JP4160358B2 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
JP4160358B2
JP4160358B2 JP2002309599A JP2002309599A JP4160358B2 JP 4160358 B2 JP4160358 B2 JP 4160358B2 JP 2002309599 A JP2002309599 A JP 2002309599A JP 2002309599 A JP2002309599 A JP 2002309599A JP 4160358 B2 JP4160358 B2 JP 4160358B2
Authority
JP
Japan
Prior art keywords
magnetic
pole
rotor
stator
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002309599A
Other languages
English (en)
Other versions
JP2004147425A (ja
Inventor
武治 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Natsume Optical Corp
Original Assignee
Natsume Optical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Natsume Optical Corp filed Critical Natsume Optical Corp
Priority to JP2002309599A priority Critical patent/JP4160358B2/ja
Priority to AU2003252496A priority patent/AU2003252496A1/en
Priority to PCT/JP2003/008807 priority patent/WO2004010564A1/ja
Publication of JP2004147425A publication Critical patent/JP2004147425A/ja
Application granted granted Critical
Publication of JP4160358B2 publication Critical patent/JP4160358B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Brushless Motors (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【0001】
【発明の属する利用分野】
本発明は、例えばステッピングモータやサーボモータなどに代表されるブラシレスモータや発電機に応用可能な回転電機に関する。
【0002】
【従来の技術】
ステッピングモータに代表されるブラシレスモータにおいては、ステータとロータとが同軸状に配置され、ロータとして回転軸にロータマグネットを備え、ステータとしてハウジング側に固定されたステータコア(積層コア)に電機子巻線が巻き回されたものが用いられている。一般に交流電源を全波整流して得られた直流電源よりインバータ回路を通じて所望の周波数を有するパルス電圧を生成して印加することにより、入力パルス電圧に比例した回転角だけマグネットロータが回転するようになっている。
【0003】
また、ロータ側にマグネットを使用せず磁性体のみで構成した電動機として、自己起動型の同期電動機が提案されている(例えば特許文献1参照)。この電動機は、固定子側には90度ずつ位相をずらせて軸心方向へ突設されたE型磁気ヨークが4箇所に配置されている。各磁気ヨークの中心脚部に励磁巻線が巻き回され、脚部内端側に一対の磁性体吸引用基体が接合されている。磁性体吸引用基体は硬磁性体の両側に軟磁性体を結合されたハイブリッド構造をしており、軟磁性体の脚部端面との接合面との反対側面(内面側)を磁束作用面に形成されている。また、回転子は筒状磁性体よりなり、周面部に複数の歯型状の磁極が形成されている。固定子側の磁性体吸引用基体は、磁気ヨークの励磁巻線に順次通電して、軟磁性体の磁束作用面による回転子の磁極のうち接近するものを吸引することにより回転子を回転駆動するようになっている。
【0004】
【特許文献1】
特開2001−258221号公報(図1参照)
【0005】
【発明が解決しようとする課題】
上記自己起動型の同期電動機においては、磁気ヨークにおいて電磁石で発生した磁束と磁性体吸引用基体で発生した磁束を重畳して磁束作用面より回転子の接近する磁極(歯型)に作用するようになっている。
しかしながら、回転子の歯型状磁極の磁束作用面及び磁気ヨークの磁束作用面の面積が小さい(特に棒状永久磁石の軟磁性体部分のみを利用している)ため、電磁石との相互作用により磁束作用面から発生する磁束が飽和し易く、磁極数が増えるほど或いは回転子が大型化すると吸引作用のみによる大幅な回転トルク性能や回転速度の向上は望めない。また、E型磁気ヨークの中央磁脚部に励磁コイルを巻き付け、脚部内端側に磁性体吸引用基体を設ける構成であるため、回転子径に比べて固定子側の外径が大径化し易く、E型磁気ヨークを非磁性体円筒内で設置数を増やすにはスペースに限界があり、回転子の回転位置に応じた高精細な通電制御がし難い。また、E型磁気ヨークを非磁性体円筒内に周方向にバランス良く配置固定するのが難しいという課題があり、磁気ヨークの磁極端(先端)に接合されるハイブリッド構造の磁石は均一な磁性材料よりなる通常の永久磁石より高価であり、製造コストも嵩む。
【0006】
本発明の目的は、上記従来技術の課題を解決し、簡易な構成で回転トルクを向上させ、回転効率が良くエネルギーロスの少ない回転電機を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明は次の構成を備える。
即ち、回転軸と同軸状に嵌め込まれた筒状の磁性体の外周に非磁性部を介して等間隔で固定され、径方向にN極及びS極に着磁された可動側永久磁石を有するロータと、前記ロータを囲繞して設けられた筒状のステータコアの内璧側に軸芯方向に突設された突極部が周方向に等間隔で形成され、各突極部間に周方向にN極及びS極に着磁された固定側永久磁石が同極側を各突極部に向けて設けられ、前記各突極部に巻き回された励磁コイルへの通電により各突極部の先端面に形成される磁束作用面よりロータ側に作用する磁束を発生させる電磁石を備えたステータと、を具備し、前記ステータコアの各突極部に巻き回された励磁コイルは、通電により突極部先端側に発生する磁極が隣接する固定側永久磁石の磁極と同極となるように巻き回されており、ステータ磁極は、選択された電磁石への通電により当該電磁石から発生した磁束に両側で隣接する固定側永久磁石の磁極から発生した磁束を重畳して突極部の磁束作用面よりロータ側に作用させ、同極のロータ磁極との反発及び異極のロータ磁極との吸引によりロータが回転駆動され、前記電磁石の励磁コイルへ通電されない間は、固定側永久磁石の両側磁極から発生した磁束は、隣接する突極部を含むステータコアを通じて磁気閉回路が各々形成されることを特徴とする。
具体的には、ロータ磁極が対向するステータ磁極と同極となる位置の電磁石の励磁コイルを選択して同時に通電する際にロータ磁極が反発し、異極となる隣りのステータ磁極にロータ磁極が吸引される通電パターンを繰り返すことにより、前記ロータが回転方向に付勢されて回転駆動されることを特徴とする。
また、他の構成としては、回転軸に交差して設けられた円板状の非磁性体の周縁部に軸方向にN極及びS極に着磁された可動側永久磁石が周方向に等間隔で配設されたロータと、軸方向断面がコ字状のステータコアが両側脚部を軸芯方向に向け前記ロータを囲繞して周方向に等間隔で配設され、各ステータコアの胴部に励磁コイルが巻き回されてなる電磁石と、各ステータコアの両側脚部の外側に各々設けられた軸方向にN極及びS極に着磁された固定側永久磁石と、該固定側永久磁石の外側に各々一体に重ね合わせられたリング状のヨークと、を備えたステータと、を具備し、前記ステータコアの胴部に巻き回された励磁コイルは通電により当該ステータコアの両側脚部に形成される磁極と両側で隣接する固定側永久磁石の磁極と同極となるように巻き回されており、ステータ磁極は、選択された電磁石への通電により当該電磁石から発生した磁束に隣接する固定側永久磁石の磁極から発生した磁束を重畳して両側脚部の内側対向面に形成される磁束作用面より作用させ、同極のロータ磁極との反発及び異極のロータ磁極との吸引によりロータが回転駆動されることを特徴とする。
具体的には、ロータ磁極が対向するステータ磁極と同極となる位置の電磁石の励磁コイルを選択して同時に通電する際にロータ磁極が反発し、異極となる隣りのステータ磁極にロータ磁極が吸引される通電パターンを繰り返すことにより、前記ロータが回転方向に付勢されて回転駆動されることを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明の好適な実施の形態について添付図面と共に詳述する。本発明に係る回転電機の実施の形態としては、主としてブラシレスモータ、例えばステッピングモータに応用可能なインナーロータ型の回転電機について説明する。
[第1実施例]
図1は回転電機の模式平面図、図2はロータの斜視説明図、図3は図1の回転電機の部分拡大平面図、図4(a)〜(e)は回転電機の動作原理を示す説明図、図5はロータが1回転する間のステータの励磁コイルへの通電パターンを例示するタイミングチャート、図6は図5の通電切換えが行われる際のロータ回転位置を示す説明図である。
【0009】
先ず、回転電機の概略構成について図1〜図3を参照して説明する。
図1において、1はロータである。ロータ1は、回転軸2の外側に筒状の非磁性体3及び磁性体4が同心状に嵌め込まれている。磁性体4の外周には非磁性部3aを介して可動側永久磁石5が等間隔で固定されている。可動側永久磁石5は、周方向に所定角度ずつ位相がずれた位置に配設されており、本実施例では90度ずつ位相が異なる位置に4極分設けられている。可動側永久磁石5は径方向にN極及びS極に着磁されており、磁束作用面(外周面)がN極とS極とが交互になるように配置されている。可動側永久磁石5としてはネオジウム系磁石やサマリウム系磁石などの希土類磁石が好適に用いられる。
【0010】
図1において、6はステータである。ステータ6は、筒状のステータコア7を備えている。ステータコア7は、ケイ素鋼鈑などの金属磁性板が内側に突起部を有するリング状に打ち抜かれたものを複数積層プレスして一体にかしめられた積層コアが用いられる。ステータコア7は内周側に軸心方向に向かって突極部8が突設されている。突極部8は、周方向に等間隔(30度間隔)で設けられており、本実施例では12極分突設されている。各突極部8の両側には、周方向にN極・S極に着磁された固定側永久磁石9が吸着固定されている。ロータ1とステータ6との磁極数の比は1対3に構成されている。固定側磁石9と隣接する各突極部8の両側面はハの字状に傾斜面10に形成されている。これにより、固定側永久磁石9より発生したより多くの磁束が突極部8を通過して磁束作用面(先端面)11よりロータ1へ作用させることができる。固定側永久磁石9としてはネオジウム系磁石やサマリウム系磁石などの希土類磁石が好適に用いられる。
【0011】
また、図1において、各突極部8の胴部には励磁コイル12が巻き回され、電磁石13が形成される。各電磁石13は、励磁コイル12へ通電することにより各突極部8の磁束作用面11よりロータ1側に作用する磁束を発生させる。各励磁コイル12は、通電により突極部8に発生する磁極が隣接する固定側永久磁石9の磁極と同極となるように巻き回されている。これにより、図3において、ステータコア7の選択された電磁石13への通電により当該電磁石13から発生した磁束に両側で隣接する固定側永久磁石9の磁極から発生した磁束を重畳して突極部8の磁束作用面11より作用させ、同極のロータ磁極との反発及び異極のロータ磁極との吸引によりロータ1が回転駆動される。
ステータ6の電磁石13に通電されない状態では、ロータ1は磁気抵抗が最も少ない位置、即ち各ロータ磁極と突極部とが対向した位置で静止している(図1参照)。よって、ロータ磁極が対向するステータ磁極と同極となる位置の電磁石の励磁コイル12(本実施例では90度ずつ位相がずれた励磁コイル12)を選択して同時に通電する際にロータ磁極が反発し、異極となる隣りのステータ磁極にロータ磁極が吸引される通電パターンを繰り返すことにより、ロータ1が回転方向に付勢されて回転駆動される
【0012】
図2において、ロータ1の可動側永久磁石5は、磁性体4の外周に4箇所に吸着固定されている。可動側永久磁石5は外周側コーナー部が面取りされており、該面取り部5aが非磁性部3aのテーパー状のガイド面3bに当接することにより径方向外側への脱落や位置ずれを抑えている。非磁性部3aは、筒状の磁性体4に対して非磁性ブロック片が例えばビス14により固定されている。非磁性ブロック片は、ビス14の替わりに嵌合若しくは接着など他の方法で固定されていても良い。
【0013】
ここで、上述した回転電機の動作原理について、図4(a)〜(e)を参照して説明する。図4(a)において、平行に配置された棒状の鉄片15の間にNSに着磁された棒磁石16を介在させて、両側鉄片15が吸着されてコ字状の第1の磁石17が形成されている。この第1の磁石17の両側鉄片15の長手方向の端面に磁性体18(鉄板など)を近づけると吸着される。このとき、第1の磁石17及び磁性体18には図の破線矢印Aに示す磁路が形成されている。第1の磁石17に磁性体18が吸着されると、棒磁石16から発生した磁束が漏れなく矩形状に閉じた磁気閉回路が形成される。
【0014】
次に、図4(b)において、対向する磁極がNSに着磁された馬蹄形磁石19を第1の磁石17の鉄片15の外側より吸着させて第2の磁石20が形成されている。この第2の磁石20は、棒磁石16と馬蹄形磁石19の磁極が鉄片15の両側より同極側が向かい合うようにして吸着されている。この第2の磁石20の両側鉄片15の長手方向端面に磁極が形成されて、磁性体18(鉄板など)を近づけると吸着される。このとき、第2の磁石20及び磁性体18には棒磁石16より発生した破線矢印Aに示す磁路の他に馬蹄形磁石19より発生した破線矢印Bに示す磁路が形成されている。棒磁石16と馬蹄形磁石19の磁極は同極どうしが対向配置されているので、鉄片15及び磁性体18内を同じ向きに通過する磁束が形成される。第2の磁石20に磁性体18が吸着されると、棒磁石16及び馬蹄形磁石19から発生した磁束が漏れなく閉じた磁気閉回路が形成される。したがって、磁性体18を通過する磁束密度が増える分、第1の磁石17に比べて、強固に磁性体18を吸着することができる。
【0015】
図4(c)において、第2の磁石20のうち棒磁石16を棒状鉄片15に置き換えると、実線矢印Cに示す磁路が形成されて、馬蹄形磁石19の対向する磁極より発生した磁束は、鉄片15のブロックを直線的に通過して磁気閉回路が形成される。このため、第2の磁石20の両側鉄片15の長手方向端面に、磁性体18(鉄板など)を近づけても、両側鉄片15の長手方向には磁路が形成されないので、磁性体18は吸着されない。
このように、鉄片15間に棒磁石16を介在させた場合と、鉄片15を介在させた場合とで使い分けることにより、鉄片15の長手方向端面において磁界を発生させたり発生させなくして、磁性体18の吸着/吸着解除の制御が行える。
【0016】
そこで、図4(d)において、第2の磁石20の構成において、棒磁石16に替えて電磁石21を設けることにより、図4(b)(c)の機能を併せ持つ第3の磁石22が形成できる。即ち、コ字状のヨーク(継鉄)23の胴部23bに励磁コイル24を巻き回し、両側脚部23aの外側より馬蹄形磁石19を吸着させたものである。この励磁コイル24は通電により対向する馬蹄継磁石19の磁極と同極となるようにヨーク23に巻き回されている。
【0017】
よって、第3の磁石22において、励磁コイル24に通電すると、図4(b)と同様の磁界が発生して、ヨーク23の両側脚部23aの長手方向に同じ向きで電磁石21及び馬蹄形磁石19より発生した磁束による磁路A、Bが形成され、ヨーク23の磁極である両側脚部23aの長手方向の端面に磁性体18を強固な吸引力で吸着することができる。また、励磁コイル24へ通電しないときには、図4(c)と同様の磁界が発生して、馬蹄形磁石19より発生した磁束はヨーク23の胴部23bを直線的に通過して磁気閉回路が形成される。このため、ヨーク23の両側脚部23aの長手方向端面に磁性体18(鉄板など)を近づけても吸着されない。
【0018】
本実施例のステータ6は、図4(d)に示す第3の磁石22の構成を応用したものである。即ち、図3において、ヨーク23に相当するステータコア7には、軸心方向に突設された突極部8が周方向に等間隔で設けられている。各突極部8には励磁コイル12が巻き回されて電磁石13が形成されている。また馬蹄形磁石19の替わりに突極部8の先端両側に固定側永久磁石9を固着して設けられている。固定側永久磁石9の磁極は、電磁石13の励磁コイル12への通電により突極部8に生ずる磁極と同極の磁極(例えば、ステータ磁極P1の場合にはN極、ステータ磁極P1´の場合にはS極)が突極部8に臨むように設けられている。
【0019】
ステータコア7のステータ磁極P1、P1´、P2に形成される磁気回路について説明する。ステータ磁極P1、P1´P2に設けられた各電磁石8の励磁コイル12へ通電されない間は、突極部8間の各固定側永久磁石9のNS磁極から発生した磁束は隣接する突極部8を含むステータコア7を通じて図3の破線矢印L1、L1´、L6´のように互いに異なる向きに磁気閉回路が形成される。このとき、ステータ6側からロータ1へ磁束が漏れることはない。
【0020】
ステータ磁極P1の励磁コイル12のみに通電すると、破線矢印L1、L6´の磁気回路は崩れて、電磁石13により突極部8の先端側がN極に磁化され、該電磁石13より発生した磁束(矢印E)と、両側の固定側永久磁石9の磁極(N極)より発生した磁束(矢印M)とを重畳させて突極部8の磁束作用面(先端面)11よりロータ1側に作用させるようになっている。尚、ステータ磁極P1は突極部8の後端側がS極に磁化されるので、S極側にはステータコア7の円弧部を通じて磁気閉回路L1´L6(図1参照)からの磁束も収束させることができる。これにより、ステータ磁極P1に対向する同極(N極)のロータ磁極R1が反発し、隣りの異極(S極)に磁化されたステータ磁極P2´(図1参照)に吸引されることにより、図3の矢印方向に強力な回転トルクが発生する。
【0021】
次に、回転電機のロータ1が1回転する間のステータ6の励磁コイルへの通電パターンの一例について、図5に示すタイミングチャートに基づいて、図6のロータの回転位置を参照しながら説明する。図5において、上段側がステータ磁極を示し、下段側がロータ磁極を示す。また、ロータ1の回転方向は、図6の矢印方向(時計回り方向)に回転するようになっているものとし、上段側のステータ磁極をP1、P1´〜P6、P6´とし、下段側のロータ磁極をR1〜R4として説明する。尚、図6のステータコア7に記載された矢印はステータコア7に発生する磁束の向きを示す。
【0022】
先ず、図6(a)において、ロータ磁極R1がステータ磁極P1、P1´に対向した位置にあるとき、図5(a)においてステータ磁極P1、P2´、P4、P5´に相当する励磁コイル12に同時に通電する。このとき、ロータ磁極R1〜R4は近接するステータ磁極と同極どうし(R1とP1、R2とP2´、R3とP4、R4とP5´)が反発し、通電された隣りの異極側のステータ磁極に(R1がP2´に、R2がP4に、R3がP5´に、R4がP1に)各々吸引されて矢印方向へ回転する。
尚、通電されないステータ磁極間(P1´とP2、P3とP3´、P4´とP5、P6とP6´)には、図6(a)の矢印に示すように固定側永久磁石9と両側突極部8を含むステータコア7に磁気閉回路が形成される。
【0023】
そして、ロータ1は60度時計回り方向へ回転して図6(b)の位置まで回転する。ここで、図5(b)においてステータ磁極P2、P3´、P5、P6´に相当する励磁コイル12に同時に通電する。このとき、ロータ磁極R1〜R4は近接するステータ磁極と同極どうし(R1とP2、R2とP3´、R3とP4、R4とP5´)が反発し、通電された隣りの異極側のステータ磁極に(R1がP3´に、R2がP5に、R3がP6´に、R4がP2に)各々吸引されて矢印方向へ回転する。
尚、通電されないステータ磁極間(P1とP1´、P2´とP3、とP4とP4´、P5´とP6)には、図6(b)の矢印に示すように固定側永久磁石9と両側突極部8を含むステータコア7に磁気閉回路が形成される。
【0024】
そして、ロータ1は更に60度時計回り方向へ回転して図6(c)の位置まで回転する。ここで、図5(c)においてステータ磁極P1´、P3、P4´、P6に相当する励磁コイル12に同時に通電する。このとき、ロータ磁極R1〜R4は近接するステータ磁極と同極どうし(R1とP3、R2とP4´、R3とP6、R4とP1´)が反発し、通電された隣りの異極側のステータ磁極に(R1がP4´に、R2がP6に、R3がP1´に、R4がP3に)各々吸引されて矢印方向へ回転する。
尚、通電されないステータ磁極間(P2とP2´、P3´とP4、とP5とP5´、P6´とP1)には、図6(c)の矢印に示すように固定側永久磁石9と両側突極部8を含むステータコア7に磁気閉回路が形成される。
【0025】
そして、ロータ1は更に60度時計回り方向へ回転して図6(d)の位置まで回転する。ここで、図5(d)においてステータ磁極P1、P2´、P4、P5´に相当する励磁コイル12に同時に通電する。このとき、ロータ磁極R1〜R4は近接するステータ磁極と同極どうし(R1とP4、R2とP5´、R3とP1、R4とP2´)が反発し、通電された隣りの異極側のステータ磁極に(R1がP5´に、R2がP6´に、R3がP2´に、R4がP4に)各々吸引されて矢印方向へ回転する。
尚、通電されないステータ磁極間(P1´とP2、P3とP3´、P4´とP5、P6とP6´)には、図6(d)の矢印に示すように固定側永久磁石9と両側突極部8を含むステータコア7に磁気閉回路が形成される。
【0026】
そして、ロータ1は更に60度時計回り方向へ回転して図6(e)の位置まで回転する。ここで、図5(e)においてステータ磁極P2、P3´、P5、P6´に相当する励磁コイル12に同時に通電する。このとき、ロータ磁極R1〜R4は近接するステータ磁極と同極どうし(R1とP5、R2とP6´、R3とP2、R4とP3´)が反発し、通電された隣りの異極側のステータ磁極に(R1がP6´に、R2がP2に、R3がP3´に、R4がP5に)各々吸引されて矢印方向へ回転する。
尚、通電されないステータ磁極間(P1とP1´、P2´とP3、P4とP4´、P5´とP6)には、図6(e)の矢印に示すように固定側永久磁石9と両側突極部8を含むステータコア7に磁気閉回路が形成される。
【0027】
そして、ロータ1は更に60度時計回り方向へ回転して図6(f)の位置まで回転する。ここで、図5(f)においてステータ磁極P1´、P3、P4´、P6に相当する励磁コイル12に同時に通電する。このとき、ロータ磁極R1〜R4は近接するステータ磁極と同極どうし(R1とP6、R2とP1´、R3とP3、R4とP4´)が反発し、通電された隣りの異極側のステータ磁極に(R1がP1´に、R2がP3に、R3がP4´に、R4がP6に)各々吸引されて矢印方向へ回転する。
尚、通電されないステータ磁極間(P2とP2´、P3´とP4、P5とP5´、P6´とP1)には、図6(f)の矢印に示すように固定側永久磁石9と両側突極部8を含むステータコア7に磁気閉回路が形成される。
【0028】
更に60度回転すると図6(a)の位置に戻りロータ1が1回転する。以降は上述したステータ6の励磁コイル12への通電パターンが繰り返し行われる。 尚、ステータ6の各励磁コイル12への通電制御は、ロータ1の回転位置をホール素子などの磁気センサーや、ロータリーエンコーダを用いた回転位置検出に基づいて図示しない制御部により行なわれる。
【0029】
[第2実施例]
次にロータ1及びステータ6の磁極数を変更した他例について図7〜図9を参照して説明する。第1実施例と同一部材には同一番号を付して説明を援用するものとする。図7は回転電機の模式平面図、図8はロータが1/2回転する間のステータコイルへの通電パターンを例示するタイミングチャート、図9は図8の通電切換えが行われる際のロータの回転位置を示す説明図である。
【0030】
図7において、本実施例は、ロータ1とステータ6との磁極数の比が1対2に形成された場合を例示している。ロータ1は、可動側永久磁石5は、45度ずつ位相がずれた位置にR1〜R8まで8極分設けられている。可動側永久磁石5は径方向にN極及びS極に着磁されており、磁束作用面(外周面)がN極とS極とが交互になるように配置されている。また、ステータ6の突極部8は、周方向に等間隔(22.5度間隔)で設けられており、本実施例ではステータ磁極P1、P1´〜P8、P8´まで16極分突設されている。各突極部8の両側には、周方向にN極・S極に着磁された固定側永久磁石9が固着されている。
【0031】
次に、回転電機のロータ1が1/2回転する間のステータ6の励磁コイルへの通電パターンの一例について、図8に示すタイミングチャートに基づいて、図9のロータ1の回転位置を参照しながら説明する。図8において、上段側がステータ磁極を示し、下段側がロータ磁極を示す。また、ロータ1の回転方向は、図9の矢印方向(時計回り方向)に回転するようになっているものとし、上段側のステータ磁極をP1、P1´〜P8、P8´とし、下段側のロータ磁極をR1〜R8として説明する。尚、図9のステータコア7に記載された矢印はステータコア7に発生する磁束の向きを示す。
【0032】
先ず、図9(a)において、ステータ6の電磁石13に通電されない状態では、ロータ1は磁気抵抗が最も少ない位置、即ち各ロータ磁極と突極部とが対向した位置で静止している。ロータ磁極R1がステータ磁極P1に対向した位置にあるとき、図8(a)においてステータ磁極P1、P1´、P3、P3´、P5、P5´、P7、P7´に相当する励磁コイル12に同時に通電する。このとき、ロータ磁極R1〜R8は近接するステータ磁極と同極どうし(R1とP1、R2とP1´、R3とP3、R4とP3´、R5とP5、R6とP5´、R7とP7、R8とP7´)が反発し、通電された隣りの異極側のステータ磁極に(R1がP1´に、R3がP3´に、R5がP5´に、R7がP7´に)各々吸引されて矢印方向へ回転する。
尚、通電されないステータ磁極間(P2とP2´、P4とP4´、P6とP6´、P8とP8´)には、図9(a)の矢印に示すように固定側永久磁石9と両側突極部8を含むステータコア7に磁気閉回路が形成される。
【0033】
そして、ロータ1は22.5度時計回り方向へ回転して図9(b)の位置まで回転する。ここで、図8(b)においてステータ磁極P2´、P3、P4´、P5、P6´、P7、P8´、P1に相当する励磁コイル12に同時に通電する。このとき、ロータ磁極R1〜R8は近接するステータ磁極と同極どうし(R1とP1、R2とP2´、R3とP3、R4とP4´、R5とP5、R6とP6´、R7とP7、R8とP8´)が反発し、通電された隣りの異極側のステータ磁極に(R2がP3に、R4がP5に、R6がP7に、R8がP1に)各々吸引されて矢印方向へ回転する。
尚、通電されないステータ磁極間(P1´とP2、P3´とP4、P5´とP6、P7´とP8)には、図9(b)の矢印に示すように固定側永久磁石9と両側突極部8を含むステータコア7に磁気閉回路が形成される。
【0034】
そして、更にロータ1は22.5度時計回り方向へ回転して図9(c)の位置まで回転する。ここで、図8(c)においてステータ磁極P2、P2´、P4、P4´、P6、P6´、P8、P8´に相当する励磁コイル12に同時に通電する。このとき、ロータ磁極R1〜R8は近接するステータ磁極と同極どうし(R1とP2、R2とP2´、R3とP4、R4とP4´、R5とP6、R6とP6´、R7とP8、R8とP8´)が反発し、通電された隣りの異極側のステータ磁極に(R1がP2´に、R3がP4´に、R5がP6´に、R7がP8´に)各々吸引されて矢印方向へ回転する。
尚、通電されないステータ磁極間(P1とP1´、P3とP3´、P5とP5´、P7とP7´)には、図9(c)の矢印に示すように固定側永久磁石9と両側突極部8を含むステータコア7に磁気閉回路が形成される。
【0035】
そして、更にロータ1は22.5度時計回り方向へ回転して図9(d)の位置まで回転する(1/4回転)。ここで、図8(d)においてステータ磁極P1´、P2、P3´、P4、P5´、P6、P7´、P8に相当する励磁コイル12に同時に通電する。このとき、ロータ磁極R1〜R8は近接するステータ磁極と同極どうし(R1とP3、R2とP3´、R3とP4、R4とP5´、R5とP5、R6とP7´、R7とP8、R8とP1´)が反発し、通電された隣りの異極側のステータ磁極に(R2がP4に、R4がP5に、R6がP8に、R8がP2に)各々吸引されて矢印方向へ回転する。
尚、通電されないステータ磁極間(P2´とP3、P4´とP5、P6´とP7、P8´とP1)には、図9(d)の矢印に示すように固定側永久磁石9と両側突極部8を含むステータコア7に磁気閉回路が形成される。
【0036】
以下、ロータ1が更に1/4回転する際の通電パターン(図8の(e)〜(h))は、上述した図8(a)〜(d)と同様であり説明を省略する。このときのロータ1の回転位置を図9(e)〜(h)に示す。このような、通電パターンを4回繰り返すことにより、ロータ1は1回転する。ロータ1及びステータ6の磁極数を増やすことで、回転角度の微細な制御を行うことができる。
【0037】
[第3実施例]
次に、回転電機の他例について図10(a)〜(d)を参照して説明する。図10(a)はステータコアの一方側の脚部より永久磁石及びヨークを外した状態を示すステータの分解斜視図、図10(b)は、ステータの側面図、図10(c)はステータの径方向断面図、図10(d)はロータの斜視図である。
【0038】
図10(d)において、ロータ25は、回転軸26に交差して設けられた円板状の非磁性体27が取り付けられている。この非磁性体27の周縁部には軸方向にN極及びS極に着磁された可動側永久磁石28が周方向に等間隔で8箇所(8極)配設されている。可動側永久磁石28は、軸方向両端側に形成された磁束作用面がN極とS極とが交互になるように配置されている。可動側永久磁石28としてはネオジウム系磁石やサマリウム系磁石などの希土類磁石が好適に用いられる。また、可動側永久磁石28は外周側コーナー部が面取りされており、該面取り部28aが非磁性体27のテーパー状のガイド面27aに当接することにより径方向外側への脱落や位置ずれを抑えている。
【0039】
次に、図10(a)〜(c)を参照して、ステータ29の構成について説明する。軸方向断面がコ字状のステータコア30が両側脚部30aを軸芯方向に向け、ロータ25を囲繞して周方向に等間隔で16箇所(16極分)に配設されている(図10(a)参照)。ステータコア30は、ケイ素鋼鈑などの金属磁性板が複数積層プレスして一体にかしめられた積層コアや、継鉄などのブロック状コアが用いられる。各ステータコア30の胴部30bには励磁コイル31が巻き回されて電磁石32が形成されている。各ステータコア30の両側脚部30aの外側には、軸方向にN極及びS極に着磁された固定側永久磁石33が各々設けられている。固定側永久磁石33としてはネオジウム系磁石やサマリウム系磁石などの希土類磁石が好適に用いられる(図10(c)参照)。また、固定側永久磁石33の外側にはリング状のヨーク(継鉄)34が各々重ね合わせられ一体に設けられている。このリング状のヨーク34は、固定側永久磁石33を介して各電磁石32どうしを周方向に連結し、固定側永久磁石33の外側磁極どうしを結ぶ磁気閉回路を形成するものである。これにより、各電磁石32に無通電状態において、固定側永久磁石33より発生した磁束が外部へ漏れないように、周方向に隣り合う固定側永久磁石33どうしがステータコア30を通じて磁気閉回路を形成するようになっている(図10(b)参照)。
【0040】
ステータコア30の胴部30bに巻き回された励磁コイル31は通電により当該ステータコア30の両側脚部30aに形成される磁極と隣接する固定側永久磁石33の磁極と同極となるように巻き回されている。このため、ステータ磁極は、選択された電磁石32への通電により当該電磁石32から発生した磁束に隣接する固定側永久磁石33の磁極から発生した磁束を重畳して両側脚部30aの内側対向面に形成される磁束作用面30cより作用させ、同極のロータ磁極との反発及び異極のロータ磁極との吸引によりロータ25が回転駆動される。
ステータ29の電磁石32に通電されない状態では、ロータ25は磁気抵抗が最も少ない位置、即ち各ロータ磁極と突極部とが対向した位置で静止している。よって、ロータ磁極が対向するステータ磁極と同極となる位置の電磁石の励磁コイル(本実施例では22.5ずつ位相がずれた励磁コイル)31を選択して同時に通電する際にロータ磁極が反発し、異極となる隣りのステータ磁極にロータ磁極が吸引される通電パターンを繰り返すことにより、ロータ25が回転方向に付勢されて回転駆動される。尚、励磁コイル31への通電パターンは、第2実施例と同様であるので説明を省略する。
【0041】
以上のように、ステータ6、29に設けられた電磁石13、32に通電した際に、当該電磁石13、32から発生した磁束に固定側永久磁石9、33の磁極から発生した磁束を重ね合わせてステータ磁極からロータ磁極へ作用させて磁極どうしの反発力及び吸引力を利用して大きな回転トルクが得られる。また、通電されない電磁石13、32では、ステータコア7、30を通じて磁気閉回路が形成されて磁束が漏れないので、回転効率が良くエネルギーロスの少ない回転電機を提供できる。
また、ロータ磁極が対向するステータ磁極と同極となる位置の励磁コイルを選択して同時に通電する際に磁極どうしが反発し、異極となる隣りのステータ磁極に吸引される通電パターンを繰り返すことにより、ロータ1、25が確実に回転方向に付勢されて回転駆動され、回転位置制御がし易い回転電機を提供できる。
【0042】
本発明は、上述した各実施の態様に限定されるものではなく、ロータ1及びステータ5の極数や、通電パターンは任意に設計変更可能である。等、法の精神を逸脱しない範囲で多くの改変を施し得るのはもちろんである。
【0043】
【発明の効果】
本発明に係る回転電機の構成によれば、ステータに設けられた電磁石と固定側永久磁石の磁極から発生した磁束を重ね合わせてステータ磁極を通じて漏れなくロータ磁極へ作用させて磁極どうしの反発力及び吸引力を利用して大きな回転トルクが得られる。また、ステータの通電されない各電磁石では、固定側磁石より発生した磁束は、ステータコアを通じて磁気閉回路が形成されて磁束が外部に漏れないので、回転効率が良くエネルギーロスの少ない回転電機を提供できる。
また、ロータ磁極が対向するステータ磁極と同極となる位置の励磁コイルを選択して同時に通電する際に磁極どうしが反発し、異極となる隣りのステータ磁極に吸引される通電パターンを繰り返すことにより、ロータが確実に回転方向に付勢されて回転駆動され、回転位置制御がし易い回転電機を提供できる。よって、簡易な構成によって、省エネルギーで高トルクを実現したステッピングモータやサーボモータなどの汎用性の高いブラシレスモータや発電機を提供できる。
【図面の簡単な説明】
【図1】第1実施例に係る回転電機の模式平面図である。
【図2】ロータの斜視説明図である。
【図3】図1の回転電機の部分拡大平面図である。
【図4】回転電機の動作原理を示す説明図である。
【図5】ロータが1回転する間のステータの励磁コイルへの通電パターンを例示するタイミングチャートである。
【図6】図5の通電切換えが行われる際のロータの回転位置を示す説明図である。
【図7】第2実施例に係る回転電機の模式平面図である。
【図8】ロータが1/2回転する間のステータの励磁コイルへの通電パターンを例示するタイミングチャートである。
【図9】図8の通電切換えが行われる際のロータの回転位置を示す説明図である。
【図10】第3実施例に係るステータの分解斜視図、ステータの側面図、ステータの径方向断面図及びロータの斜視図である。
【符号の説明】
1、25 ロータ
2、26 回転軸
3、27 非磁性体
3a 非磁性部
4、18 磁性体
5、28 可動側永久磁石
6、29 ステータ
7、30 ステータコア
8 突極部
9、33 固定側永久磁石
10 傾斜面
11、30c 磁束作用面
12、24、31 励磁コイル
13、21、32 電磁石
14 ビス
15 鉄片
16 棒磁石
17 第1の磁石
19 馬蹄形磁石
20 第2の磁石
22 第3の磁石
23、34 ヨーク
30a 脚部
30b 胴部

Claims (5)

  1. 回転軸と同軸状に嵌め込まれた筒状の磁性体の外周に非磁性部を介して等間隔で固定され、径方向にN極及びS極に着磁された可動側永久磁石を有するロータと、
    前記ロータを囲繞して設けられた筒状のステータコアの内璧側に軸芯方向に突設された突極部が周方向に等間隔で形成され、各突極部間に周方向にN極及びS極に着磁された固定側永久磁石が同極側を各突極部に向けて設けられ、前記各突極部に巻き回された励磁コイルへの通電により各突極部の先端面に形成される磁束作用面よりロータ側に作用する磁束を発生させる電磁石を備えたステータと、を具備し、
    前記ステータコアの各突極部に巻き回された励磁コイルは、通電により突極部先端側に発生する磁極が隣接する固定側永久磁石の磁極と同極となるように巻き回されており、ステータ磁極は、選択された電磁石への通電により当該電磁石から発生した磁束に両側で隣接する固定側永久磁石の磁極から発生した磁束を重畳して突極部の磁束作用面よりロータ側に作用させ、同極のロータ磁極との反発及び異極のロータ磁極との吸引によりロータが回転駆動され、前記電磁石の励磁コイルへ通電されない間は、固定側永久磁石の両側磁極から発生した磁束は、隣接する突極部を含むステータコアを通じて磁気閉回路が形成されることを特徴とする回転電機。
  2. ロータ磁極が対向するステータ磁極と同極となる位置の電磁石の励磁コイルを選択して同時に通電する際にロータ磁極が反発し、異極となる隣りのステータ磁極にロータ磁極が吸引される通電パターンを繰り返すことにより、前記ロータが回転方向に付勢されて回転駆動されることを特徴とする請求項1記載の回転電機。
  3. 前記固定側磁石が隣接する各突極部の両側面は傾斜面に形成されていることを特徴とする請求項1又は2記載の回転電機。
  4. 回転軸に交差して設けられた円板状の非磁性体の周縁部に軸方向にN極及びS極に着磁された可動側永久磁石が周方向に等間隔で配設されたロータと、
    軸方向断面がコ字状のステータコアが両側脚部を軸芯方向に向け前記ロータを囲繞して周方向に等間隔で配設され、各ステータコアの胴部に励磁コイルが巻き回されてなる電磁石と、各ステータコアの両側脚部の外側に各々設けられた軸方向にN極及びS極に着磁された固定側永久磁石と、該固定側永久磁石の外側に各々一体に重ね合わせられたリング状のヨークとを備えたステータと、を具備し、
    前記ステータコアの胴部に巻き回された励磁コイルは通電により当該ステータコアの両側脚部に形成される磁極と両側で隣接する固定側永久磁石の磁極と同極となるように巻き回されており、ステータ磁極は、選択された電磁石への通電により当該電磁石から発生した磁束に隣接する固定側永久磁石の磁極から発生した磁束を重畳して両側脚部の内側対向面に形成される磁束作用面より作用させ、同極のロータ磁極との反発及び異極のロータ磁極との吸引によりロータが回転駆動されることを特徴とする回転電機。
  5. ロータ磁極が対向するステータ磁極と同極となる位置の電磁石の励磁コイルを選択して同時に通電する際にロータ磁極が反発し、異極となる隣りのステータ磁極にロータ磁極が吸引される通電パターンを繰り返すことにより、前記ロータが回転方向に付勢されて回転駆動されることを特徴とする請求項4記載の回転電機。
JP2002309599A 2002-07-24 2002-10-24 回転電機 Expired - Fee Related JP4160358B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002309599A JP4160358B2 (ja) 2002-10-24 2002-10-24 回転電機
AU2003252496A AU2003252496A1 (en) 2002-07-24 2003-07-10 Dynamo-electric machine
PCT/JP2003/008807 WO2004010564A1 (ja) 2002-07-24 2003-07-10 回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002309599A JP4160358B2 (ja) 2002-10-24 2002-10-24 回転電機

Publications (2)

Publication Number Publication Date
JP2004147425A JP2004147425A (ja) 2004-05-20
JP4160358B2 true JP4160358B2 (ja) 2008-10-01

Family

ID=32455359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309599A Expired - Fee Related JP4160358B2 (ja) 2002-07-24 2002-10-24 回転電機

Country Status (1)

Country Link
JP (1) JP4160358B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100629335B1 (ko) * 2004-10-29 2006-09-29 엘지전자 주식회사 전동기와 그 계자 제작 방법과 그를 갖는 세탁기
DE102005016257B4 (de) * 2005-04-08 2008-03-13 Siemens Ag Reluktanzmotor
ITTO20050256A1 (it) * 2005-04-15 2006-10-16 Lgl Electronics Spa Alimentatore negativo di filato per macchine tessili e simili
CH699130B1 (de) * 2008-07-09 2010-05-14 Kaech Motors Ag Magnetspinmotor.
JP5638923B2 (ja) * 2010-11-24 2014-12-10 株式会社レイホー 永久磁石を用いた回転装置
KR20140036340A (ko) * 2012-09-12 2014-03-25 삼성전자주식회사 모터
CN109768689B (zh) * 2019-03-15 2024-03-26 湖南开启时代科技股份有限公司 非平衡转子单相永磁开关磁阻电机
JP2022151370A (ja) * 2021-03-26 2022-10-07 政行 梨木 モータ
CN114510147A (zh) * 2021-12-31 2022-05-17 歌尔股份有限公司 力反馈装置和电子设备

Also Published As

Publication number Publication date
JP2004147425A (ja) 2004-05-20

Similar Documents

Publication Publication Date Title
JP2575628B2 (ja) 無刷子電動機
JP2549538B2 (ja) 磁気増大型可変リラクタンスモータシステム
JP3212310B2 (ja) 多相切換型リラクタンスモータ
KR200210795Y1 (ko) 영구자석 매립형 모터
JP2007174830A (ja) 永久磁石型回転機
JP4160358B2 (ja) 回転電機
JP3302283B2 (ja) 回転電機およびその回転電機を用いた発電機並びに電動機
JP2016536952A (ja) ハイブリッド車のための改良されたスイッチトリラクタンスモータ及びスイッチトリラクタンス装置
JP4124621B2 (ja) 回転電機
JP4823425B2 (ja) Dcモータ
JP3985281B2 (ja) 回転電機
JP5128800B2 (ja) ハイブリッド式永久磁石回転電機
JP3720417B2 (ja) 磁石モータ
JP2519435B2 (ja) 電動機の着磁方法
JP3228782U (ja) 永久磁石を用いたモータ
JP3229593U (ja) 永久磁石を用いたモータ
WO2004010564A1 (ja) 回転電機
JP3229592U (ja) 永久磁石を用いたモータ
JP2019149902A (ja) シンクロナスリラクタンスモータ
JPH06327206A (ja) Pm形交流同期モータ
JP3737750B2 (ja) ハイブリッド磁石型直流機
JP2001251838A (ja) ベーシックファクターを用いた回転機
JP2001251826A (ja) ベーシックファクターを用いた交流回転機
KR20170058627A (ko) 전기 모터
JPH10174414A (ja) パルス駆動式ブラシレスモータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees