JP4171166B2 - 光起電力装置及びその製造方法 - Google Patents

光起電力装置及びその製造方法 Download PDF

Info

Publication number
JP4171166B2
JP4171166B2 JP2000262473A JP2000262473A JP4171166B2 JP 4171166 B2 JP4171166 B2 JP 4171166B2 JP 2000262473 A JP2000262473 A JP 2000262473A JP 2000262473 A JP2000262473 A JP 2000262473A JP 4171166 B2 JP4171166 B2 JP 4171166B2
Authority
JP
Japan
Prior art keywords
oxide film
transparent conductive
conductive oxide
photovoltaic device
tapered portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000262473A
Other languages
English (en)
Other versions
JP2002076390A (ja
Inventor
勝信 佐山
学 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000262473A priority Critical patent/JP4171166B2/ja
Publication of JP2002076390A publication Critical patent/JP2002076390A/ja
Application granted granted Critical
Publication of JP4171166B2 publication Critical patent/JP4171166B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、透光性基板上に形成された複数のセル領域が直列に接続されている、いわゆる集積型光起電力装置及びその製造方法に関するものである。
【0002】
【従来の技術】
いわゆるアモルファス集積型太陽電池は、ガラス等の透光性基板の上に、SnO2 やZnO等の透明導電酸化物膜、少なくとも1つの接合を有するa−Siやa−SiGe等の非晶質半導体または微結晶半導体からなる光電変換層、AgやAl等の裏面電極を順次積層し、形成中の各段階において基板以外の各層を複数のセル領域に分離し、複数のセル領域を隣接するセル領域間で直列に接続した光起電力装置である。各層を分離して集積化するのに、レーザ等のエネルギービームが一般に用いられている。
【0003】
【発明が解決しようとする課題】
集積型太陽電池では、上述のようにレーザ等のエネルギービームを照射して分離した透明導電酸化物膜の上に、厚み1μm以下の非常に薄い半導体層が形成される。このため、透明導電酸化物膜の分離された領域のエッジ部分で、厚みの薄い半導体層が切断され、この部分で電流リークを生じるという問題があった。また、集積型太陽電池では、透明導電酸化物膜を出来るだけ低抵抗化したいという要望があった。
本発明の目的は、電流リークが生じにくく、かつ透明導電酸化物膜の低抵抗化を図ることができる集積型の光起電力装置及びその製造方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明の光起電力装置は、透光性基板の上に、透明導電酸化物膜、少なくとも1つの接合を有する非晶質半導体または微結晶半導体からなる光電変換層、及び裏面電極が順次積層されており、透明導電酸化物膜、光電変換層、及び裏面電極が複数のセル領域に分離され、かつ分離されたセル領域が、隣接するセル領域間で直列に接続されている光起電力装置であり、透明導電酸化物膜の分離された領域の両端に、該透明導電酸化物膜が形成されていない分離部に向かって厚みが薄くなるテーパ部が形成されており、裏面電極との接続部に近い側のテーパ部の幅が、他方のテーパ部の幅よりも10%以上狭いことを特徴としている。また、テーパ部における結晶の配向性が該透明導電酸化物膜の他の部分よりも高くなっているか、あるいは結晶粒径が該透明導電酸化物膜の他の部分よりも大きくなっていることを特徴としている。
【0005】
本発明によれば、透明導電酸化物薄膜の分離された領域の両端に、テーパ部が形成されているので、透明導電酸化物膜の分離された領域の両端にはなだらかな傾斜が形成され、エッジの状態にはならない。従って、その上に、厚みの薄い半導体層が形成されても、半導体層が切断されることはなく、電流リーク個所とならない。従って、漏れ電流は発生せず、出力特性の低下を生じることがない。
【0006】
また、本発明によれば、テーパ部における結晶の配向性が他の部分よりも高くなっているか、あるいは結晶粒径が他の部分よりも大きくなっているので、テーパ部における導電性が高くなる。従って、透明導電酸化物膜の低抵抗化を図ることができる。透明導電酸化物膜における結晶の配向性は、例えば、X線回折の(101)ピークに対する(002)ピークの比で表わされる、c軸配向性により評価することができる。テーパ部のc軸配向性は、テーパ部以外の他の部分のc軸配向性より1.5倍以上高いことが好ましい。結晶の配向性が高くなることにより、その部分の導電性が高くなるので、低抵抗化を図ることができる。
【0007】
透明導電酸化物膜の結晶粒径は、例えば、透過型電子顕微鏡(TEM)により測定することができる。テーパ部の結晶粒径は、テーパ部以外の他の部分における結晶粒径が1500Å以外のときに、テーパ部における結晶粒径が2000Å以上であることが好ましい。テーパ部における結晶粒径を大きくすることにより、透明導電酸化物膜を低抵抗化することができ、光起電力装置の出力特性を高めることができる。なお、本発明において結晶粒径は、各結晶の面内方向における結晶粒径の最大値である。
【0008】
本発明におけるテーパ部での結晶の配向性の向上または結晶粒径の増大は、テーパ部を加熱することによりもたらすことができるものである。具体的には、透明導電酸化物膜を分離するため、レーザ等のエネルギービームを照射する際、テーパ部を形成するとともに、テーパ部を加熱し、結晶の配向性を高めるか、あるいは結晶粒径を増大させることができる。
【0009】
本発明において、テーパ部の幅は、3μm以上であることが好ましい。テーパ部の幅を広くすることにより、テーパ部における傾斜がなだらかになり、電流リーク個所となりにくくなる。また、結晶の配向性が高い領域または結晶粒径の大きな領域が多くなるので、透明導電酸化物膜のより一層の低抵抗化を図ることができ、出力特性を向上させることができる。
【0010】
また、テーパ部の厚みは、一旦その内側の他の部分よりも厚くなった後、薄くなっていることが好ましい。このように一旦厚みが厚くなる領域が形成されることにより、テーパ部の上方部分に丸みを持たせることができ、その上に形成される半導体層において、さらに切断を生じにくくさせることができる。従って、電流リーク個所の発生をさらに抑制することができ、出力特性を向上させることができる。
【0011】
本発明において、透明導電酸化物膜は、例えば、酸化亜鉛、酸化錫、酸化インジウム錫(ITO)等から形成させることができるが、特に酸化亜鉛はレーザ等のエネルギービームの照射により結晶の配向性が高くなり、結晶粒径が大きくなりやすい。従って、透明導電酸化物膜を酸化亜鉛から形成する場合に、特に本発明の効果が顕著に発揮される。
【0012】
本発明においては、裏面電極との接続部に近い側のテーパ部の幅が他方のテーパ部の幅よりも狭いことが好ましい。例えば、裏面電極との接続部に近い側のテーパ部の幅は、他方のテーパ部の幅よりも10%以上狭いことが好ましい。裏面電極との接続部に近い側のテーパ部は、裏面電極に直接に接続されているので、この部分で半導体層が切断されて裏面電極と接しても、漏れ電流とはならない。従って、この部分のテーパ部の幅が狭く、テーパ部の傾斜が急であってもほとんど影響がない。また、この部分のテーパ部の幅を狭くすることにより、セルの有効面積を大きくすることができるので、出力特性を高めることができる。
【0013】
このように対向する一方のテーパ部の幅を、他方のテーパ部の幅より狭くなるように形成するには、強度分布のピークを幅の狭いテーパ部側にずらせたエネルギービームを照射して、分離部を形成する方法が挙げられる。
【0014】
すなわち、本発明の光起電力装置の製造方法は、裏面電極との接続部に近い側のテーパ部の幅が、他方のテーパ部の幅より狭い光起電力装置を製造する方法であり、幅の狭いテーパ部を形成すべき領域側に強度分布のピークをずらせたエネルギービームを照射して、透明導電酸化物膜に分離部を形成し、透明導電酸化物膜を分離することを特徴としている。
【0015】
【発明の実施の形態】
(第1の実施例)
図1は、本発明に従う第1の実施例の光起電力装置を示す断面図である。透光性基板であるガラス基板1の上には、透明導電酸化物膜2、光電変換層6、及び裏面電極7が順次積層されている。光電変換層6は、p型の非晶質炭化シリコン(a−SiC)層3、真性の非晶質シリコン(a−Si)層4、及びn型の微結晶シリコン(μc−Si)層5を順次積層することにより構成されている。
【0016】
ガラス基板1のサイズは、30cm×40cmであり、厚みは5mmである。透明導電酸化物2は、厚み8000Åの酸化亜鉛(ZnO)の膜から形成されている。この酸化亜鉛膜は、公知のDCマグネトロンスパッタ法により、基板温度300℃、Arガス流量400sccm、O2 ガス流量10sccm、圧力1Paの雰囲気で、大きさ300cm2 の3%Al23 ドープZnOターゲットを用い、0.1kWの電力を印加して形成されている。
【0017】
透明導電酸化物膜2を形成した後、所定の位置にレーザ光を照射して、分離部8を形成し、透明導電酸化物膜2を複数のセル領域に分割している。レーザ照射による加工は、室温状態において波長1.06μm、パルス周波数3kHzのNd:YAGレーザを用いて、下地のガラス基板1に熱的影響がでない強度である4×107 W/cm2 のレーザパワー強度で、10mm/秒の加工速度でレーザを走査し、集積するセル領域が35段となるように透明導電酸化物膜2を分割している。
【0018】
図5は、このときに用いたレーザ光の強度分布プロファイルを示す図である。図5に示すように、このとき用いたレーザ光20は、スポット幅が広くかつ強度の小さいレーザ光と、スポット幅が狭くかつ強度の大きいレーザ光の2種類のレーザ光を重ねることにより得られるレーザ光である。このような強度分布を有するレーザ光を用いて透明導電酸化物膜2を分離することにより、分離された透明酸化物膜2の両端には、分離部8に向かって厚みが薄くなるテーパ部11及び12が形成される。図5に示すレーザ光20のスポット径d1 は150μmである。
【0019】
図2は、テーパ部11及び12を拡大して示す断面図である。図2に示されるように、テーパ部11及び12には、一旦その内側の他の部分よりも厚みが厚くなった隆起部11a及び12aがそれぞれ形成されている。この隆起部は、レーザ光を照射して加工する際、テーパ部となる部分が半溶融状態となるため、表面張力により盛り上がり形成される部分である。隆起部11a及び12aの厚みは、1.1μmである。
【0020】
このような隆起部が存在することにより、テーパ部の上方部分が丸みを帯びた形状となり、その上に形成される光電変換層6中の半導体層に切断が生じにくくなり、漏れ電流の発生が抑制される。また、テーパ部は、なだらかな傾斜を有するので、この部分でも段差が形成されることがなく、光電変換層6中の半導体層に切断が生じにくくなり、漏れ電流の発生を抑制することができる。
【0021】
テーパ部11及び12における酸化亜鉛の結晶粒径を、TEMで観察し測定したところ5000Åであった。テーパ部以外の他の部分の透明導電酸化物膜2中の結晶粒径は1000Åであった。また、テーパ部11及び12におけるc軸配向性は4であり、他の部分のc軸配向性は2であった。従って、テーパ部11及び12においては、結晶の配向性が他の部分より高くなっており、結晶粒径も他の部分より大きくなっていることがわかる。テーパ部11及び12の幅Wは、10μmであった。
【0022】
次に、光電変換層6を構成するp型a−SiC層3、i型a−Si層4、及びn型μc−Si層5を、プラズマCVD法により以下の表1に示す条件で形成する。平行平板のプラズマCVD装置を用い、放電電極面積1500cm2 、電極間隔40mmとして形成する。
【0023】
【表1】
Figure 0004171166
【0024】
次に光電変換層6を、レーザ光の照射により分離する。分離する個所は、図1に示す裏面電極7と透明導電酸化物膜2との接続部9となる個所である。室温で波長0.53μm、パルス周波数3kHzのYAGレーザの第2高調波を用いて、良好な加工性が得られる2×107 W/cm2 のレーザパワー密度、10mm/秒の加工速度で加工し、光電変換層6を分離した。
【0025】
次に、裏面電極7を形成した。裏面電極7は、厚み4000Åのアルミニウム膜により形成した。DCマグネトロンスパッタ法により、基板温度200℃で、Arガス流量400sccm、圧力1Paの雰囲気下で、大きさ300cm2 のAlターゲットを用い、0.1kWの電力を印加して形成した。
【0026】
次に、裏面電極7を、レーザ光の照射により分離した。分離する個所は、図1に示す分離部10であり、裏面電極7と共に、光電変換層6も同時に除去し分離した。室温で波長0.53μm、パルス周波数3kHzのYAGレーザの第2高調波を用いて、良好な加工性を得られる2×107 W/cm2 のレーザパワー密度、10mm/秒の加工速度で分離加工した。
以上のようにして、35段集積型の非晶質起電力装置を作製した。
【0027】
(第2の実施例)
上記第1の実施例において、透明導電酸化物膜2をレーザ光照射により分離する際、基板の温度を300℃に加熱して行なった。この結果、図3に示すように、隆起部を有しないテーパ部11及び12が形成された。その他は、上記第1の実施例と同様にして、光電変換層6及び裏面電極7を形成し、各層をレーザ光照射により分離し、35段集積型の非晶質起電力装置を作製した。
【0028】
(従来例)
上記第1の実施例において、透明導電酸化物膜2をレーザ光照射により分離する際、照射するレーザ光として、図6に示すような従来のエネルギー強度分布を有するレーザ光21を用いる以外は上記第1の実施例と同様にして、光起電力装置を作製した。また、図6に示すレーザ光21のスポット径d2 は、100μmである。従来例において形成された透明導電酸化物膜2の両端には、図4に示すようにほぼ垂直方向の端面を有する端部13及び14が形成された。
【0029】
なお、全ての実施例及び比較例において光電変換層6及び裏面電極7を分離加工するのに用いたレーザ光は、図6に示すようなエネルギー強度分布を有するレーザ光である。
【0030】
(電池特性の評価)
第1の実施例、第2の実施例、及び従来例の各光起電力装置について、AM−1.5、100mW/cm2 、25℃の条件下で、開放電圧(Voc)、短絡電流(Isc)、曲線因子(F.F.)、及び最大出力(Pmax)を測定し、その結果を表2に示した。
【0031】
【表2】
Figure 0004171166
【0032】
表2から明らかなように、本発明に従う第1の実施例及び第2の実施例の光起電力装置は、従来例の光起電力装置に比べ、開放電圧及び曲線因子が向上しており、出力特性が高まっていることがわかる。これは、透明導電酸化物膜の両端にテーパ部が形成されたことにより、この部分における電流リークが防止され、漏れ電流が低減したことによるものと考えられる。
【0033】
(テーパ部の幅についての検討)
上記第1の実施例において、透明導電酸化物膜5を分離するためのレーザ光のエネルギー強度分布を変化させ、テーパ部の幅の異なる光起電力装置を作製し、テーパ部の幅が出力特性に与える特性について検討した。具体的には、図5に示すスポット径の広い方のビーム強度と、スポット径の狭い方のビーム強度の両方を変化させ、レーザスポットの端から25μm付近とレーザスポットの中央のエネルギー強度比を1/6から1/3まで変化させたレーザ光を用い、透明導電酸化物膜を分離加工して、テーパ部の幅の異なる光起電力装置を作製した。得られた各光起電力装置について、最大出力を測定した。
【0034】
図7は、以上のようにして測定されたテーパ部の幅と最大出力との関係を示す図である。図7に示すテーパ部の幅“0”は、上記従来例についての測定結果である。なお、ここで作製した光起電力装置のテーパ部における結晶粒径は、いずれも3000Åであった。
【0035】
図7に示す結果から明らかなように、テーパ部の幅が3μmである光起電力装置において出力特性の向上が認められており、テーパ部の幅が10μmとなるまでの間、テーパ部の幅の増加に比例して出力特性が向上していることがわかる。
【0036】
(テーパ部における結晶粒径についての検討)
透明導電酸化物膜を分離するためのレーザ光を、図5に示すような強度分布にし、エネルギー密度だけを変化させて、テーパ部における結晶粒径を変化させ、その他は上記第1の実施例と同様にして光起電力装置を作製し、その最大出力を測定した。なお、テーパ部の幅は、いずれも7μmであった。
【0037】
図8は、テーパ部における結晶粒径と最大出力との関係を示す図である。図8に示すように、テーパ部における結晶粒径が2000Åを超えると急激に最大出力が向上することがわかる。なお、レーザ光が照射されないテーパ部以外の領域の結晶粒径は、1000Åであった。
【0038】
(テーパ部以外の他の部分における結晶粒径についての検討)
上記第1の実施例において、透明導電酸化物膜を形成する際の基板温度を変えてレーザ光が照射されない透明導電酸化物膜のテーパ部以外の他の部分における結晶粒径を変化させた。この結果、テーパ部以外の他の部分における結晶粒径が1500Å以下のときに、本発明による出力特性の向上が顕著に認められた。従って、テーパ部以外の他の部分における結晶粒径は、1500Å以下であることが好ましいことがわかる。
【0039】
(テーパ部におけるc軸配向性についての検討)
上記第1の実施例において、透明導電酸化物膜を形成する際の雰囲気圧力を変化させて、c軸配向性が異なるテーパ部を形成した。この結果、テーパ部におけるc軸配向性が、テーパ部以外の他の部分のc軸配向性より1.5倍以上高い場合に、特に出力特性が向上することがわかった。
【0040】
(第3の実施例)
上記第1の実施例において、透明導電酸化物膜を分離する際に照射するレーザ光のエネルギー強度分布を、図10に示すレーザ光22のように、そのピーク22aが中心から距離L2 ずれたレーザ光を用いた。図10に点線で示すレーザ光20は、左右対称のエネルギー強度分布を有するものであり、第1の実施例において用いたのと同様のものである。そのピーク20aは、レーザスポットの中心に位置しており、レーザスポットの両端からそれぞれ等しい距離L1 隔てた位置にある。このようなレーザ光20は、上述のように、スポット幅が広くかつ強度の小さいレーザ光と、スポット幅が狭くかつ強度の大きいレーザ光の2種類のレーザ光を重ねることにより合成されるものである。実線で示すピーク22aが中心からずれたレーザ光22は、スポット幅が狭くかつ強度の大きいレーザ光の位置を中心からずらせることにより合成することができる。
【0041】
図9は、図10に示すようなピークが中心からずれたエネルギー強度分布を有するレーザ光22を透明導電酸化物膜2の分離加工に用いた光起電力装置を示す断面図である。図9に示すように、レーザ光の強度分布のピークに近い方で形成されたテーパ部11は、他方のテーパ部12に比べ、その傾斜が急になっている。従って、テーパ部11の幅は、テーパ部12よりも狭くなっている。テーパ部11は、裏面電極7が、隣接するセル領域の透明導電酸化物膜2と直列に接続される接続部9に近い側のテーパ部である。従って、テーパ部11は、電流リークによる漏れ電流の発生には直接影響を与える部分でない。従って、テーパ部11の幅を狭くしても、電流リークの発生には直接影響しない。テーパ部11の幅を狭くすることにより、発電に有効なセル領域Rの面積を増加することができる。従って、テーパ部11の幅をテーパ部12の幅よりも狭くすることにより、出力特性をさらに向上させることができる。テーパ部11の幅を、テーパ部12の幅より10%以上狭くすることにより、このようなセルの有効面積増加による出力特性の向上が顕著に認められるようになる。
【0042】
上記実施例においては、透明導電酸化物膜として、DCマグネトロンスパッタより形成した酸化亜鉛(ZnO)の薄膜を示したが、本発明はこれに限定されるものではなく、例えば、酸化亜鉛からなる透明導電酸化物膜を、MOCVDで形成してもよいし、酸化錫から形成した透明導電酸化物膜を用いてもよい。
【0043】
また、上記実施例では、p型の非晶質炭化シリコン層、真性の非晶質シリコン層、及びn型の微結晶シリコン層から形成した光電変換層を例に示したが、本発明はこれに限定されるものではなく、その他の半導体薄膜で形成した光電変換層であってもよいし、pin接合を複数含むような積層型の光電変換層であってもよい。特に、積層型の光電変換層は、半導体各層の厚みが薄いので、電流のリーク個所が発生しやすい。このため、特に本発明の効果が顕著に発揮される光起電力装置である。
【0044】
【発明の効果】
本発明によれば、電流リークの発生を防止し、かつ透明導電酸化物膜の低抵抗化を図ることができるので、出力特性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に従う第1の実施例の光起電力装置を示す断面図。
【図2】本発明に従う第1の実施例の光起電力装置におけるテーパ部を示す拡大断面図。
【図3】本発明に従う第2の実施例の光起電力装置におけるテーパ部を示す拡大断面図。
【図4】従来例の光起電力装置における透明導電酸化物膜の端部を示す拡大断面図。
【図5】本発明に従う光起電力装置の製造工程において透明導電酸化物膜を分離加工するのに用いられるレーザ光のエネルギー強度分布を示す図。
【図6】従来例の光起電力装置の製造工程において透明導電酸化物膜を分離加工するのに用いられるレーザ光のエネルギー強度分布を示す図。
【図7】テーパ部の幅と最大出力との関係を示す図。
【図8】テーパ部における結晶粒径と最大出力との関係を示す図。
【図9】本発明に従う第3の実施例の光起電力装置を示す断面図。
【図10】本発明に従う第3の実施例の光起電力装置の製造工程において透明導電酸化物膜を分離加工するのに用いられるレーザ光のエネルギー強度分布を示す図。
【符号の説明】
1…ガラス基板
2…透明導電酸化物膜
3…p型a−SiC層
4…i型a−Si層
5…n型μc−Si層
6…光電変換層
7…裏面電極
8…分離部
9…接続部
10…分離部
11…テーパ部
11a…テーパ部の隆起部
12…テーパ部
12a…テーパ部の隆起部
W…テーパ部の幅

Claims (8)

  1. 透光性基板の上に、透明導電酸化物膜、少なくとも1つの接合を有する非晶質半導体または微結晶半導体からなる光電変換層、及び裏面電極が順次積層されており、前記透明導電酸化物膜、前記光電変換層、及び前記裏面電極が複数のセル領域に分離され、かつ分離されたセル領域が、隣接するセル領域間で直列に接続されている光起電力装置であって、
    前記透明導電酸化物膜の分離された領域の両端に、該透明導電酸化物膜が形成されていない分離部に向かって厚みが薄くなるテーパ部が形成されており、
    前記裏面電極との接続部に近い側のテーパ部の幅が、他方のテーパ部の幅よりも10%以上狭いことを特徴とする光起電力装置。
  2. 前記テーパ部における結晶の配向性が該透明導電酸化物膜の他の部分よりも高くなっているか、あるいは結晶粒径が該透明導電酸化物膜の他の部分よりも大きくなっていることを特徴とする請求項1記載の光起電力装置。
  3. 前記テーパ部が、前記透明導電酸化物膜を分離するためのエネルギービームの照射によって形成されることを特徴とする請求項1または2に記載の光起電力装置。
  4. 前記テーパ部の幅が3μm以上であることを特徴とする請求項1〜3のいずれか1項に記載の光起電力装置。
  5. 前記テーパ部の厚みが、一旦その内側の他の部分よりも厚くなった後薄くなっていることを特徴とする請求項1〜4のいずれか1項に記載の光起電力装置。
  6. 前記透明導電酸化物膜が酸化亜鉛から形成されており、前記テーパ部における結晶粒径が2000Å以上であり、前記テーパ部以外の他の部分における結晶粒径が1500Å以下であることを特徴とする請求項1〜5のいずれか1項に記載の光起電力装置。
  7. 前記透明導電酸化物膜が酸化亜鉛から形成されており、前記テーパ部のc軸配向性(X線回折における(101)ピークに対する(002)ピークの比)が、前記テーパ部以外の他の部分のc軸配向性より1.5倍以上高いことを特徴とする請求項1〜6のいずれか1項に記載の光起電力装置。
  8. エネルギービームの照射によって前記透明導電酸化物膜を分離する請求項に記載の光起電力装置の製造方法であって、
    前記幅の狭いテーパ部を形成すべき領域側に強度分布のピークをずらせたエネルギービームを照射して、前記分離部を形成し、前記透明導電酸化物膜を分離することを特徴とする光起電力装置の製造方法。
JP2000262473A 2000-08-31 2000-08-31 光起電力装置及びその製造方法 Expired - Fee Related JP4171166B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000262473A JP4171166B2 (ja) 2000-08-31 2000-08-31 光起電力装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000262473A JP4171166B2 (ja) 2000-08-31 2000-08-31 光起電力装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2002076390A JP2002076390A (ja) 2002-03-15
JP4171166B2 true JP4171166B2 (ja) 2008-10-22

Family

ID=18750150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000262473A Expired - Fee Related JP4171166B2 (ja) 2000-08-31 2000-08-31 光起電力装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP4171166B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2939239B1 (fr) * 2008-12-03 2010-12-31 Ecole Polytech Module photovoltaique comprenant une electrode transparente conductrice d'epaisseur variable et procedes de fabrication d'un tel module
US8432603B2 (en) 2009-03-31 2013-04-30 View, Inc. Electrochromic devices
JP2012094748A (ja) * 2010-10-28 2012-05-17 Kyocera Corp 光電変換装置
US9958750B2 (en) 2010-11-08 2018-05-01 View, Inc. Electrochromic window fabrication methods
US11865632B2 (en) 2011-12-12 2024-01-09 View, Inc. Thin-film devices and fabrication
US10802371B2 (en) 2011-12-12 2020-10-13 View, Inc. Thin-film devices and fabrication
US10295880B2 (en) 2011-12-12 2019-05-21 View, Inc. Narrow pre-deposition laser deletion
EP3919974A1 (en) 2011-12-12 2021-12-08 View, Inc. Thin-film devices and fabrication
US20210394489A1 (en) 2011-12-12 2021-12-23 View, Inc. Thin-film devices and fabrication
JP2013183065A (ja) * 2012-03-02 2013-09-12 Idemitsu Kosan Co Ltd 有機薄膜太陽電池
US20150153622A1 (en) 2013-12-03 2015-06-04 Sage Electrochromics, Inc. Methods for producing lower electrical isolation in electrochromic films

Also Published As

Publication number Publication date
JP2002076390A (ja) 2002-03-15

Similar Documents

Publication Publication Date Title
JP3349308B2 (ja) 光起電力素子
KR101024288B1 (ko) 실리콘계 박막 태양전지
US7755157B2 (en) Photovoltaic device and manufacturing method of photovoltaic device
WO2007086521A1 (ja) 太陽電池およびその製造方法
JP2005116930A (ja) 太陽電池およびその製造方法
JP4171166B2 (ja) 光起電力装置及びその製造方法
US20090165840A1 (en) Solar cell module and method of manufacturing the same
US6452087B2 (en) Photovoltaic device and method of fabricating the same
JPH09260695A (ja) 光起電力素子アレーの製造方法
JP3655025B2 (ja) 薄膜光電変換装置およびその製造方法
JP4441048B2 (ja) 集積型薄膜太陽電池の製造方法
US6348362B1 (en) Manufacturing method of photovoltaic device
KR101047170B1 (ko) 태양전지 및 그 제조방법
JP4222910B2 (ja) 光起電力装置の製造方法
JPWO2006049003A1 (ja) 薄膜光電変換装置の製造方法
JP5539081B2 (ja) 集積型薄膜光電変換装置の製造方法
JP2011066213A (ja) 光電変換装置及びその製造方法
JP4162373B2 (ja) 光起電力装置の製造方法
JP2007266328A (ja) 光電変換素子、およびそれから構成される光電変換モジュール
JP2006073878A (ja) 光電変換装置およびその製造方法
JP3209702B2 (ja) 光起電力装置製造方法
JP4215608B2 (ja) 光起電力装置
JP4173692B2 (ja) 太陽電池素子およびその製造方法
JP4052782B2 (ja) 集積型光起電力装置及びその製造方法
TWI427809B (zh) 矽薄膜太陽能電池模組之製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees