JP4154768B2 - 画像情報変換装置および画像表示装置 - Google Patents
画像情報変換装置および画像表示装置 Download PDFInfo
- Publication number
- JP4154768B2 JP4154768B2 JP29945298A JP29945298A JP4154768B2 JP 4154768 B2 JP4154768 B2 JP 4154768B2 JP 29945298 A JP29945298 A JP 29945298A JP 29945298 A JP29945298 A JP 29945298A JP 4154768 B2 JP4154768 B2 JP 4154768B2
- Authority
- JP
- Japan
- Prior art keywords
- pixel
- output image
- image signal
- signal
- pixels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Television Systems (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Description
【発明の属する技術分野】
この発明は、例えば、テレビジョン受像機に用いて好適な画像情報変換装置および画像表示装置に関する。
【0002】
【従来の技術】
入力画像信号を線形補間処理して、垂直方向の画素数(ライン数)を2倍とする画像処理装置が知られている。このような画像処理装置は、例えばインターレス方式をプログレッシブ方式に変換するのに適用できる。この変換は、インターレス方式であることに起因するラインフリッカを軽減するためになされる。例えばグラフィックスの画像では、ラインフリッカが目立つ問題があり、グラフィックス画像を表示する時には、インターレス方式よりもプログレッシブ方式の方が高画質とできる。
【0003】
従来のこの種の画像情報変換装置は、入力される例えば525i信号(走査線525本のインターレス方式の信号)を動き判定処理し、動きがない場合には、フレーム間補間を行い、動きがある場合には、フィールド内補間を行うようにしている。フィールド間補間は、前フィールドのラインの信号を使用して新たなラインの信号を形成し、フィールド内補間は、同一フィールドの上下のラインの信号の平均値により新たなラインの信号を形成する。
【0004】
【発明が解決しようとする課題】
従来の画像情報変換装置は、補間により形成する画素の位置が固定されているため、他の時空間位置の画素を生成するためには、その目的に合った専用の装置を構成する必要がある。従って、複数の従来の画像情報変換装置を組み合わせても、他の時空間位置に画素を生成する機能を実現することができない問題があった。従って、従来の画像情報変換装置をLSI(Large Scale Integrated Circuit)として設計した時に、複数個のLSIを使用しも画像情報変換機能を拡張することができなかった。
【0005】
また、従来の画像情報変換装置は、入力画像信号を基にして、単に垂直方向の補間を行っているに過ぎないため、解像度は基となるSD信号より高くならない。また、平均値で作成されたラインは、現存ラインと比較して垂直解像度が劣化しているために、現存ラインと補間ラインとの間で、解像度の差が目立つ問題がある。さらに、画像信号にノイズがある場合、上下ラインの平均値を用いた場合には、ランダムノイズを足し合わせることになり、作成ラインでノイズが減少することになる。この結果、ノイズが減少した作成ラインと、そうでない現存ラインとが交互に現れることになり、画質劣化が生じる。さらに、動き検出の結果に基づいて補間方法(静止画処理と動画処理)を切り替える時に、動き検出を誤った時に、画質の劣化が大きい問題があった。
【0006】
従って、この発明の目的は、複数の機能を実現することが可能で、画質劣化を防止することが可能な画像情報変換装置および画像表示装置を提供することにある。
【0007】
【課題を解決するための手段】
上述した課題を達成するために、請求項1の発明は、垂直画素数が入力画像信号のN倍(Nは、4以上の整数)で、それぞれ垂直方向の位置が異なる第1、第2、第3、および第4の画素位置の画素を有する出力画像信号を生成するようにした画像情報変換装置において、
第1の画素位置に第1の出力画像信号を生成し、第2の画素位置に第2の出力画像信号を生成する第1の画素生成装置と、
第3の画素位置に第3の出力画像信号を生成し、第4の画素位置に第4の出力画像信号を生成する第2の画素生成装置と、
第1、第2、第3、および第4の出力画像信号それぞれのライン周波数をN倍とした第5、第6、第7、および第8の出力画像信号を生成し、第5、第6、第7、および第8の出力画像信号を選択的に合成することによって、出力画像信号を生成する出力処理装置とを備え、
第1の画素生成装置は、第1および第2の画素位置の第1および第2の出力画像信号の画素値をそれぞれ生成する第1および第2の信号生成部からなり、
第2の画素生成装置は、第3および第4の画素位置の第3および第4の出力画像信号の画素値をそれぞれ生成する第3および第4の信号生成部からなり、
第1、第2、第3、および第4の信号生成部のそれぞれは、
積和演算によって、第1、第2、第3および第4の画素位置の一の画素位置の画素を生成した時に、生成された値と画素位置の画素の真値との誤差を最小とするように、クラス情報毎に予め学習によって取得されている予測係数を記憶するメモリ部と、
一の画素位置の周辺に位置する入力画像信号の複数の画素のレベル分布を表すクラス情報を形成し、クラス情報に対応した予測係数をメモリ部から読み出すクラス決定部と、
一の画素位置の周辺に位置する入力画像信号の複数の画素と、メモリ部からの予測係数との積和演算によって、一の画素位置の画素を作成する画素値生成部とを有することを特徴とする画像情報変換装置である。
【0008】
請求項2の発明は、垂直画素数が入力画像信号のN倍(Nは、2以上の整数)で、互いに垂直方向に異なるまたは時間方向に異なると共に、フィールド周波数が入力画像信号のM倍(Mは、2以上の整数)で第1、第2、第3、および第4の画素位置の画素を有する出力画像信号を生成するようにした画像情報変換装置において、
第1の画素位置に第1の出力画像信号を生成し、第2の画素位置に第2の出力画像信号を生成する第1の画素生成装置と、
第3の画素位置に第3の出力画像信号を生成し、第4の画素位置に第4の出力画像信号を生成する第2の画素生成装置と、
第1、第2、第3、および第4の出力画像信号それぞれのライン周波数をN倍とすると共に、第1、第2、第3、および第4の出力画像信号それぞれのフィールド周波数をM倍とした第5、第6、第7、および第8の出力画像信号を生成し、第5、第6、第7、および第8の出力画像信号を選択的に合成することによって、出力画像信号を生成する出力処理装置とを備え、
第1の画素生成装置は、第1および第2の画素位置の第1および第2の出力画像信号の画素値をそれぞれ生成する第1および第2の信号生成部からなり、
第2の画素生成装置は、第3および第4の画素位置の第3および第4の出力画像信号の画素値をそれぞれ生成する第3および第4の信号生成部からなり、
第1、第2、第3、および第4の信号生成部のそれぞれは、
積和演算によって、第1、第2、第3および第4の画素位置の一の画素位置の画素を生成した時に、生成された値と画素位置の画素の真値との誤差を最小とするように、クラス情報毎に予め学習によって取得されている予測係数を記憶するメモリ部と、
一の画素位置の周辺に位置する入力画像信号の複数の画素のレベル分布を表すクラス情報を形成し、クラス情報に対応した予測係数をメモリ部から読み出すクラス決定部と、
一の画素位置の周辺に位置する入力画像信号の複数の画素と、メモリ部からの予測係数との積和演算によって、一の画素位置の画素を作成する画素値生成部とを有することを特徴とする画像情報変換装置である。
【0009】
請求項7の発明は、入力画像信号源と表示装置との間に、画像情報変換装置を設け、
画像情報変換装置は、
垂直画素数が入力画像信号のN倍(Nは、4以上の整数)で、それぞれ垂直方向の位置が異なる第1、第2、第3、および第4の画素位置の画素を有する出力画像信号を生成するようにした画像情報変換装置であって、
第1の画素位置に第1の出力画像信号を生成し、第2の画素位置に第2の出力画像信号を生成する第1の画素生成装置と、
第3の画素位置に第3の出力画像信号を生成し、第4の画素位置に第4の出力画像信号を生成する第2の画素生成装置と、
第1、第2、第3、および第4の出力画像信号それぞれのライン周波数をN倍とした第5、第6、第7、および第8の出力画像信号を生成し、第5、第6、第7、および第8の出力画像信号を選択的に合成することによって、出力画像信号を生成する出力処理装置とを備え、
第1の画素生成装置は、第1および第2の画素位置の第1および第2の出力画像信号の画素値をそれぞれ生成する第1および第2の信号生成部からなり、
第2の画素生成装置は、第3および第4の画素位置の第3および第4の出力画像信号の画素値をそれぞれ生成する第3および第4の信号生成部からなり、
第1、第2、第3、および第4の信号生成部のそれぞれは、
積和演算によって、第1、第2、第3および第4の画素位置の一の画素位置の画素を生成した時に、生成された値と画素位置の画素の真値との誤差を最小とするように、クラス情報毎に予め学習によって取得されている予測係数を記憶するメモリ部と、
一の画素位置の周辺に位置する入力画像信号の複数の画素のレベル分布を表すクラス情報を形成し、クラス情報に対応した予測係数をメモリ部から読み出すクラス決定部と、
一の画素位置の周辺に位置する入力画像信号の複数の画素と、メモリ部からの予測係数との積和演算によって、一の画素位置の画素を作成する画素値生成部とを有することを特徴とする画像表示装置である。
【0010】
請求項8の発明は、入力画像信号源と表示装置との間に、画像情報変換装置を設け、
画像情報変換装置は、
垂直画素数が入力画像信号のN倍(Nは、2以上の整数)で、互いに垂直方向に異なるまたは時間方向に異なると共に、フィールド周波数が入力画像信号のM倍(Mは、2以上の整数)で第1、第2、第3、および第4の画素位置の画素を有する出力画像信号を生成するようにした画像情報変換装置であって、
第1の画素位置に第1の出力画像信号を生成し、第2の画素位置に第2の出力画像信号を生成する第1の画素生成装置と、
第3の画素位置に第3の出力画像信号を生成し、第4の画素位置に第4の出力画像信号を生成する第2の画素生成装置と、
第1、第2、第3、および第4の出力画像信号それぞれのライン周波数をN倍とすると共に、第1、第2、第3、および第4の出力画像信号それぞれのフィールド周波数をM倍とした第5、第6、第7、および第8の出力画像信号を生成し、第5、第6、第7、および第8の出力画像信号を選択的に合成することによって、出力画像信号を生成する出力処理装置とを備え、
第1の画素生成装置は、第1および第2の画素位置の第1および第2の出力画像信号の画素値をそれぞれ生成する第1および第2の信号生成部からなり、
第2の画素生成装置は、第3および第4の画素位置の第3および第4の出力画像信号の画素値をそれぞれ生成する第3および第4の信号生成部からなり、
第1、第2、第3、および第4の信号生成部のそれぞれは、
積和演算によって、第1、第2、第3および第4の画素位置の一の画素位置の画素を生成した時に、生成された値と画素位置の画素の真値との誤差を最小とするように、クラス情報毎に予め学習によって取得されている予測係数を記憶するメモリ部と、
一の画素位置の周辺に位置する入力画像信号の複数の画素のレベル分布を表すクラス情報を形成し、クラス情報に対応した予測係数をメモリ部から読み出すクラス決定部と、
一の画素位置の周辺に位置する入力画像信号の複数の画素と、メモリ部からの予測係数との積和演算によって、一の画素位置の画素を作成する画素値生成部とを有することを特徴とする画像表示装置である。
【0011】
請求項1の画像情報変換装置は、組み合わせる画素生成装置の個数と、出力処理装置の構成とによって、画像情報変換機能を拡張することができる。入力画像信号例えば525i信号を1050p信号へ変換したり、525i信号を2100i信号へ変換したり、フィールド周波数を2倍とすることができる。また、出力画像信号の画素をクラス分類適応処理によって生成するようになされる。クラス分類適応処理は、入力画像信号の複数画素に基づいてクラスを検出し、各クラスで最適となる推定予測式を用いて出力画像信号の画素値を作成するので、出力画像信号を高画質とすることができる。
【0012】
請求項6の画像表示装置は、このような画像情報変換装置を入力画像信号源と表示装置との間に有するので、画素数が入力画像信号に比して増加した画像を表示することができる。
【0013】
【発明の実施の形態】
以下、この発明の一実施形態について説明する。この一実施形態で使用する画素生成装置は、クラス分類適応処理によって画素を生成するものである。この発明の理解を容易とするために、最初にクラス分類適応処理によって、水平および垂直方向の画素数をそれぞれ2倍とする画素生成装置の一例について説明する。
【0014】
クラス分類適応処理は、従来の補間処理によって高解像度信号を形成するものと異なる。すなわち、クラス分類適応処理は、入力信号である映像信号レベルの3次元(時空間)分布に応じてクラス分割を行い、クラス毎に予め学習により獲得された予測係数値を格納した記憶手段を持ち、予測式に基づいた演算により最適な推定値を出力する方式であり、クラス分類適応処理によって、解像度を入力映像信号のもの以上に高めることが可能である。
【0015】
この画素生成装置の一例では、図1に示すように、入力映像信号(525i信号)が領域切り出し部1に供給され、クラス分類および予測演算に必要とされる複数の画素が含まれる領域が切り出される。領域切り出し部1の出力がクラス検出回路2および12、予測タップ選択回路3および13に供給される。クラス検出回路2および12は、作成すべき出力画素の近傍の入力画素のレベル分布のパターンに対応するクラスを検出する。クラス検出回路2および12において、動きクラスを検出しても良い。なお、この一例では、入力画像信号に存在するラインに近い第1の画素位置と、第1の画素位置と垂直方向で異なった画素位置で、入力画像信号に存在するラインから遠い第2の画素位置とにそれぞれ出力画素を生成する。このため、第1の画素位置Mの画素を生成する構成と、第2の画素位置Sの画素を生成する構成とが並列に設けられている。
【0016】
クラス検出回路2および12のそれぞれにより検出されたクラスが予測タップ選択回路3、13と予測係数メモリ4、14とに供給される。予測係数メモリ4、14からは、クラスに対応する予測係数が読出され、積和演算回路5、15に読出された予測係数が供給される。予測タップ選択回路3、13は、クラスに応じて使用する予測タップを選択する構成とされている。予め各クラスの予測係数を学習によって得る時に、予測係数と使用する予測タップ位置情報との両者を得るようにしている。予測タップ選択回路3、13には、予測タップ位置情報がクラス毎に記憶されたメモリが設けられている。このメモリからクラスに対応して読出された予測タップ位置情報がタップ切り替え用のセレクタに供給され、セレクタが選択的に予測タップを出力する。予測タップ選択回路3、13からの予測タップが積和演算回路5、15に供給される。
【0017】
積和演算回路5、15では、予測タップ(525i信号の画素)と予測係数との線形推定式を用いて出力映像信号のデータを算出する。積和演算回路5は、第1の画素位置Mの画素値(第1の出力画像信号)を出力し、積和演算回路15は、第2の画素位置Sの画素値(第2の出力画像信号)を出力する。同時に、積和演算回路5、15は、水平方向で2倍の数の画素を出力する。後述するラインメモリ6、16およびセレクタ7からなる出力処理部を除いて、領域切り出し部101等の第1および第2の出力画像信号を生成するための構成がLSI101として構成されている。
【0018】
積和演算回路5からの第1の画素位置Mの画素値がラインメモリ6に供給され、積和演算回路15からの第2の画素位置Sの画素値がラインメモリ16に供給される。ラインメモリ6、16は、ライン倍速の処理、すなわち、ライン周波数を2倍とするライン倍速処理を行う。ラインメモリ6、16の出力がライン毎に切り替えられるセレクタ7に入力される。セレクタ7は、ラインメモリ6、16のそれぞれの出力を交互に選択し、出力映像信号(525p信号または1050i信号)を発生する。
【0019】
図2は、ライン倍速処理をアナログ波形を用いて示すものである。積和演算回路5、15によって、画素位置MおよびSのデータが同時に生成される。画素位置Mのデータには、順にa1,a2,a3,・・・のラインが含まれ、画素位置Sのデータには、順にb1,b2,b3,・・・のラインが含まれる。ラインメモリ6、16は、各ラインのデータを時間軸方向に1/2に圧縮し、圧縮されたデータをセレクタ7によって交互に選択することによって、線順次出力(a0,b0,a1,b1,・・・)が形成される。
【0020】
図示しないが、出力映像信号がCRTディスプレイに供給される。CRTディスプレイは、出力映像信号を表示することが可能なように、その同期系が構成されている。入力映像信号としては、放送信号、またはVTR等の再生装置の再生信号が供給される。すなわち、この一例をテレビジョン受像機に内蔵することができる。
【0021】
図3は、1フィールドの画像の一部を拡大することによって、入力画像信号(525i信号)と出力画像信号との画素の配置を示すものである。出力画像信号は、例えば525p信号であり、画素位置Mが入力画像信号に存在するラインと同一位置とされ、画素位置Sが入力画像信号に存在するラインの中間位置とされている。図3において、大きなドットが525i信号の画素であり、小さい黒いドットが出力される画素位置Mの画素であり、小さい白いドットが出力される画素位置Sの画素である。この関係は、図3以外の他の図面においても同様である。
【0022】
図3Aは、あるフレーム(F)の奇数フィールドの画素配置であり、図3Bは、他のフィールド(偶数フィールド)の画素配置である。他ののフィールド(偶数フィールド)では、525i信号のラインが空間的に0.5ラインずれたものとなる。図3から分かるように、525i信号のラインと同一位置の画素位置Mおよび525i信号の上下のラインの中間位置の画素位置Sにそれぞれ画素値を形成し、また、各ラインの水平方向の画素数を2倍とする。従って、積和演算回路5、15によって、525p信号の4画素のデータが同時的に生成される。
【0023】
図3に示す関係の出力画像信号(525p信号)を形成する時に、クラス検出回路2、12において使用されるクラスタップおよび予測タップ選択回路3、13において選択される予測タップの具体例について説明する。図4および図5は、クラス検出回路2、12において使用される空間クラスタップの一例を示す。図4および図5は、時間的に連続するフレームF−1の奇数フィールドo(F−1/oと表記する)、F−1の偶数フィールド(F−1/e)、F/o、F/eのそれぞれの垂直方向の画素の配列を示す。
【0024】
図4に示すように、フィールドF/oの画素位置MおよびSの画素値を予測する時の空間クラスタップは、このフィールドF/oの次のフィールドF/eに含まれ、作成すべき525p信号の画素と空間的に近傍位置の入力画素T1およびT2と、フィールドF/oに含まれ、作成すべき525p信号の画素の近傍の入力画素T3,T4,T5と、前のフィールドF−1/eの入力画素T6,T7である。フィールドF/eの画素位置MおよびSの画素値を予測する時には、図5に示すように、このフィールドF/eの次のフィールドF/oに含まれ、作成すべき525p信号の画素と空間的に近傍位置の入力画素T1およびT2と、フィールドF/eに含まれ、作成すべき525p信号の画素の近傍の入力画素T3,T4,T5と、前のフィールドF/oの入力画素T6,T7である。なお、画素位置Mの画素値を予測する時には、T7の画素をクラスタップとして選択せず、画素位置Sの画素値を予測する時には、T4の画素をクラスタップとして選択しないようにしても良い。さらに、空間クラスタップとして、水平方向の複数の入力画素を使用しても良い。
【0025】
クラス検出回路2、12は、空間クラスタップのレベル分布のパターンを検出する。この場合、クラス数が膨大となることを防ぐために、各画素8ビットの入力データをより少ないビット数のデータへ圧縮するような処理を行う。一例として、ADRC(Adaptive Dynamic Range Coding )によって、空間クラスタップの入力画素のデータが圧縮される。なお、情報圧縮手段としては、ADRC以外にDPCM(予測符号化)、VQ(ベクトル量子化)等の圧縮手段を用いても良い。
【0026】
本来、ADRCは、VTR(Video Tape Recoder)向け高能率符号化用に開発された適応的再量子化法であるが、信号レベルの局所的なパターンを短い語長で効率的に表現できるので、この一例では、ADRCを空間クラス分類のコード発生に使用している。ADRCは、空間クラスタップのダイナミックレンジをDR、ビット割当をn、空間クラスタップの画素のデータレベルをL、再量子化コードをQとして、以下の式(1)により、最大値MAXと最小値MINとの間を指定されたビット長で均等に分割して再量子化を行う。
【0027】
DR=MAX−MIN+1
Q={(L−MIN+0.5)×2/DR} (1)
ただし、{ }は切り捨て処理を意味する。
【0028】
なお、動きクラスを併用して、空間クラスと動きクラスとを統合してクラスを検出するようにしても良い。この場合、動きクラスに応じて、空間クラスタップを切り替えるようにしても良い。また、予測タップの具体例の説明は省略する。予測タップは、上述した空間クラスタップと同様のものであるが、予測精度を向上させるために、クラスに対応した予測タップ位置情報により選択される。
【0029】
予測係数メモリ4、14には、525i信号のパターンと525p信号の関係を学習することにより、取得された予測係数が各クラス毎に記憶されている。予測係数は、線形推定式により525i信号を525p信号へ変換するための情報である。なお、予測係数の取得方法については後述する。
【0030】
予測係数メモリ4、14のクラスに対応したアドレスから、そのクラスの予測係数が読出される。この予測係数は、積和演算回路5、15に供給される。積和演算回路5は、予測タップ選択回路3、13からの予測タップ(画素値)T1,T2,・・・Tiと、予測係数w1 ,w2 ,・・・wiとの線形1次結合式(式(2))の演算を行うことにより、画素位置Mの画素値を算出する。積和演算回路15は、同様にして画素位置Sの画素値を算出する。但し、画素位置MおよびSの間では、使用する予測係数が相違する。
【0031】
L1=w1 T1+w2 T2+・・・・+wiTi (2)
このように、予測係数が各クラス毎に予め学習により求められた上で、予測係数メモリ4、14に記憶しておき、入力される予測タップおよび読出された予測係数に基づいて演算が行われ、入力されたデータに対応する出力データを形成して出力することにより、入力データを単に補間処理したのとは異なり、高画質のプログレッシブ方式の映像信号を出力することができる。
【0032】
次に、予測係数の作成(学習)について図6を用いて説明する。予測係数を学習によって得るためには、まず、間引きフィルタ31によってプログレッシブ信号(例えば525p信号)から、水平方向および垂直方向で画素数がそれぞれ1/2とされたインターレス映像信号(例えば525i信号)を形成する。この間引きフィルタ31の入力映像信号と出力映像信号とを学習用の対とする。
【0033】
図7は、間引きフィルタ31の入力信号(プログレッシブ画像)とその出力信号(インターレス画像)との画素の空間的関係を示す。プログレッシブ画像の奇数番目のフィールドの画像の偶数番目のラインが間引かれ、また、奇数番目のラインでは、水平方向に画素数が交互に間引かれる。プログレッシブ画像の偶数番目のフィールドでは、奇数番目のラインが間引かれ、また、偶数番目のラインでは、水平方向に画素数が交互に間引かれる。間引きフィルタ31の特性を変えることによって、学習の特性を変え、それによって、変換して得られる画像の画質を制御することができる。
【0034】
間引きフィルタ31からのインターレス映像信号が予測タップ領域切り出し部32およびクラスタップ領域切り出し部33に供給される。クラスタップ領域切り出し部33からのクラスタップがクラス検出回路34および35に供給される。予測タップ領域切り出し部32は、画素位置M、Sのそれぞれを作成するための予測タップを出力する。クラス検出回路34、35は、図1に示す信号変換装置におけるクラス検出回路2、12と同様に、空間クラスタップのデータをADRCにより圧縮し、クラス情報を発生する。クラス検出回路34、35は、画素位置MおよびSのそれぞれに関するクラスを独立に検出する。
【0035】
予測タップ領域切り出し部32からの予測タップが正規方程式加算回路36、37に供給される。正規方程式加算回路36、37の説明のために、複数個の入力画素から出力画素への変換式の学習とその予測式を用いた信号変換について述べる。以下に、説明のために、より一般化してn画素による予測を行う場合について説明する。予測タップとして選択される入力画素のレベルをそれぞれx1 、‥‥、xn とし、出力画素レベルをyとしたとき、クラス毎に予測係数w1 、‥‥、wn によるnタップの線形推定式を設定する。これを下記の式(3)に示す。学習前は、wi が未定係数である。
【0036】
y=w1 x1 +w2 x2 +‥‥+wn xn (3)
学習は、クラス毎に複数の信号データに対して行う。データ数がmの場合、式(3)にしたがって、以下に示す式(4)が設定される。
【0037】
yk =w1 xk1+w2 xk2+‥‥+wn xkn (4)
(k=1,2,‥‥m)
m>nの場合、予測係数wi 、‥‥wn は、一意に決まらないので、誤差ベクトルeの要素を以下の式(5)で定義して、式(6)を最小にする予測係数を求める。いわゆる、最小自乗法による解法である。
【0038】
ek =yk −{w1 xk1+w2 xk2+‥‥+wn xkn} (5)
(k=1,2,‥‥m)
【0039】
【数1】
【0040】
ここで、式(6)のwi による偏微分係数を求める。それは以下の式(7)を `0' にするように、各係数wi を求めればよい。
【0041】
【数2】
【0042】
以下、式(8)、(9)のようにXij、Yi を定義すると、式(7)は、行列を用いて式(10)へ書き換えられる。
【0043】
【数3】
【0044】
【数4】
【0045】
【数5】
【0046】
この方程式は、一般に正規方程式と呼ばれている。図6中の正規方程式加算回路36、37のそれぞれは、クラス検出回路34、35から供給されたクラス情報と、予測タップ領域切り出し部32から供給された2組の予測タップと、作成しようとするプログレッシブ画像の画素(教師信号)を用いて、この正規方程式の加算を行う。
【0047】
学習に充分なフレーム数のデータの入力が終了した後、正規方程式加算回路36、37は、予測係数決定部38に正規方程式データを出力する。予測係数決定部38は、正規方程式を掃き出し法等の一般的な行列解法を用いて、wi について解き、予測係数を算出する。予測係数決定部38は、算出された予測係数を予測係数メモリ39、40に書込む。
【0048】
以上のように学習を行った結果、予測係数メモリ39、40のそれぞれには、クラス毎に、プログレッシブ画像の注目画素yを推定するための、統計的にもっとも真値に近い推定ができる予測係数が格納される。予測係数メモリ39、40に格納された予測係数は、上述の画素生成装置において、予測係数メモリ4、14にロードされる。
【0049】
また、予測タップ領域切り出し部32が出力する予測タップの個数は、画素生成装置において使用される予測タップの個数より大きいものとされる。従って、予測係数決定部38は、クラス毎により多くの予測係数が求まる。この求まった予測係数の中で、絶対値が大きいものから順に使用する数の予測係数が選択される。選択された予測係数がメモリ39、40のクラスに対応するアドレスにそれぞれ格納される。従って、クラス毎に予測タップが選択されることになり、この予測タップの選択位置情報がクラス毎にメモリ(図示しない)に格納される。このような予測タップ選択処理によって、各クラスに適合した予測タップを選択することが可能となる。
【0050】
以上の処理により、線形推定式により、インターレス画像のデータからプログレッシブ画像のデータを作成するための予測係数の学習が終了する。
【0051】
以上説明した画素生成装置は、垂直方向の異なる第1の画素位置Mと第2の画素位置Sとにそれぞれ出力画像信号の画素を作成し、また、同時に各画素位置に水平方向に2倍の画素数の画素を作成する。従って、垂直および水平方向に関して、画素数を2倍とすることができる。図1において、ラインメモリ6、16およびセレクタ7を除く部分がLSI101として実現される。
【0052】
すなわち、図1に示す装置は、図8に示すブロック図として表すことができる。図8において、111が入力SD信号が供給される入力端子であり、121が垂直および水平方向に画素数が2倍とされた出力画像信号が取り出される出力端子である。なお、領域切り出し回路1が必要とするラインメモリ、フィールドメモリのような比較的大容量のメモリは、LSI101に対して外付けの構成とされる。
【0053】
上述したように、図1および図8の構成は、図9、図10、図11および図12示す画素位置に、出力画像信号の画素を生成することができる。図9は、入力画像信号(525i信号)の画素位置と、出力画像信号(525p信号)の画素位置とを垂直方向および水平方向に示すものである。図9Aおよび図9Bは、それぞれ時間的に連続する2フィールドの位置関係を示す。図10は、入力画像信号(525i信号)の画素位置と、出力画像信号(525p信号)の画素位置とを垂直方向および時間方向に示すものである。
【0054】
図11は、入力画像信号(525i信号)の画素位置と、出力画像信号(1050i信号)の画素位置とを垂直方向および時間方向に示すものである。図11Aおよび図11Bは、それぞれ時間的に連続する2フィールドの位置関係を示す。図12は、入力画像信号(525i信号)の画素位置と、出力画像信号(1050i信号)の画素位置とを垂直方向および時間方向に示すものである。
【0055】
この発明は、LSI101を複数個使用し、その後に接続される出力処理回路の構成を変更することによって、画像情報変換の機能を変更、拡張するようにしたものである。以下、この発明の第1の実施形態について図13を参照して説明する。第1の実施形態では、2個のLSI101Aおよび101Bを使用する。LSI101Aに対してラインメモリ6Aおよび16Aが接続され、LSI101Bに対してラインメモリ6Bおよび16Bが接続される。
【0056】
LSI101Aは、画素位置M-1およびS-1にそれぞれ出力画素を生成し、LSI101Bは、画素位置M-2およびS-2にそれぞれ出力画素を生成する。これらの画素位置は、垂直方向に互いに異なる位置である。LSI101Aおよび101Bは、上述のLSI101と同一の構成である。但し、予測タップおよびクラスタップの設定と、予測係数メモリに格納する係数とは、それぞれが生成する出力画素の画素位置に対応して最適なものとされている。
【0057】
LSI101Aの画素位置1BのM-1およびS-1のそれぞれの出力画像信号がラインメモリ6Aおよび16Aに供給される。ラインメモリ6Aおよび16Aは、ライン周波数を4倍とした出力を発生する。例えば1ラインのデータを書込んで、4倍の速度で読出す処理によって、ライン周波数を4倍とする。また、LSI101Bの画素位置1BのM-2およびS-2のそれぞれの出力画像信号がラインメモリ6Bおよび16Bに供給される。ラインメモリ6Bおよび16Bは、ライン周波数を4倍とした出力を発生する。4個のラインメモリ6A、16A、6B、16Bの出力データがセレクタ7Aに入力される。セレクタ7Aは、4倍のライン周期毎に各ラインメモリの出力をM-1、M-2、S-1、S-2と順番に選択して出力端子122に出力する。
【0058】
第1の実施形態によれば、ラインメモリ6A、16A、6B、16Bによって、ライン周波数を4倍としているので、垂直画素数(ライン数)が入力信号(525i信号)の2倍のプログレッシブ信号(1050p信号)、または垂直画素数が入力信号の4倍とされたインターレス信号(2100i信号)を得ることができる。
【0059】
図14は、垂直方向と時間方向で表された入力画素と出力画素の位置関係の一例を示す。LSI101Aは、入力画像信号(525i信号)からクラスタップおよび予測タップを選択して、予測タップの画素値と予測係数との積和演算によって、垂直方向で、元のライン間隔の半分の間隔で且つ水平方向に2倍の画素位置M-1およびS-1にそれぞれ画素値を生成する。他方のLSI101Bが垂直方向で画素位置M-1およびS-1と中間の画素位置M-1およびS-1にそれぞれ画素値を生成する。奇数フィールドと偶数フィールドの両者で、生成される画素の垂直方向の位置が同一とされる。従って、出力画像信号は、ライン数が2倍とされたプログレッシブ走査の信号(1050p信号)である。
【0060】
LSI101Aの生成する画素の画素位置M-1およびS-1と、LSI101Bの生成する画素の画素位置M-2およびS-2とを、図15に示すように、奇数フィールドと偶数フィールドとで、垂直方向でずらすことによって、インターレス方式の出力画像信号、すなわち、2100i信号を生成することができる。
【0061】
また、図1に示す画素生成装置は、出力処理部にフィールドメモリを設けることによって、フィールド倍速化された出力信号を生成することができる。すなわち、図16に示すように、LSI101の画素位置MおよびSの出力画像信号をフィールドメモリ131および132に書込み、フィールドメモリ131および132から元のフィールド周波数の2倍の周波数で読出し、セレクタ7Bによって、フィルードメモリ131および132の読出し出力を選択することによって、出力端子123にフィールド周波数が2倍とされた、フィールド倍速信号を得ることができる。
【0062】
セレクタ7Bは、2倍のフィールド周波数(60×2=120Hz)で選択動作が切り替えられる。すなわち、Aフィールドから生成された画素位置Mからなるフィールドを選択すると、次に、Aフィールドから生成された画素位置Sの画素を選択し、次にBフィールドから生成された画素位置Sの画素を選択し、次に、Bフィールドから生成された画素位置Mからなるフィールドを選択する。従って、図17に示すように、出力画像信号は、入力画像信号(525i信号/60Hz)のフィールド周波数が2倍とされたもの(525i信号/120Hz)である。図17から分かるように、Aフィールドの画素位置M、SとBフィールドの画素位置M、Sとは、時空間の配置が異なるので、AフィールドとBフィールドとでは、異なる係数を使用することが必要である。
【0063】
図18に示すように、この発明の第2の実施形態は、ラインメモリによるライン倍速化の処理と、フィールドメモリによるフィールド倍速化の処理の両方を出力処理部に有するものである。
【0064】
第2の実施形態では、2個のLSI101Aおよび101Bを使用する。LSI101Aおよび101Bに対して、入力端子111Aおよび111Bから入力画像信号が供給される。この入力画像信号は、同一の信号である。LSI101Aの出力(M-1およびS-1)に対してフィールドメモリ131A、132Aがそれぞれ接続され、フィールドメモリ131A、132Aに対してラインメモリ6Cおよび16Cがそれぞれ接続される。同様に、LSI101Bの出力(M-2およびS-2)に対してフィールドメモリ131B、132Bがそれぞれ接続され、フィールドメモリ131B、132Bに対してラインメモリ6Dおよび16Dがそれぞれ接続される。
【0065】
フィールドメモリ131A〜132Bによって、上述したように、フィールド倍速化の処理がなされ、ラインメモリ6C〜16Dによってライン倍速化の処理がなされる。ラインメモリ6Cおよび16Cのそれぞれの出力データがセレクタ7Cに入力され、ラインメモリ6Dおよび16Dのそれぞれの出力データがセレクタ7Dに入力される。セレクタ7Cおよび7Dは、2倍のライン周波数で制御される。さらに、セレクタ7Cおよび7Dの出力がセレクタ7Eに入力され、セレクタ7Eの出力データが出力端子124に取り出される。セレクタ7Eは、2倍のフィールド周波数で制御される。
【0066】
図19は、図18の構成によって生成される出力画像信号を垂直方向および時間方向に示すものである。セレクタ7Cがフィールド周波数が2倍とされ、画素位置M-1およびS-1の画素を選択する。セレクタ7Dがフィールド周波数が2倍とされ、画素位置M-2およびS-2の画素を選択する。セレクタ7Eは、時間的に元のフィールドのタイミングで、セレクタ7Cの出力(M-1およびS-1)を選択し、元のフィールドの1/120秒後のタイミングで、セレクタ7Dの出力(M-2およびS-2)を選択する。それによって、図19に示すように、垂直画素数が2倍でフィールド周波数が2倍の出力画像信号(1050p/120Hz)を形成できる。また、同様に、(1050i/120Hz)も形成することができる。なお、水平画素数は、元の2倍とされるのは、上述した第1の実施形態と同様である。
【0067】
また、上述した実施形態では、一つの画素生成装置が垂直画素数および水平画素数の両者を2倍としているが、垂直方向のみまたは水平方向のみの画素数を2倍とする画素生成装置のLSIを2個組み合わせることによって、垂直方向のみまたは水平方向のみの画素数を元の4倍とすることができる。
【0068】
上述したこの発明の実施形態を例えばCRTディスプレイのような表示装置と入力信号源との間に設けることによって、入力信号源の解像度より高い解像度の画像を表示することができる。
【0069】
【発明の効果】
この発明は、垂直画素数を2倍とする機能を有する画素生成装置を複数個組み合わせ、出力処理部で、ライン倍速および/またはフィールド倍速を行うことによって、元の入力画像信号に比してより高い解像度の種々の出力画像信号を生成することができる。また、画素生成装置は、クラス分類適応処理によって画素を生成するので、線形補間を行うものと異なり、解像度を入力以上に高めることができ、また、静止画、動画とも高画質とすることができる。
【図面の簡単な説明】
【図1】この発明に使用される画素生成装置の一例のブロック図である。
【図2】線順次変換動作を説明するための波形図である。
【図3】画素生成装置の一例の入力画像の画素と出力画像の画素の位置関係を説明するための略線図である。
【図4】入力画素および出力画素の位置関係と、空間クラスタップの一例を示す略線図である。
【図5】入力画素および出力画素の位置関係と、空間クラスタップの一例を示す略線図である。
【図6】予測係数を取得するための学習時の構成の一例を示すブロック図である。
【図7】学習時の画素間引きの処理を説明するための略線図である。
【図8】画素生成装置の全体的構成のブロック図である。
【図9】入力画像の画素と出力画像の画素の位置関係の一例を説明するための略線図である。
【図10】入力画像の画素と出力画像の画素の位置関係の一例を説明するための略線図である。
【図11】入力画像の画素と出力画像の画素の位置関係の他の例を説明するための略線図である。
【図12】入力画像の画素と出力画像の画素の位置関係の他の例を説明するための略線図である。
【図13】この発明の第1の実施形態のブロック図である。
【図14】この発明の第1の実施形態における入力画像の画素と出力画像の画素の位置関係の一例を説明するための略線図である。
【図15】この発明の第1の実施形態における入力画像の画素と出力画像の画素の位置関係の他の例を説明するための略線図である。
【図16】この発明の第2の実施形態に使用する画素生成装置のブロック図である。
【図17】入力画像の画素と出力画像の画素の位置関係の一例を説明するための略線図である。
【図18】この発明の第2の実施形態のブロック図である。
【図19】この発明の第2の実施形態における入力画像の画素と出力画像の画素の位置関係の一例を説明するための略線図である。
【符号の説明】
2,12・・・クラス検出回路、3,13・・・予測タップ選択回路、4,14・・・予測係数メモリ、5,15・・・積和演算回路、101、101A、101B・・・画素生成装置のLSI、6、6A〜6D、16A〜16D・・・ラインメモリ、7、7A〜7E・・・セレクタ、131、131A、131B、132、132A、132B・・・フィールドメモリ
Claims (8)
- 垂直画素数が入力画像信号のN倍(Nは、4以上の整数)で、それぞれ垂直方向の位置が異なる第1、第2、第3、および第4の画素位置の画素を有する出力画像信号を生成するようにした画像情報変換装置において、
上記第1の画素位置に第1の出力画像信号を生成し、上記第2の画素位置に第2の出力画像信号を生成する第1の画素生成装置と、
上記第3の画素位置に第3の出力画像信号を生成し、上記第4の画素位置に第4の出力画像信号を生成する第2の画素生成装置と、
上記第1、第2、第3、および第4の出力画像信号それぞれのライン周波数をN倍とした第5、第6、第7、および第8の出力画像信号を生成し、上記第5、第6、第7、および第8の出力画像信号を選択的に合成することによって、出力画像信号を生成する出力処理装置とを備え、
上記第1の画素生成装置は、上記第1および第2の画素位置の上記第1および第2の出力画像信号の画素値をそれぞれ生成する第1および第2の信号生成部からなり、
上記第2の画素生成装置は、上記第3および第4の画素位置の上記第3および第4の出力画像信号の画素値をそれぞれ生成する第3および第4の信号生成部からなり、
上記第1、第2、第3、および第4の信号生成部のそれぞれは、
積和演算によって、上記第1、第2、第3および第4の画素位置の一の画素位置の画素を生成した時に、生成された値と上記画素位置の画素の真値との誤差を最小とするように、クラス情報毎に予め学習によって取得されている予測係数を記憶するメモリ部と、
上記一の画素位置の周辺に位置する上記入力画像信号の複数の画素のレベル分布を表すクラス情報を形成し、上記クラス情報に対応した上記予測係数を上記メモリ部から読み出すクラス決定部と、
上記一の画素位置の周辺に位置する上記入力画像信号の複数の画素と、上記メモリ部からの上記予測係数との積和演算によって、上記一の画素位置の画素を作成する画素値生成部とを有することを特徴とする画像情報変換装置。 - 垂直画素数が入力画像信号のN倍(Nは、2以上の整数)で、互いに垂直方向に異なるまたは時間方向に異なると共に、フィールド周波数が入力画像信号のM倍(Mは、2以上の整数)で第1、第2、第3、および第4の画素位置の画素を有する出力画像信号を生成するようにした画像情報変換装置において、
上記第1の画素位置に第1の出力画像信号を生成し、上記第2の画素位置に第2の出力画像信号を生成する第1の画素生成装置と、
上記第3の画素位置に第3の出力画像信号を生成し、上記第4の画素位置に第4の出力画像信号を生成する第2の画素生成装置と、
上記第1、第2、第3、および第4の出力画像信号それぞれのライン周波数をN倍とすると共に、上記第1、第2、第3、および第4の出力画像信号それぞれのフィールド周波数をM倍とした第5、第6、第7、および第8の出力画像信号を生成し、上記第5、第6、第7、および第8の出力画像信号を選択的に合成することによって、出力画像信号を生成する出力処理装置とを備え、
上記第1の画素生成装置は、上記第1および第2の画素位置の上記第1および第2の出力画像信号の画素値をそれぞれ生成する第1および第2の信号生成部からなり、
上記第2の画素生成装置は、上記第3および第4の画素位置の上記第3および第4の出力画像信号の画素値をそれぞれ生成する第3および第4の信号生成部からなり、
上記第1、第2、第3、および第4の信号生成部のそれぞれは、
積和演算によって、上記第1、第2、第3および第4の画素位置の一の画素位置の画素を生成した時に、生成された値と上記画素位置の画素の真値との誤差を最小とするように、クラス情報毎に予め学習によって取得されている予測係数を記憶するメモリ部と、
上記一の画素位置の周辺に位置する上記入力画像信号の複数の画素のレベル分布を表す クラス情報を形成し、上記クラス情報に対応した上記予測係数を上記メモリ部から読み出すクラス決定部と、
上記一の画素位置の周辺に位置する上記入力画像信号の複数の画素と、上記メモリ部からの上記予測係数との積和演算によって、上記一の画素位置の画素を作成する画素値生成部とを有することを特徴とする画像情報変換装置。 - 請求項1または2において、
上記第1、第2、第3、および第4の信号生成部のそれぞれは、水平方向の画素数が入力画素数の2倍とされた出力画像信号を生成することを特徴とする画像情報変換装置。 - 請求項1または2において、
上記第1、第2、第3および第4の画素位置が一定の位置とされ、プログレッシブ方式の出力画像信号を形成することを特徴とする画像情報変換装置。 - 請求項1または2において、
上記第1、第2、第3および第4の画素位置が1フィールド毎に異ならされ、インタ−レス方式の出力画像信号を形成することを特徴とする画像情報変換装置。 - 請求項1または2において、
上記第1および第2の画素生成装置は、それぞれ1チップの集積回路の構成であることを特徴とする装置。 - 入力画像信号源と表示装置との間に、画像情報変換装置を設け、
上記画像情報変換装置は、
垂直画素数が入力画像信号のN倍(Nは、4以上の整数)で、それぞれ垂直方向の位置が異なる第1、第2、第3、および第4の画素位置の画素を有する出力画像信号を生成するようにした画像情報変換装置であって、
上記第1の画素位置に第1の出力画像信号を生成し、上記第2の画素位置に第2の出力画像信号を生成する第1の画素生成装置と、
上記第3の画素位置に第3の出力画像信号を生成し、上記第4の画素位置に第4の出力画像信号を生成する第2の画素生成装置と、
上記第1、第2、第3、および第4の出力画像信号それぞれのライン周波数をN倍とした第5、第6、第7、および第8の出力画像信号を生成し、上記第5、第6、第7、および第8の出力画像信号を選択的に合成することによって、出力画像信号を生成する出力処理装置とを備え、
上記第1の画素生成装置は、上記第1および第2の画素位置の上記第1および第2の出力画像信号の画素値をそれぞれ生成する第1および第2の信号生成部からなり、
上記第2の画素生成装置は、上記第3および第4の画素位置の上記第3および第4の出力画像信号の画素値をそれぞれ生成する第3および第4の信号生成部からなり、
上記第1、第2、第3、および第4の信号生成部のそれぞれは、
積和演算によって、上記第1、第2、第3および第4の画素位置の一の画素位置の画素を生成した時に、生成された値と上記画素位置の画素の真値との誤差を最小とするように、クラス情報毎に予め学習によって取得されている予測係数を記憶するメモリ部と、
上記一の画素位置の周辺に位置する上記入力画像信号の複数の画素のレベル分布を表すクラス情報を形成し、上記クラス情報に対応した上記予測係数を上記メモリ部から読み出すクラス決定部と、
上記一の画素位置の周辺に位置する上記入力画像信号の複数の画素と、上記メモリ部からの上記予測係数との積和演算によって、上記一の画素位置の画素を作成する画素値生成部とを有することを特徴とする画像表示装置。 - 入力画像信号源と表示装置との間に、画像情報変換装置を設け、
上記画像情報変換装置は、
垂直画素数が入力画像信号のN倍(Nは、2以上の整数)で、互いに垂直方向に異なるまたは時間方向に異なると共に、フィールド周波数が入力画像信号のM倍(Mは、2以上の整数)で第1、第2、第3、および第4の画素位置の画素を有する出力画像信号を生成するようにした画像情報変換装置であって、
上記第1の画素位置に第1の出力画像信号を生成し、上記第2の画素位置に第2の出力画像信号を生成する第1の画素生成装置と、
上記第3の画素位置に第3の出力画像信号を生成し、上記第4の画素位置に第4の出力画像信号を生成する第2の画素生成装置と、
上記第1、第2、第3、および第4の出力画像信号それぞれのライン周波数をN倍とすると共に、上記第1、第2、第3、および第4の出力画像信号それぞれのフィールド周波数をM倍とした第5、第6、第7、および第8の出力画像信号を生成し、上記第5、第6、第7、および第8の出力画像信号を選択的に合成することによって、出力画像信号を生成する出力処理装置とを備え、
上記第1の画素生成装置は、上記第1および第2の画素位置の上記第1および第2の出力画像信号の画素値をそれぞれ生成する第1および第2の信号生成部からなり、
上記第2の画素生成装置は、上記第3および第4の画素位置の上記第3および第4の出力画像信号の画素値をそれぞれ生成する第3および第4の信号生成部からなり、
上記第1、第2、第3、および第4の信号生成部のそれぞれは、
積和演算によって、上記第1、第2、第3および第4の画素位置の一の画素位置の画素を生成した時に、生成された値と上記画素位置の画素の真値との誤差を最小とするように、クラス情報毎に予め学習によって取得されている予測係数を記憶するメモリ部と、
上記一の画素位置の周辺に位置する上記入力画像信号の複数の画素のレベル分布を表すクラス情報を形成し、上記クラス情報に対応した上記予測係数を上記メモリ部から読み出すクラス決定部と、
上記一の画素位置の周辺に位置する上記入力画像信号の複数の画素と、上記メモリ部からの上記予測係数との積和演算によって、上記一の画素位置の画素を作成する画素値生成部とを有することを特徴とする画像表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29945298A JP4154768B2 (ja) | 1998-10-21 | 1998-10-21 | 画像情報変換装置および画像表示装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29945298A JP4154768B2 (ja) | 1998-10-21 | 1998-10-21 | 画像情報変換装置および画像表示装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000134586A JP2000134586A (ja) | 2000-05-12 |
JP4154768B2 true JP4154768B2 (ja) | 2008-09-24 |
Family
ID=17872768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29945298A Expired - Fee Related JP4154768B2 (ja) | 1998-10-21 | 1998-10-21 | 画像情報変換装置および画像表示装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4154768B2 (ja) |
-
1998
- 1998-10-21 JP JP29945298A patent/JP4154768B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000134586A (ja) | 2000-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4158232B2 (ja) | 画像情報変換装置および画像表示装置 | |
JP4696388B2 (ja) | 情報信号処理装置、情報信号処理方法、画像信号処理装置およびそれを使用した画像表示装置、それに使用される係数種データ生成装置、係数データ生成装置、並びに情報記録媒体 | |
JP4147632B2 (ja) | 画像情報変換装置、画像情報変換方法、およびテレビジョン受像機 | |
JP4131048B2 (ja) | 画像情報変換装置、変換方法および画像表示装置 | |
JP4168490B2 (ja) | 動き判定装置、その方法および画像情報変換装置 | |
JP4193233B2 (ja) | 動き判定装置、その方法および画像情報変換装置 | |
JP4470323B2 (ja) | 画像変換装置および方法 | |
JP4078719B2 (ja) | 画像情報変換装置、変換方法および画像表示装置 | |
JP4154768B2 (ja) | 画像情報変換装置および画像表示装置 | |
JP4470324B2 (ja) | 画像信号変換装置および方法 | |
JP4140091B2 (ja) | 画像情報変換装置および画像情報変換方法 | |
JP2001238185A (ja) | 画像信号変換装置、画像信号変換方法、およびそれを使用した画像表示装置、並びにそれに使用される係数データの生成装置および生成方法 | |
JP4174891B2 (ja) | 画像情報変換装置および方法 | |
JP4099555B2 (ja) | 画像情報変換装置 | |
JP4123587B2 (ja) | 画像情報処理装置および方法 | |
JP3800638B2 (ja) | 画像情報変換装置および方法 | |
JP4438113B2 (ja) | 画像情報変換装置、画像情報変換方法および表示装置 | |
JP4310847B2 (ja) | 画像情報変換装置および変換方法 | |
JP3480011B2 (ja) | 画像情報変換装置 | |
JP4193236B2 (ja) | 画像情報変換装置、画像情報変換方法、およびテレビジョン受像機 | |
JP2000083223A (ja) | 画像情報変換装置および画像情報変換方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080325 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080617 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080630 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130718 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |