JP4172936B2 - 超伝導マイクロストリップフィルタ - Google Patents

超伝導マイクロストリップフィルタ Download PDF

Info

Publication number
JP4172936B2
JP4172936B2 JP2001555158A JP2001555158A JP4172936B2 JP 4172936 B2 JP4172936 B2 JP 4172936B2 JP 2001555158 A JP2001555158 A JP 2001555158A JP 2001555158 A JP2001555158 A JP 2001555158A JP 4172936 B2 JP4172936 B2 JP 4172936B2
Authority
JP
Japan
Prior art keywords
line
current density
resonator
superconducting
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001555158A
Other languages
English (en)
Inventor
学 甲斐
透 馬庭
一典 山中
章彦 赤瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Application granted granted Critical
Publication of JP4172936B2 publication Critical patent/JP4172936B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20372Hairpin resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20381Special shape resonators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/701Coated or thin film device, i.e. active or passive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/866Wave transmission line, network, waveguide, or microwave storage device

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

技術の分野
本発明は、超伝導マイクロストリップラインにより構成される超伝導マイクロストリップフィルタ、例えば移動体通信システムにおける基地局の受信装置に用いて好適な超伝導マイクロストリップフィルタに関する。
上記の例によれば、基地局の受信装置における入力段には、通信に必要な周波数帯域の信号のみを通過させるためのフィルタが必須の構成要素の1つとなっている。この場合、近年急激に増加しつつある移動体通信利用者すなわち加入者を各基地局において十分収容可能とすべく、いわゆる急峻なカット特性を示すフィルタが強く求められている。これは、このカット特性が急峻であればあるほど、所定の周波数帯域を最大限利用可能となり、加入者の収容数を増やすことができるからである。
このような急峻なカット特性が得られるフィルタとして、複数の共振器を多段に配置した構成のフィルタが現在採用されている。この共振器の段数が多ければ多いほど上記カット特性は急峻になり好ましい。
ところが反面、その共振器の段数が増えれば増えるほど、フィルタの通過帯域での挿入損失が大きくなってしまうという不都合が生じてしまう。
このような不都合を回避すべく、従来一般的に用いられてきた、通常の金属によって構成されるフィルタに代えて、超伝導物質によって構成されるフィルタを用いることが近年提案され実用化への開発研究が行われている。これが超伝導マイクロストリップフィルタであり、超伝導物質の表面抵抗が通常の金属の表面抵抗より2〜3桁も小さいことから、急峻なカット特性を保持しつつ、通過帯域においてきわめて低い挿入損失を実現可能としている。本発明は、このような超伝導マイクロストリップフィルタについて述べる。なお以下、簡略して超伝導フィルタとも称す。
背景技術
上記の例に基づく基地局は、近年の加入者数の増大に伴い、その受信装置において一層高い電力を受信しなければならない。またこの受信装置は、送受共用のアンテナに接続されることから、自らの強い送信電力によるまわり込み電力を必然的に受信することになる。さらにまたこの基地局では、相互に近接する数本の送受共用アンテナを備えていることから、隣接チャネルからの強い送信電力をも受信することになる。
このような状況のもとで、上記受信装置におけるフィルタには、一層高い耐電力性が求められることになる。すなわち、ある程度まで高い電力がそのフィルタに印加されても、そのフィルタのカット特性を劣化させることなく維持できる、という高い耐電力性が必須の要件となる。
ところが、通常の金属からなる一般的なフィルタに比べると、超伝導フィルタの場合は上記耐電力性が著しく劣るという欠点がある。この欠点は、超伝導フィルタに固有の臨界温度(T)と臨界電流密度(J)とに起因するものであり、このうち特に臨界電流密度(J)は、超伝導フィルタの機能そのものの実現ときわめて密接な関係を有する。
したがって、臨界電流密度(J)以下の電流密度を保持しながら、耐電力性の向上を図らなければならない。なお、上記臨界温度(T)以下の温度を維持することも本質的なことであるが、これは外部冷凍機の能力に依存するものであるから、本発明では特に言及しない。
後に図面を用いて詳しく説明するように、上記耐電力性を向上させた公知の超伝導フィルタとして、例えば、文献(High−Power HTS Microstrip Filters for Wireless Communications,Guo−Chun Liang etc., IEEE Trans.on MTT,vol.43,No.12,Dec.1995)に開示されたフィルタが既に知られている。このフィルタを構成する各共振器は、その線路の特性インピーダンスを小さくすることにより線路幅を太くし、電流集中を抑制している。具体的には、そのフィルタの入出力線路部の特性インピーダンスは50Ωとするが、上記共振器の特性インピーダンスは10Ωと小さくすることにより、各上記共振器の線路の全長に亘る線路幅を増大させたフィルタである。
しかしながら、上記の従来例に従って電流集中の抑制すなわち電流密度の低減を図ろうとすると、単に線路の特性インピーダンスを下げて各共振器をなす線路の全長に亘ってその線路幅を太くするだけであるから、これら共振器を一列に配列してなるフィルタは全体として必然的に大型化してしまう、という問題がある。
特に、近年広く採用されつつある、λ/2共振器をヘアピン形状に折り曲げた共振器を複数個一列に並べた構成の超伝導フィルタに対し、耐電力性の向上のために上記従来例を適用すると、当該超伝導フィルタは相当に大型化し、安価で主流な直径約5cmの基板(MgO等)をもってその超伝導フィルタを形成すると、その基板上には高々5段程度の共振器を載せるのが精一杯となり、今度は、所望の急峻なカット特性が得られなくなる、という問題がある。
発明の開示
本発明は上記問題点に鑑み、フィルタ全体を大型化させることなく、臨界電流密度(J)以下の電流密度を保持可能としつつ、耐電力性の向上を図ることのできる超伝導マイクロストリップフィルタを提供することを目的とするものである。
さらに詳しくは、本発明は、対受信波用フィルタとして有効な構成と、対送信波用フィルタとして有効な構成とを提供することを目的とするものである。ここに、対受信波用フィルタとは、上記の例によれば基地局の受信装置が加入者側から受信する入力電力に対して特に有効なフィルタのことであり、一方対送信波用フィルタとは、その基地局においてその受信装置と近接して対をなす送信装置が出力する送信電力によるまわり込み電力に対して、またはその基地局の他のアンテナより直接受信する送信電力に対して、特に有効なフィルタのことである。なお、受信波と送信波とでは、周波数帯域が異なる。
本発明は、さらに、上記対受信波用としても、または上記対送信波用としても、あるいは上記対受信波用と対送信波用の両用としても適用可能な超伝導フィルタを提供することを目的とするものである。
本発明は上記目的を達成するために、下記第1〜第5の態様を提案する。
第1の態様は、少なくとも1つの共振器を含む共振器部を有する超伝導マイクロストリップフィルタにおいて、該共振器は、その線路パターンの一部に、電流密度低減部を形成することを特徴とするものである。これは対受信波用フィルタである。
第2の態様は、フィルタすべき信号の伝搬経路に沿って一列に配置される複数の共振器を含む共振器部を有する超伝導マイクロストリップフィルタにおいて、少なくともその伝搬経路の中央部分およびその近傍に配置される各共振器に対し、その線路パターンの一部に、電流密度低減部を形成し、かつ、該中央部分よりの共振器ほど電流密度低減部を大にすることを特徴とするものである。これも対受信波用フィルタである。
第3の態様は、フィルタすべき信号の伝搬経路に沿って一列に配置される複数の共振器を含む共振器部を有する超伝導マイクロストリップフィルタにおいて、少なくとも、その伝搬経路の中央部分およびその近傍に配置される各共振器に対し、その線路パターンの全長亘って電流密度低減部を形成し、かつ、該中央部分よりの共振器ほど電流密度低減部を大にすることを特徴とするものである。これも対受信波用フィルタである。
第4の態様は、フィルタすべき信号が入力される入力線路部と、この入力線路部に隣接して配置され、少なくとも1つの共振器を含む共振器部と、を有する超伝導マイクロストリップフィルタにおいて、その入力線路部は、その線路パターンの一部に、電流密度低減部を形成することを特徴とするものである。これは、対送信波用フィルタである。
第5の態様は、フィルタすべき信号が入力される入力線路部と、この入力線路部に隣接して配置され、少なくとも1つの共振器を含む共振器部と、を有する超伝導マイクロストリップフィルタにおいて、その入力線路部のみを、超伝導物質以外の物質からなる線路パターンにより形成することを特徴とするものである。これも対送信波用フィルタである。
上記第1〜第5の態様は、相互に別個独立に実現しても良いし、あるいは、いずれかの態様同士の組み合わせとしても実現可能である。このことは以下の説明で明らかになる。
発明の実施の形態
本発明の理解を一層容易にするため、まず一般的な構成について説明する。
第13図は本発明が適用される、一例としての、基地局のフロントエンド部を示す図である。
本図において、フロントエンド部10は、送受信共用のアンテナ11と、アンテナ11からの入力電力を受信する受信装置12と、アンテナ11から電力を送信する送信装置13とからなる。
受信装置12は、アンテナ11から受信した信号のうち所望の周波数帯域の信号のみを抽出する帯域通過フィルタ(BPF)14と、低雑音信号増幅器(Low Noise Amplifier)15とを含んで構成される。
一方送信装置13は、信号増幅器(AMP)16と、歪補償回路(DCC:Distortion Compensating Circuit)17とを含んで構成され、アンテナ11から送信すべき信号を生成する。
上記フロントエンド部10の中で、本発明が適用されるのは、特に受信装置12内の帯域通過フィルタ(BPF)14であり、このフィルタ14が、超伝導マイクロストリップフィルタ(超伝導フィルタ)から構成される。
この超伝導フィルタ14は、アンテナ11より実線矢印で示す経路で受信した信号RXの中から、所望の周波数帯域の信号を抽出するのが主たる機能である(対受信波用フィルタ)。
一方この超伝導フィルタ14は、送信装置13側からの送信信号のうち、点線矢印で示す経路でまわり込んだ信号TXをしゃ断する機能も果す。同様に当該基地局の他のアンテナ(図示せず)から送信された信号のうち、アンテナ11から点線矢印で示す経路で侵入した信号txをしゃ断する機能も果す(対送信波用フィルタ)。
以下、主たる機能である対受信波用フィルタとしての一般的な超伝導フィルタ14について説明する。
第14図は一般的な超伝導マイクロストリップフィルタの一例を示す図である。本発明は、本図に示す形態の超伝導フィルタに特に効果的に適用される。
本図において、超伝導フィルタ14は、信号RXが入力される入力導体20と、これに接合する入力線路部21と、この入力線路部21に印加された信号RXのうち、所望の周波数帯域の信号のみを抽出する共振器部22と、抽出された信号を、例えば低雑音信号増幅器(LNA)に送出する出力線路部24とから構成される。ここに上記共振器部22は、少なくとも1つの共振器23を含んで構成される。ただし本図では、一例として、9段の共振器23−1,23−2…23−9を示している。
また本図では、各共振器23として、λ/2共振器をヘアピン形状に折り曲げた構成の、マイクロストリップヘアピン型共振器を示している。このようなヘアピン型共振器23は、例えば酸化マグネシウム(MgO)あるいは酸化アルミニウムランタン(LaAlO)からなる基板26の両面上に、まず超伝導薄膜YBCO(Y−Ba−Cu−O)を成膜し、その後、フォトリソグラフィ等により、図示する一方の面上に線路パターン25を形成することにより得られる。なお、基板26の他方の面(図示せず)はグランド面となる。
かくして得られたヘアピン型共振器23−1〜23−9を備えてなる超伝導フィルタ14は、設計ならびに製作が容易という利点がある他、小型化かつ軽量化にきわめて有効であり、今後広く採用されるものと考えられる。
第15図は第14図における各共振器23の折り曲げ部分の形状を、2つの例について、拡大して示す図である。
本図の(a)は、線路パターンの各コーナーを切り落として直角に曲げた形状(第1例)を示し、同図の(b)は、直線部分の線路パターンの線路幅をそのまま保って円弧状にした形状(第2例)を示す。
なお超伝導フィルタ14は、全体を外部冷凍機によって70〔K〕といった極低温に冷却して動作させる。これにより、挿入損失なしに急峻なカット特性を得ることができる。
第16図はカット特性を説明するための図である。
本図において、〈1〉および〈2〉の特性は、共に超伝導フィルタ14によるカット特性を表す。一方、〈3〉の特性は通常の金属からなる一般的なフィルタによるカット特性を表す。図中のW2は通過帯域を示し、その両端のW1およびW3は、しゃ断域を示す。
特性〈3〉(通常の金属からなるフィルタ)と、特性〈1〉および〈2〉(超伝導フィルタ)との顕著な相違は、挿入損失の差ΔLにあり、超伝導フィルタの挿入損失はほぼ零である。
ただし、共振器23の段数を減らすと、特性〈1〉に示すように、急峻なカット特性は失なわれる。このことは特性〈3〉についても同様である。
上述のように、挿入損失をきわめて小さく抑えつつ急峻なカット特性が得られる超伝導フィルタを実現するときに、これと全く同一形状の、通常の金属から構成される一般的なフィルタに比べて、前者は耐電力性に劣るという欠点を有する。この欠点を克服することが重要な課題である。このことをさらに詳しく説明する。
一般にマイクロストリップラインでは、そこを流れる電流が、そのラインの端部に集中してしまう、というエッジ効果が見られる。このエッジ効果は、通常の金属からなるマイクロストリップラインにおいてはそれ程支障とはならない。ところが、超伝導物質からなるマイクロストリップラインにおいてはそのエッジ効果が重大な影響を及ぼし、そのライン上の例え1ヶ所であってもそこでの電流密度が既述の臨界電流密度(J)に近付くと超伝導特性が失なわれ、ついにはマイクロストリップライン全体の超伝導状態が破壊されてしまう。つまり、超伝導マイクロストリップラインよりなる線路パターンの特に線路の端部で超伝導状態が破壊されてしまう。
このような問題に対処することを試みた超伝導フィルタが、前述した文献に開示される超伝導フィルタである。これを第17図に示す。
第17図はエッジ効果を抑制した従来の超伝導フィルタの一例を示す図である。なお、全図を通じて同様の構成要素には、同一の参照番号または記号を付して示す。
本図に示す従来例による超伝導フィルタは、入力線路21と、例えば5段の共振器23−1〜23−5からなる共振器部22と、出力線路部24とが、マイクロストリップラインによって基板26上に形成される。この超伝導フィルタは、既に述べたとおり、入力線路部21および出力線路部24の特性インピーダンスは50Ωとするが、各共振器23−1〜23−5の特性インピーダンスは10Ωと小さくすることにより、線路パターン25の線路幅を広げ、電流集中の抑制を図っている。
このため上記超伝導フィルタは、各線路パターンの線路幅をその全長に亘り太く形成している(例えば3mm)。また、隣接共振器間のピッチpも広くなっている。したがって、超伝導フィルタは必然的に大型化し、安価で主流な直径約5cmの基板26上には、数段の共振器しか形成できない。
加えて、このような線路幅の太い共振器で、第14図に示すようなマイクロストリップヘアピン型共振器を構成しようとすると、線路パターン25の各コーナー部分には大きな円弧を形成しなければならず、約5cm程度の基板26上に、とても9段もの共振器(23−1〜23−9)を収めることはできない。
そこで本発明は、上述した第1〜第5の態様の超伝導フィルタを提供する。
第1図は本発明に係る第1の態様に基づく超伝導フィルタの基本構成図である。
この基本構成は、少なくとも1つの共振器23−k(k=1,2,3…)を含む共振器部22を有する超伝導マイクロストリップフィルタ14において、その共振器は、その線路パターン25の一部に、電流密度低減部31を形成することを特徴とするものである。なお、本図では、その電流密度低減部31として、k番目の31−kが図示されている。
従来例として示した第17図の構成と大きく相違するのは、従来例においては、各共振器の線路パターン25の線路幅をその全長に亘って太くしているのに対し、第1図の構成では、各共振器23の線路パターン25の一部の線路幅のみを太くして、電流密度低減部31を形成していることである。
本発明では、電流密度が最大になる部分のみの線路幅を選択的に太くしていることから(電流密度低減部31の選択的な形成)、フィルタ全体として見ると、それ程大型化しないし、むしろ小型化も可能である。
したがって限られた面積の基板26上に、耐電力性を向上させた共振器23をより多く収めることができ、既述の急峻なカット特性を十分満足させつつ、臨界電流密度(J)以下の電流密度を保持することが可能となる。
ところで、共振器において、電流密度が最大となる部分に着目してその部分のみの電流密度を低減させるための電流密度低減部31を形成する、という本発明の発想は、一見当然の発想のように思われる。しかしながら、その当然のような発想に基づいて、耐電力性の向上と小型化とを両立させた超伝導フィルタはまだ知られていない。
その理由は、マイクロ波のような超高周波帯を扱うデバイス一般において、1つの線路パターンにその形状を変化させるような、すなわち上記の電流密度低減部31のような、付加部分を設けることは、共振器そのものならびに共振器相互間のインピーダンスを変化させてしまうと考えてしまうのが、当業者の常識であったと思われるからである。
ところが、本出願人は、そのような付加部分が必ずしも共振器そのものならびに共振器相互間のインピーダンスを大幅に変化させるものではない、という事実を見出した。本発明の着想はこの点にあり、電磁界シミュレータを用いた検証により、その事実を見出した。この検証結果については、後述する。
第2図は第1の態様に基づく実施例を示す平面図である。この基本的形態は、図14の形態と同様である。
第1の態様に基づく実施例においては、共振器は23−1〜23−9の各々はλ/2共振器であって、その線路パターン25の長さ方向に沿って中央部分およびその近傍に、上記の電流密度低減部31−1〜31−9を形成している。
各λ/2共振器(23−1〜23−9の各々)は、第14図に示した形態と同様であり、その中央部分で半分に折り返し、片側λ/4の長さとなっている。この折り返し部分は電流が集中し最大の電流密度となる。一方、各λ/2共振器の各端部は開放であって、電流はほぼ零となる。
そこでこの折り返し部分、すなわちλ/2共振器の中央部分およびその近傍に、電流密度低減部(31−1〜31−9)を形成する。
電流密度を低減する方法は種々考えられるが、第2図に示す実施例では、上記の中央部分およびその近傍における線路パターン25の線路幅を、それ以外の部分の線路幅よりも太くすることにより、上記の電流密度低減部31(31−1〜31−9を代表して、31で示す)を形成している。
線路幅を太くするに当り、電流密度低減部31を三角形状や四角形状にしたり、あるいはハート形の形状にしたりすることが可能であるが、第2図に示す実施例では、電流密度低減部31を全体に円状をなすようにする。円形の形状にすることにより、上記の三角形状等の場合に必ず形成される角部を排除することができる。マイクロストリップラインに角部があると、そこで既述のエッジ効果が現れ、超伝導特性が失なわれやすくなるためである。
なお第2図に示す超伝導フィルタ14の具体例をさらに詳しく説明すると次のとおりである。
まず、厚さ0.5mmの酸化マグネシウム(MgO)からなる比誘電率ε=9.7の基板26上に、YBCO(Y−Ba−Cu−O)からなる高温超伝導薄膜を成膜する。続いてフォトリソグラフィにより、第2図に示す線路パターン25を有するマイクロストリップラインを形成する。このとき、特性インピーダンスを50Ωとすると、各共振器23(23−1〜23−9を代表して、23で示す)の線路幅wは0.5mmである。また、円形の電流密度低減部31の半径は2.0mmとした。なお、第2図(第14図も同じ)では、隣り合う共振器23が互い違いに方向を180°転回させているが、原理的には必ずしもそうする必要はなく、全ての共振器23−1〜23−9が同じ方向を向くようにしてもよい。
ただし本発明の場合は、隣り合う共振器23が互い違いに方向を180°転回するようにするのが好ましい。もし全ての共振器23−1〜23−9が同じ方向を向くと、隣り合う電流密度低減部31同士がかなり近接し合うようになるため、有害な干渉が生ずるからである。
かくして、第2図の超伝導フィルタ14によれば、各共振器23において電流が最大となるいわゆる“腹”の部分での電流密度は大幅に減少し、かつ、エッジ効果も抑制され、したがって耐電力性は向上する。この場合、その電流密度低減部31の導入により超伝導フィルタ14を大型化することもなく、約5cm長(第2図の左右方向)の基板26には、第14図と同様、9段の共振器23−1〜23−9が余裕をもって収められている。
既に述べたように、超高周波帯のフィルタでは、電流密度低減部31のような付加部分を設けることは、共振器ならびに共振器相互間のインピーダンスを変化させてしまい、通常当業者は所望の特性の超伝導フィルタが得られなくなると危惧する。ところが本出願人は電磁界シミュレータを用いてそのような特性の変化あるいは劣化がきわめて小さいことを確かめた。これについて説明する。
第3図は本発明による電流密度低減部を導入してもフィルタ特性が劣化しないことを表す図である。
第3図において、横軸は周波数〔GHz〕を表し、左右の縦軸は共に通過特性S21〔dB〕を表し、前述した第16図のグラフに相当する。
第3図に示す特性カーブ〈2〉は、第2図に示す本発明に係る超伝導フィルタ14により得られる特性カーブである。一方、第3図の特性カーブ〈4〉は、特性カーブ〈2〉の縦軸を拡大して示す特性カーブである。したがって特性カーブ〈2〉の縦軸は第3図の左側にとって示し、特性カーブ〈4〉の縦軸は同図の右側にとって示す。
上記の超伝導フィルタ14を設計するに際し、初期値として設定したリップルの値は0.01dBである。この設計条件でシミュレーションを行ったところ、そのリップルの値は、第3図に示すとおり、最大0.2dBという値を示した。
このようにリップルの値が0.2dB以下、というのは実用的な値であり、急峻な減衰特性が確保されたことを表す。ちなみに、そのリップルの値は、2〜3dB程度までなら実用的な値と考えられるので(2〜3dB以上であると不良なフィルタということになる)、これよりも一桁小さい値に抑えられる。このようにリップルの値は、実用上問題のない範囲で若干劣化するが、その劣化よりも、耐電力性を大幅に向上できる効果の方がはるかに大きい。
このリップルについて付言するならば、共振器23の段数を少なく設計すると、リップルが小さい程、通過帯域での減衰特性は緩やかになるが(第16図の特性カーブ〈1〉参照)、共振器23の段数を第2図では9段と多く設計しているため、リップルを小さくしても減衰特性には大きな影響は与えない。
第4図は本発明に係る第2の態様に基づく超伝導フィルタの基本構成図である。
この基本構成によれば、フィルタすべき信号RXの伝搬経路33に沿って一列に配置される複数の共振器23を含む共振器部22を有する超伝導マイクロストリップフィルタにおいて、少なくとも、伝搬経路33の中央部分およびその近傍に配置される各共振器(23−(k−1),23−k,23−(k+1))に対し、その線路パターン25の一部に、電流密度低減部(31−(k−1),31−k,31−(k+1))を形成し、かつ、上記中央部分よりの共振器23ほど電流密度低減部31を大にすることを特徴とするものである。なお、共振器部22をなす共振器23の段数を、前述のように、9段とすると、その中央の23−kのkは、k=5である。
前述した第1の態様では、共振器23の1つ1つについて、その中央部分での電流集中を緩和することについて述べた。しかし今度は、共振器部22全体を1つの共振器として見ると、通過帯域においては、中央部分よりに配置される共振器ほど電流が集中しやすくなる。この点に着目したのが第2の態様(第4図)であり、中央部分よりに配置される共振器ほど(23−(k−1)→23−k←23−(k+1))、電流密度低減部31の形状を大にする。9段の共振器からなる場合、共振器23−k(k=5)に付加される電流密度低減部31−k(k=5)が最も大となる。
第5図は第2の態様に基づく実施例を示す平面図である。この基本的な形態は、第14図の形態と同様である。共振器23−1→23−2→23−3→23−4の順に、電流密度低減部31−1→31−2→31−3→31−4はそれぞれ大きくなる。同様に、共振器23−9→23−8→23−7→23−6の順に、電流密度低減部31−9→31−8→31−7→31−6はそれぞれ大きくなる。そして、中央部分の共振器23−5に付加される電流密度低減部31−5が最大となる。この場合、隣接共振器間のピッチpは、中央部分より程大になるようにして、共振器部22の入力側および出力側は、第14図に示した構成における隣接共振器間のピッチを維持するようにする。これにより超伝導フィルタ14全体の大きさをできるだけ小さくする。なお第5図において、
(i)共振器23はλ/2共振器であって、その線路パターン25の長さ方向に沿って中央部分およびその近傍に、電流密度低減部31を形成すること、
(ii)中央部分およびその近傍における線路パターン25の線路幅を、それ以外の部分の線路幅よりも太くして、電流密度低減部31を形成すること、
(iii)電流密度低減部31は全体に円状をなすようにすること、
については、既述の第1の態様の場合と同じである。
第6図は本発明の第3の態様に基づく実施例を示す平面図である。
この第3の態様の基本的な形態は、第17図の形態と同様であるが、この第17図の形態に対して、さらに上記第2の形態の考え方を導入したものとなっている。
すなわち第3の態様によれば、フィルタすべき信号RXの伝搬経路33に沿って一列に配置される複数の共振器23を含む共振器部22を有する超伝導マイクロストリップフィルタ14において、少なくとも、伝搬経路33の中央部分およびその近傍に配置される各共振器に対し、その線路パターン25の全長に亘って電流密度低減部31を形成し、かつ、中央部分よりの共振器ほど電流密度低減部31を大にすることを特徴とするものである。
より具体的には、第6図の構成では、中央部分よりの共振器ほど、線路パターン25の線路幅を徐々に太くすることによって、電流密度低減部31を形成している。
第6図に示す例では、7段の共振器23−1〜23−7を有する超伝導フィルタ14において、中央の共振器23−4に付加される電流密度低減部31−4が最大である。すなわち共振器23−4をなす線路パターン25の線路幅が最も太く、共振器23−2→23−1に至るほど、その線路幅は細くなる。同じく、共振器23−6→23−7に至るほど、その線路幅は細くなる。第17図の構成に比べると、中央部分での共振器のみが線路幅の太い共振器となるだけであるから、超伝導フィルタ14全体としてそれほど大型化しない。
なお、隣接共振器間のピッチpも同様に、中央部分よりほど大になる。
以上、対受信波用フィルタについて述べたので、以下、対送信波用フィルタについて述べる。これら対受信波用フィルタおよび対送信波用フィルタは、別個独立のものではなく、実際には、上述した対受信波用の構成と、これから述べる対送信波用の構成とを組み合わせて1つの超伝導フィルタとするのが好ましい。なぜなら、前述した例による基地局に設けられた対受信波用フィルタは、自らの送信電力のまわり込みや、自ら有する、隣接の他のアンテナからの送信電力の影響も同時に強く受けるので、対送信波フィルタとしての機能もまた兼備しなければならないからである。
上記対送信波用フィルタの実施例を説明する前に、対送信波用フィルタに関する一般的な問題点について説明しておく。
前述した第13図からも明らかなとおり、送信装置13側からの送信電力は、通常、数10〜数100Wにも及び、その電力の大部分はアンテナ11からセルあるいはセクタ内に放射される。しかし、その電力の一部は、受信装置12側へまわり込む。また、第13図の送信装置13および受信装置12が前記の基地局に設けられる場合、該基地局が有する数本のアンテナのうち、図示するアンテナ11以外のアンテナから放射される強い送信電力が、該アンテナ11を通して受信装置12側に流れ込んでくる。
上記基地局が、例えばW−CDMAシステム内で用いられる場合、該基地局の受信周波数帯域および送信周波数帯域は、それぞれ、例えば、1960〜1980MHzおよび2150〜2170MHzである。この場合、不要な送信周波数帯域の信号は、通常の金属を用いた一般的なフィルタを用いる場合には問題なく除去される。ところが、超伝導フィルタを用いる場合には、以下のような問題が生じる。
すなわち、第14図を参照すると、送信周波数帯域(2150〜2170MHz)は受信周波数帯域(1960〜1980MHz)から十分に離れていることから、送信電力が超伝導フィルタ14内に流れ込んでくると、その入力線路部21に電流が集中し、ここで反射されようとする。ところが、臨界電流密度(JC)に近付くにつれて、超伝導状態が破壊され始め、超伝導フィルタ14のフィルタ特性が劣化してしまう。つまり、帯域外の高い送信電力が超伝導フィルタ14に流れ込んできた場合、入力線路部21だけが超伝導状態を保てなくなるという問題が発生する。
実験的にその問題点をさらに明確にする。
超伝導体は、その非線形性により歪波が発生する。例えば周波数のわずかに異なる2波を、超伝導フィルタ14の通過帯域に入力したとすると、いわゆる3次の相互変調歪波(3次IMD波:Inter Modulation Distortion)が発生する。第7図は超伝導フィルタの3次IMD特性を表すグラフである。
第7図において、PinおよびPoutは、それぞれ、超伝導フィルタ14の入力電力および出力電力である。なお、基本波の周波数をω1,ω2とすると、3次IMD波は、2ω2−ω1,2ω1−ω2である。
この第7図のグラフは、具体的には、第14図のマイクロストリップパターン形状で、基板26の両面にC軸配向したYBCO薄膜を形成したYBCO超伝導マイクロストリップヘアピン型フィルタ(試料1と称す)の通過帯域に、1MHz離れの2波(ω1,ω2)を入力したときに、この基本波に対し、3倍の傾きをもって上昇する3次IMD波の変化の様子を示したグラフである。基本波と3次IMD波の両者が一致するインターセプトポイントIPは33dBmと低いことがこのグラフより分かる。
また、上記試料1の超伝導フィルタ14に送信電力が入力されると、3次IMDがさらに大きくなる。
第8図は超伝導フィルタの3次IMD劣化特性を表すグラフである。超伝導フィルタ14の通過帯域に、1MHz離れの2波(入力電力はPin=12.75dBm,8.74dBm,5.75dBmの三種とする)を入力しておき、3次IMDを発生させる。さらに中心周波数から190MHz離れた帯域の送信波を仮定して、上記試料1の超伝導フィルタ14に、この帯域の電力を、徐々に大きくして入力した場合に、3次IMDがどれほど大きくなるかがこの第8図に示される。
このように、送信電力を上げるにつれて、3次IMDが急激に増加していくことが理解される。
第9図は超伝導フィルタの挿入損失特性を表すグラフである。
これは、第14図の超伝導フィルタ14の通過帯域(中心付近、低周波域端、高周波域端)における挿入損失が、送信電力の増大によってどれほど劣化していくかを示すグラフである。
この第9図からも、送信電力を増大するにつれて、挿入損失が急増していくことが分かる。
以上述べた事実を背景にして、本発明の第4の態様および第5の態様(対送信波用フィルタ)について説明する。
第10図は本発明に係る第4の態様に基づく超伝導フィルタの構成例を示す図である。
この第4の態様では、フィルタすべき信号RXが入力される入力線路部21と、この入力線路部21に隣接して配置され、少なくとも1つの共振器23を含む共振器部22と、を有する超伝導マイクロストリップフィルタ14において、その入力線路部21は、その線路パターン25の一部に、電流密度低減部41(41′)を形成することを特徴とするものである。
信号RXとして流れ込んだ送信電力については、それに伴う電流は、入力線路部21に集まる。そしてその電流は、入力線路部21の開放端(図中の線路パターンの上端部分)からλ′/4(λ′は当該送信波の波長)の部分に集中し、電流密度は最大となる。したがってこのλ′/4の部分に、電流密度低減部41を形成して該密度をJ以下に抑え、超伝導状態が送信電力によって破壊されるのを防ぐ。
この場合入力線路部21の線路パターン25のうちの電流集中が最大となる部分(λ′/4)の線路パターンの線路幅を、それ以外の部分の線路幅よりも太くすることにより、電流密度低減部41を形成する。
この第4の態様では、もう1つの電流密度低減部41′を含ませることができる。
すなわち、入力線路部21の線路パターン25と、信号RXが入力される入力導体20の線路パターン25′とがほぼL字状に接合する場合、その接合部分におけるこれら線路パターンの線路幅を、それ以外の部分の線路幅よりも太くすることにより、電流密度低減部41′を形成するようにする。
超伝導フィルタ14は通常これを収容するハウジング(図示せず)に収められ、コネクタ(図示せず)を介して外部の導体(図示せず)と接続される。このコネクタは、通常、第10図における左側(基板26の左辺側)に配置される。このため、入力線路部21の上記開放端と反対側の端部は、上記基板26の左辺側に略直角に折り曲げられる。実際には、入力線路部21に対し、これに直交する方向から、入力導体20を接合する。
そうすると、この接合部分は既述のエッジ効果が現れやすくなる。このエッジ効果が顕著に現れないように、その部分での電流密度を緩和するのがもう1つの電流密度低減部41′である。
上記の電流密度低減部41および41′は共に、前述した電流密度低減部31と同様、全体に円状をなすのが望ましい。なお、第10図では、もう1つの電流密度低減部41′が、上記接合部分の外角側に円状に張り出している例を示しているが、これとは反対に、その内角側に円状(図中、点線で示す)に張り出すようにしてもよい。
なお上述した2つの電流密度低減部41および41′は、少なくともいずれか一方が形成されるようにする。実用上は、これら両低減部41および41′の双方を形成しておくのが望ましい。
最後に本発明の第5の態様について説明する。
第11図は本発明に係る第5の態様に基づく超伝導フィルタの構成例を示す図である。
この第5の態様では、フィルタすべき信号RXが入力される入力線路部21と、この入力線路部21に隣接して配置され、少なくとも1つの共振器23を含む共振器部22と、を有する超伝導マイクロストリップフィルタ14において、その入力線路部21のみを、超伝導物質以外の物質からなる線路パターン51により形成することを特徴とするものである。
ここに超伝導物質以外の物質とは、好ましくは常伝導物質である。
外部から流れ込む送信波の電力は、前述したように、入力線路部21に集まる。そこで上述の第4の態様では、電流密度低減部41および/または41′を、入力線路部21の一部に設け、電流密度の緩和を図るようにした。一方、本第5の態様においては、上記のように直接、電流密度を低減させるのではなく、入力線路部21での許容電流密度を増大させることにより、相対的に電流密度低減効果を得るようにした。
このために、具体的には、超伝導物質以外の物質により、入力線路部分21を構成するものであり、実用的には該入力線路部分21を常伝導物質により構成する。この場合、常伝導物質を導入したことにより、超伝導フィルタ14における挿入損失が著しく増大するようなことがあってはならない。これについては後述する。
以下、第5の態様についてさらに詳しく説明する。
第11図を参照すると、受信周波数帯域から十分に離れた送信波が超伝導フィルタ14に流れ込んでくると、該送信波は入力線路部21で反射されようとする。このとき、その送信波による電流が入力線路部21に集中するが、入力線路部21は常伝導物質の金属からなる線路パターン51であるため、超伝導破壊のようなことが起こらない。したがって超伝導フィルタ14の特性を劣化させることはない。
また、入力線路部21を常伝導物質の金属とすることにより、超伝導フィルタのすべてを超伝導体で製作した場合に比べて、挿入損失が増加することは免れない。ところがパターン51として、金、銀、銅、アルミニウム等の電気良導体を用いた場合、その挿入損失は0.数dB増加するだけで、超伝導フィルタ14本来の性能は十分に保たれる。
さらに、線路パターン51を常伝導体とすることにより、常伝導体の種類も広い範囲から選ぶことができる。このため入力用の前述のコネクタと電気的に接続するための半田材や電極材料等の選択に自由度が増す。常伝導体として例えば銅を用いれば、Pb−Sn系の通常の半田を用いることが可能となる。
本発明に基づく第5の態様の実施例においては、厚さ0.5mmで酸化マグネシウム(MgO)(比誘電率ε=9.7)からなる基板26上に、YBCO(Y−Ba−Cu−O)高温超伝導薄膜によって共振器23および出力線路部24を形成すると共に、常伝導体である銅薄膜で入力線路部21を形成する。
周波数帯域は、例えばW−CDMAシステムでは、受信周波数帯域および送信周波数帯域は、それぞれ、たとえば、1960〜1980MHzおよび2150〜2170MHzであるので、送信波が超伝導フィルタ14に流れ込んできたとき、この送信波の成分は、銅薄膜の入力線路部21に集中し、ここで十分に反射されるから、超伝導破壊のようなことは起こり得ない。
第12図は本発明による常伝導体を入力線路部に導入しても大きな挿入損失を生じさせないことを表すグラフである。
本図において、横軸には周波数、縦軸には通過特性をそれぞれとって示す。
前述した電磁界シミュレータを用いて、第11図に示したパターン形状を有すると共に、中心周波が1.962GHz、帯域幅が23MHz、共振器23の段数が5のヘアピン型超伝導フィルタ14を設計し、入力線路部21を超伝導体(膜によるQ値20000)とした場合と、常伝導体(膜によるQ値500)とした場合のそれぞれの周波数特性シミュレーション結果を、特性〈5〉および〈6〉として第12図に示す。このとき共振器部22と出力線路部24は超伝導体(膜によるQ値20000)とした。
入力線路部21を超伝導体とした場合には、挿入損失は0.12dBであるが、入力線路部21を常伝導体としても挿入損失は0.18dBとなり、挿入損失の増加はごくわずかである。したがって、常伝導体(51)の導入にかかわらず、超伝導フィルタ14としての性能は十分に保たれていることが理解される。
なお、第4および第5の態様の説明に用いた第10図および第11図では、共振器部22として、簡略のために第14図に示すパターンと同様でかつ段数を減らした共振器よりなる共振器部を示したが、実用的には、この共振器部22として、第1、第2および第3の態様(第2図、第5図、第6図)のいずれかを採用するのが望ましい。
以上説明したように本発明によれば、全体のサイズを大型化することなしに、急峻なカット特性を維持しつつ、耐電力性を大幅に向上することのできる超伝導フィルタが実現される。また本発明に基づく超伝導フィルタは、対受信波用フィルタとしても対送信波用フィルタとしてもあるいはこれらの双方としても利用することができる。
【図面の簡単な説明】
第1図は本発明に係る第1の態様に基づく超伝導フィルタの基本構成図、
第2図は第1の態様に基づく実施例を示す平面図、
第3図は本発明による電流密度低減部を導入してもフィルタ特性が劣化しないことを表す図、
第4図は本発明に係る第2の態様に基づく超伝導フィルタの基本構成図、
第5図は第2の態様に基づく実施例を示す平面図、
第6図は本発明の第3の態様に基づく実施例を示す平面図、
第7図は超伝導フィルタの3次IMD特性を表すグラフ、
第8図は超伝導フィルタの3次IMD劣化特性を表すグラフ、
第9図は超伝導フィルタの挿入損失特性を表すグラフ、
第10図は本発明に係る第4の態様に基づく超伝導フィルタの構成例を示す図、
第11図は本発明に係る第5の態様に基づく超伝導フィルタの構成例を示す図、
第12図は本発明による常伝導体を入力線路部に導入しても大きな損失を生じさせないことを表すグラフ、
第13図は本発明が適用される、一例としての、基地局のフロントエンド部を示す図、
第14図は一般的な超伝導マイクロストリップフィルタの一例を示す図、
第15図(a)及び(b)は第14図における各共振器23の折り曲げ部分の形状を、2つの例について、拡大して示す図、
図16図はカット特性を説明するための図、および
第17図はエッジ効果を抑制した従来の超伝導フィルタの一例を示す図である。

Claims (9)

  1. フィルタすべき信号の伝搬経路に沿って一列に従属接続される複数の共振器を含み、各該共振器は、λ/2共振器を折り曲げた構造をなすように構成した共振器部を有する超伝導マイクロストリップフィルタにおいて、
    各前記共振器は、その線路パターンの長さ方向に沿って中央部およびその近傍に、電流密度低減部を形成してなり、該中央部およびその近傍における前記線路パターンの線路幅をそれ以外の部分の線路幅よりも太くして前記電流密度低減部とすることを特徴とする超伝導マイクロストリップフィルタ。
  2. 各前記線路パターンの前記中央部およびその近傍を円状に形成して、前記電流密度低減部とする請求項1に記載の超伝導マイクロストリップフィルタ。
  3. フィルタすべき信号の伝搬経路に沿って一列に配置される複数の共振器を含む共振器部を有する超伝導マイクロストリップフィルタにおいて、
    少なくとも、前記伝搬経路の中央部分およびその近傍に配置される各前記共振器に対し、その線路パターンの一部に、電流密度低減部を形成し、かつ、
    前記中央部分よりの前記共振器ほど前記電流密度低減部を大にすることを特徴とする超伝導マイクロストリップフィルタ。
  4. フィルタすべき信号の伝搬経路に沿って一列に配置される複数の共振器を含む共振器部を有する超伝導マイクロストリップフィルタにおいて、
    少なくとも、前記伝搬経路の中央部分およびその近傍に配置される各前記共振器に対し、その線路パターンの全長に亘って電流密度低減部を形成し、かつ、
    前記中央部分よりの前記共振器ほど前記電流密度低減部を大にすることを特徴とする超伝導マイクロストリップフィルタ。
  5. 前記中央部分よりの前記共振器ほど、前記線路パターンの線路幅を徐々に太くして、前記電流密度低減部を形成する請求項4に記載の超伝導マイクロストリップフィルタ。
  6. フィルタすべき信号が入力される入力線路部と、該入力線路部に隣接して配置され、少なくとも1つの共振器を含む共振器部と、を有する超伝導マイクロストリップフィルタにおいて、
    前記入力線路部は、その線路パターンの一部に、電流密度低減部を形成することを特徴とする超伝導マイクロストリップフィルタ。
  7. 前記入力線路部の前記線路パターンのうち電流集中が最大となる部分の線路パターンの線路幅を、それ以外の部分の線路幅よりも太くすることにより前記電流密度低減部を形成する請求項6に記載の超伝導マイクロストリップフィルタ。
  8. 前記入力線路部の前記線路パターンと、前記信号が入力される入力導体の線路パターンとがほぼL字状に接合する場合、その接合部分におけるこれら線路パターンの線路幅を、それ以外の部分の線路幅よりも太くして、前記電流密度低減部を形成する請求項6に記載の超伝導マイクロストリップフィルタ。
  9. 各前記線路パターンの前記中央部およびその近傍を円状に形成して、前記電流密度低減部とする請求項7または8に記載の超伝導マイクロストリップフィルタ。
JP2001555158A 2000-01-28 2000-01-28 超伝導マイクロストリップフィルタ Expired - Fee Related JP4172936B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/000491 WO2001056107A1 (fr) 2000-01-28 2000-01-28 Filtre a microrubans supraconducteurs

Publications (1)

Publication Number Publication Date
JP4172936B2 true JP4172936B2 (ja) 2008-10-29

Family

ID=11735636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001555158A Expired - Fee Related JP4172936B2 (ja) 2000-01-28 2000-01-28 超伝導マイクロストリップフィルタ

Country Status (5)

Country Link
US (1) US6823201B2 (ja)
EP (1) EP1265310B1 (ja)
JP (1) JP4172936B2 (ja)
DE (1) DE60033971T2 (ja)
WO (1) WO2001056107A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022500900A (ja) * 2018-09-19 2022-01-04 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 量子デバイス用の極低温オンチップ・マイクロ波フィルタ

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359753C (zh) 2003-09-05 2008-01-02 株式会社Ntt都科摩 共平面波导谐振器
US6914576B1 (en) * 2003-10-20 2005-07-05 The United States Of America As Represented By The Secretary Of The Army Multi-resonant double-sided high-temperature superconductive magnetic dipole antenna
US7142836B2 (en) * 2003-12-01 2006-11-28 Alpha Networks Inc. Microwave filter distributed on circuit board of wireless communication product
US7558608B2 (en) 2004-09-29 2009-07-07 Fujitsu Limited Superconducting device, fabrication method thereof, and filter adjusting method
TWI299233B (en) * 2005-10-21 2008-07-21 Hon Hai Prec Ind Co Ltd Low-pass filter
TWI282214B (en) * 2005-10-21 2007-06-01 Hon Hai Prec Ind Co Ltd A band-pass filter
TWI299222B (en) * 2005-12-23 2008-07-21 Hon Hai Prec Ind Co Ltd Dual-band filter
TWI323051B (en) * 2006-04-07 2010-04-01 Hon Hai Prec Ind Co Ltd Dual zero points low-pass filter
JP4769753B2 (ja) * 2007-03-27 2011-09-07 富士通株式会社 超伝導フィルタデバイス
US10672971B2 (en) 2018-03-23 2020-06-02 International Business Machines Corporation Vertical transmon qubit device with microstrip waveguides
US10256392B1 (en) 2018-03-23 2019-04-09 International Business Machines Corporation Vertical transmon qubit device
US10243132B1 (en) 2018-03-23 2019-03-26 International Business Machines Corporation Vertical josephson junction superconducting device
JP7498189B2 (ja) * 2019-02-28 2024-06-11 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション 表面実装可能な高周波マイクロストリップバンドパスフィルタ
CN110176659B (zh) * 2019-04-04 2021-05-11 南京航空航天大学 二进制式的带宽可重构的带通滤波器
CN110931926B (zh) * 2019-11-12 2022-01-07 郴州世通科技有限公司 微带线滤波器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3451015A (en) * 1966-03-21 1969-06-17 Gen Dynamics Corp Microwave stripline filter
US4371853A (en) * 1979-10-30 1983-02-01 Matsushita Electric Industrial Company, Limited Strip-line resonator and a band pass filter having the same
JPS6478003A (en) * 1987-09-18 1989-03-23 Fujitsu Ltd Strip line resonator for vco
US6026311A (en) * 1993-05-28 2000-02-15 Superconductor Technologies, Inc. High temperature superconducting structures and methods for high Q, reduced intermodulation resonators and filters
JPH03286601A (ja) * 1990-04-03 1991-12-17 Res Dev Corp Of Japan マイクロ波共振器
JPH06204702A (ja) * 1992-12-28 1994-07-22 Japan Energy Corp マイクロ波フィルタ
JPH07202533A (ja) * 1993-11-16 1995-08-04 Korea Electron Telecommun 高温超伝導マイクロ波帯域通過フィルタおよびその製造方法
GB9426294D0 (en) * 1994-12-28 1995-02-22 Mansour Raafat High power soperconductive circuits and method of construction thereof
JPH1168404A (ja) * 1997-08-12 1999-03-09 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk 周波数フィルタ
JPH11177310A (ja) * 1997-10-09 1999-07-02 Murata Mfg Co Ltd 高周波伝送線路、誘電体共振器、フィルタ、デュプレクサおよび通信機
JP2954562B2 (ja) * 1998-01-27 1999-09-27 株式会社移動体通信先端技術研究所 超伝導平面回路及びその製造方法
US6108569A (en) * 1998-05-15 2000-08-22 E. I. Du Pont De Nemours And Company High temperature superconductor mini-filters and mini-multiplexers with self-resonant spiral resonators

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022500900A (ja) * 2018-09-19 2022-01-04 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 量子デバイス用の極低温オンチップ・マイクロ波フィルタ
JP7304121B2 (ja) 2018-09-19 2023-07-06 インターナショナル・ビジネス・マシーンズ・コーポレーション 量子デバイス用の極低温オンチップ・マイクロ波フィルタ

Also Published As

Publication number Publication date
DE60033971T2 (de) 2007-12-06
WO2001056107A1 (fr) 2001-08-02
DE60033971D1 (de) 2007-04-26
US6823201B2 (en) 2004-11-23
EP1265310B1 (en) 2007-03-14
EP1265310A4 (en) 2003-04-02
EP1265310A1 (en) 2002-12-11
US20030016094A1 (en) 2003-01-23

Similar Documents

Publication Publication Date Title
JP4172936B2 (ja) 超伝導マイクロストリップフィルタ
Hong et al. On the performance of HTS microstrip quasi-elliptic function filters for mobile communications application
EP0938153B1 (en) Bandpass filter, duplexer, high-frequency module and communications device
WO1998000880A9 (en) Planar radio frequency filter
WO1998000880A1 (en) Planar radio frequency filter
US20080037590A1 (en) Multiplexer and wireless receiver
US20090239752A1 (en) Superconducting device, fabrication method thereof, and filter adjusting method
JP3857243B2 (ja) フィルタ回路
JP4068521B2 (ja) 超伝導デュプレクサ装置
Sekiya Design of compact HTS dual-band bandpass filters using dual-function feeding structure with wide stop-band response
US20060091979A1 (en) Dual-band bandpass filter with stepped-impedance resonators
JP4707682B2 (ja) 超伝導デバイス
CN106450778B (zh) 一种宽带圆极化dra及其设计方法
JP4630891B2 (ja) フィルタ回路および無線通信装置
JP5369905B2 (ja) 帯域除去フィルタ
JP3294213B2 (ja) 高温超伝導フィルタを用いたデュプレクサ装置
Barra Miniaturized superconducting planar filters for telecommunication applications
US20010006360A1 (en) Microwave filter
JPH10224252A (ja) フィルタ回路
JPH10294616A (ja) 超電導薄膜回路
US20100060378A1 (en) Filter circuit and radio communication device
Kawaguchi et al. High-sensitivity HTS multi-channel receiver front-end for 900 MHz band mobile base station
JPH11330803A (ja) 高周波フィルタ装置、共用器および通信装置
Hsiao et al. A miniaturized dual-band bandpass filter using open-loop and SIR-DGS resonators
JP3558260B2 (ja) 高感度基地局無線装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees