized insurance products and services
US10878506B1 (en) 2004-11-19 2020-12-29 Allstate Insurance Company Insurance product development and maintenance system and method
US11023965B1 (en) 2004-11-19 2021-06-01 Allstate Insurance Company Systems and methods for customizing insurance
US11341579B1 (en) 2004-11-19 2022-05-24 Allstate Insurance Company Processing an application for insurance coverage
US11481844B1 (en) 2004-11-19 2022-10-25 Allstate Insurance Company Insurance product development maintenance system and method
US11854086B1 (en) 2004-11-19 2023-12-26 Allstate Insurance Company Delivery of customized insurance products and services

Also Published As

Publication number Publication date
JP2005156726A (ja) 2005-06-16

Similar Documents

Publication Publication Date Title
JP4182868B2 (ja) 感放射線性樹脂組成物
JP3952946B2 (ja) (メタ)アクリル系重合体および感放射線性樹脂組成物
JPWO2010147079A1 (ja) 感放射線性樹脂組成物
JP2007079552A (ja) 感放射線性樹脂組成物
JPWO2011115190A1 (ja) 感放射線性樹脂組成物
JP5565443B2 (ja) アクリル系共重合体および感放射線性樹脂組成物
JP4631297B2 (ja) (メタ)アクリル酸系重合体および感放射線性樹脂組成物
JP2010237313A (ja) 感放射線性樹脂組成物
JP2007052182A (ja) 感放射線性樹脂組成物
JP5696352B2 (ja) 感放射線性樹脂組成物、およびそれに用いる重合体
JP5233995B2 (ja) 感放射線性樹脂組成物
JP2006045387A (ja) ピラゾール誘導体、連鎖移動剤、酸解離性基含有重合体および感放射線性樹脂組成物
JP4254490B2 (ja) 酸解離性基含有重合体および感放射線性樹脂組成物
JP2007231202A (ja) 共重合体および感放射線性樹脂組成物
JP4670624B2 (ja) 感放射線性樹脂組成物
JP2007065504A (ja) レジスト組成物及びレジスト用重合体の製造方法
JP2004300403A (ja) (メタ)アクリル系重合体および感放射線性樹脂組成物
JP2005023234A (ja) アクリル系重合体および感放射線性樹脂組成物
JP2004176049A (ja) アクリル系共重合体および感放射線性樹脂組成物
JP4182867B2 (ja) 感放射線性樹脂組成物
JP4765625B2 (ja) アクリル系重合体および感放射線性樹脂組成物
JP2005002248A (ja) アクリル系重合体および感放射線性樹脂組成物
JP2005068418A (ja) アクリル系重合体および感放射線性樹脂組成物
JP4134685B2 (ja) 感放射線性樹脂組成物
JP2004203898A (ja) アクリル系重合体および感放射線性樹脂組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4182868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term