JP4149309B2 - 走査型光学顕微鏡 - Google Patents

走査型光学顕微鏡 Download PDF

Info

Publication number
JP4149309B2
JP4149309B2 JP2003140033A JP2003140033A JP4149309B2 JP 4149309 B2 JP4149309 B2 JP 4149309B2 JP 2003140033 A JP2003140033 A JP 2003140033A JP 2003140033 A JP2003140033 A JP 2003140033A JP 4149309 B2 JP4149309 B2 JP 4149309B2
Authority
JP
Japan
Prior art keywords
lens
objective lens
conversion element
wavefront conversion
wavefront
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003140033A
Other languages
English (en)
Other versions
JP2004341394A (ja
Inventor
郁俊 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003140033A priority Critical patent/JP4149309B2/ja
Publication of JP2004341394A publication Critical patent/JP2004341394A/ja
Application granted granted Critical
Publication of JP4149309B2 publication Critical patent/JP4149309B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Microscoopes, Condenser (AREA)
  • Lenses (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、走査型光学顕微鏡に関し、特に、波面変換素子を用いたレーザー走査型顕微鏡等の走査型光学顕微鏡に関するものである。
【0002】
【従来の技術】
従来、例えばLSM(レーザー走査型顕微鏡)において、観測する物体の三次元像を得るためには、その物体又は対物レンズを機械的に光軸方向に移動させて、物体内部の各面における光学像を順次取り込んでいく必要があった。しかし、この方法は機械的駆動を必要とするために、位置制御を高い精度と再現性で実現することは困難である。また、物体を移動させる方法においては、物体が大きい場合には高速走査ができない等の問題があった。
【0003】
さらに、生体物体を観察する際に、対物レンズを物体に直接接触させるか、あるいは、物体を培養液に浸した状態で対物レンズを走査すると、その振動による悪影響を観察する物体に与えることになり、好ましくない。
【0004】
これらの問題点を解決する方法として、特許文献1記載のアダプティブ光学装置がある。特許文献1のアダプティブ光学装置は、パワーを変化させることのできる光学素子(波面変換素子)を備えた顕微鏡であって、図16、図17にその構成図を示す。この先行例では、観察光路及び/又は照明光路内に波面変換素子を有し、その波面変換素子を用いて光学系の焦点距離を変化させると共に、この焦点距離変化に伴って生じる収差も補正するものである。こうすることによって、対物レンズと物体との距離を変えることなく、物体空間での焦点の形成と移動、さらに収差補正を行うことができる。
【0005】
【特許文献1】
特開平11−101942号公報
【0006】
【発明が解決しようとする課題】
上記の従来技術において、物体で焦点移動を行い、さらに収差補正を行う場合に、対物レンズの軸上での収差を補正するように波面変換素子を変調すると、対物レンズの軸外では収差が生じてしまう。焦点移動を行わない場合には、対物レンズが軸外の光束に対しても、ある程度収差が補正されるように設計されているので、軸上と軸外の光束に対しても収差が補正される場合もある。しかし、焦点の移動が行われると、その移動量に応じて軸上の収差と軸外の収差の違いが大きくなるために、対物レンズの軸上の光束を補正するために変調していると、軸外の収差を十分に補正できず、軸から離れた位置、つまり、物体高が高い所では十分な性能が確保できない場合が多い。
【0007】
本発明は従来技術のこのような問題点を解決するためになされたものであり、その目的は、軸外での性能劣化が少なく、観察する物体に影響を及ぼすことの少ない、波面変換素子を用いたレーザー走査型顕微鏡(LSM)等の走査型光学顕微鏡を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成する本発明の走査型光学顕微鏡は、光源と、前記光源から発する照明光に任意の波面変換を与える波面変換素子と、前記波面変換素子から発する波面変換後の照明光を互いに直交する方向に走査する光束走査手段と、前記光束走査手段によって進行方向を変えた照明光を物体に集光する対物レンズと、前記物体から発する信号光を検出する検出器とを備え、前記対物レンズの中で最も物体側にある光学素子が物体に対して位置を固定され、前記対物レンズは物体に対して移動するレンズを含み、その移動と同期して、前記波面変換素子を変調するように構成したことを特徴とするものである。
【0009】
この場合、光束走査手段が、対物レンズの瞳と共役な位置に配置されていることが望ましい。
【0010】
また、波面変換素子と光束走査手段とが互いに共役の位置に配置されていることが望ましい。
【0011】
本発明においては、対物レンズの中で最も物体側にある光学素子が物体に対して位置を固定され、対物レンズは物体に対して移動するレンズを含み、その移動と同期して、波面変換素子を変調するように構成したので、焦点調節と収差補正を移動するレンズと波面変換素子に分担させることができ、補正能力が高まると共に、波面変換素子の変調量が少なくてすむようになり、軸外での性能劣化が少なく、観察する物体に影響を及ぼすことの少ない走査型光学顕微鏡を提供することができる。
【0012】
【発明の実施の形態】
以下に、本発明の走査型光学顕微鏡の実施形態を示す。なお、以下の説明に用いる図中において、繰り返し用いられる同一の要素には同一の記号を付し、重複する説明は行わない。また、光束が入射してくる方向を前側、出射していく方向を後側とし、光源としてレーザー発振器を用いたレーザ走査型顕微鏡(LSM)を用いて説明する。
【0013】
図1〜図15を参照して本発明の1実施形態を説明する。
【0014】
図1はこの実施形態のLSMの全体の構成を示す図であり、この図において、光源としてのレーザー光源11は照明光を発し、その照明光はコリメータレンズ12によって平面波に変換される。次に、この照明光はダイクロイックミラー51を透過した後に、波面変換素子2に入射する。この波面変換素子2は、ミラーの反射面が電気的制御によって制御可能な形状可変ミラー22で構成され、この形状可変ミラー22では、後述する所定の波面変換が行われる。波面変換素子2によって波面変換が施された照明光は、その前側焦平面が波面変換素子2と略一致するように配置されている第三のリレー光学系71に入射する。第三のリレー光学系71を透過した照明光は、次に第二のリレー光学系72を透過し、その後側焦平面に配置してある光束走査手段3に入射する。ここで、第三のリレー光学系71の後側焦平面と第二のリレー光学径72の前側焦平面が略一致するように配置されているので、光束走査手段3と波面変換素子2とは共役な面となる。
【0015】
光束走査手段3は互いに直交する2つの軸で回転が可能なジンバルミラーからなり、ジンバルミラーで適切に照明光の向きを変えることで、物体面で互いに直行するx方向及びy方向に入射する照明光を走査できるようにする。
【0016】
光束走査手段3で特定の角度に反射された照明光は、第一のリレーレンズ73に入射し、次に結像レンズ74に入射し、最後に対物レンズ4を透過することで、物体Oに集光する。この対物レンズ4では、対物レンズ4中のレンズの一部が波面変換素子2と連動して移動することで、集光する位置を変化させる。ここで、第一のリレーレンズ73、結像レンズ74、対物レンズ4はテレセントリックな光学系で形成され、それぞれの前側焦平面と後側焦平面が略同一となるようになっている。
【0017】
照明光が集光した物体Oからは測定すべき反射光束が発生し、その光束は照明光が通ってきたのと逆向きの光路を進み、対物レンズ4、結像レンズ74、第一のリレーレンズ73、光束走査手段3、第二のリレーレンズ72、第三のリレーレンズ71と通過し、波面変換素子2で反射される。波面変換素子2で反射された光束は、次にダイクロイックミラー51で検出すべき特定の波長のみが反射され、集光レンズ52に入射する。集光レンズ52の後側焦平面には検出器53が配置され、目的とする波長が検出される。
【0018】
本実施形態で用いた第三のリレーレンズ71、第二のリレーレンズ72、第一のリレーレンズ73及び結像レンズ74、対物レンズ4の具体例の数値データを後記の表1に、さらに、それらの光学系の詳細を図2、特に対物レンズ4については図3に示す。
【0019】
表1において、波面変換素子2位置での光軸に垂直な面S1から第三のリレー光学系71、第二のリレー光学系72、光束走査手段3、第一のリレーレンズ73、結像レンズ74、対物レンズ4、物体Oに至る順の光学面の曲率半径をr1 、r2 、r3 、…、各光学面間の間隔をd1 、d2 、d3 、…、各光学面間の空気以外の媒体(レンズ及び液体)のd線の屈折率をnd1、nd2、nd3、…、各光学面間の空気以外の媒体(レンズ及び液体)のアッベ数をνd1、νd2、νd3、…としている。なお、図2では区別しやすいように、いくつかの光学面をその面の上記曲率半径を示す記号r1 、r2 、r3 、…で示しており、また、いくつかの光学面間の間隔を上記間隔d1 、d2 、d3 、…で示しており、図3では全ての光学面と光学面間の間隔を同様に示してある。
【0020】
本実施形態では、図3に示す対物レンズ4中のレンズ間隔d39とd41が変化し、その間隔間に位置するレンズ41が移動する。したがって、物体Oと直接接しているレンズは移動しないので、レンズ41の移動に伴う物体Oへの影響はほとんどない。
【0021】
また、本実施形態では、波面変換素子2として電気的に反射面が制御可能な形状可変ミラー22で、その光軸上の中心が固定されている。反射面の直交座標を(x’,y’,z’)とした場合に、反射面の形状Z’(x’,y’)は次の(1)式に示すような自由曲面とし、その係数Cj において、jは15以内とする。
【0022】
Figure 0004149309
ここで、(1)式の第1項は球面項、第2項は自由曲面項である。球面項中、
c:頂点の曲率
k:コーニック定数(円錐定数)
である。
【0023】
ここで、ΔZの符号は対物レンズ4の焦平面より、対物レンズ4に近い方をマイナス、遠ざかる方向をプラスにとることにする(図3)。また、照明光はz’、y’平面内でz’軸に対して−45°の方向から入射するものとする(図2)。また、使用波長は488nmとしている。
【0024】
ΔZ=0の位置が対物レンズ4の焦点位置であるために、ΔZ=0の位置に照明光を集光させるには、波面変換素子2を平面にしておき、平面波が第三のリレーレンズ71に入射すればよい。しかし、ΔZが0でない場合には、第三リレーレンズ71に入射させる照明光は平面波でなく、補正した波面を入射させる必要がある。波面変換素子2のみを変調して、ΔZ=−25μmの物体面で、y=0.0mm(yは物体高となる。)の位置に照明光を収差なく集光させる場合を考える。この場合に、図2に示すS1面(波面変換素子2と45°をなす平面)における仮想的な波面形状のy方向の断面は図4(a)のようになる。同様に、ΔZ=−25μmの物体面でy=0.0mmの位置に照明光を収差なく集光させるときに、対物レンズ4中のレンズ41を、後記の表2に示す値で移動させた場合では、S1面において必要になる仮想的な波面の形状は図5(a)となる。図4(a)、図5(a)から明らかなように、必要となる波面の光路差が波面変換素子2のみを用いる場合には9μmである。一方、本実施形態で用いている対物レンズ4中のレンズ41を移動させる場合には、デフォーカス成分をレンズ移動で補っているため、必要となる波面の光路差は0.5μmと大変小さくなっている。したがって、波面変換素子2(本実施形態では、形状可変ミラー22)に大きな変調量が必要ではなくなることが分かる。
【0025】
次に、物体面でy=0.0mmの位置に収差なく集光させる波面と、それ以外のy(物体高)の位置で収差なく集光させるための波面との違いについて、S1面のy方向での違いを平方和として求めた。その結果、波面変換素子2のみを用いた場合を図4(b)に、対物レンズ4中のレンズ41を移動させた場合を図5(b)に示す。これらのグラフから、波面変換素子2のみを用いて変調を行う場合には、yが0から離れる程y=0.0mmで必要な波面との間の光路差が生じることが分かる。例えばy=0.08mmでは、波面変換素子2のみの場合には、y=0.0mmとの平行和は、0.74×10-6mm2 に対して、対物レンズ4中のレンズ41を移動させた場合には、0.41×10-6mm2 と小さくなっている。これは、対物レンズ4中のレンズ41を用いてデフォーカス成分を取り除いているので、焦点の位置ずれに伴うその他の収差も小さくすることができるからである。
【0026】
ΔZ=25μmの物体面で、y=0.0mmの位置に照明光を集光させる場合について、波面変換素子2のみを用いて変調するときに、S1面で必要とされる波面形状のy方向の断面を図6(a)に、対物レンズ4中のレンズ41を移動させた場合にS1面で必要な波面形状の断面図を図7(a)に示す。さらに、y=0.0mmで必要な波面とその他の領域で必要な波面の違いをぞれぞれ図6(b)、図7(b)に示す。これら、図6、図7からも、対物レンズ4中のレンズ41を移動させた場合の方が、補正すべき波面の光路差が小さく、補正すべき波面の量も小さいことが分かる。
【0027】
したがって、対物レンズ4中のレンズ41の移動と連動して波面変換素子2の変調を適切に行うことで、物体面で広い範囲にわたって収差の補正が可能であることが分かる。また、波面変換素子2の変調と対物レンズ4中のレンズ41の移動が連動しているので、波面変換素子2に必要とされる変調量が小さく、当然その制御も容易となる。
【0028】
次に、本実施形態として、波面変換素子2の形状可変ミラー22を、上述した4次の自由曲面で変形させて最適化を行った場合について説明する。図8(a1)〜(a3)に対物レンズ4中のレンズ41を移動させずに、波面変換素子2である形状可変ミラー22を変調し、ΔZ=−25μmの位置に照明光を集光するように最適化を行った場合の、形状可変ミラー22の形状を示す。(a1)は形状を示す斜視図、(a2)はx方向の断面図、(a3)はy方向の断面図である。形状可変ミラー22のみを変形させて性能を保とうとすると、上述した理由より、照明光が入射する領域において8.8μm程度と大きなミラーの変位が必要となる。一方、対物レンズ4中のレンズ41を移動させた場合の形状を示す同様の図を図8(b1)〜(b3)に示す。この場合には、形状可変ミラー22の変位量は0.4μm程度と非常に小さくすることが可能となる。
【0029】
次に、性能の評価として、Strehl比を用いて行う。Strehl比は、収差が全くない理想的な状態で瞳強度一定、円形開口における点像強度分布の最大強度を1として、現在の点像における最大強度値の比率を表したもので、1より値が下がるに従って収差による影響が生じていることを示している。ΔZ=−25μmの物体面におけるy軸方向の収差の変化としてStrehl比を図9に示す。図9から分かるように、形状可変ミラー22のみを用いて補正を行ったものに対して、y軸方向の広い範囲にわたってStrehl比の低下が少なく、つまり、物体面での広い領域にわたって良好に収差を補正することが可能なことが分かる。
【0030】
同様に、ΔZ=25μmの位置に焦点を合わせた場合について説明する。対物レンズ4中のレンズ41を移動せずに、波面変換素子2である形状可変ミラー22を最適化した場合の形状可変ミラー22の形状を同様の図である図10(a1)〜(a3)に示す。また、対物レンズ中4のレンズ41を連動して移動する場合のミラー形状を同様の図である図10(b1)〜(b3)に示す。さらに、物体面でのy軸方向におけるStrehl比を図11に示す。図10を見れば明らかなように、ΔZ=−25μmの場合と同様で、対物レンズ4中のレンズ41を移動させない場合には、形状可変ミラー22の変位量が少なくとも10μm程度必要となる。対物レンズ4の中のレンズ41を形状可変ミラー22の変調と連動させて移動する場合には、ミラーの変位量は3.5μm程度ですむことが分かる。Strehl比に関しては、対物レンズ4の中のレンズ41を移動させない場合と移動させた場合では、物体面でのy軸方向全域にわたって常にレンズ41の移動を行った方の性能が上であることが分かる。これは、形状可変ミラー22の変形面として、上述したような自由曲面の関数としているので、補正できる収差についても限界がある。対物レンズ4中のレンズ41を移動させない場合だと、ΔZ=25μmの位置に焦点位置を合わせるための形状可変ミラー22の変形が難しく、その他の収差補正まで十分にできないためである。一方、対物レンズ4中のレンズ41を連動して移動させると、焦点位置も移動する。したがて、形状可変ミラー22では主に他の収差について補正を行えばよいことになり、補正能力がレンズ41を移動させない場合より上回る。
【0031】
なお、本実施形態における対物レンズ4中のレンズ41の移動量、及び、形状可変ミラー22の変形に関する係数は表2に示しておく。
【0032】
次に、対物レンズ4中の移動するレンズ41と形状可変ミラー22の駆動方法について説明する。
【0033】
図1において、初めに、物体Oとして蛍光ビーズを配置しておく。形状可変ミラー22を平面にし、次に、予め計測に必要な焦平面の位置に物体Oである蛍光ビーズを移動させ、検出器53で検出される光量が最大となるように対物レンズ4中のレンズ41を移動させる。次に、形状可変ミラー22を用いて検出器53で検出される光量が最大となるように形状可変ミラー22の形状を最適化する。このようにして、観測に必要なΔZに対する対物レンズ4中のレンズ41の移動量と、形状可変ミラー22の形状データ(パラメータCj )をコントローラ61にテーブルとして記憶させておく。実際の計測の際には、このテーブルに従ってレンズ41の移動量と形状可変ミラー22の形状を同期させて変調を行う。
【0034】
また、別な調整方法について、図12を用いて説明する。図12では、図1と比較すると、明視野観察を行うための白色光源81と、ハーフミラー82と、結像レンズ83と、明視野観察像を撮影するCCDカメラ84とが配置されている。初めに、Zスキャンを行いながら観測する物体Oを配置し、形状可変ミラー22を平面に設定して、白色光源81を用いて物体Oを照明し、その画像をハーフミラー82及び結像レンズ83を介してCCDカメラ84で撮像する。物体Oを移動させながら、同様に撮像を行い、観測したい物体中のZ方向の位置ΔZを特定する。次に、物体OをΔZ=0の位置に戻し、対物レンズ4中のレンズ41を移動させながら、事前に獲得したΔZの位置における物体Oの画像と比較する。対物レンズ4中のレンズ41を移動させて最も近いと思われる位置になるまで、対物レンズ4中のレンズ41の移動量の調整を行う。次に、形状可変ミラー22を用いて、最も画質が良くなるように形状可変ミラー22の最適化を行い、形状可変ミラー22の形状を決定する。これら決定した対物レンズ4中のレンズ41の移動量と、形状可変ミラー22の形状に関する係数(Cj )をコントローラー61に記憶させておく。最終的にレーザを用いた観測を行う際には、作成したテーブルに従ってレンズ41の移動量と形状可変ミラー22の形状を同期させて変調を行い、高速で光学性能の高いZスキャンを実現することが可能となる。
【0035】
本実施形態では、波面変換素子2として、光軸の中心、つまり、形状可変ミラー22面のx’−y’平面の中心では、変位量は常に0.0mmで、周辺が変形するものを示した。しかし、波面変換素子2である形状可変ミラー22として、凹面のみあるいは凸面のみ等の制限がある場合もある。例えば、静電タイプのように凹面のみで、変位量を正にできない場合には、図8(b1)〜(b3)や図10(a1)〜(b3)のような変調が不可能となり、Zスキャンができない領域が生じてしまう。このような場合には、第三のリレーレンズ71と第二のリレーレンズ72との距離を調整することで、形状可変ミラー22の形状を凹面に保ちつつ、Zスキャンが可能となる。
【0036】
例えば、形状可変ミラー22として、x' 方向の半径が0.9mmでy' 方向の半径が1.2mm程度の楕円領域が凹面にのみ変形する静電ミラーの場合を説明する。この場合には、形状可変ミラー22のx’=0,y’=0の点が0ではなく、負の方向にのみ移動し、x’方向の半径0.9mm、y’方向の半径1.2mm程度の周辺では変位が略0.0mmとする。上述した例では、第三のリレーレンズ71と第二のリレーレンズ72はテレセントリックな配置となっているが、そのレンズの間隔80mm(d4 )を40mm短くする。この配置にすると、ΔZ=0における最適な形状は、図13(a1)〜(a3)に図8(a1)〜(a3)と同様の図を示すように、凹面形状となる。さらに、ΔZ=−25μmの場合に形状可変ミラー22の変調を行うと、図14(a1)〜(a3)に示すようになり、一方、ΔZ=25μmの場合に対して形状可変ミラー22の最適化を行うと、図15(a1)〜(a3)に示すようになる。つまり、常にミラー全体が凹形状のままで、ΔZが−25μm〜25μmの範囲をスキャンすることが可能となる。
【0037】
このように、静電タイプで凹面形状のみの変形しかできない場合については、第三のリレーレンズ71と第二のリレーレンズ72の間隔を短くし、テレセントリックな配置をずらすようにするとよい。
【0038】
なお、本実施形態での形状可変ミラーの形状に関する係数を表3に示す。
【0039】
本発明の上記実施形態では、光束走査手段3と対物レンズ4の瞳とは共役な面に配置されている。光束走査手段3をこの瞳と共役な面に配置しなくとも、本実施形態は実現可能である。しかし、本実施形態のように、瞳と共役な面でx,y方向のスキャンを行う方が、光束のケラレもないので、より好ましい。
【0040】
なお、本実施形態では、波面変換素子2として、電気的な信号でその反射面の形状が制御可能な形状可変ミラーを用いているが、その他の液晶やフォトリフラクティブ結晶等の位相変調可能な素子も適用可能であることは明らかである。
【0041】
Figure 0004149309
Figure 0004149309
【0042】
Figure 0004149309
Figure 0004149309
【0043】
Figure 0004149309
【0044】
以上、本発明の走査型光学顕微鏡を実施形態に基づいて説明してきたが、本発明はこれら実施形態に限定されず種々の変形が可能である。
【0045】
【発明の効果】
以上の説明から明らかなように、本発明の走査型光学顕微鏡によると、対物レンズの中で最も物体側にある光学素子が物体に対して位置を固定され、対物レンズは物体に対して移動するレンズを含み、その移動と同期して、波面変換素子を変調するように構成したので、焦点調節と収差補正を移動するレンズと波面変換素子に分担させることができ、補正能力が高まると共に、波面変換素子の変調量が少なくてすむようになり、軸外での性能劣化が少なく、観察する物体に影響を及ぼすことの少ない走査型光学顕微鏡を提供することができる。
【図面の簡単な説明】
【図1】本発明の1実施形態のレーザー走査型顕微鏡の全体の構成を示す図である。
【図2】図1の本実施形態の光学系の詳細を示す光路図である。
【図3】図1の本実施形態の対物レンズを示す光路図である。
【図4】ΔZ=−25μmの物体面に対して波面変換素子のみを変調する場合の図2のS1面における仮想的な波面形状のy方向の断面(a)と異なる像高における波面の差を示す図(b)である。
【図5】ΔZ=−25μmの物体面に対して対物レンズ中のレンズも移動させた場合の図4と同様の図である。
【図6】ΔZ=25μmの物体面に対して波面変換素子のみを変調する場合の図4と同様の図である。
【図7】ΔZ=25μmの物体面に対して対物レンズ中のレンズも移動させた場合の図4と同様の図である。
【図8】対物レンズ中のレンズを移動させずにΔZ=−25μmの位置に照明光を集光するように最適化を行った場合の形状可変ミラーの形状と、対物レンズ中のレンズを移動させた場合の形状可変ミラーの形状とを示す図である。
【図9】図8に対応するStrehl比を示す図である。
【図10】対物レンズ中のレンズを移動させずにΔZ=25μmの位置に照明光を集光するように最適化を行った場合の形状可変ミラーの形状と、対物レンズ中のレンズを移動させた場合の形状可変ミラーの形状とを示す図である。
【図11】図10に対応するStrehl比を示す図である。
【図12】対物レンズ中の移動するレンズと形状可変ミラーの別な調整方法を説明するための図である。
【図13】周辺固定の形状可変ミラーを用いて第三のリレーレンズと第二のリレーレンズの間隔を短くする場合のΔZ=0における形状可変ミラーの形状を示す図である。
【図14】ΔZ=−25μmの場合の図13と同様の図である。
【図15】ΔZ=25μmの場合の図13と同様の図である。
【図16】ビームスプリッターによって光路分割をする従来の顕微鏡の構成を示す図である。
【図17】ビームスプリッターによって光路分割をする従来の2光子顕微鏡の構成を示す図である。
【符号の説明】
O…物体
2…波面変換素子
3…光束走査手段
4…対物レンズ
11…レーザー光源
12…コリメータレンズ
22…形状可変ミラー
41…移動可能なレンズ
51…ダイクロイックミラー
52…集光レンズ
53…検出器
61…コントローラ
71…第三のリレー光学系
72…第二のリレー光学系
73…第一のリレーレンズ
74…結像レンズ
81…白色光源
82…ハーフミラー
83…結像レンズ
84…CCDカメラ

Claims (3)

  1. 光源と、前記光源から発する照明光に任意の波面変換を与える波面変換素子と、前記波面変換素子から発する波面変換後の照明光を互いに直交する方向に走査する光束走査手段と、前記光束走査手段によって進行方向を変えた照明光を物体に集光する対物レンズと、前記物体から発する信号光を検出する検出器とを備え、前記対物レンズの中で最も物体側にある光学素子が物体に対して位置を固定され、前記対物レンズは物体に対して移動するレンズを含み、その移動と同期して、前記波面変換素子を変調するように構成したことを特徴とする走査型光学顕微鏡。
  2. 前記光束走査手段が、前記対物レンズの瞳と共役な位置に配置されていることを特徴とする請求項1記載の走査型光学顕微鏡。
  3. 前記波面変換素子と前記光束走査手段とが互いに共役の位置に配置されていることを特徴とする請求項1又は2記載の走査型光学顕微鏡。
JP2003140033A 2003-05-19 2003-05-19 走査型光学顕微鏡 Expired - Fee Related JP4149309B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140033A JP4149309B2 (ja) 2003-05-19 2003-05-19 走査型光学顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140033A JP4149309B2 (ja) 2003-05-19 2003-05-19 走査型光学顕微鏡

Publications (2)

Publication Number Publication Date
JP2004341394A JP2004341394A (ja) 2004-12-02
JP4149309B2 true JP4149309B2 (ja) 2008-09-10

Family

ID=33528880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140033A Expired - Fee Related JP4149309B2 (ja) 2003-05-19 2003-05-19 走査型光学顕微鏡

Country Status (1)

Country Link
JP (1) JP4149309B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115383A1 (ja) 2012-02-03 2013-08-08 シチズンホールディングス株式会社 位相変調デバイス及びレーザ顕微鏡
WO2013172085A1 (ja) 2012-05-17 2013-11-21 シチズンホールディングス株式会社 収差補正デバイス及びレーザー顕微鏡
WO2014027694A1 (ja) 2012-08-16 2014-02-20 シチズンホールディングス株式会社 収差補正光学ユニット及びレーザー顕微鏡

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5059324B2 (ja) * 2005-01-11 2012-10-24 オリンパス株式会社 光学顕微鏡装置
JP2008026643A (ja) * 2006-07-21 2008-02-07 Olympus Corp レーザ走査型顕微鏡
JP5445898B2 (ja) * 2007-11-02 2014-03-19 株式会社ニコン 液浸系顕微鏡対物レンズ
JP2010026165A (ja) 2008-07-17 2010-02-04 Olympus Corp レーザー走査型顕微鏡
JP5692969B2 (ja) 2008-09-01 2015-04-01 浜松ホトニクス株式会社 収差補正方法、この収差補正方法を用いたレーザ加工方法、この収差補正方法を用いたレーザ照射方法、収差補正装置、及び、収差補正プログラム
EP2453285B1 (en) * 2010-11-16 2013-04-03 Olympus Corporation Illumination optical system
JP5855431B2 (ja) * 2011-11-18 2016-02-09 オリンパス株式会社 顕微鏡装置
JP6360825B2 (ja) * 2013-04-03 2018-07-18 オリンパス株式会社 結像光学系、照明装置および観察装置
JP6378931B2 (ja) 2014-05-21 2018-08-22 浜松ホトニクス株式会社 顕微鏡装置及び画像取得方法
DE102019208858A1 (de) 2019-06-18 2020-12-24 Carl Zeiss Microscopy Gmbh Beleuchtungseinheit für Mikroskope
DE102019008304B8 (de) 2019-11-29 2021-06-02 Abberior Instruments Gmbh Fluoreszenzmikroskop mit stabilisierter Justage und Verwendung einer Baugruppe zur Aufrüstung eines Fluoreszenzmikroskops
CN113917773B (zh) * 2021-10-19 2023-05-02 世大光电(东莞)有限公司 一种具有液体镜头的多轴变向投影仪
JPWO2023106222A1 (ja) * 2021-12-08 2023-06-15

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326860A (ja) * 1998-05-18 1999-11-26 Olympus Optical Co Ltd 波面変換素子及びそれを用いたレーザ走査装置
JP4531895B2 (ja) * 1999-12-06 2010-08-25 オリンパス株式会社 レーザ集光光学系及びそれを用いたレーザ走査型顕微鏡

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115383A1 (ja) 2012-02-03 2013-08-08 シチズンホールディングス株式会社 位相変調デバイス及びレーザ顕微鏡
US9383573B2 (en) 2012-02-03 2016-07-05 Citizen Holdings Co., Ltd. Phase modulation device and laser microscope
WO2013172085A1 (ja) 2012-05-17 2013-11-21 シチズンホールディングス株式会社 収差補正デバイス及びレーザー顕微鏡
US9594238B2 (en) 2012-05-17 2017-03-14 Citizen Watch Co., Ltd. Aberration correction device and laser microscope
WO2014027694A1 (ja) 2012-08-16 2014-02-20 シチズンホールディングス株式会社 収差補正光学ユニット及びレーザー顕微鏡
US9423600B2 (en) 2012-08-16 2016-08-23 Citizen Holdings Co., Ltd. Aberration correction optical unit and laser microscope

Also Published As

Publication number Publication date
JP2004341394A (ja) 2004-12-02

Similar Documents

Publication Publication Date Title
JP4149309B2 (ja) 走査型光学顕微鏡
JP4544904B2 (ja) 光学系
JP4531895B2 (ja) レーザ集光光学系及びそれを用いたレーザ走査型顕微鏡
US20060291039A1 (en) Laser condensing optical system
JP4576137B2 (ja) 顕微鏡
CN106461926A (zh) 具有简化的光学器件、尤其是具有可变的光瞳位置的光扫描显微镜
US10437050B2 (en) Phase-modulation-element adjustment system and method for decreasing wavefront aberration
JP5220172B2 (ja) 画像取得装置、画像取得システム、および対物光学系
JPH11326860A (ja) 波面変換素子及びそれを用いたレーザ走査装置
US6108127A (en) High resolution confocal microscope
EP2360505B1 (en) Microscope apparatus
JP5626367B2 (ja) 焦点位置維持装置及び顕微鏡
JP2008026643A (ja) レーザ走査型顕微鏡
JP4997834B2 (ja) 顕微鏡
JP2004109219A (ja) 走査型光学顕微鏡
JP5929204B2 (ja) 走査型顕微鏡
US6888680B2 (en) Optical arrangement for obtaining information from a sample or an observed object
JP4723842B2 (ja) 走査型光学顕微鏡
JP4391806B2 (ja) 光学顕微鏡
JP2003324057A (ja) アライメント装置およびアライメント方法
JP2740514B2 (ja) レーザースキャン眼底カメラ
KR102655817B1 (ko) 공간 변조 스캔을 이용한 플라잉 오버 빔 패턴 스캐닝 홀로그램 현미경 장치
KR102655822B1 (ko) 공간 변조 스캐너와 트랜슬레이션 스테이지를 사용한 플라잉 오버 빔 패턴 스캐닝 홀로그램 현미경 장치
JP2006106337A (ja) 走査型光学顕微鏡
WO2024217203A1 (zh) 一种单物镜光片三维荧光成像系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees