JP4145627B2 - 走査型共焦点プローブ - Google Patents

走査型共焦点プローブ Download PDF

Info

Publication number
JP4145627B2
JP4145627B2 JP2002321322A JP2002321322A JP4145627B2 JP 4145627 B2 JP4145627 B2 JP 4145627B2 JP 2002321322 A JP2002321322 A JP 2002321322A JP 2002321322 A JP2002321322 A JP 2002321322A JP 4145627 B2 JP4145627 B2 JP 4145627B2
Authority
JP
Japan
Prior art keywords
scanning
confocal probe
light beam
scanning confocal
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002321322A
Other languages
English (en)
Other versions
JP2004154257A (ja
Inventor
純 ホジェリオ 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2002321322A priority Critical patent/JP4145627B2/ja
Priority to US10/699,699 priority patent/US7252634B2/en
Publication of JP2004154257A publication Critical patent/JP2004154257A/ja
Priority to US11/370,977 priority patent/US20060167344A1/en
Application granted granted Critical
Publication of JP4145627B2 publication Critical patent/JP4145627B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)
  • Endoscopes (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、体腔内の生体組織の断層像を高倍率で観察することができる走査型共焦点プローブに関する。
【0002】
【従来の技術】
従来、精密診断検査で生体組織の検査を行う際には、その生体組織の内部を検査するため、切断用の鉗子などの処置具を用いてその検査を行う生体組織の一部を切り取り、体外に出して検査を行っていた。そのため、診断時間が長くなり、患者に対して迅速に治療を行うことができなかった。
【0003】
近年、生体組織の断層像を観察することができる共焦点プローブが広く普及している。この共焦点プローブは、共焦点顕微鏡で利用されているマイクロ機械加工された小型の共焦点用の装置を備えたプローブである。この共焦点用の装置は走査ミラーを備えており、この走査ミラーによってレーザ光を観察対象で走査させ、2次元または3次元の観察画像を得ることができる(例えば、特許文献1または2参照。)。
【0004】
【特許文献1】
特許第3032720号公報(第3〜5項、第1〜5図)
【特許文献2】
特許第3052150号公報(第3、4項、第1図)
【0005】
【発明が解決しようとする課題】
上述の共焦点用の装置で使用される走査ミラーは、シリコン基板などの半導体材料に実装されている。そしてこの走査ミラーを実装した基板は、筐体の内壁に設けられた基板取付部などによって装置内に取り付けられている。しかしながらこの基板取付部は、光軸に対して走査ミラーより外側に設けられているため、装置が大型化し、プローブ径が太くなり易いという欠点を有している。また、走査方向の異なる各走査ミラーを別々のシリコン基板に実装しているため、製造及び組立工程が複雑化し、コストアップしてしまう問題もある。
【0006】
また、各光学系に用いられるBK7や合成石英などの光学材料の膨張率とシリコン基板の膨張率とを比較すると、シリコン基板の膨張率は数十倍大きい。このため、共焦点用の装置が受ける温度変化が大きければ大きいほど、この膨張率の差による各光学系と走査ミラーとの位置関係のズレ量が増大してしまい、観察対象を走査するレーザ光の光路が光軸から外れ易くなってしまう。すなわち温度特性が悪いため、プローブ周辺が高温となる条件下で観察を行う場合に、正確な観察画像を得ることが困難となっている。
【0007】
そこで、本発明は上記の事情に鑑み、プローブが細径化でき、製造及び組立工程が簡略化可能で、かつ温度特性の優れた走査型共焦点プローブを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の課題を解決するため、本発明の一態様に係る走査型共焦点プローブは、体腔内の生体組織に光源から照射される光束を走査する走査ミラーを有する走査型共焦点プローブであって、光束の光路中に、走査ミラーを実装するための実装基板を有する。そして、その実装基板は、光源から照射される光束を透過する光学材料から構成される。すなわち、走査ミラーを光学材料(例えばBK7、合成石英)から構成された基板に実装することによって、プローブ内に配設された各光学素子と走査ミラーを実装した基板との膨張率の差が減少する。その結果、プローブが受ける温度変化が大きい場合でも、膨張率の差による各光学素子と走査ミラーとの位置関係のズレ量を抑えることが可能であるため、温度特性が向上する。さらに、走査ミラーを実装する基板を光源から照射される光束の光路中に配設し、かつ走査ミラーを光軸に対して非直交状態で実装することによって、光路として使用するスペースとこの実装基板を配設するスペースとを兼用できるため、プローブの外形状である筐体を小さくすることができ、プローブの細径化を行うことが可能となる。
【0009】
また、上記走査型共焦点プローブにおいて、走査ミラーには、光源から照射される光束を所定の方向に走査する第1の走査ミラーと、第1の走査ミラーと直交する方向に光束を走査する第2の走査ミラーとが含まれる。そして、各走査ミラーは同一の光学素子基板に実装されている。すなわち、走査ミラーを実装する基板の数を減少することができるため、製造及び組立工程の簡略化を図ることができる。
【0010】
また、上記走査型共焦点プローブは、光源から照射される光束を生体組織に集光する対物光学系を有し、その対物光学系と実装基板とが同一の材料から構成されている。すなわち、プローブ内に配設された各光学素子と走査ミラーを実装した基板との膨張率の差がなくなるため、温度特性が向上する。
【0011】
また、上記走査型共焦点プローブは、生体組織で反射した反射光のうち、対物光学系の物体側焦点面からの反射光以外の反射光を除去するよう配設されたピンホールを有する。そしてこのピンホールは、対物光学系の物体側焦点位置からの光束が入射するシングルモード光ファイバの端面であることを特徴とする。すなわち、コア径の小さいシングルモード光ファイバの端面を対物光学系の物体側焦点位置と共役の位置に配設することによって、この光ファイバは、共焦点光学系に用いられるピンホールの機能と共焦点光学系によって得られた観察像をプロセッサなどの外部装置に伝送する機能とを兼ね備えることが可能となる。
【0012】
また、上記いずれかに記載の走査型共焦点プローブを備えた共焦点内視鏡装置は、生体組織を照射する光源と、走査型共焦点プローブから導光される被検体の反射光に基づいて画像信号を生成する画像信号生成部とから構成されることを特徴とする。
【0013】
【発明の実施の形態】
図1は、本発明の第1の実施形態の走査型共焦点プローブ装置500の構成を示すブロック図である。走査型共焦点プローブ装置500は、走査型共焦点プローブ100と、プロセッサ300と、モニタ400から構成される。
【0014】
操作者は、走査型共焦点プローブ100を図示しない内視鏡の鉗子チャンネルなどに挿通し、このプローブを介して体腔内の観察像を得ることができる。プローブによって得られた観察像は、プロセッサ300によって画像処理が施され、モニタ400に表示される。
【0015】
プロセッサ300は、レーザ光源310と、カップラ320と、受光素子330と、CPU340と、画像処理回路350と、操作パネル360から構成される。
【0016】
レーザ光源310は、発振波長632nmのHe−Neレーザを発振する。なお、共焦点光学系に使用するレーザ光源は波長が短いほど高い分解能を得ることができる。すなわちレーザ光源310は、He−Neレーザに限定されることなく、例えば短波長のArレーザでもよい。
【0017】
レーザ光源310より発振した光束は、光分岐器であるカップラ320を介して、走査型共焦点プローブ100に導光される。
【0018】
走査型共焦点プローブ100は、光ファイバ110と、GRINレンズ120と、ガラス基板130と、マイクロミラー140、150と、対物レンズ170から構成される。
【0019】
光ファイバ110は、単一のモードを伝送するシングルモードファイバである。この光ファイバ110は、プロセッサ300から出力された光束をGRINレンズ120に向けて伝送する。
【0020】
GRINレンズ120は、屈折率がその媒体の内部で勾配を有する光学材料から成形されたレンズである。光ファイバ110から射出した光束は、このGRINレンズ120に入射し、平行光束となって、ガラス基板130に向けて射出される。
【0021】
ガラス基板130は、マイクロミラーを実装するための基板であり、マイクロミラー140を実装する実装面130aとマイクロミラー150を実装する実装面130bとを有する。このガラス基板130は、光学素子に用いられるBK7や合成石英などの硝材によって成形されており、GRINレンズ120から射出された平行光束の光路中に、これらの実装面が光軸に対して45度傾くように配設されている。なお、マイクロミラー実装面と光軸がなす角度は、45度に限定することなく、ガラス基板130の屈折率、プローブ内のスペースなど、種々の条件によって適宜変更するものである。
【0022】
GRINレンズ120から射出された平行光束は、ガラス基板130の実装面130bに入射し、屈折して、実装面130aに実装されているマイクロミラー140に導かれる。
【0023】
図2は、マイクロミラー140、150の構成を示す図である。マイクロミラー140、150は、シリコン板からエッチングによって一体形成されたプレート161、トーションバー162、及び指示枠163を有する。またプレート161は、その中央部に反射膜(例えば、アルミニウム、金、誘電体多層膜等)を蒸着して形成したミラー164を有する。さらに、プレート161、トーションバー162、及び指示枠163上には、銅薄膜で構成される平面コイル165が設けられている。また、永久磁石とヨークから構成されるヨーク部166が、トーションバー162の長手方向と平行に配設されている。
【0024】
ヨーク部166は、プレート161と略平行、かつトーションバー162の長手方向と略垂直な方向(図2におけるX’方向)の磁界を発生する。図示しない電源から駆動電流が平面コイル165に供給されると、トーションバー162と平行なプレート161の2辺において、フレミングの左手の法則によりZ’方向で互いに向きの異なる駆動力、すなわちトルクが発生する。なお、このとき発生するトルクは、平面コイル165に供給される駆動電流の増大に比例して増大する。
【0025】
この発生したトルクに応じてプレート161は、図中の矢印Aの方向に揺動する。その際、プレート161とトーションバー162は一体形成されているため、トーションバー162は捻られ、ばね反力を発生する。その結果、このトルクとばね反力とが平衡する角度までプレート161は回動する。そして互いの力が平衡する角度にプレート161が到達すると、その角度でプレート161は停止する。
【0026】
マイクロミラー140とマイクロミラー150は、互いのトーションバーが直交するように配設されている。マイクロミラー140のプレートが回動すると、レーザ光は被観察部位10に対してX方向に走査され、マイクロミラー150のプレートが回動すると、レーザ光は被観察部位10に対してY方向に走査される。なお、ここでいうX、Y方向とは、光軸と直交する方向であり、被観察部位10に対する平面方向を示す。
【0027】
また、マイクロミラー140、150は、プレート161における平面コイル165が設けられた面の反対側に図示しない2つの検出コイルを有する。平面コイル165に流される駆動電流には、プレート161の変位角検出用の検出電流が重畳して流されている。この検出電流に基づいて、平面コイル165とそれぞれの検出コイルとの間の相互インダクタンスによる誘導電圧がそれぞれの検出コイルに発生する。
【0028】
2つの検出コイルは、平面コイル165からそれぞれ等距離に配設されている。すなわち、プレート161が水平状態(トルクが発生していない状態)の場合は、誘導電圧の差は0である。しかしながら、プレート161が揺動すると、一方の検出コイルは平面コイル165と接近し、他方の検出コイルは平面コイル165から離れるため、互いの検出コイルに発生する誘導電圧に差が生じる。つまり、この誘導電圧の変化を検出することによって、マイクロミラーの変位角を検出することができる。
【0029】
マイクロミラー140に導かれた平行光束は、実装面130aを射出し、マイクロミラー140によって反射され、再び実装面130aに入射し、マイクロミラー150に導かれる。そして、マイクロミラー150によって反射された平行光束は、実装面130aを射出し、対物レンズ170に導かれる。
【0030】
対物レンズ170は、ガラス基板130と同一の光学材料、例えばBK7や合成石英などの硝材によって成形されている。実装面130aから射出した平行光束は、この対物レンズ170を介して被観察部位10の表面部または断層部において焦点を結ぶ。
【0031】
被観察部位10に射出された光束は、被観察部位10において反射し、対物レンズ170に入射する。そして対物レンズ170によって平行光束となり、上述と同様の光路を経て、GRINレンズ120に入射する。
【0032】
光ファイバ110は上述したようにシングルモードファイバであるため、そのコア径は3〜9μm程度であり(使用波長によって異なる)、非常に小さい。また、この光ファイバ110の端面110aは、対物レンズ170の物体側焦点位置と共役の位置に配設されている。すなわちGRINレンズ120に入射した光束のうち、被観察部位10において焦点を結んだ光束の反射光が、端面110aにおいて焦点を結ぶ。端面110aにおいて焦点を結んだ光束は、光ファイバ110に入射し、カップラ320を介して受光素子330に受光される。
【0033】
しかしながら、対物レンズ170の物体側焦点面からの反射光以外の被観察部位10の反射光は、端面110aにおいて焦点を結ばず、光ファイバ110に入射しないため、プロセッサ300に伝送されない。つまり、光ファイバ110は、対物レンズ170の焦点面における被観察部位10の反射光のみをプロセッサ300に伝送する。すなわち、本実施形態において光ファイバ110の端面110aは、対物レンズ170の物体側焦点面からの反射光以外の光を遮断するピンホールの機能と走査型共焦点プローブ100が有する光学系によって得られた観察像をプロセッサ300に伝送する機能とを兼ね備えている。
【0034】
また、GRINレンズ120の焦点面にピンホール、すなわち開口絞りが設けられているため、プローブ内の光学系は、テレセントリック光学系となっており、光量の損失が極めて少なくなっている。
【0035】
受光素子330によって受光された光束は、光電変換されて画像信号となり、画像処理回路350に出力される。画像処理回路350は、この画像信号に所定の画像処理を行い、コンポジットビデオ信号や、RGB信号、Sビデオ信号など、種々のビデオ信号に変換する。そして、これらのビデオ信号がモニタ400に出力されると、モニタ上に、走査型共焦点プローブ100によって生成された対物レンズ170の焦点面における被観察部位10の観察画像が表示される。
【0036】
操作者は、プロセッサ300が備える操作パネル360を操作することで、走査型共焦点プローブ100によって得られる画像を選択的に観察することができる。
【0037】
操作者によって操作パネル360に入力された情報は、CPU350に送信される。CPU350は、送信された情報に基づき、マイクロミラー140とマイクロミラー150を駆動させる。マイクロミラー140またはマイクロミラー150が駆動すると、上述したようにレーザ光は、被観察部位10に対してX方向またはY方向(すなわち平面方向)に走査する。そして走査された部位の反射光が観察像としてプロセッサ300に送信される。
【0038】
さらに、マイクロミラーの走査角度(すなわち、被観察部位10において走査されるレーザ光の範囲)を変えることによって、容易にその観察画像の視野を変えることができる。走査角度が小さい場合は小さい領域の観察画像となり、走査角度が大きい場合は大きな領域の観察画像となる。
【0039】
図3は、本発明の第2の実施形態の走査型共焦点プローブ装置500yの構成を示すブロック図である。なお、走査型共焦点プローブ装置500yにおいて、図1で示す第1の実施形態の走査型共焦点プローブ装置500と同一の構成には、同一の符号を付してここでの詳細な説明は省略する。走査型共焦点プローブ装置500yは、走査型共焦点プローブ100yと、プロセッサ300と、モニタ400から構成される。
【0040】
この実施形態においては、1つのマイクロミラーを用いて、生体組織の2次元画像を得るように構成されている。すなわち、第1の形態のマイクロミラー150を、2軸走査型のマイクロミラー(すなわちX方向及びY方向に対して同時に動作するもの)150yに置き換えて構成している。また、このとき、第1の形態のマイクロミラー140を、ミラー(例えば、金属単層膜や、誘電体多層膜など)140yに置き換えて構成する。
【0041】
レーザ光源310から照射された光束は、光ファイバ110、GRINレンズ120を介し、ガラス基板130に入射する。ガラス基板130の実装面130aには、ミラー140が接着されており、実装面130bには、マイクロミラー150yが実装されている。ガラス基板130に入射した光束は、ミラー140yで反射し、マイクロミラー150yに導かれる。そして、この光束は、マイクロミラー150yによって、被観察部位10に対してX方向及びY方向に走査される。被観察部位10からの反射光は、第1の実施形態と同様にプロセッサ300によって画像処理が施され、モニタ400に被観察部位10の2次元画像が表示される。なお、第2の実施形態において、実装面130a側にミラーを接着し、実装面130b側にマイクロミラーを実装しているが、実装面130a側にマイクロミラーを実装し、実装面130b側にミラーを接着してもよい。
【0042】
図4は、本発明の第3の実施形態の走査型共焦点プローブ装置500zの構成を示すブロック図である。なお、走査型共焦点プローブ装置500zにおいて、図1で示す第1の実施形態の走査型共焦点プローブ装置500と同一の構成には、同一の符号を付してここでの詳細な説明は省略する。走査型共焦点プローブ装置500zは、走査型共焦点プローブ100zと、プロセッサ300zと、モニタ400から構成される。
【0043】
プロセッサ300zは、ブリュスター窓を有するレーザ光源310zを有しており、その近傍には図示しない偏光分離膜が配置されている。このブリュスター窓と偏光分離膜は、レーザ光源310zから発振される光束が偏光分離膜に対してs偏光の光束となるように配置されている。そのため、このレーザ光源310zから射出する光束は、s偏光を有する光束に変換される。
【0044】
レーザ光源310zから射出した光束は、カップラ320を介し、走査型共焦点プローブ100z内の光ファイバ110に入射する。そして、光ファイバ110から射出した光束は、GRINレンズ120によって平行光束となり、偏光ビームスプリッタキューブ180に導かれる。
【0045】
偏光ビームスプリッタキューブ180は偏光膜181を有し、この偏光膜181が光軸に対して45度の角度を成すように配設されている。この偏光膜181は、直線偏光のうちs偏光の光束を反射させて、p偏光を透過させる特性を有する。
【0046】
また、光軸方向と平行な方向に位置する偏光ビームスプリッタキューブ180の各面にλ/4波長板190とλ/4波長板191とがそれぞれ貼り付けられている。λ/4波長板190、191は、直線偏光の光束を円偏光の光束に変換し、円偏光の光束を直線偏光の光束に変換する。
【0047】
偏光ビームスプリッタキューブ180に導かれたs偏光の平行光束は、偏光膜181によって90度折り曲げられ、λ/4波長板190に導かれる。そしてこの平行光束は、λ/4波長板190を通過し、このλ/4波長板190によって円偏光状態の平行光束とされ、マイクロミラー140に導かれる。
【0048】
マイクロミラー140に導かれた円偏光の平行光束は、マイクロミラー140のミラーによって反射され、再びλ/4波長板190を通過し、p偏光状態の平行光束となる。偏光膜181は、前述したようにp偏光を透過させる特性を有するため、このp偏光の平行光束は、偏光膜181を透過し、λ/4波長板191に導かれる。
【0049】
λ/4波長板191に導かれたp偏光の平行光束は、λ/4波長板191を通過し、このλ/4波長板191によって円偏光状態の平行光束とされ、マイクロミラー150に導かれる。そして、この円偏光の平行光束は、マイクロミラー150のミラーによって反射され、再びλ/4波長板191を通過し、s偏光状態の平行光束となる。
【0050】
s偏光の平行光束は、偏光膜181によって90度折り曲げられ、対物レンズ170に導かれる。そしてこの平行光束は、対物レンズ170を介して被観察部位10の表面部または断層部において焦点を結ぶ。
【0051】
そして第1の実施形態と同様に、被観察部位10に射出された光束は、被観察部位10において反射し、対物レンズ170に入射する。そして対物レンズ170によって平行光束となり、上述と同様の光路を経て、GRINレンズ120に入射し、光ファイバ110の端面110aにおいて、対物レンズ170の焦点面の反射光のみがプロセッサ300zに伝送される。そして、プロセッサ300z内で所定の画像処理が行われ、被観察部位10の焦点の合った部位のみのピンボケやフレアのない画像がモニタ400において表示される。
【0052】
なお、第1の実施形態においてλ/4波長板を用いることなく、少ない部品点数で本発明の構成を実現することができるため、この共焦点プローブを低コストに抑えることができる。
【0053】
また、第3の実施形態において実装基板(偏光ビームスプリッタキューブ180)が位置ズレを起こした場合でも、GRINレンズ120と対物レンズ170との光軸のズレが発生しないため、装置の信頼性が向上する。
【0054】
以上が本発明の実施形態である。本発明はこれらの実施形態に限定されるものではなく様々な範囲で変形が可能である。
【0055】
なお、本実施形態において共焦点の光学系によって得られる被観察部位10の観察画像は、レーザ光をXY方向に走査するマイクロミラーを用いて得られる2次元画像であるが、レーザ光を被観察部位10の深さ方向に走査するマイクロミラーを追加して3次元画像を得られるよう構成してもよい。
【0056】
また、本実施形態において被観察部位10を照射する光源にはHe−Neレーザを使用しているが、近紫外線を含む短波長の光を照射する超高圧水銀ランプを光源に使用してもよい。この場合、被観察部位10より発せられる蛍光を観察することが可能となる。
【0057】
【発明の効果】
以上のように本発明の走査型共焦点プローブ及び走査型共焦点プローブ装置は、光束を透過する光学材料から構成されたマイクロミラーを実装する光学素子基板を有している。そのため、プローブ内に配設された各光学素子とマイクロミラーを実装した基板との膨張率の差が減少する。その結果、プローブが受ける温度変化が大きい場合でも、膨張率の差による各光学素子とマイクロミラーとの位置関係のズレ量を抑えることが可能であるため、温度特性が向上する。
【0058】
また、この光学素子基板は、光源から照射される光束の光路中に配設されている。そのため、光路として使用するスペースとこの実装基板を配設するスペースとを兼用することが可能となり、省スペース化を図ることができる。その結果、プローブの外形状である筐体を小さくすることができ、プローブの細径化を容易に行うことが可能となる。
【0059】
また、複数のマイクロミラーを共通の基板に実装することが可能であるため、部品点数の減少や、組立工程数の減少、組立時間の短縮などを図ることが可能となり、コスト削減に繋がる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の走査型共焦点プローブ装置の構成を示すブロック図である。
【図2】本発明の実施形態に用いられるマイクロミラーの構成を示す図である。
【図3】本発明の第2の実施形態の走査型共焦点プローブ装置の構成を示すブロック図である。
【図4】本発明の第3の実施形態の走査型共焦点プローブ装置の構成を示すブロック図である。
【符号の説明】
100 走査型共焦点プローブ
300 プロセッサ
500 走査型共焦点プローブ装置

Claims (5)

  1. 体腔内の生体組織に光源から照射される光束を走査する走査ミラーを有する走査型共焦点プローブであって、
    前記走査型共焦点プローブは、前記光束の光路中に、前記走査ミラーを実装するための実装基板を有し、
    前記実装基板は前記光束を透過する光学材料から構成され
    前記走査ミラーは光軸に対して非直交状態で実装されていること、を特徴とする走査型共焦点プローブ。
  2. 前記走査ミラーには、前記光束を所定の方向に走査する第1の走査ミラーと、
    前記第1の走査ミラーと直交する方向に前記光束を走査する第2の走査ミラーと、が含まれ、
    前記第1の走査ミラーと前記第2の走査ミラーは、同一の前記実装基板に実装されること、を特徴とする請求項1に記載の走査型共焦点プローブ。
  3. 前記走査型共焦点プローブは、前記光束を前記生体組織に集光する対物光学系を有し、
    前記対物光学系と前記実装基板は、同一の材料から構成されること、を特徴とする請求項1または請求項2のいずれかに記載の走査型共焦点プローブ。
  4. 前記走査型共焦点プローブは、前記生体組織で反射した反射光のうち、前記対物光学系の物体側焦点面からの反射光以外の反射光を除去するよう配設されたピンホールを有し、
    前記ピンホールは、前記対物光学系の物体側焦点位置からの光束が入射するシングルモード光ファイバの端面であること、を特徴とする請求項3に記載の走査型共焦点プローブ。
  5. 請求項1から請求項4のいずれかに記載の走査型共焦点プローブと、
    生体組織を照射する光源と、
    前記走査型共焦点プローブから導光される前記生体組織の反射光に基づいて画像信号を生成する画像信号生成部と、を有すること、を特徴とする走査型共焦点プローブ装置。
JP2002321322A 2002-11-05 2002-11-05 走査型共焦点プローブ Expired - Fee Related JP4145627B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002321322A JP4145627B2 (ja) 2002-11-05 2002-11-05 走査型共焦点プローブ
US10/699,699 US7252634B2 (en) 2002-11-05 2003-11-04 Confocal probe having scanning mirrors mounted to a transparent substrate in an optical path of the probe
US11/370,977 US20060167344A1 (en) 2002-11-05 2006-03-09 Confocal probe and endoscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321322A JP4145627B2 (ja) 2002-11-05 2002-11-05 走査型共焦点プローブ

Publications (2)

Publication Number Publication Date
JP2004154257A JP2004154257A (ja) 2004-06-03
JP4145627B2 true JP4145627B2 (ja) 2008-09-03

Family

ID=32801915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321322A Expired - Fee Related JP4145627B2 (ja) 2002-11-05 2002-11-05 走査型共焦点プローブ

Country Status (1)

Country Link
JP (1) JP4145627B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642397B2 (ja) * 2004-07-12 2011-03-02 オリンパス株式会社 光走査型顕微鏡装置
EP2224841A4 (en) * 2007-11-27 2012-04-18 Univ Washington ADDING IMAGING CAPACITY TO DISTAL ENDS OF MEDICAL, CATHETER, AND CONDUIT TOOLS

Also Published As

Publication number Publication date
JP2004154257A (ja) 2004-06-03

Similar Documents

Publication Publication Date Title
US20060167344A1 (en) Confocal probe and endoscope device
JP5690394B2 (ja) 焦点調整装置および焦点調整方法
JP6234105B2 (ja) 超解像顕微鏡
US20120140302A1 (en) Mems-based optical image scanning apparatus, methods, and systems
JP4669995B2 (ja) 光学顕微鏡及び観察方法
TW201142352A (en) Fluorescence micro imaging system
JP2004029205A (ja) レーザ走査型顕微鏡
US7154083B2 (en) Confocal probe
JP6358577B2 (ja) 走査型光学顕微鏡
JP2004317741A (ja) 顕微鏡およびその光学調整方法
WO2016151633A1 (ja) 光走査装置の走査軌跡測定方法、走査軌跡測定装置及び画像キャリブレーション方法
JP2013167654A (ja) 共焦点顕微鏡画像システム
JP4145627B2 (ja) 走査型共焦点プローブ
US20220269058A1 (en) Systems and methods for improved light-sheet microscopy
JP4261216B2 (ja) 走査型共焦点プローブ
JP2005077391A (ja) 位置姿勢計測装置および位置と姿勢の計測方法
JP2018151598A (ja) センサ装置、共焦点顕微鏡及びnv中心を有するダイヤモンドからの蛍光を検出する方法
JP4142402B2 (ja) 共焦点内視鏡
JP4278086B2 (ja) 走査型共焦点プローブ
JP2008164719A (ja) 走査型共焦点顕微鏡
JP2010072015A (ja) 顕微鏡装置
US7719663B2 (en) Heterodyne laser doppler probe and measurement system using the same
JP2008116756A (ja) 光学装置
JP2004258143A (ja) 走査型共焦点プローブ
JP2002311333A (ja) 顕微鏡用光偏向ユニット、それを備えた落射投光管及び顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080611

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees