JP4170410B2 - 排ガスフィルタ浄化方法 - Google Patents

排ガスフィルタ浄化方法 Download PDF

Info

Publication number
JP4170410B2
JP4170410B2 JP10446097A JP10446097A JP4170410B2 JP 4170410 B2 JP4170410 B2 JP 4170410B2 JP 10446097 A JP10446097 A JP 10446097A JP 10446097 A JP10446097 A JP 10446097A JP 4170410 B2 JP4170410 B2 JP 4170410B2
Authority
JP
Japan
Prior art keywords
filter
regeneration
exhaust gas
air
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10446097A
Other languages
English (en)
Other versions
JPH10299458A (ja
Inventor
義信 鍬本
健生 福田
康弘 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP10446097A priority Critical patent/JP4170410B2/ja
Publication of JPH10299458A publication Critical patent/JPH10299458A/ja
Application granted granted Critical
Publication of JP4170410B2 publication Critical patent/JP4170410B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼル機関等から排出されるパティキュレート(煤等の可燃性微粒子)等をフィルタによって捕集し、捕集したものを燃焼させることによってフィルタを再生する排ガスフィルタ浄化装置及び排ガスフィルタ浄化方法に関する。
【0002】
【従来の技術】
近年ディーゼルエンジンが排出するパティキュレート(煤)が環境保護や健康上の理由から規制され始めている。このパティキュレートを取り除き、ディーゼルエンジンの排ガスを浄化するには、排気管の途中に耐熱性のセラミックハニカムのフィルタを取り付け、このフィルタによってパティキュレートを濾過する方法がある。このようなセラミック製のフィルタを備えるものでは、ある程度パティキュレートがフィルタに堆積したとき、これに火をつけて燃焼させて炭酸ガスに変えて大気に放出し、セラミックフィルタをクリーンに再生し、繰り返し使用することである。この操作は、一般に燃焼再生(リジェネレーション)と呼ばれている。
【0003】
ディーゼルエンジンの排ガスは、一般的にパティキュレートの着火温度より低いので、そのままではパティキュレートは燃焼せず、フィルタに堆積するだけで、これによって排気圧力が過度に上昇することになり、エンジン及びエミッション性能を低下させる。したがって、燃焼再生には何らかの方法によって排ガス温度を上げるか、又はフィルタ温度を上げることが必要とされている。
【0004】
これに対し、排気系に2個のフィルタを別途に備え、これらのフィルタによって排ガス浄化を交互に行う方式が既に提案されいる。この方式では、燃焼再生は排ガス濾過中ではなくてある程度パティキュレートが堆積した後、排ガス浄化をもう一方のフィルタで行っているときに、他方のフィルタにおいて燃焼再生が実施される。なお、燃焼のための昇温手段としては、電気ヒータ、バーナ、マイクロ波等が用いられる。
【0005】
また、屋内作業用のディーゼルエンジン駆動のフォークリフト等では、フィルタにパティキュレートが堆積したら、エンジンを停止した後に外部電源やバッテリから電力を供給してフィルタを加熱することによって、再生する排ガスフィルタ浄化装置が適用されている。
【0006】
図13は従来例におけるディーゼル機関の排ガス浄化装置の概略構成を示す模式図である。
【0007】
図において、108a,108bはセラミックハニカム製のフィルタ、120a,120bはフィルタ108a,108bそれぞれを加熱するための電気ヒータ、106はエンジン排ガス流路を制御する弁、111は燃焼再生のための二次空気の導入弁、118a,118bは燃焼再生のための再生用空気の排気弁、113は再生用空気供給のためのエアポンプ、104,105a,105b,109a,109bはそれぞれエンジン排ガスの流路配管、110a,110b,119a,119b,112は燃焼再生の再生用空気及びその排気の流路配管、116はエアポンプ113や弁106,導入弁111,排気弁118a,118bや電気ヒータ120a,120bを制御するコントローラ、102はディーゼルエンジン、103はマニホールド、107a,107bはフィルタ108a,108bを収納する容器である。
【0008】
以上のような構成の排ガス浄化装置のフィルタ再生についての動作は次のとおりである。
【0009】
一方のフィルタ108aが排ガス浄化に使用されている期間において、フィルタ前後の差圧またはフィルタ上流側の圧力を測定する圧力センサ(図示せず)等の捕集量検知装置で、再生開始時期と判断する。この時期まで配管104から配管105aに流れていた排ガスは、弁106及び導入弁111の作動切り替えにより、配管104から配管105bに流れてフィルタ108bを通過して浄化された後に配管109bから流出する。
【0010】
一方、再生開始時期と判断されたフィルタ108aは、電気ヒータ120aに通電されて加熱されると同時に、導入弁111が開いてエアポンプ113から配管110aを経由して再生用空気がフィルタ108aに供給される。ある時間経過すると、電気ヒータ120aの加熱によってフィルタ108aの温度がパティキュレート着火温度に達し、パティキュレートが燃焼を開始し、このとき発生する燃焼排ガスは配管119aから流出する。そして、ある時間経過後には電気ヒータ120aへの通電が終了し、再生用空気のみによるパティキュレート燃焼が継続する。この燃焼は、パティキュレートの火炎伝播によって実現される。
【0011】
更にある時間経過すると、燃焼再生が完了したと判断して、エアポンプ113が停止して排気弁118aが閉じることにより再生用空気の供給も終了し、フィルタ108aは浄化待機の状態になる。
【0012】
その後、圧力センサ等の捕集量検知装置でフィルタ108bが再生開始時期に達したと判断されると、フィルタ108aの再生処理の要領で、上記の各部材に付した符号のうち上記の記号aとbを入れ換えた記載に相当する動作が継続し、2個のフィルタ108a,108bのそれぞれについて交互に排ガス浄化及び燃焼再生を繰り返す。
【0013】
ここで、上記のフィルタ108a,108bのそれぞれの浄化及び再生のサイクルにおいて不可欠なフィルタの捕集量の推定の操作のための構成例としては次のようなものがある。
【0014】
たとえば、特開昭58−48831号公報には、エンジン稼働時にフィルタで排ガス濾過中に、フィルタ上流に設置した排気管圧を検知し、この検知信号をフィルタ再生の開始時期の信号として受け入れる構成が記載されている。これは、エンジン運転中に背圧を継続して検知するようにし、フィルタはその吸着能力が飽和に至ると背圧が上昇するので、圧力センサがこの背圧上昇を検知し、このときの検知信号をフィルタの再生開始信号として利用しようとするものである。
【0015】
すなわち、背圧はエンジンの回転数やアクセルの開度等の運転条件と対応しているので、排気系統のコンピュータのメモリ内にエンジンの回転数及びアクセル開度等の運転状態に応じた上限の背圧値を予め入力しておけば、運転中にエンジンの回転数とアクセル開度を計測することでその回転数に応じた所定背圧を計算することができる。したがって、この計算値と実測背圧とを比較することにより、フィルタ内に付着したパティキュレート等の捕集量の推定が可能である。
【0016】
【発明が解決しようとする課題】
図13に示した従来の排ガス浄化装置では、再生用空気の一定流量が0.05〜2000リットル/分の範囲で必要とされる。そして、異常燃焼が発生することがない安定した燃焼条件の確保及び送風手段の能力から、好ましくは300〜900リットル/分の再生用空気の一定流量が要求されている。また、再生用空気の温度としては、フィルタ内温度が600℃前後(好ましくは、600℃以上)であることが燃焼再生のためには必須であり、この温度を維持できる電気ヒータ発熱体表面の温度は700〜800℃となる。このため、電気ヒータの仕様としては、7〜9kWの容量が必要であり、外部電源としては商用電源AC200V3相となる。
【0017】
先に挙げた、屋内作業用のディーゼルエンジン駆動のフォークリフトでは、フィルタにパティキュレート等が堆積したら、作業を中断させてエンジンを停止し、外部電源(AC200V3相)から電力を供給してフィルタを再生する。この場合、フィルタに付着したパティキュレート等の量に拘わらず、再生時間は最大1時間を目安とすることが一般的である。このような時間の設定の理由は、作業者の休憩時間(例えば、昼休み時間)が約1時間程度であり、この休憩時間内に再生作業を完了させれば、作業を中断する支障がないからである。ところが、作業の中断による実稼働で支障がないものの、加熱に必要な使用電力量が多大となる傾向にあり、たとえば容量が7〜9kWの電気ヒータを約1時間使用して対応するような場合では消費電力量が膨大なものとなる。
【0018】
また、フィルタに付着したパティキュレート等の量については、先に述べたように、排気管圧の検知信号を利用して検出することが可能である。
【0019】
しかしながら、この従来方式では、たとえばアクセルペダルの踏み込まれる加減速運転時等の過渡状態やフィルタの再生時期に誤検知が生じやすい。すなわち、加減速運転時にはエンジンの回転数やアクセル開度は時間的に変化しているので検知系の遅れ要因の発生が避けられず、その結果、実測されるエンジンの回転数とアクセル開度とから計算される設定背圧値がフィルタの吸着能力の飽和度との対応に誤差が生じてくる。このとき、フィルタ内に付着したパティキュレート等の量が過大になりすぎる場合がある。したがって、電気ヒータによる火炎伝播で燃焼させる排ガスフィルタ浄化装置では、部分的にパティキュレートの燃え残りが発生することになり、排ガス浄化のための捕集と燃焼再生とが繰り返し行われると、パティキュレートの燃え残りによって異常燃焼を招くことがある。このため、フィルタ自身が高温になってクラックを発生したり溶損を引き起こすことになる。このようなクラック及び溶損は、フィルタの機能を大きく損なうので、フィルタの新品への交換または損傷していないフィルタへの交換を余儀なくされ、実用化に向けての大きな障害となっている。
【0020】
本発明は、フィルタに付着しているパティキュレートの状況を事前に把握することによって、最適使用電力量によってフィルタの燃焼再生を可能とするとともに再生が不可能な程度の堆積量の場合には燃焼再生を自動的に中断してフィルタの溶損等を防止する排ガスフィルタ浄化装置及び排ガスフィルタ浄化方法を提供することを目的とする。
【0021】
【課題を解決するための手段】
本発明は、通過する排ガスの中からパティキュレート等を除去するフィルタを一定流量の再生用空気で加熱して、前記フィルタに付着したパティキュレート等を燃焼させる、排ガスフィルタ浄化装置による排ガスフィルタ浄化方法であって、前記排ガスフィルタ浄化装置は、一定流量の再生用空気を供給する送風手段と、前記送風手段により供給された再生用空気を加熱する電気ヒータと、前記電気ヒータにより加熱された再生用空気が供給される前記フィルタを備え、前記送風手段と前記電気ヒータの間の領域または前記電気ヒータと前記フィルタの間の領域の少なくとも1か所以上の圧力を検知する圧力センサを備え、前記電気ヒータと前記フィルタとの間に前記電気ヒータにより加熱された再生用空気の温度を測定する温度センサを配置し、前記フィルタに付着したパティキュレートを燃焼させるとき、前記フィルタの再生時に排ガスの前記フィルタへの流入を遮断し、前記送風手段により前記フィルタに一定流量の再生用空気を供給し、前記温度センサにより測定された再生用空気の温度が500℃以下の期間では、前記圧力センサにより前記フィルタ手前の圧力値を検出し、この検出値に基づいて前記フィルタに付着したパティキュレートの量を推定し、その推定した前記フィルタに付着したパティキュレートの量に応じ、前記フィルタを加熱する前記電気ヒータへの通電時間及び一定流量の再生用空気を供給する時間をそれぞれ制御するものである。
【0022】
これにより、フィルタに付着したパティキュレート等の量を精度良く推定することが可能で、その精度良く推定した量に応じ、電気ヒータの通電時間、及び送風手段の送風時間を制御することにより、使用電力の削減を可能にする排ガスフィルタ浄化装置が得られる。又、過度にフィルタ内にパティキュレート等が付着していると判断した場合においては、その判断した時点で、再生を中断することにより、事前に異常燃焼によりフィルタのクラック及び溶損を発生させないようにすることができる。
【0023】
より具体的には、パティキュレート等の量が比較的少ない場合、再生時間が1時間必要とせず、再生時間が30分以内で終了するというように、再生時間を短縮できるように制御することで使用電力量の削減につながり好都合である。
【0024】
また、過度にフィルタ内にパティキュレート等が付着していると判断した場合においては、その判断した時点で、再生を中断することにより、事前に異常燃焼によりフィルタのクラック及び溶損を発生させないようにすることができる。そして、フィルタを排ガスフィルタ浄化装置から取り外し、電気炉内等でフィルタ内に付着したパティキュレート等を燃焼させフィルタを再生しさえすれば、再度排ガスフィルタ浄化装置に取り付けることにより使用できる。
【0031】
【発明の実施の形態】
本発明の請求項1に記載の発明は、通過する排ガスの中からパティキュレート等を除去するフィルタを一定流量の再生用空気で加熱して、前記フィルタに付着したパティキュレート等を燃焼させる、排ガスフィルタ浄化装置による排ガスフィルタ浄化方法であって、前記排ガスフィルタ浄化装置は、一定流量の再生用空気を供給する送風手段と、前記送風手段により供給された再生用空気を加熱する電気ヒータと、前記電気ヒータにより加熱された再生用空気が供給される前記フィルタを備え、前記送風手段と前記電気ヒータの間の領域または前記電気ヒータと前記フィルタの間の領域の少なくとも1か所以上の圧力を検知する圧力センサを備え、前記電気ヒータと前記フィルタとの間に前記電気ヒータにより加熱された再生用空気の温度を測定する温度センサを配置し、前記フィルタに付着したパティキュレートを燃焼させるとき、前記フィルタの再生時に排ガスの前記フィルタへの流入を遮断し、前記送風手段により前記フィルタに一定流量の再生用空気を供給し、前記温度センサにより測定された再生用空気の温度が500℃以下の期間では、前記圧力センサにより前記フィルタ手前の圧力値を検出し、この検出値に基づいて前記フィルタに付着したパティキュレートの量を推定し、その推定した前記フィルタに付着したパティキュレートの量に応じ、前記フィルタを加熱する前記電気ヒータへの通電時間及び一定流量の再生用空気を供給する時間をそれぞれ制御するものであり、パティキュレート等の成分が燃焼開始しない温度域において精度良くパティキュレート等の量を推定でき、その推定したフィルタに付着したパティキュレートの量に応じ、フィルタを加熱する電気ヒータへの通電時間及び一定流量の再生用空気を供給する時間をそれぞれ制御するものであり、フィルタの加熱時間及び再生用空気の供給を最適化した操作が可能になるという作用を有する。
【0032】
以下、本発明の実施の形態について、図1ないし図5を用いて説明する。
図1は本発明の実施の形態における排ガスフィルタ浄化装置を示す概略図である。
【0033】
図1の(a)に示す例は、フィルタ3を内蔵したフィルタ収納容器5の中に、一定流量の再生用空気を供給するための手段として、エアブロア7と電気ヒータ4の間の領域及び電気ヒータ4とフィルタ3の間の領域のそれぞれ2カ所に圧力センサ1a,1bを配置したものである。これらの圧力センサ1a,1bによってそれぞれ対応している領域の圧力を測定し、その圧力差が一定の目標差圧値になるようにエアブロア7の出力を制御し、再生用空気流量が一定になるように構成している。そして、フィルタ収納容器5には、エアブロア7との間に再生用空気導入配管11を接続するとともにフィルタ3の下流には排ガス排出配管10を連結し、更にディーゼルエンジンのマニホールドに連通する排ガス導入配管9を接続している。なお、8は再生用空気導入配管11に組み込んだ開閉用のバルブである。
【0034】
圧力センサ1a,1bは、再生用空気の流路内圧力を測定するものであり、これらはダイアフラムに金属線歪みゲージを接着した電気抵抗形の圧力変換器と圧力をダイアフラムまで導く導圧管とを備えた従来周知のものである。
【0035】
フィルタ収納容器5に取り付けた圧力センサ1bは、電気ヒータ4とフィルタ3との間には位置していないが、フィルタ収納容器5内に含まれていて電気ヒータ4とフィルタ3との間からの圧力伝播に際しての圧力降下等がないので、圧力検出に際しては何ら問題はない。また、圧力センサ1bの導圧管を電気ヒータ4とフィルタ3の間まで延ばしてもよいが、導圧管の途中や圧力センサ固定部分等に空気の漏れる箇所があれば、正確な圧力測定ができないので配慮する必要がある。
【0036】
なお、圧力センサ1a,1bの種類としては、受圧ダイアフラムの変位を感知して圧力へ変換するものが殆どで、その変位を金属線歪みゲージや結晶格子の変形による電気抵抗が変化する半導体を用いたものがある。その他に、ピエゾ圧電形,電磁誘導形,静電容量形,振動形圧力変換器などの圧力センサの種類がある。
【0037】
電気ヒータ4とフィルタ3との間には、フィルタ3に入る直前の加熱された再生用空気の温度を測定するため、熱電対を利用した温度センサを配置する。
【0038】
パティキュレートを捕集するフィルタ3は、ウォールスルータイプのハニカム構造で、材質としてはコージェライトやムライト及びチタン酸アルミニューム等の熱膨張係数が小さくて耐熱衝撃性及び耐熱溶融性に優れた材料が用いられる。
【0039】
フィルタ3の形状は、円筒形のものが殆どであるが楕円筒形や方形でもよく、まが大きさは、直径4〜13インチ,長さ5〜14インチで、セル数は1インチ平方あたり50〜400個であり、酸化触媒を設けるようにしてもよい。フィルタ3に捕集されるパティキュレートの捕集量は、フィルタの単位体積(1リットル)あたりの重量(グラム)で表して1〜30g/リットル程度である。
【0040】
再生用空気を加熱する手段として備える電気ヒータ4は、発熱体と空気が接触する構造としたもので、発熱体としてはニクロム線,カンタル線,セラミックヒータ等がある。加熱する空気量に応じてヒータ容量を決めるのは当然であり、また電気ヒータ4の圧力損失が大きいほど熱交換時間が長くなるので熱変換効率が向上することも無論である。
【0041】
フィルタ収納容器5は、耐熱性のある金属を使用したもので、フィルタ3との間には蛭石等を含有して熱によって膨張する材質のシール材6を介在させることによって、パティキュレートの漏れを防止する。なお、このフィルタ収納容器5の放熱によってフィルタの内外周の温度差が発生するので、セラミックウールなどの断熱材で包み込んだり真空断熱容器にする等の断熱構造を持たせることが好ましい。
【0042】
エアブロア7は、ダイアフラム式のエアポンプと比較して静圧を低くして使えるようにした軸流送風機であり、排ガスのエアブロア7への流入を防止するために再生用空気導入配管11の中途にはバルブ8を組み込んでいる。
【0043】
また、排ガス導入配管9及び排ガス排出配管10は耐熱性及び耐食性を有する金属を素材としたもので、特にステンレス鋼を用いるほうが好ましい。なお、これらの排ガス導入配管9及び排ガス排出配管10の内径は、エンジンの排気量によって変更することは当然である。
【0044】
再生用空気の流量としては、0.05〜2m3/分であって多ければ多い程よいが、送風手段の能力から1m3/分程度以下が適当である。また、1m3/分程度の空気を加熱するには多大な電力が必要となるため、加熱空気の循環やエンジン排ガス利用等の電力削減手段を設けることが好ましい。
【0045】
パティキュレートの成分の一つに可溶性有機物(SOF)があり、フィルタ3に捕集されても、再生中に燃焼しないままで蒸発して大気中に放出されるので、フィルタ3の前または後に貴金属等を担持したSOF酸化触媒を設けることが好ましい。
【0046】
温度センサは、シースタイプの熱電対や白金抵抗体等の比較的高温を検知できるものであればよいが、排ガスに曝されるので耐食性が良いものが好ましく、放射伝熱による指示温度の低下を防ぐように温度センサの配置を考慮することが好ましい。その他のサーミスタについても同様に実施可能である。
【0047】
なお、排ガス導入から排出の流路を図示の単一のものとするのに代えて、その他の排ガス流路が二つ以上に分岐してフィルタが交互に捕集再生を実施する自動再生システムについても同様に実施可能である。
【0048】
更に、以上の図1の(a)の構成に代えて、一定流量の再生用空気を供給するために図1の(b)に示すように、例えば流量計12を圧力センサ1aの箇所に配置し、流量計12の値に基づいてエアブロア7の出力を制御することによって、再生用空気流量が一定になるような構成としてもよい。そして、圧力センサ1a,1bはエアブロア7と電気ヒータ4の間の領域または電気ヒータ4とフィルタ3の間の領域の少なくとも1か所でもよく、図1の(b)の例では圧力センサ1bだけを備えている。
【0049】
図2は本発明の実施の形態における排ガスフィルタ浄化のフローチャートであり、その作動を順に説明する。
【0050】
まず、ステップ1において、フィルタ3の目詰まりまたはエンジンの運転時間等により、再生を実施すべきかどうかの判断を実施する。ここで、Noであれば、目詰まりの監視あるいはエンジンの運転時間の積算を継続する。
【0051】
ステップ1で再生時期と判断すると、ステップ2に移行して再生のための準備を実施する。この準備段階では、フィルタを2個以上有する装置においては、排ガスの流路を切り替える操作を行い、フィルタが1個のシステムにおいては、エンジンを停止して排ガスのフィルタ3への流入を遮断すればよい。
【0052】
次に、再生操作のスタートとして、電気ヒータ4とエアブロア7に電圧を印加し、ステップ4において圧力センサ1aと1bの圧力差と目標差圧を比較する。
【0053】
この圧力差と目標差圧が一致していないときには、ステップ5においてその差に応じて演算して、エアブロア7に対する印加電圧を増減する。ステップ6において、再生操作がスタートしてからの時間に応じて目標温度を設定し、電気ヒータ4とフィルタ3との間に配置され実際に測定する温度センサのフィルタ3に入る直前の加熱された再生用空気の温度と比較する。このフィルタ3に入る直前の加熱された再生用空気の実測温度と目標温度が一致していないときは、ステップ7へ移行し、その温度差に応じて演算を実施し、電気ヒータ4のオン/オフ時間比を変更する。次いでステップ8に移行し、圧力センサ1a,1bの何れか一カ所の圧力値及び温度センサのフィルタ3に入る直前の加熱された再生用空気の温度値を基にして捕集量を推定し、推定した捕集量に応じ再生パターン(再生時間)を決定するとともに目標温度の設定を行う。
【0054】
更にステップ9に移行して圧力センサ1a,1bの圧力差と目標差圧を比較し、これらが一致していないときには、ステップ10においてその差に応じて演算し、エアブロア7に対する印加電圧を増減する。一致しているときはステップ11に移行し、再生パターンを決定した時点からの時間に応じて、フィルタ3に入る直前の加熱された再生用空気の目標温度を設定し、実際に測定する温度センサのフィルタ3に入る直前の加熱された再生用空気の温度と比較する。これらの温度が一致していない場合は、ステップ12へ移行してその温度差に応じて演算を実施し、電気ヒータ4のオン/オフ時間比を変更する。
【0055】
最後に、ステップ13に移行して再生終了判断を実施し、再生終了でなければステップ9に戻って同じ動作を繰り返し、再生終了と判断すればステップ14に移行して、電気ヒータ4とエアブロア7の電源を切る。
【0056】
以上の例は、一定流量の再生用空気を供給するための手段として、送風手段であるエアブロア7と電気ヒータ4の間の領域と電気ヒータ4とフィルタ3の間の領域の2か所に圧力センサ1a,1bを配置し、各々の圧力を測定し、その圧力差が一定の目標差圧値になるように送風手段エアブロア7の出力を制御し、再生用空気流量を一定になるように構成したものである。これに代えて、一定流量の再生用空気を供給するための手段として、図1の(b)で示したように、圧力センサ1aの箇所に配置した流量計12の値を基にして、エアブロア7の出力を制御して再生用空気流量が一定になるように制御してもよい。このような操作では、図3のフローチャートに示すように、ステップ4及びステップ9においては流量計12から得られる流量値と目標流量を比較することになり、その他については同様な動作となる。
【0057】
次に図2のフローチャートにしたがった制御ブロック図を図4を用いて説明する。
【0058】
この制御ブロックにおいては、制御信号の入力系は圧力センサ1a,1b及び温度センサ2であり、圧力センサ1a,1bから発生する電圧信号を圧力演算部においてそれぞれ圧力値に換算する。そして、差圧演算部において、圧力値の差を演算し、目標差圧設定部に規定されている差圧と先に演算した圧力値の差を比較演算部で実施する。この比較演算内容により調節部で調整度合いを決定し、パワーコントローラに出力し、エアブロア7を制御する。また、圧力センサ1a,1bの何れか一か所の圧力センサ(図示の例では圧力センサ1a側)において捕集量設定部に規定されている捕集量推定値と先に演算した圧力値を比較演算部で実施する。その比較演算内容により、捕集量推定部においてフィルタ内に付着したパティキュレート等の捕集量を推定する。
【0059】
一方、フィルタ3に入る直前の加熱された再生用空気の温度を測定する温度センサの入力は、熱電対の起電力を温度演算部において温度に換算することによって行い、再生スタートしてからと捕集量を推定した時点からの時間に応じて、目標温度設定部においてフィルタ3に入る直前の加熱された再生用空気の目標温度を設定する。このようにして演算した温度と目標温度を比較演算部において比較し、比較演算内容により調節部で調整度合いを決定し、ソリッドステートリレーに出力して電気ヒータ4を制御する。
【0060】
以上の例では、一定流量の再生用空気を供給するための手段として、エアブロア7と電気ヒータ4の間の領域と電気ヒータ4とフィルタ3の間の領域の2か所に圧力センサ1a,1bを配置し、各々の圧力を測定してその圧力差が一定の目標差圧値になるようにエアブロア7の出力を制御し、再生用空気流量が一定になるような構成としている。これに代えて、一定流量の再生用空気を供給するための手段として、図1の(b)に示すように圧力センサ1aの箇所に配置した流量計12の値を基にエアブロア7の出力を制御することによって、再生用空気流量が一定になるようにしてもよい。この場合は、図5に示すように、図3のフローチャートにしたがった制御ブロック図となり、このブロック図においては流量計から発生する電圧信号を流量演算部に於いて流量値に換算する。そして、目標流量設定部に規定されている流量と先に演算した流量値を比較演算部で比較し、その比較演算内容により調節部で調整度合いを決定し、パワーコントローラに出力してエアブロア7を制御する。なお、捕集量推定は前記と同様な動作で実施されるもので、図5のブロック図においては、圧力センサ1bを使用するものとし圧力センサ1aは設置しない場合を示す。
【0061】
【実施例】
次に、本発明の具体例を説明する。
【0062】
(実施例1)
空気加熱用の電気ヒータ4はトーチ型のヒータを用いることができ、このようなタイプのヒータではその形状によって圧力損失の値が異なるのは無論である。
【0063】
本実施例におけるトーチ型の電気ヒータは、径が100mmで長さが150mmの円筒形内に径30mmの貫通孔を3個等配に設け、その中にコイル状の電気ヒータを備え、熱交換率が向上するようにコイルの中心にはセラミック製の棒をセットしたものであり、その容量は8kWである。
【0064】
フィルタ3は、ウォールスルータイプのハニカム構造のコージェライト製であり、大きさは直径5.66インチ、長さ6インチで、セル数は1インチ平方あたり200個のものを使用した。
【0065】
ここで、先に説明した図1の(a)の例は、圧力センサ1a,1bを2か所に設置してそれぞれにより各部位の圧力を測定し、これらの圧力差が一定の目標差圧値になるようにエアブロア7の出力を制御することによって、再生用空気流量が一定になるように構成したものである。このような構成において、電気ヒータ4を用いたときには、図6に示すように、500リットル/分の再生用空気を200〜650℃に加熱すると、2か所に設置した圧力センサの間に約120mmAqの圧力差が発生した。
【0066】
図7に圧力センサ1a,1bの差圧が120mmAqになるようにエアブロア7をPID制御したときの、横軸を時間軸とし再生用空気量の履歴を示す。なお、フィルタ3に入る直前の加熱された再生用空気の温度を測定する温度センサで測定した加熱空気の温度とフィルタ3の前後の差圧を測定したデータと、圧力センサ1a,1bによる検出圧力の差圧もプロットした。
【0067】
ここで、注意すべきは、図8に示すように、この差圧値は再生用空気量に依存して異なるので、必要となる再生用空気量に応じて、圧力センサ1a,1bの差圧目標値を変更してPID制御しなくてはならないことである。また、図7に示すように、同じ再生用空気量でもその空気の加熱温度によって、差圧値は異なってくるので、必要となる加熱温度に応じて圧力センサ1a,1bの差圧目標値は変更しPID制御しなくてはならない。
【0068】
図7及び図8に示す再生用空気流量値は、エアブロア7と電気ヒータ4の間にマスフロー流量計をセットして空気流量を測定した結果である。
【0069】
図6で重要なことは、圧力センサ1a,1bのそれぞれについて、差圧値は時間の経過とともに同一であるが、時間経過が750秒に達するまでの期間では圧力絶対値が膨らみを持った曲線になっていることである。このような特性が、本発明に至る重要な発見であり、後述するように、この膨らみとして表される特性はフィルタに付着したパティキュレート等の捕集量に依存するものである。
【0070】
なお、一定流量の再生用空気を供給するための手段として、図1の(b)に示すように圧力センサ1aの箇所に配置した流量計12の値を基に、エアブロア7の出力を制御して再生用空気流量が一定になるようにしてもよい。
【0071】
(実施例2)
図9にフィルタ内に付着したパティキュレート等の捕集量と圧力センサ1bの圧力値との関係を示す。
【0072】
これは、再生用空気量を500リットル/分の一定量とし、温度制御としてフィルタ3に入る直前の加熱された再生用空気の温度を測定する温度センサの値に基づいて、再生スタートしてからの時間により目標温度を設定し、電気ヒータ出力に対してPID制御して得たものである。なお、この制御においては、再生スタートから300秒後に、再生用空気の温度が400℃になるようにPID制御した。
【0073】
図9から明らかなように、再生用空気量が一定の500リットル/分であり、再生用空気の温度が400℃のときには、圧力センサ1bの圧力値が捕集量に依存していることが判る。なお、図には圧力センサ1bの値のみプロットしているが、圧力センサ1bの代わりに、圧力センサ1aを使用した際も同様な傾向であり、圧力値の絶対値が120mmAq分だけプラス側にシフトするのみである。
【0074】
すなわち、空気温度が400℃になった時点で、圧力センサの圧力値を認識することにより、フィルタ内に付着したパティキュレート等の捕集量の推定が可能である。なお、圧力値は圧力センサ1a,1bのどちらで検出したものでもよい。
【0075】
また、圧力値を基に捕集量を推定する際の再生用空気の温度域に関し、フィルタ内に付着したパティキュレート等の成分が燃焼し始める500℃以上になると、図9に示す関係に誤差が生じてくるので、好ましくは再生用空気の温度が500℃以下の領域で実施した方がよい。
【0076】
(実施例3)
実施例2において、一定流量の再生用空気を加熱し、圧力センサの少なくとも1か所の値及び温度センサの値を基に、フィルタに付着したパティキュレートの捕集量を推定することを示した。ここでは、推定したパティキュレートの捕集量に応じ、フィルタ3を加熱する電気ヒータ4への通電時間、及び一定流量の再生用空気を供給する送風手段による送風時間を制御することについて説明する。
【0077】
図10はフィルタ内に付着したパティキュレート等を燃焼させる際の捕集量とフィルタ加熱温度(昇温条件)との関係を示したものである。これは、本発明者らがフィルタを再生した際、再生後の再生率100%を確保するとともに、異常燃焼によりフィルタのクラック及び溶損を発生させないように安全域でフィルタを昇温させる昇温条件を示したものである。
【0078】
再生率(%)は、再生率(%)={1−(再生後のフィルタ重量−捕集前のフィルタ初期重量)/捕集前のフィルタ初期重量}×100として定義されるものである。そして、この再生率の値が大きい程、フィルタ内に付着したパティキュレート等の燃焼残りが少なく良好であることを示し、たとえば再生率が100%とは、フィルタ内にパティキュレート等の燃焼残りが無いことを意味する。
【0079】
図10が示すことは、捕集量が比較的少ない場合では早い時期にフィルタを加熱することが可能で、再生時間が短く設定できるということである。これは、捕集量が比較的少ないときには、パティキュレート等が燃焼するときに発生する発熱量が捕集量が多い場合と比較して比較的少ないことから、フィルタの昇温速度を高めに設定しても、フィルタ内の異常発熱により異常燃焼が発生せず、その結果フィルタのクラックや溶損が発生しないためと考えられる。
【0080】
本発明者らが確認したこの捕集量に応じた安全域であるフィルタ昇温条件を適用して、捕集量に応じて再生時間を変更した実施例について説明する。
【0081】
捕集量のカテゴリーとしては3種類に分け、第一に捕集量7g/リットル以下、第二に捕集量7〜10g/リットル、第三に捕集量10〜15g/リットルの3種類である。
【0082】
図11は再生開始スタートから、再生用空気量を一定の500リットル/分を供給し、5分後にフィルタ3に入る直前の加熱された再生用空気の温度を測定する温度センサが目標温度400℃になった時点で、圧力センサ1bの圧力信号値と捕集量の関係をプロットしたものである。この図から、400℃になった時点で圧力センサ1bの圧力信号値を検知して捕集量を推定し、その推定した捕集量に応じて、再生パターンを3パターンから十分に選定できることが判る。
【0083】
図12の(a)及び(b)に実際にフィルタを再生させた際のフィルタ内の温度履歴を示す。フィルタ内の温度を測定するにあたってはフィルタ内の任意の箇所に熱電対を設けて測定した。
【0084】
図12の(a)は捕集量が7g/リットルであり、図11に示すように、再生開始スタートから再生用空気量を一定の500リットル/分を供給し、5分後にフィルタ3に入る直前の加熱された再生用空気の温度を測定する温度センサが目標温度400℃になった時点で、圧力センサ1bの圧力信号値が5.2V(=260/50V)であって圧力換算すると200mmAqとなり(使用した圧力センサは5〜10V出力電圧で、圧力換算すると0〜5000mmAqに相当する)、フィルタの再生パターンとして再生パターン(1)を選定し、フィルタを再生時間25分を費やして再生した場合である。
【0085】
図12の(b)は捕集量が15g/リットルであり、同様に圧力センサ1bの圧力信号値が5.38V(=269/50V)であって圧力換算すると380mmAqのフィルタの再生パターンとして再生パターン(3)を選定し、フィルタを再生時間60分を費やして再生した場合である。
【0086】
両者の使用電力量を比較すると、再生パターン(1)の場合が2.2kWhであり、再生パターン(3)の場合が8.8kWhである。ちなみに、再生パターン(2)は再生時間が35分を要するので、使用電力量は5.1kWhとなる。
【0087】
なお、この使用電力量の計算にあたっては、電気ヒータ及びエアブロアの容量をそれぞれ8kW及び800Wとして算出した。
【0088】
このように、パティキュレート等の量に応じてフィルタを加熱する電気ヒータ通電時間及びエアブロアの送風時間を制御することにより、特にパティキュレート等の量が比較的少ない場合には使用電力量を削減できることが判る。
【0089】
(実施例4)
実施例3では、フィルタ内に付着したパティキュレート等の量に応じて、フィルタを加熱する電気ヒータ通電時間及び一定流量の再生用空気を供給するエアブロアの送風時間を変更できることを説明した。本発明者らが確認した再生パターン3種類は、フィルタ内に付着したパティキュレート等の量が15g/リットル迄の条件であり、それ以上の捕集量においては、異常燃焼によりフィルタのクラック及び溶損を発生する領域に至る。この場合、実施例3で示したように、再生用空気量を一定の500リットル/分を供給し、5分後にフィルタ3に入る直前の加熱された再生用空気の温度を測定する温度センサが目標温度400℃になった時点で、圧力センサ1bの圧力信号値が5.38V(=269/50V)以上すなわち圧力換算すると380mmAq以上のとき、フィルタを加熱する電気ヒータ4の通電停止、及びエアブロアによる送風を停止することにより、事前に異常燃焼によりフィルタのクラック、及び溶損を発生させないようにすることができる。この際、フィルタを排ガス浄化装置から取り外し、電気炉内等でフィルタ内に付着したパティキュレート等を燃焼させフィルタを再生し、再度、排ガス浄化装置に取り付けることにより使用できる。
【0090】
以上、実施例1〜4において、本発明者らが確認済みの安全域での昇温パターン、及びフィルタ内最大捕集量に対応させて説明したが、これらの絶対値及び項目については、他の燃焼条件においても本発明に準じて対応できることは無論である。
【0091】
【発明の効果】
本発明によれば、フィルタに付着したパティキュレート等の量を精度良く推定してそのパティキュレート等の量に応じ、フィルタを加熱する電気ヒータ通電時間、及び一定流量の再生用空気を供給する送風時間を制御することにより、使用電力量を従来構造に比べて大幅に削減できる。より具体的には、パティキュレート等の量が比較的少ない場合には、フィルタの再生時間が30分以内で終了するというように、再生時間を短縮できるように制御可能なので、使用電力量が削減される。
【0092】
また、過度にフィルタ内にパティキュレート等が付着していると判断されたときには、その判断時点で再生を中断することによって、事前に異常燃焼によるフィルタのクラック及び溶損の発生をなくすことができる。したがって、電気炉内等でフィルタ内に付着したパティキュレート等を燃焼させてフィルタを再生し、再度排ガス浄化装置に取り付けることにより、フィルタを無駄に消費してしまうこともない。
【図面の簡単な説明】
【図1】本発明の実施の形態における排ガスフィルタ浄化装置を示す概略図
【図2】本発明の実施の形態における排ガスフィルタ浄化のフローチャート
【図3】本発明の他の実施の形態における排ガスフィルタ浄化のフローチャート
【図4】図2のフローチャートにしたがった制御ブロック図
【図5】図3のフローチャートにしたがった制御ブロック図
【図6】2か所に設置した圧力センサの圧力差を示す図
【図7】目標差圧を設定しエアブロアを制御したときの再生用空気量を示す図
【図8】再生空気量と圧力センサの差圧との関係を示す図
【図9】パティキュレート等の捕集量と圧力センサの圧力値との関係を示す図
【図10】パティキュレート等の捕集量とフィルタ加熱温度(昇温条件)との関係を示す図
【図11】パティキュレート等の捕集量と圧力センサの圧力値との関係を示す図
【図12】実際にフィルタを再生させた際のフィルタ内の温度履歴を示す図
【図13】従来例におけるディーゼル機関の排ガス浄化装置の概略構成を示す模式図
【符号の説明】
1a,1b 圧力センサ
温度センサ
3 フィルタ
4 電気ヒータ
5 フィルタ収納容器
6 シール材
7 エアブロア
8 バルブ
9 排ガス導入配管
10 排ガス排出配管
11 再生用空気導入配管

Claims (1)

  1. 通過する排ガスの中からパティキュレート等を除去するフィルタを一定流量の再生用空気で加熱して、前記フィルタに付着したパティキュレート等を燃焼させる、排ガスフィルタ浄化装置による排ガスフィルタ浄化方法であって、前記排ガスフィルタ浄化装置は、一定流量の再生用空気を供給する送風手段と、前記送風手段により供給された再生用空気を加熱する電気ヒータと、前記電気ヒータにより加熱された再生用空気が供給される前記フィルタを備え、前記送風手段と前記電気ヒータの間の領域または前記電気ヒータと前記フィルタの間の領域の少なくとも1か所以上の圧力を検知する圧力センサを備え、前記電気ヒータと前記フィルタとの間に前記電気ヒータにより加熱された再生用空気の温度を測定する温度センサを配置し、前記フィルタに付着したパティキュレートを燃焼させるとき、前記フィルタの再生時に排ガスの前記フィルタへの流入を遮断し、前記送風手段により前記フィルタに一定流量の再生用空気を供給し、前記温度センサにより測定された再生用空気の温度が500℃以下の期間では、前記圧力センサにより前記フィルタ手前の圧力値を検出し、この検出値に基づいて前記フィルタに付着したパティキュレートの量を推定し、その推定した前記フィルタに付着したパティキュレートの量に応じ、前記フィルタを加熱する前記電気ヒータへの通電時間及び一定流量の再生用空気を供給する時間をそれぞれ制御することを特徴とする排ガスフィルタ浄化方法。
JP10446097A 1997-04-22 1997-04-22 排ガスフィルタ浄化方法 Expired - Fee Related JP4170410B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10446097A JP4170410B2 (ja) 1997-04-22 1997-04-22 排ガスフィルタ浄化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10446097A JP4170410B2 (ja) 1997-04-22 1997-04-22 排ガスフィルタ浄化方法

Publications (2)

Publication Number Publication Date
JPH10299458A JPH10299458A (ja) 1998-11-10
JP4170410B2 true JP4170410B2 (ja) 2008-10-22

Family

ID=14381215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10446097A Expired - Fee Related JP4170410B2 (ja) 1997-04-22 1997-04-22 排ガスフィルタ浄化方法

Country Status (1)

Country Link
JP (1) JP4170410B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5849178B2 (ja) * 2009-12-17 2016-01-27 パナソニックIpマネジメント株式会社 排気ガス浄化装置
US9416744B2 (en) 2012-11-07 2016-08-16 Mitsubishi Heavy Industries, Ltd. Exhaust gas purification device for an internal combustion engine

Also Published As

Publication number Publication date
JPH10299458A (ja) 1998-11-10

Similar Documents

Publication Publication Date Title
US5853459A (en) Exhaust as purifying method, exhaust gas filter, and exhaust gas filter purifying apparatus using same
JP3651134B2 (ja) 排ガス浄化装置及び排ガスフィルタ再生方法
US8608835B2 (en) Exhaust gas purification system for an internal combustion engine
US5822977A (en) Method of and apparatus for purifying exhaust gas utilizing a heated filter which is heated at a rate of no more than 10° C./minute
WO2008054632A1 (en) Method of regenerating a particulate filter
JP2886799B2 (ja) 集塵装置
JPH07332065A (ja) 内燃機関の排気微粒子浄化装置
JP4170410B2 (ja) 排ガスフィルタ浄化方法
JP3257370B2 (ja) 排ガスフィルター浄化方法、及び排ガスフィルター浄化装置
JP4219420B2 (ja) 排ガスフィルター浄化方法、及び排ガスフィルター浄化装置
JPH08170522A (ja) ディーゼル機関排ガス浄化装置
JPH11264314A (ja) 排ガス浄化装置
JP3365244B2 (ja) 排ガス浄化装置
JPH0771226A (ja) 排気微粒子浄化装置
JPH08218847A (ja) ディーゼル機関の排気浄化方法
JP3580563B2 (ja) 内燃機関の排気ガス微粒子浄化装置
JP2847976B2 (ja) 内燃機関の排気浄化装置
JP4382316B2 (ja) 骨組用補強部材を備えた排気ガス浄化装置
JP3264707B2 (ja) 内燃機関の排気ガス微粒子浄化装置
JPH0734856A (ja) ディーゼル排気ガスフィルタの再生装置
JP3070244B2 (ja) ディーゼルエンジンの排気浄化装置
JPH10299457A (ja) 排ガスフィルター浄化方法及び排ガスフィルター浄化装置
JPH08121146A (ja) ディーゼル機関の排気微粒子除去装置
JPH0913954A (ja) 排ガス浄化方法及び排ガス浄化装置
JPH11264313A (ja) 流体加熱用発熱体およびそれを用いた排ガス浄化装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050825

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050830

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees