JP4145398B2 - 自己シールド型勾配コイル組立体及びその製造方法 - Google Patents

自己シールド型勾配コイル組立体及びその製造方法 Download PDF

Info

Publication number
JP4145398B2
JP4145398B2 JP22386098A JP22386098A JP4145398B2 JP 4145398 B2 JP4145398 B2 JP 4145398B2 JP 22386098 A JP22386098 A JP 22386098A JP 22386098 A JP22386098 A JP 22386098A JP 4145398 B2 JP4145398 B2 JP 4145398B2
Authority
JP
Japan
Prior art keywords
gradient coil
magnetic resonance
gradient
self
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22386098A
Other languages
English (en)
Other versions
JPH11128203A (ja
Inventor
ディー ディメースター ゴードン
エス ペトロポウロス ラブロス
イー ペイトン クラレンス
イー メリッチ マイケル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JPH11128203A publication Critical patent/JPH11128203A/ja
Application granted granted Critical
Publication of JP4145398B2 publication Critical patent/JP4145398B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • G01R33/421Screening of main or gradient magnetic field
    • G01R33/4215Screening of main or gradient magnetic field of the gradient magnetic field, e.g. using passive or active shielding of the gradient magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • G01R33/3856Means for cooling the gradient coils or thermal shielding of the gradient coils

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気共鳴像形成に係る。本発明は、特に磁気共鳴像形成装置の勾配コイルに関連して使用することができ、これについて詳細に説明する。しかしながら、本発明は、磁気共鳴分光システムや勾配磁界を使用する他の用途にも使用できることを理解されたい。
【0002】
【従来の技術】
磁気共鳴像形成(MRI)の用途では、MRI信号の周波数弁別によって空間分解能を与えるために3つの直交する勾配磁界が使用される。勾配コイルセットは、通常、x、y及びz勾配磁界を発生するために3つの個別の勾配コイルを含む。これらコイルは互いに絶縁され、そして円筒状の枠に積層される。一般に、コイルの通電導体がMRI装置の主磁界と相互作用するときに曲げ力に耐える大きな構造強度得るために、勾配コイルセット全体が重畳されてエポキシ含浸される。
【0003】
勾配コイルは、一般に、短い立上り時間及び高いデューティサイクルを有する電流パルスでパルス付勢される。勾配コイルをパルス付勢すると、像形成領域にわたって磁界勾配が生じると共に、超伝導磁石の冷間シールドのような外部金属構造体と相互作用する磁界勾配が生じる。この相互作用は冷間シールドに渦電流を発生し、これは次いで渦磁界を発生する。この渦磁界は、検査領域における磁界の時間的及び空間的な質に悪影響を及ぼし、ひいては、それにより得られる像の質に悪影響を及ぼす。
【0004】
渦電流の問題を克服する1つの解決策は、一次の勾配コイルセットとコイルシールドとの間に二次即ちシールド用の勾配コイルセットを配置することである。このシールド勾配コイルセットは、その外部磁界を実質的にゼロにし、従って、冷間シールドにおける渦電流の形成を防止する。
一体的な自己シールド型勾配コイル組立体は、一般に、一次の勾配コイルセットの半径方向外方に離間されてそれと直列に駆動される二次即ちシールド用勾配コイルセットを備えている。一次及び二次の勾配コイルセットは、x、y及びz勾配磁界を発生するための絶縁コイルを備えており、これらは、個別の円筒枠に積層される。一次及び二次の勾配コイルセットは、大きな構造強度を得るために個々に重畳されてエポキシ含浸される。通常は、機械的な手段が2つの枠を一緒に接続し、コイルセットを離間関係に維持しながらも一体的構造体を形成する。
【0005】
典型的に、主たる超伝導磁石は、少なくとも90cmの穴直径を有し、そして少なくとも長さが1.8mある。このようなサイズの磁石は、2つの別々の枠で形成された(各枠は厚みが約5.0ないし7.5cmである)シールド型勾配コイル構造体を受け入れることができる。というのは、所定の患者開口と磁石穴の内径との間にこのような放射状の構造体を受け入れるに充分なスペースがあるからである。
【0006】
【発明が解決しようとする課題】
磁石穴の直径を減少すると、磁石のコストが著しく低下する。しかし、患者の受入穴が減少すると、MRI装置の利用性及びその商業的容認性が低減する。
更に、自己シールド型の勾配コイル組立体を製造する既知の方法は、時間のかかる最終整列段階を有する。一次勾配コイルの軸方向等角点が二次勾配コイルの軸方向等角点に一致するように確保するために整列ツール及び固定具が使用される。
【0007】
【課題を解決するための手段】
本発明は、上記及び他の問題を克服する新規な自己シールド型勾配コイル組立体及びその製造方法を提供することである。
本発明の1つの特徴によれば、磁気共鳴像形成装置が提供される。このMRI装置は、検査領域を通して時間的に一定の磁界を発生するための主磁界磁石を備えている。高周波送信器は、検査領域において選択されたダイポールの磁気共鳴を励起しそして操作する。受信器は、検査領域から受け取られた磁気共鳴信号を復調する。プロセッサは、復調された共鳴信号を像表示へと再構成する。自己シールド型勾配コイル組立体は、上記時間的に一定の磁界にわたり勾配磁界を誘起する。この自己シールド型勾配コイル組立体は、型と、この型に支持された勾配コイルと、シールド勾配コイルを支持するために型から延びる多数の櫛とを備えている。
【0008】
本発明の第2の特徴によれば、検査領域を通して時間的に一定の磁界を発生するための主磁界磁石を備えた磁気共鳴像形成装置に使用する自己シールド型勾配コイル組立体を製造する方法が提供される。高周波送信器は、検査領域において選択されたダイポールの磁気共鳴を励起しそして操作する。受信器は、検査領域から受け取られた磁気共鳴信号を復調する。プロセッサは、復調された共鳴信号を像表示へと再構成する。自己シールド型勾配コイル組立体は、上記の時間的に一定の磁界にわたり勾配磁界を誘起する。この方法は、多数の一次勾配コイルを円筒状の型に接合し、多数の櫛を型に接合し、多数のシールド勾配コイルを櫛に接合して一体的な構造体を形成し、そしてその一体的な構造体をポッティングするという段階を含む。
【0009】
【発明の実施の形態】
以下、添付図面を参照して、本発明の好ましい実施形態を詳細に説明する。
図1を参照すれば、主磁界制御器10は、検査領域14にわたりz軸に沿って実質的に均一の時間的に一定の磁界が形成されるように超伝導又は抵抗性磁石12を制御する。好ましくは、真空容器16が1つ以上の冷間シールド18を取り巻き、これらシールドは、超伝導磁石12が超伝導温度に維持される中央のヘリウム貯蔵部20を取り巻いている。真空容器は、内部穴22を画成する。
【0010】
磁気共鳴エコー手段は、一連の高周波(RF)及び磁界勾配パルスを付与して磁気スピンを反転又は励起し、磁気共鳴を誘起し、磁気共鳴を再収束し、磁気共鳴を操作し、磁気共鳴を空間的及びその他の仕方でエンコードし、スピンを飽和させ、等々を行って、磁気共鳴像形成及び分光学的シーケンスを発生する。
【0011】
より詳細には、勾配パルス増幅器24は、自己シールド型勾配コイル組立体26の全身勾配コイルの選択された対に電流パルスを付与し、検査領域14のx、y及びz軸に沿って磁界勾配を形成する。勾配コイル組立体26は、内部穴22内に配置される。デジタル高周波送信器28は、全身RFコイル30に高周波パルスを送り、検査領域にRFパルスを送信する。RFパルスは、検査領域の選択された部分において、飽和、共鳴の励起、磁化の反転、共鳴の再収束、又は共鳴の操作に使用される。走査又はシーケンスコントローラ32は勾配増幅器を制御し、そしてデジタル受信器は、像形成シーケンス、例えば、各共鳴励起又はショットの後に複数のエコー又はエコー列が続くような高速スピンエコーシーケンスを増幅する。
【0012】
全身用途の場合には、共鳴信号が、一般に、全身RFコイル30によりピックアップされて受信器34により復調され、データ線メモリ36に記憶されるデータ線を形成する。
像再構成プロセッサ38は、データセットを像表示へと再構成し、これは、像メモリ40に記憶される。映像プロセッサ42は、像メモリからの選択されたデータを、人間が読めるモニタ44にスライス、三次元レンダリンク等として表示するのに適したフォーマットに変換する。
【0013】
図2及び3を参照すれば、自己シールド型勾配コイル組立体26は、電気絶縁性の中空の正円筒コイル枠即ち型50を備えている。ここに述べる実施形態においては、型50は、ガラスフィラメント巻き付け樹脂管(FWT)52と、この円筒部52の前方端即ち患者端から横方向に延びる第1フランジ54とを含む。この第1フランジ54は、これを貫通して延びる複数の周囲方向に離間された穴56を含む。
【0014】
又、型50は、円筒部52の後方端即ち作業端において横方向に延びる第2のフランジ58も含む。この第2フランジ58は、その外面に沿って周囲方向に離間された複数のノッチ対60を含む。図2において最も良く分かるように、複数の軸方向に離間された溝64が、円筒部52の外面66を周囲方向に延びる。更に、複数の半径方向を向いた、端の閉じた穴68(1つを示す)が、円筒部52へとその外面から延びる。
【0015】
ここに述べる実施形態では、一体的なRF接地スクリーン70が円筒部52の外面に接合され、図2に示すように、軸方向に離間された溝64へと押し込まれる。このRF接地スクリーン70は、湿式敷設又は真空圧力含浸プロセス(VPI)を用いて型に接合されるのが好ましい。RF接地スクリーンは、この技術で知られたように、スリューレート設計に合致する燐及び青銅材料から形成されるのが好ましい。或いは又、RF接地スクリーンは、型50の内径に取り付けるか又は型を画成する管のフィラメント巻線と共に埋設することもできる。
【0016】
一次のz勾配コイル72は、RFスクリーン70上で溝64へと巻き付けられる。任意であるが、z勾配コイルは、円筒部52に一時的に即ちスポット接合される。或いは又、z勾配コイルを溝64に巻き付け、そしてこのz勾配コイルの上で円筒部52にRFスクリーン70を接合することもできる。ここに述べる実施形態は、束ねられた一次z勾配コイル設計を組み込んでいる。しかしながら、分散型の電流コイル設計も使用できる。
【0017】
図2と共に特に図4を参照すると、一次のx勾配コイル組立体74は、一次のz勾配コイル72の上で勾配コイル組立体26に一時的にスポット接合される。次いで、一次のy勾配コイル76は、一次のx勾配コイル組立体74の上で勾配コイル組立体26に一時的にスポット接合される。ここに述べる実施形態では、x及びy勾配コイル組立体74、76の各々は、柔軟な誘電体シート上に対に取り付けられた4電気導体分配型「拇印(thumbprint)」四分(quadrant)巻線(図示せず)を含む。両勾配コイル74、76については、四分巻線の2つが隣接しそして型の第1部分の周りに延び、一方、他の2つの四分巻線は隣接して型の第2の部分の周りに延びる。
【0018】
従って、x及びy勾配コイル74、76は、互いに実質的に同等であるが、勾配コイル74、76の一方は、型の中心軸に対して約90°だけ他方の勾配コイルから周囲方向にオフセットしている。y勾配コイルの四分巻線区分は、x勾配コイル74の周りに取り付けられる。両縁78及び両縁80(1つしか示されていない)は、これらの縁78、80が垂直(y、z)平面に存在するように型の周りに互いに隣接して配置される。
【0019】
x勾配コイル74の四分巻線区分は、両縁82が互いに隣接配置される状態でz勾配コイル72の周りに取り付けられる。x勾配コイル74は、y勾配コイル76から90°だけ周囲方向にオフセットされる。x勾配コイルについては、縁82及び両縁(図示せず)が水平(x、z)平面に存在する。
図2と共に、特に図5を参照すると、複数の周囲方向に離間された誘電体の櫛84が、y勾配コイル76上で勾配コイル組立体26に固定される。櫛84の各々は、その下面から型50の穴68へと延びる1つ以上のピン86(図2)を含む。端フランジのスロットのような他の機械的な取付構成体も意図される。又、櫛84は、それらの外面に沿って複数の軸方向に離間されたノッチ88も含む。好ましい実施形態では、櫛84は、ガラス樹脂複合材料から形成される。
【0020】
櫛84は、以下に詳細に述べるように、勾配コイル組立体26の放射状構築部の残りを支持する。従って、櫛84は、公知の自己シールド型勾配コイル組立体に関連した第2のフィラメント巻き付け管又は型に置き換わるものである。一次及び二次(以下に述べる)の勾配コイルセットの整列を回避するために、櫛84(ひいては、ノッチ88)は、溝64を形成するツールと同様に、フランジ54の加工面に対して正確に位置又は配置される。従って、一次及び二次の両方のコイルセットは、工作機械の公差内で機械的に整列される。
【0021】
図2と共に、特に図6を参照すれば、内側の曲がりくねった例えばM字型の冷却管即ち熱交換機90は、隣接する櫛84の間で外側の曲がりくねった例えばM字型の冷却管即ち熱交換機92から半径方向内方に離間される。冷却管90、92の各々は、勾配コイル組立体26に一時的にスポット接合される。
冷却管90、92の各々は入口94及び出口96を含む。入口94の各々は、単一の円形の作業端の冷却材供給マニホールド98に接合され、そして出口96の各々は、単一の円形の作業端の冷却材復帰マニホルド100に接合される。ここに説明する実施形態において、冷却管90、92及びマニホールド98、100は、継ぎ目のないものであり、そして像形成中の熱強度及び最小磁化率干渉のためにステンレススチールから形成される。
【0022】
入口94及び出口96は、作業端フランジ58においてノッチ対60を通過する。冷却管が配置された後、作業端リング102がフランジ58上に接合され、作業端リング102に関連したノッチ104が冷却管の入口及び出口94、96と整列される。更に、作業端リング102がフランジ58に接合されたときは、隣接対のノッチ60と104との間に穴106が形成される。
以下に述べるように、シムトレーモールドが穴56を経て延び、作業端から患者受入端へと勾配コイル組立体26を経て軸方向に延びるチャンネル即ちポケットを形成する。作業端リング102は、1つ以上の弓形部材から形成され、これらは、フランジ58に接合されたときに、実質的に連続する周囲を形成する。
【0023】
図2と共に特に図7を参照すれば、複数のシムトレーモールド108がフランジ54の穴56を経て内側及び外側の冷却管90、92の間のギャップへそして穴106を経て挿入される。ギャップへと挿入する前に、各モールド108は、以下に述べる単一のポッティング段階に続いてモールド108がその後に除去されるときに形成されるチャンネル即ちポケット110(図2)の周りの構造上の完全性を与えるために、織られたガラス材料のほぼ3枚のシートで巻かれる。
シムトレーモールド108は内実なものであって、除去されたときに鉄の残留物を残さないようにするために、アルミニウム、ワックス等の非鉄材料で形成される。シムトレーモールド108は、液圧式の除去装置で穴56を通して容易に除去できるように、端から端へ約2mmのテーパをもつ高度に研磨された表面を有する。
【0024】
次いで、二次の即ちシールドz勾配コイル巻線112が櫛84の溝88に巻かれる。ここに述べる実施形態は、分配型のz勾配シールドコイル設計である。図2及び8に示すように、二次の即ちシールドx勾配コイル114及び二次の即ちシールドy勾配コイル116は、巻線112の上で勾配コイル組立体26に一時的にスポット接合される。二次のシールドコイル112、114は、上記の一次の勾配コイル74、76と構造的に同様であり、そして同様に方向付けされる。
【0025】
一次及び二次の勾配コイルを直列に駆動すべき場合には、電気的な相互接続を行う。勾配コイル組立体26に周りにポッティングモールド(図示せず)が配置される。単一のポッティング段階において勾配コイル組立体内の全ての空所にエポキシのようなポッティングコンパウンドが引き込まれ、それらを満たす。エポキシが硬化しそしてポッティングモールドを取り外した後に、シムトレーモールド108が穴56を経て取り外される。これにより生じる空洞は、勾配コイル組立体の作業端から患者端へと延びる連続的なチャンネル即ちポケット110を形成する。チャンネル110は、シムトレー118を受け入れ、これは、一次磁界の制限された非均一性を修正すると共に、一次磁界を穴内で実質的に均一なものににする。又、このチャンネルは、シムトレーの冷却を促進するための空気流路も形成し、シムのスチールの磁化率の変化を最小にする。
【0026】
図10を参照すれば、自己シールド型勾配コイル組立体120は、フィラメントが巻かれた管又は型を組み込まずに製造される。特に、第1フランジ122、第2フランジ124及びRF接地スクリーン126は、取り外し可能なマンドレル128の上に最初に配置される。高度に研磨された表面をもつ取り外し可能なマンドレルは、最終ポッティング段階が完了した後のその後の取り外しを容易にするために端から端へ若干テーパが付けられている。次いで、一次のz勾配コイル130がRF接地スクリーン126に巻かれる。次いで、勾配コイル組立体120の放射状の構築が、図4ないし9について上記したのと同様に続けられる。
【0027】
従って、自己シールド型勾配コイル組立体は、整列されて単一の一体構造体へとポッティングされた一次コイル及びシールドコイルを組み込む。一次及び二次組立体は一体構造であるので、一次及び二次コイルの軸方向整列は、組立体が作られるときの加工装置の機械的公差内で形成される。個別の一次及び二次の勾配コイル構造体の間で整列手順を実行する必要はない。従って、公知の整列プロセスが排除され、そして整列を行うのに必要な時間が節約される。
横方向(例えば、x及びy勾配コイル)及び軸方向(例えば、z勾配コイル)の順序は、変えることもできるし又は逆にもできることが明らかである。更に、内側の冷却管90は、型と一次勾配コイルとの間に配置されてもよいし又は横方向及び軸方向の一次勾配コイル間のギャップに配置されてもよい。同様に、外側の冷却管92は、横方向及び軸方向の二次勾配コイル間のギャップに配置されてもよい。
【0028】
更に、櫛84の位置、及びノッチ64を形成するツールは、患者端フランジ54ではなく表面から配置されてもよい。異なるボンディング方法を使用して、各部品を勾配コイル組立体に固定してもよい。例えば、熱硬化性エポキシ、及び/又は触媒剤を使用するエポキシを使用してもよい。
ここに示す実施形態の1つの効果は、自己シールド型勾配コイル組立体における型の数が減少されることである。別の効果は、コストの減少にある。更に別の効果は、一次勾配コイルセットと二次勾配コイルセットとを整列する段階が排除されることである。別の効果は、蓄積される磁気エネルギーが勾配強度及び均一性の要求に合致して最小にされることである。更に別の効果は、製品の質、勾配強度及びスリューレートの改善にある。
【図面の簡単な説明】
【図1】本発明の第1の実施形態による自己シールド型勾配コイル組立体を有する磁気共鳴像形成システムの概略図である。
【図2】図1の自己シールド型勾配コイル組立体の拡大部分断面図である。
【図3】型に固定されたRF接地スクリーン上に一次z勾配コイルが巻かれて部分的に組み立てられた図2の自己シールド型勾配コイル組立体の斜視図である。
【図4】z勾配コイル上に一次x勾配コイルが固定されそしてそのx勾配コイル上に一次y勾配コイルが配置された図3の自己シールド型勾配コイル組立体の斜視図である。
【図5】y勾配コイル上に複数の櫛が固定されそして作業端フランジにリングが固定された図4の自己シールド型勾配コイル組立体の斜視図である。
【図6】隣接する櫛間に内部及び外部の冷却管が配置されそして冷却管の自由端に作業端冷却材マニホールドが接合された図5の自己シールド型勾配コイル組立体の斜視図である。
【図7】内部及び外部の冷却管の間に複数のシムトレーポケットが配置されそして櫛の上に二次z勾配コイルが巻かれた図6の自己シールド型勾配コイル組立体の斜視図である。
【図8】二次z勾配コイル上に二次x勾配コイルが固定されそしてその二次x勾配コイル上に二次y勾配コイルが固定された図7の自己シールド型勾配コイル組立体の斜視図である。
【図9】本発明の第1の実施形態による完全に組み立てられそしてポッティングされた自己シールド型勾配コイル組立体の斜視図である。
【図10】取り外し可能なマンドレルに一時的に固定されたRF接地スクリーン上に一次z勾配コイルが巻かれた本発明の第2の実施形態による部分的に組み立てられた自己シールド型勾配コイル組立体の斜視図である。
【符号の説明】
10 主磁界制御器
12 磁石
14 検査領域
16 真空容器
18 冷間シールド
20 ヘリウム貯蔵部
22 内部穴
24 勾配パルス増幅器
26 自己シールド型勾配コイル組立体
28 高周波送信器
30 全身RFコイル
32 走査又はシーケンスコントローラ
34 受信器
36 データ線メモリ
38 像再構成プロセッサ
40 像メモリ
42 映像プロセッサ
44 モニタ
50 型
52 樹脂管
54、58 フランジ
56 穴
60 ノッチ
64 溝
70 RF接地スクリーン
72 z勾配コイル
74 x勾配コイル組立体
76 y勾配コイル
84 櫛
90、92 熱交換機
98、100 マニホールド

Claims (9)

  1. 検査領域(14)を通して時間的に一定の磁界を発生するための主磁界磁石(12)と、検査領域において選択されたダイポールの磁気共鳴を励起しそして操作するための高周波送信器(28)と、検査領域から受信した磁気共鳴信号を復調するための受信器(34)と、その復調された共鳴信号を像表示へと再構成するためのプロセッサ(38)と、上記時間的に一定の磁界にわたって勾配磁界を誘起するための自己シールド型勾配コイル組立体(26)とを備えた磁気共鳴像形成装置において、
    上記自己シールド型勾配コイル組立体(26)は、更に、
    単一の円筒状型(50)と、
    上記型に支持された一次勾配コイル(72-76)と、
    上記型から延びる複数の櫛(84)と
    複数のシールド勾配コイル (112-114) と、
    を含み、
    上記複数のシールド勾配コイル (112-114) の少なくとも1つは、櫛 (84) によって直接支持され、それにより、シールド勾配コイル (112-114) が櫛 (84) により一次勾配コイル (72-74) から半径方向に変位されて、それらの間に通路を形成している、
    ことを特徴とする磁気共鳴像形成装置。
  2. 上記自己シールド型勾配コイル組立体(26)は、上記通路にポッティングされる複数の冷却管(90,92)を更に含む請求項に記載の磁気共鳴像形成装置。
  3. 上記自己シールド型勾配コイル組立体(26)は、上記通路に配置された複数のステンレススチールの冷却管(90,92)を更に含み、これら冷却管は、供給マニホールド(98)に接続された入口(94)と、復帰マニホールド(100)に接続された出口(96)とを有する請求項に記載の磁気共鳴像形成装置。
  4. 上記自己シールド型勾配コイル組立体(26)は、上記通路内に画成された複数のチャンネル(110)と、これら複数のチャンネルに配置された複数のシムトレー(118) とを更に含む請求項に記載の磁気共鳴像形成装置。
  5. 上記自己シールド型勾配コイル組立体(26)は、更に、一次勾配コイル(72-76)に隣接して上記通路内に配置された複数の内部冷却管(90)と、二次勾配コイル(112-114)に隣接して上記通路内に配置された複数の外部冷却管(92)と、これら内部及び外部冷却管の間に介在された複数のチャンネル(110)を含む請求項に記載の磁気共鳴像形成装置。
  6. 上記型(50)は、一次z勾配コイル(72)を受け入れるための溝(64)を含み、そして上記櫛(84)の各々は、シールドz勾配コイル(112)を受け入れるためのノッチ(88)を含む請求項に記載の磁気共鳴像形成装置。
  7. 上記櫛(84)及び型(50)は、シールドコイル巻線(112-114)を受け入れるための櫛のノッチ(88)を型に対して配置するピン組立体(68,86)により接続される請求項に記載の磁気共鳴像形成装置。
  8. 検査領域(14)を通して時間的に一定の磁界を発生するための主磁界磁石(12)と、検査領域において選択されたダイポールの磁気共鳴を励起しそして操作するための高周波送信器(28)と、検査領域から受信した磁気共鳴信号を復調するための受信器(34)と、その復調された共鳴信号を像表示へと再構成するためのプロセッサ(38)とを備えた磁気共鳴像形成装置に使用するための自己シールド型勾配コイル組立体(26)を製造する方法において、
    複数の一次勾配コイル(72-74)を単一の円筒状の型(50)に対して支持し、
    複数の櫛状スペーサ(84)を型(50) 上にその型から半径方向に延びるように支持し、
    複数のシールド勾配コイル(112-114)を、櫛状スペーサ (84) の外面上に直接支持し、それによりシールド勾配コイル (112-114) が櫛状スペーサ (84) により一次勾配コイル (72-74) から半径方向に変位されて、それらの間に通路を形成するようにし、そして
    上記型、上記一次勾配コイル、上記櫛状スペーサ及び上記シールド勾配コイルを樹脂でポッティングして、一体構造体を形成する
    という段階を備えたことを特徴とする方法。
  9. 検査領域(14)を画成する主磁界磁石(12)の穴内に上記一体構造体を配置することを更に含む請求項に記載の自己シールド型勾配コイル組立体を製造する方。
JP22386098A 1997-08-07 1998-08-07 自己シールド型勾配コイル組立体及びその製造方法 Expired - Fee Related JP4145398B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/908,359 US6011394A (en) 1997-08-07 1997-08-07 Self-shielded gradient coil assembly and method of manufacturing the same
US08/908359 1997-08-07

Publications (2)

Publication Number Publication Date
JPH11128203A JPH11128203A (ja) 1999-05-18
JP4145398B2 true JP4145398B2 (ja) 2008-09-03

Family

ID=25425659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22386098A Expired - Fee Related JP4145398B2 (ja) 1997-08-07 1998-08-07 自己シールド型勾配コイル組立体及びその製造方法

Country Status (3)

Country Link
US (1) US6011394A (ja)
EP (1) EP0896228A1 (ja)
JP (1) JP4145398B2 (ja)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469604B1 (en) * 1998-05-15 2002-10-22 Alex Palkovich Coil for a magnet and a method of manufacture thereof
DE19835414C2 (de) * 1998-08-05 2000-05-31 Siemens Ag Spulensystem für MR-Anlagen mit integrierter Kühleinheit
DE19839987C2 (de) * 1998-09-02 2000-07-06 Siemens Ag Direktgekühlte Magnetspule, insbesondere Gradientenspule, sowie Verfahren zur Herstellung von Leitern dazu
DE10018165C2 (de) * 2000-04-12 2003-08-07 Siemens Ag Gradientenspule für MR-Anlagen mit direkter Kühlung
GB2366474B (en) * 2000-09-01 2005-02-16 Schlumberger Ltd Geophones
JP2002253532A (ja) * 2000-12-21 2002-09-10 Siemens Ag 磁気共鳴装置
US6498947B2 (en) * 2001-02-23 2002-12-24 Ge Medical Systems Global Technology Company, Llc rf shielding method and apparatus
DE10120284C1 (de) * 2001-04-25 2003-01-02 Siemens Ag Gradientenspulensystem und Magnetresonanzgerät mit dem Gradientenspulensystem
DE10214111B4 (de) * 2002-03-28 2007-08-16 Siemens Ag Shimkasten, Gradientenspulensystem und Magnetresonanzgerät zum Aufnehmen des Shimkastens
DE10214187C1 (de) * 2002-03-28 2003-10-16 Siemens Audiologische Technik Lagerung eines elektroakustischen Miniaturwandlers in einem Gerät, insbesondere einem Hörhilfegerät, sowie elektroakustischer Miniaturwandler
DE10219769B3 (de) * 2002-05-02 2004-01-22 Siemens Ag Magnetresonanzgerät und mit Shimelementen bestückbare Trägervorrichtung
DE10235055A1 (de) * 2002-07-31 2004-03-04 Siemens Ag Vergossenes Gradientenspulensystem mit einer Kühleinheit und Verfahren zum Herstellen des Gradientenspulensystems
EP1646884B1 (en) * 2003-05-30 2015-01-07 Koninklijke Philips N.V. Magnetic resonance imaging scanner with molded fixed shims
US7015692B2 (en) * 2003-08-07 2006-03-21 Ge Electric Company Apparatus for active cooling of an MRI patient bore in cylindrical MRI systems
US7068033B2 (en) * 2003-08-18 2006-06-27 Ge Medical Systems Global Technology Company, Llc Acoustically damped gradient coil
US8203341B2 (en) * 2003-09-19 2012-06-19 Xbo Medical Systems Co., Ltd. Cylindrical bi-planar gradient coil for MRI
WO2005037101A1 (ja) * 2003-10-15 2005-04-28 Hitachi Medical Corporation 磁気共鳴イメージング装置
US7370789B2 (en) * 2003-10-29 2008-05-13 Koninklijke Philips Electronics N.V. Variable field-of-view gradient coil system for magnetic resonance imaging
US7140420B2 (en) * 2003-11-05 2006-11-28 General Electric Company Thermal management apparatus and uses thereof
US6812705B1 (en) * 2003-12-05 2004-11-02 General Electric Company Coolant cooled RF body coil
CN100528076C (zh) * 2003-12-08 2009-08-19 西门子公司 通过顺磁性水溶材料来降低冷却剂的弛豫时间的应用
GB2409521B (en) * 2003-12-22 2007-04-18 Ge Med Sys Global Tech Co Llc Gradient coil apparatus and method of assembly thereof
GB0403374D0 (en) * 2004-02-16 2004-03-17 Tesla Engineering Ltd Cooling of coils in magnetic resonance imaging
GB2437114B (en) * 2006-04-13 2008-12-17 Siemens Magnet Technology Ltd Method Of Manufacturing A Solenoidal Magnet
US7368913B2 (en) * 2006-06-30 2008-05-06 General Electric Company Apparatus and method of providing forced airflow to a surface of a gradient coil
JP4847236B2 (ja) * 2006-07-07 2011-12-28 株式会社日立メディコ 磁気共鳴イメージング装置
DE102006040418A1 (de) * 2006-08-29 2008-03-13 Siemens Ag Verfahren zur Herstellung eines zylindrischen Hochfrequenzschirms einer zylindrischen Gradientenspule
US7301343B1 (en) * 2006-12-18 2007-11-27 General Electric Co. System, method and apparatus for controlling the temperature of a MRI magnet warm bore
JP5209277B2 (ja) * 2007-01-17 2013-06-12 株式会社東芝 傾斜磁場コイルユニット、mri装置用ガントリ、及びmri装置
US7589531B2 (en) * 2007-01-17 2009-09-15 Kabushiki Kaisha Toshiba Gradient magnetic field coil unit, gantry for MRI apparatus, and MRI apparatus
US7489131B2 (en) * 2007-04-23 2009-02-10 General Electric Co. System and apparatus for direct cooling of gradient coils
DE102007041346A1 (de) * 2007-08-31 2009-03-05 Siemens Ag Positionsmess- und Führungseinrichtung
US7868617B2 (en) 2007-11-15 2011-01-11 General Electric Co. Cooling system and apparatus for controlling drift of a main magnetic field in an MRI system
US7576542B1 (en) * 2008-06-26 2009-08-18 General Electric Co. System and apparatus for providing electrical and cooling interconnections in a magnetic resonance imaging (MRI) system
JP5582756B2 (ja) * 2008-11-28 2014-09-03 株式会社東芝 高周波コイルユニットおよび磁気共鳴診断装置
US7924010B2 (en) * 2009-03-25 2011-04-12 General Electric Company Apparatus for supporting and method for forming a support for a magnetic resonance imaging (MRI) magnet
JP5570910B2 (ja) * 2009-09-28 2014-08-13 株式会社東芝 磁気共鳴イメージング装置
DE102010015631B4 (de) * 2010-04-20 2012-09-27 Siemens Aktiengesellschaft Gradientenspulenanordnung und Herstellungsverfahren
GB2480636B (en) * 2010-05-26 2012-12-05 Siemens Plc A method for the production of solenoidal magnets made up of several axially aligned coils
US9417301B2 (en) 2010-08-25 2016-08-16 Koninklijke Philips N.V. RF shield for MRI comprising conductive coating as shielding material
GB2488102A (en) * 2011-02-08 2012-08-22 Siemens Plc A cylindrical superconducting magnet system
GB2488328B (en) * 2011-02-23 2014-04-09 Siemens Plc Superconducting electromagnets comprising coils bonded to a support structure
DE102012203338B3 (de) * 2012-03-02 2013-06-27 Siemens Aktiengesellschaft Zylindrische Gradientenspulenanordnung für eine Magnetresonanzeinrichtung und Magnetresonanzeinrichtung
DE102012203974A1 (de) * 2012-03-14 2013-09-19 Siemens Aktiengesellschaft Magnetresonanztomograph mit Kühleinrichtung für Gradientenspulen
US9869734B2 (en) * 2013-04-09 2018-01-16 General Electric Company System and method for manufacturing magnetic resonance imaging gradient coil assemblies
CA2964459A1 (en) 2014-10-15 2016-04-21 Vincent Suzara Magnetic field structures, field generators, navigation and imaging for untethered robotic device enabled medical procedure
DE112015006201T5 (de) * 2015-02-23 2017-11-02 Synaptive Medical (Barbados) Inc. System und Verfahren für Anordnung von Magnetresonanz-Spulen
US10126386B2 (en) 2015-06-30 2018-11-13 General Electric Company Systems and methods for MRI continuous gradient coils
DE102018200098B3 (de) * 2018-01-04 2019-01-03 Bruker Biospin Ag NMR-Shimsystem, Spulenkörper für ein Shimsystem und Verfahren zur Herstellung eines Shimsystems
US10761162B2 (en) 2018-09-18 2020-09-01 General Electric Company Gradient coil cooling systems
CN113050005B (zh) * 2019-12-26 2024-01-30 西门子(深圳)磁共振有限公司 梯度线圈冷却部件及梯度线圈
CN112133515B (zh) * 2020-10-21 2022-10-25 重庆大学 一种超导线圈绝缘支架及超导线圈与绕制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4509030A (en) * 1984-07-05 1985-04-02 General Electric Company Correction coil assembly for NMR magnets
JP2752156B2 (ja) * 1989-05-30 1998-05-18 株式会社東芝 Mri装置用コイル部品の製造方法
US5296810A (en) * 1992-03-27 1994-03-22 Picker International, Inc. MRI self-shielded gradient coils
US5289128A (en) * 1992-03-27 1994-02-22 Picker International, Inc. Superconducting gradient shield coils
US5481191A (en) * 1990-06-29 1996-01-02 Advanced Nmr Systems, Inc. Shielded gradient coil for nuclear magnetic resonance imaging
US5235283A (en) * 1991-02-07 1993-08-10 Siemens Aktiengesellschaft Gradient coil system for a nuclear magnetic resonance tomography apparatus which reduces acoustic noise
US5349297A (en) * 1992-03-27 1994-09-20 Picker International Inc. Combined self shielded gradient coil and shimset
JP2596714B2 (ja) * 1994-07-01 1997-04-02 三菱電機株式会社 傾斜磁界発生装置

Also Published As

Publication number Publication date
JPH11128203A (ja) 1999-05-18
US6011394A (en) 2000-01-04
EP0896228A1 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
JP4145398B2 (ja) 自己シールド型勾配コイル組立体及びその製造方法
JP5364288B2 (ja) 傾斜コイルアセンブリ、傾斜コイルアセンブリを含むマグネットアセンブリ及び、傾斜コイルアセンブリを製造する方法
US4652824A (en) System for generating images and spacially resolved spectra of an examination subject with nuclear magnetic resonance
EP0981057B1 (en) MRI magnet assembly with non-conductive inner wall
EP0629873B1 (en) Combined self shielded gradient coil and shimset
EP0187389B1 (en) Apparatus for obtaining image information through use of a nuclear magnetic resonance signal
US4905316A (en) Magnetic field generating system for magnetic resonance imaging system
EP0629875A1 (en) Magnetic resonance gradient coil and RF screen
EP1646884B1 (en) Magnetic resonance imaging scanner with molded fixed shims
JPH03133428A (ja) 核スピントモグラフィ装置用テセラルグラジエントコイル
JPS6090546A (ja) 核スピン断層撮影設備の磁石装置
US7295012B1 (en) Methods and apparatus for MRI shim elements
US6342787B1 (en) Real-time multi-axis gradient distortion correction using an interactive shim set
US6700377B2 (en) Shim device for a magnetic resonance apparatus
EP2237059B1 (en) Cooled gradient coil system
US6278276B1 (en) Phased array gradient coil set with an off center gradient field sweet spot
JP4208099B2 (ja) 超伝導電磁石およびそれを備えたmri装置
JPH10127604A (ja) Mri磁石構造体
US5568102A (en) Closed superconductive magnet with homogeneous imaging volume
EP0736778B1 (en) Improvements in or relating to MRI magnets
US5804968A (en) Gradient coils with reduced eddy currents
US6275129B1 (en) Shim assembly for a magnet and method for making
EP0982599B1 (en) Magnetic resonance imaging magnet system
EP3564694A1 (en) Gradient shield coil with meandering winding for a magnetic resonance imaging apparatus
GB2470137A (en) Cooling of gradient coils

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080205

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees