JP4141832B2 - 活性スラリによるcmpシステムおよびcmpシステムの実装方法 - Google Patents

活性スラリによるcmpシステムおよびcmpシステムの実装方法 Download PDF

Info

Publication number
JP4141832B2
JP4141832B2 JP2002534039A JP2002534039A JP4141832B2 JP 4141832 B2 JP4141832 B2 JP 4141832B2 JP 2002534039 A JP2002534039 A JP 2002534039A JP 2002534039 A JP2002534039 A JP 2002534039A JP 4141832 B2 JP4141832 B2 JP 4141832B2
Authority
JP
Japan
Prior art keywords
slurry
wafer
layer
cmp
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002534039A
Other languages
English (en)
Other versions
JP2004511109A (ja
Inventor
ゴットキス・イヒエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of JP2004511109A publication Critical patent/JP2004511109A/ja
Application granted granted Critical
Publication of JP4141832B2 publication Critical patent/JP4141832B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/017Devices or means for dressing, cleaning or otherwise conditioning lapping tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、概して、化学機械平坦化(CMP)システムおよびCMP工程の性能と効率性を向上する技術に関する。具体的には、本発明は金属CMPシステムにおける性能向上に関する。
【0002】
【従来の技術】
半導体装置の製造においては、平滑化、バフ研磨およびウェハ洗浄を含む化学機械平坦化(CMP)を行う必要がある。集積回路デバイスは一般に、多層構造の形態をとる。基板層には、拡散領域を有するトランジスタ素子が形成される。続く層には、金属配線がパターニングされ、所望の機能素子を定義するためにトランジスタ素子に電気的に接続される。周知のように、パターニングされた導電層は、二酸化シリコンのような絶縁体によって、他の導電層から絶縁されている。金属層と関連する誘電体層が数多く形成されるほど、誘電材料を平坦化する必要性が増す。平坦化工程を行わない場合、表面のトポグラフィのばらつきが一段と多くなるため、金属層の積層が実質的により困難となる。その他の実装例では、まず絶縁物質に金属配線パターンが形成され、続いて余分な金属を除去するために金属CMP工程が行われる。銅(Cu)CMPは、他の技術では不可能な銅プラグや銅ワイヤの形削りを可能とする銅のデュアルダマシン技術となった。
【0003】
CMPシステムは、通例、ベルト方式、オービタル方式、またはブラシ方式のステーションを実装しており、ステーション内では、ベルト、パッド、またはブラシによって、ウェハの片面もしくは両面が、スクラブ、バフ研磨、または研磨される。通常、余分な絶縁層や金属層の除去は、処理されたウェハ表面を化学修飾したその場所で実現され、これによってウェハ表面からより多くの金属除去が行われる。スラリは、CMP工程の化学修飾の促進および向上を目的として用いられる。スラリは通常、パッドなど動作する処理面に導入され、バフ研磨、研磨、またはCMP処理によってその他の処理を施される半導体ウェハの表面だけでなく、処理面にも散布される。一般に、スラリの散布は、処理面の動作、半導体ウェハの動作および半導体ウェハと処理面の間に生じる摩擦との組み合わせにより実現する。続いて、化学修飾された余分な金属層や絶縁層がウェハの表面から除去される。金属層と絶縁層はそれぞれ異なる化学特性を有するため、金属層と絶縁層では、実施される化学機械平坦化工程が異なる。両者のCMP工程について、以下で簡単に説明する。
【0004】
絶縁層の化学機械平坦化工程は、ポリヒドロキシケートを緩めるために、圧力をかけた状態で絶縁層(酸化層など)を熱湯に溶かすことによって実現される。その後、ポリヒドロキシケートは簡単にウェハの表面から除去され得る。一方、金属層の化学機械平坦化(CMP)工程では、金属の延性という特性により余分な金属層の除去がほとんど不可能になるという、重大な問題が生じる。電子が原子間に局在する非金属製素子とは対照的に、金属素子の価電子は原子間に局在しないで、「伝道帯」、「電子雲」もしくは「電子層」を形成する。その結果、自由金属イオンが電子層に結合される。従って、生成された金属原子は原子間の結合や電子雲を壊さずに、金属層の表面全域を簡単に移動し得る。このことは、金属の性質である「延性」としばしば関連し、本明細書中において「延性」は、生成原子と金属層表面間の金属結合を壊すことなく、金属層表面上の各平衡位置から簡単に動く結合生成金属原子の機能という意味で用いられる。これに対して、局在化電子を有する非金属素子では、通常、分子結合は、単に原子角度を20%から30%変更するだけで簡単に破壊され得る。
【0005】
従って、金属層でCMP工程を行うためには、金属層は、分子結合を有する化学化合物(例えば酸化物)に変換されなければならない。つまり、生成金属原子と金属層との金属結合は、電子が特定の二つの原子間で局在化される分子結合の形態に変換されなければならない。従って、金属CMP工程では金属層を酸化し、それによって酸化物層を生成する。酸化物分子は分子結合を有するため、酸化物層は簡単に機械的に除去され得る。
【0006】
図1は、従来技術のCMPシステム100の典型例を示す。図1のCMPシステム100はベルト型のシステムである。そのように表されるのは、研磨パッド回転方向矢印116で示される回転運動で、研磨パッド108を駆動する2つのドラム114上に取り付けられた研磨パッド108が処理面となっているからである。ウェハ102は、キャリア104に取り付けられている。キャリア104は、方向106の向きに回転される。次いで、CMPプロセスを実現するために、回転するウェハ102が回転する研磨パッド108に対して力Fで押し付けられる。CMPプロセスによっては、かなり大きな力Fを加える必要がある。プラテン112は、研磨パッド108を安定させ、ウェハ102を押し付ける部分にソリッド面を供給するために設けられている。除去される余分な金属の種類に応じて、拡散した研磨粒子を含むNH4OHもしくはDI水などの水溶液を含んだスラリ118は、ウェハ102の上流に導入される。
【0007】
金属CMP工程においては、第一に金属層を酸化しなければならないため、スラリ118の成分は金属CMP工程にとって重要な側面である。さらにスラリ118は、それによってウェハ102の表面上に光侵食や不完全な部分が生じないようなものを選ばなければならない。従って、一般に金属CMPで用いられるスラリは、酸化性物質と酸を含み、両者によって金属層から酸化物層への変換が促進される。通常は、こうしたスラリは「非常に安定」し、以下の二つの基本的特性を有する。第一に、スラリは長いシェルフライフタイムをもつ。第2に、スラリを活性化するには、かなり大量のエネルギを要す。金属スラリの高い安定性という特性は、極めて低い酸化速度をもたらすため、全体的な除去速度は低下する。その結果、金属CMPプロセスに費やされる全体的な時間は極めて長くなり、それによってスループットが低下する。
【0008】
以上の点を考慮した結果、従来の化学機械平坦化システムを改良し、従来のスラリを利用しつつより高いスループットを実現するシステムが必要である。
【0009】
【発明の概要】
概して、本発明は、スラリの成分を操作し、それによってウェハ面に形成された余分な層の除去速度を向上することによってこれらの要求を満たす。一態様において、化学機械平坦化(CMP)システムのスループットは、導入されたスラリの活性化を介して余分な層の除去速度を向上することにより増加する。好適な実施態様において、ウェハ面の金属層の除去速度は、光誘発されたスラリの活性化を介し、自動抑制CMPシステムにおいて高くなる。自動抑制CMPシステムは、ここでは酸化物形成速度が金属酸化溶解速度より高いCMPシステムとして定義される。当然のことながら、本発明は、プロセス、装置、システム、デバイス、または方法を含む種々の態様で実施できる。以下では、本発明の実施態様をいくつか説明する。
【0010】
一実施形態において、化学機械平坦化(CMP)装置が開示されている。そのCMP装置は、スラリ薬剤を受ける研磨パッドを含む。CMP装置はさらに、金属表層を有するウェハを保持するキャリアヘッドを含む。キャリアヘッドと研磨パッドは、スラリ薬剤を用いて金属表層を研磨する間、機械的に接触される。CMP装置はさらに、スラリ供給される位置より後ろで且つパッドがウェハの下に入る位置よりも前で研磨パッド上に適用される放射ユニットを含む。放射ユニットは、ウェハの金属表層と研磨パッドとが機械的に接触する直前にスラリ薬剤を放射線にさらす。
【0011】
別の実施態様において、化学機械平坦化(CMP)装置が開示されている。そのCMP装置は、回転する研磨パッドと、研磨されるウェハを保持するキャリアを含む。そのCMP装置はさらに、キャリアの近くに配置された調整パッドを含む。研磨パッドは、前記キャリアと前記調整パッドの両方に部分的に重なった状態から、徐々に前記キャリアから完全に離れて前記調整パッドに完全に重なる状態へと、回転しながら移動する。そのCMP装置には、スラリ供給ユニットも含まれる。スラリ供給ユニットは、研磨パッドによってウェハと研磨パッドとの間にスラリを供給できるように、回転しながら調整パッドにスラリを供給する。そのCMP装置はさらに、ウェハと研磨パッドとの間に供給されるスラリに放射線をあてる放射源を含む。
【0012】
さらに別の実施態様において、化学機械平坦化処理(CMP)システムにおいて、ウェハのウェハ層除去を促進する方法が開示されている。その方法は、スラリがウェハ層に投入される前にスラリに放射線をあてることを含む。
【0013】
さらに別の実施形態において、化学機械平坦化(CMP)装置が開示されている。そのCMP装置は、スラリ薬剤を受ける研磨パッドを含む。CMP装置はさらに、金属表層を有するウェハを保持するためのキャリアヘッドを含む。キャリアヘッドと研磨パッドは、スラリ薬剤を用いて金属表層を研磨する間、機械的に接触される。CMP装置はさらに、スラリが供給される位置の後ろで研磨パッド上に適用される放射ユニットを含む。放射ユニットは、ウェハの金属表層と研磨パッドが機械的に接触する直前に、スラリ薬剤を放射線にさらす。
【0014】
本発明には、数多くの利点がある。とりわけ本発明では、スラリを現状のまま導入するかわりに、放射線を介してそのままの位置で活性化し、こうすることによってCMPシステムにおける金属の除去速度を促進することができる。従って、本発明によって、紫外線または赤外線照射等の適用される放射線を介してエネルギを導入することにより、スラリと除去すべき層の化学反応の活性化障壁を容易かつ円滑に越えることができる。従って、これまでと同量のスラリを同じ期間供給しても、本発明の実施例は、ウェハ表面の品質を落とすことなく、より高いスループットを実現できる。一実施態様において、マルチセグメント光源は有益である。というのも、マルチセグメント光源構造によって、CMPシステムでは処理されるウェハの異なった部分において、異なる除去速度の採用が可能となり、これによってウェハ表面に対応した所望の平坦化プロフィールを達成し得るからである。マルチセグメント光源構造はさらに、本発明の活性化効率の再配分を可能とし、研磨される半導体のある部分の除去速度を、他の部分と区別して高めることを可能とする。本発明のその他の実施態様の利点によると、より安定した酸化剤や、さらには気体酸素も供給され得るため、一段と改良されたシェルフライフタイムを持つスラリの使用が可能となる。
【0015】
本発明のその他の態様および利点は、本発明の原理を例示した添付図面と関連付ながら行う以下の詳細な説明から明らかになる。
【0016】
【好ましい実施態様の詳細な説明】
以下において、ウェハ表面上に形成された余分な堆積層の除去速度を向上することにより、システムのスループットを最適化する化学機械平坦化(CMP)の種々の態様を説明する。好適な実施態様において、CMPシステムは、活性化スラリを導入することにより除去率を向上させる。一実施態様において、スラリは、赤外線(IR)放射もしくは紫外線(UV)放射を介して活性化される。好ましくは、自動抑制型の金属CMPシステムにおいて、複数の酸化剤を含んだスラリは、酸化剤と金属層の化学反応を促進するために活性化される。その結果、ウェハ表面上での機構の動き、例えば研磨パッド、スラリおよびウェハ間での摩擦によって一層除去が容易となる金属酸化物層が形成される。従って、好適な実施態様において、照射金属CMPシステムの酸化物形成率は、非照射システムの酸化物形成率よりも高く、よって照射CMPシステムの除去率を向上し、これによりスループットも向上させる。
【0017】
以下の説明では、本発明の完全な理解を促すために、数々の具体例が示されている。しかしながら、当業者にとっては、本発明がこれらの具体的な詳細の一部もしくはすべてがなくとも実行可能であることが理解される。そのほか、本発明が不必要に不明瞭となることを避けるため、周知の処理工程の説明は省略した。
【0018】
図2Aは、金属層と複数の酸化剤の化学反応の結果として溶解金属と金属層の副生成物が生成されたことを示す化学反応式のテーブル150である。化学反応式1に示すように、一態様によれば、ウェハの金属層Mlayerの金属CMP工程の間、可溶性金属化合物溶液Mdissolvedおよび副生成物は、複数の酸化剤、溶剤および金属層Mlayer間の化学反応と相互作用の結果として生成される。化学反応式2に示すように、2つの実質的に連続した段階において、化学反応式1よりやや単純な化学反応が実際に進んでいる。酸化物形成速度Roxを有する最初の酸化段階において、固体の金属(s)は一種類以上の酸化剤と化学反応を起こし始め、それによって固体の金属酸化物M−oxide(s)を生成する。その結果、溶解速度Rdisを有する溶解段階において、一種類以上の溶剤が、第1段階で生成された固体の金属酸化物M−oxide(s)と化学反応を起こし始め、これによって溶解金属溶液Mdisおよび副生成物を生成する。
【0019】
CMP工程の目的は、実質的に平坦化された面を実現することなので、生成された固体の金属酸化物層M−oxide(s)は、化学成分よりもむしろCMP工程の金属成分によって除去される方が好ましい。固体の金属酸化物層M−oxide(s)の機械的除去が好ましい理由としては、以下が挙げられる。第1に、化学化合物は感圧性ではないが、CMP工程における化学化合物は感圧性である。つまり、ウェハを機械研磨する間、ウェハのトポグラフィ形状が高ければ高いほど研磨面に発生する圧力が増し、これによって素子の最上層から除去される固体の金属酸化物M−oxide(s)の除去速度が高くなるため、平坦化されたトポグラフィが達成される。第2に、CMP工程は、酸化物形成速度Roxよりも高い溶解速度Rdisを用いる場合、好適でないウェハの銅侵食を起こす可能性がある。このことは、図2Aのテーブル150の化学反応式3を参照するとさらに理解できる。図示のように、酸化物がゆっくり形成される状況では、酸化物形成速度Roxは、溶解速度Rdisよりも低くなる。そのような状況では、連続した銅の酸化または溶解を妨げるものがないため、銅侵食が起こり得る。それに対し、酸化物が急速に生成される状況では、酸化物形成速度Roxは溶解速度Rdisよりも高くなるため、一旦非浸透性の酸化物層が形成されると、反応を抑制し、実質的には完全に反応を中断する。この結果、銅侵食を引き起こすことなく機械的に固体の金属酸化物層M−oxide(s)を除去する目的を実現するためには、酸化物形成速度Roxを溶解速度Rdisより高くするのが好ましい。
【0020】
従って、好ましい実施態様において、本発明のCMP工程は、金属層の酸化速度が、生成された固体の金属酸化物層の溶解速度より高いCMP処理として定義される、自動抑制型である。しかしながら、そのようなCMPシステムにおいては、生成された固体の金属酸化層は、実質的には瞬時に除去されるのが好ましい。さもなければ、生成された固体の金属酸化層がウェハの表面を完全に覆ってしまい(すなわち、抑制してしまい)、酸化プロセスを中断してしまうからである。従って、「ウェットエッチング」プロセスは酸化物形成速度Roxが溶解速度Rdisよりも低いため、金属のCMP工程においては好ましくない。酸化物形成速度に関する詳細については、図2Bと関連してさらに説明される。
【0021】
自動抑制型CMPプロセスを実装する好適な点は、適正なスラリ成分を選択できることである。溶解速度Rdisよりも高い酸化物形成速度Roxを有することは好都合なため、好ましくは導入されるスラリは、酸化剤(例えば、過酸化水素、硝酸酸化鉄、過マンガン酸塩、溶存気体酸素、溶存気体オゾン、硝酸アンモニウム、硝酸カリウム、硝酸銅、重クロム酸カリウム等)を含む。例えば、銅CMPにおいて、様々な酸化剤をスラリに用いることが可能である(例えば、過酸化水素、硝酸酸化鉄、過マンガン酸塩、溶存気体酸素、溶存気体オゾン、硝酸アンモニウム、硝酸カリウム、硝酸銅、重クロム酸カリウム等)。好適な実施態様において、過酸化物はまさに効果的な銅酸化物質である。スラリのほとんどが過酸化物を含んでいるが、企業によっては、金属層Mlayerを酸化するために異なる酸化剤を導入するところもある。
【0022】
図2Bは、本発明の一実施態様において、図2Aのテーブル150における化学反応式をグラフ表示したもので、温度の上昇に伴って活性化障壁を超えるために必要とされるエネルギ量が減少する様子を示している。図示のように、グラフの縦軸は、分析されたシステムに適用できるエネルギ変化を反映したもので、横軸は、化学反応経路での異なる段階を示す。一実施態様において、プロット150a’は点152で始まり、点152は、照射を受けていない金属層Mlayerと酸化性物質についての位置エネルギ面の最小値を示す。通常、分子間の反発力は、金属層Mlayerと酸化性物質の相互の化学反応を妨げる。従って、反応を促進し、これらの反発力に打ち勝つために、大量のエネルギをシステムに導入する必要がある。図示のように、プロット150a’の最大点156は、システムが製造段階に入る前に越えるべき位置エネルギ面を示す。「活性化エネルギ」または「活性化障壁」として知られる分子間斥力を越えるためには、かなり大量のエネルギをシステムに導入しなければならない。活性化障壁より高いエネルギを有する分子のみが活性化障壁を越え、製造段階に進むことが可能である。活性化障壁が高くなればなるほど、障壁を越え得る分子の数は減り、金属層Mlayerと酸化性物質間の反応は遅くなる。
【0023】
図示のように、Eact150a’’は、金属層Mlayerと酸化性物質間の化学反応を進めるため、そこに必要なエネルギ量を示す。大雑把に言えば、酸化反応Eactに必要なエネルギ量である。150a’’は、活性酸化物原子を開放し、それによって自由に金属層と反応させるため、酸化性物質内の所定の分子結合を壊すのに必要なエネルギ量を示す。図示のように、一旦活性障壁を越えると、システムは自発的に酸化銅(s)とそれに対応する副生成物を生成する。その結果、最も励起された分子は、活性化障壁を越えることによって互いに反応することが可能となり、それによって反応速度が決まる。図示のように、システムの温度が高くなればなるほど、より多くの分子が活性化障壁を越えることができる。別の方法としては、任意の温度に設定されても、活性化障壁が低くなればなるほど、より多くの分子が活性化障壁を越えることができる。
【0024】
反応速度は、触媒速度の向上もしくは反応励起のどちらかを介して促進することが可能である。触媒速度向上において、プロット150b’に示すように、活性化障壁を越えるのに必要なエネルギ量は、触媒との相互作用を介して減少する。図示のように、プロット150b’のピーク点158到達に必要なエネルギ量は、実質的にはプロット150a’の最大点156の到達に必要とされるエネルギ量より少ない。つまり、触媒速度促進システムEact.-cat.の活性化エネルギ150b’’は、実質的には、非触媒システムEactのための活性化エネルギ150a’’より低い。
【0025】
さらに別の実施態様において、反応速度は反応励起を介したシステムのエネルギを増加することによって向上され得る。このことは、図2Bのプロット150c’によって図示されている。図示のように、プロット150c’はいくつかの外部エネルギが励起エネルギとして定義されている状態154で始まる。150dは外部エネルギ源(例えば加熱、照射、圧力衝撃等)を利用したシステムに供給されている。図示のように、システムに導入されるエネルギが高ければ高いほど、活性化エネルギEact.-ex.150c’’(例えば、活性化障壁164を越えるために必要なエネルギ量)は低くなり、反応速度が高くなる。従って、金属層Mlayerの内部エネルギと酸化性物質を増加させることにより、活性化障壁を越えるのに必要なエネルギ量は著しく減少し、酸化物形成速度だけでなく、最終的にはCMP除去速度が向上する。
【0026】
活性化障壁を越えるために必要なエネルギの低下は、過酸化物(例えばH22もしくはH−O−O−H)を有するスラリを利用した典型的な銅CMPシステムに関する理解をさらに促すことができる。周知のように、過酸化物は二つの酸化性原子を含み、そのうちの一つは金属層の酸化プロセスに関与するために分離されなければならない。従って、適切な分子結合を破壊するか少なくとも弱めるためにエネルギが必要となるため、酸素を開放し、それによって銅の金属層Mayerと自由に化学反応を起こし始める。よって、金属層Mlayerと過酸化物間の化学反応を起こすために、過酸化物内の分子結合を弱めるか破壊するエネルギが必要となる。一態様において、金属層Mlayerと酸化性物質間の化学反応は、赤外線放射や紫外線放射を用いて酸化性物質をさらに活性化することにより促進される。赤外線放射は、スラリ内の分子の励起並進運動や振動運動をもたらし、紫外線放射は、価電子の励起と反応分子内での化学結合を弱めたり壊すことによって、反応速度を向上させる。
【0027】
図3A−1は、本発明の一実施態様におけるベルト型CMPシステム200aを簡略化して示す平面図で、ウェハと研磨パッド208との接触面に到達する前のスラリの活性化を示す。図示のように、ウェハ202は研磨パッド208が回転方向216に動くのに合わせて研磨パッド208に当てられる。本実施例においては、ウェハ202と研磨パッド208が接触する前に、スラリ218は研磨パッド208の面上に導入される。スラリ218は、実質的に研磨パッド208の幅を覆うように、研磨パッド208上に導入され、それによって研磨パッド208を濡らす。ランプ220は、スラリ218がウェハ202と研磨パッド208の研磨界面に到達する前に、ランプ220によって生成された放射線がスラリ218にあたるよう、実質的には動作研磨パッド208の上方に配置される。好ましくは、ランプ220は赤外線ランプもしくは紫外線ランプで構成される。しかしながら、別の実施態様においては、ランプ220は、銅侵食やウェハの表面202上に不完全部分を生じさせずにスラリを活性化するのに必要なエネルギを供給する機能を有する限り、任意の種類のランプもしくは放射ユニットであっても良い。好ましくは一実施態様において、スラリ218は過酸化物もしくは溶存酸素を含む。しかしながら、別の実施態様においては、スラリ218は任意の種類の過酸化物を含んでも良い。
【0028】
本実施例の構成に示されるように、従来の銅CMPシステムとは異なり、本実施例のスラリ218は、赤外線光の赤外線放射または紫外線ランプ220の放射によって急速に活性化される。従来技術における銅CMPシステムによれば、一般に、活性化障壁を越えるために必要なエネルギは、全て機械的構成要素によって生成される。つまり、ウェハと研磨パッドとの研磨界面にスラリが導入されると、パッド、ウェハ、スラリの動きによって研磨界面の温度が上昇するため、活性化障壁を越え得る分子の数が増加する。従って、そうした状況では、金属層Mlayerと酸化性物質間の化学反応が長期間起こらない可能性がある。さらに、活性化障壁を破るために必要な時間が極めて長くなるため、金属層Mlayer上に銅酸化物層を形成するために時間を要し、従って、金属酸化物の全体としての除去速度(例えば、銅CMPプロセスでの速度)が低下する。よって、CMPプロセス全体に費やされる時間が増大し、スループットに悪影響を及ぼす。
【0029】
従来技術における銅CMPプロセスとは対照的に、本発明では、きわめて高い除去速度を実現する。本発明の一面において、紫外線光の光量子によって生成される大量のエネルギは、過酸化物の原子間もしくは導入されるその他の酸化性物質における結合を切断するために十分な量であり、銅CMP工程の酸化物形成速度が向上する。動作する研磨パッド208がウェハ202に適用されると、過酸化物を含む活性化スラリ218は、ウェハ202の銅層と化学反応を起こし始める。スラリ218が活性化されると、活性化スラリ218’はウェハ202の金属層Mlayerと今にも化学反応を起こす状態にある自由酸化物原子を含むため、より迅速に銅層から銅酸化物層を形成する。つまり、化学反応の結果として、銅層の金属結合は銅酸化物中により一般的に存在する分子結合に変化する。従って、本発明では、活性化障壁を破るために、二通りの形態のエネルギを利用する。第1のエネルギ形態は、銅CMPシステムの研磨パッド208に対するウェハ202表面の機械的動作によって生成されるエネルギである。第2のエネルギ形態は、赤外線放射もしくは紫外線放射によって生成されるエネルギである。二通りの形態のエネルギを利用することにより、本発明は生成された固形の酸化金属層の形成を加速し、これによって酸化物形成速度Roxを高める。その結果、ウェハ202の銅CMP工程に費やされる全体時間が著しく減少する。
【0030】
さらに、生成される固体酸化金属層の除去速度は銅層の酸化物形成速度Roxに直接依存する。従って、酸化物形成速度が高まれば高まるほど、生成される固体酸化金属層を銅層の表面からより速く除去することが可能となる。同じことは、続く金属酸化物層においても当てはまる。具体的には、銅CMP工程の全体的な除去速度は、銅層上に酸化物を形成する速度によって制限され、酸化物形成速度自体はスラリ218の活性化速度に直接関係する。酸化物形成速度および銅CMPシステムの全体的な除去速度の信頼性に関しては、図3C−1から3C−5と関連付けて、さらに詳細を以下で説明する。
【0031】
図3A−2は、本発明の一実施態様における図3A−1のCMPシステム200aを簡略化して示す部分断面図で、単ランプを利用したスラリの活性化を示している。図示のように、本実施例において、単ランプ220はスラリ218上に、実質的に均一に赤外線放射もしくは紫外線放射をあて、これによってスラリ218を活性化する。ランプ220の長さは、およそ6.5インチ〜12.5インチ(16.51cm〜31.75cm)程度の幅で、好適にはウェハの大きさよりやや大きい程度に構成される。詳述されたように、活性化したスラリ218’は、酸化物層を形成するために、研磨されて活性化されたウェハ202の銅層と化学反応を直ちに起こし始める状態にある増量された活性酸化剤分子を含む。
【0032】
図3B−1は、ベルト型CMPシステム200a’の一部を上から見た状態を簡略化して示す透視図である。このシステムにおいてスラリは、(例えば、強度をプログラム可能な)強度の異なる複数のランプを用いて活性化される。図示のように、スラリ218は、研磨パッド208が回転方向216に動く際に研磨パッド208上に導入される。サイドランプ222a、センターランプ220b、サイドランプ220cは、おおよそ一本の縦線上に隣合わせで並ぶように配置され、実質的に研磨パッド208の上方に配備される。一実施態様において、サイドランプ222a、センターランプ220b、サイドランプ220cは、異なる活性強度を有する、対応する活性化スラリを生成するために、それぞれ互いに異なる放射強度を有する。再び図3B−1の実施態様において、スラリ218は、ウェハ202と研磨パッド208間の研磨界面に到達する前に急速に活性化される。スラリは研磨界面に到達する前に紫外線によって活性化されるため、スラリ活量の活性化は、他のCMPプロセス消耗品の感熱特性やウェハ表面には影響しない。例えば、研磨パッド208の温度は可能な限り低く維持することが有益なため、本発明は研磨パッド208の温度を上げることなくスラリの活量を増大する。
【0033】
図3B−2は、本発明の一実施態様における図3B−1のCMPシステム200a’の一部を展開した断面図で、異なる活性化レベルを有するスラリを生成する本発明の特性を示している。図示のように、線強度220a’を有するサイドランプ220aは、スラリ218のうちウェハ202の側方部分の下に移動される部分を活性化するために利用され、活性化スラリ218aを生成する。センターランプ220bは放射強度220b’を有し、活性化センタースラリ218bを生成するために、スラリ218のうちウェハ202の中央部分の下に移動される部分を活性化する。放射強度220c’を有するサイドランプ220cは、スラリ218のうちウェハ202の側方部分の下に移動される部分を活性化し、活性化サイドスラリ218cを生成する。本好適な実施例において、ランプ強度220a’、220b’、220c’は、強度220b’が強度220a’および強度220c’よりも高く、かつ強度220c’は強度220a’より高くなるよう予めプログラムされ、選択される。
【0034】
マルチセグメント光源構造の使用は、マルチセグメント光源構造がCMPシステムに対して、処理されるウェハの異なる部分において、異なる除去速度を促進することを許容するため、有益である。これによって研磨される特定の層を考慮して、所望の平坦化された表面を実現する。周知のように、ウェハ表面トポグラフィは、ウェハ202の端部とウェハ202の中心部とでは異なる場合がある。本発明の実施態様によれば、ある部分の除去速度を他の部分と区別して高く設定できる(例えば、ウェハ202の端部に対し、ウェハ202の中心部の除去レートを高くする)。本実施例は、3つの別個のランプを利用するよう設計されたが、本発明は、任意の個数のランプもしくはマルチセグメントユニットによって、スラリを活性化するために実装可能であることは、当業者に理解されるだろう。
【0035】
図3C−1から図3C−5は、本発明の一実施態様における、銅層を有するウェハのある部分に行う化学機械平坦化の様々な段階を示す分解部分断面図である。図3C−1は、絶縁部202aおよび銅層202bを有するウェハ202を示す。図3C−2は、ウェハ202の最上層部分202’の分解断面図を示す。この図によれば、銅層202b内にはいくつかの破線の層が示されるが、銅が研磨除去されるときには最上層だけが活性化される。この点を念頭に置いて、活性化スラリ218’は銅層202b上に導入される。説明のために、図3C−2の銅層202bは、深さ1:202bd1、深さ2:202bd2、深さ3:202bd3、深さ4:202bd4、深さ5:202bd5として定義される複数の銅層の深さに破線で分けられており、深さ1:202bd1は最もウェハ202の表面に近く、深さ5:202bd5は最もウェハ絶縁部202aに近い。図3C−2に示すように、活性化スラリは、深さ202bd1の上面に、研磨パッドとの機械的接触によって加えられる。
【0036】
図3C−3の実施態様を参照すると、銅層の深さ1:202bd1は活性化スラリ218’と反応しており、これによって銅酸化スラリ膜202cを生成する。図示のように、銅酸化スラリ層202cは、実質的にはウェハ202の表面全域を覆う。この時点で深さ1:202bd1は、従来の金属CMPに関連した前述の問題もなく除去される。つまり、銅の除去は本質的に酸化物の除去に近く、延性金属の除去とは異なる。図示のとおりこの段階では、図3C−3の銅層202bは、深さ2:202bd2、深さ3:202bd3、深さ4:202bd4、深さ5:202bd5を含む。図3C−4は、活性化スラリが銅層202bの深さ3:202bd3の表面上に定義されている時点でのウェハ202を示す。本実施例では、銅層の深さ3:202bd3が活性スラリ218’と反応しており、これによってウェハ202の表面付近に銅酸化スラリ層202cを生成する。図示のように、この段階では、図3C−4の銅層202bは、深さ4:202bd4および深さ5:202bd5のみを含む。従って、深さ202bd1および202bd2は、すでに活性化スラリ218’と反応して機械的に除去されている。最後に、図3C−5の実施態様において、銅層202bはほとんど除去され、実質的には平坦化されて均一になったウェハ絶縁部202aのみが残っている。
【0037】
図示のように、銅CMPシステムの除去速度は、ウェハ202の表面上での銅酸化物層の形成によって決まる。さらに図示されるように、活性化スラリ218’は、任意の時点で、活性化銅層202bの特定の深さに限定した化学反応を起こし得る。従って、銅CMPシステムの全体的な質は、酸化物形成速度によって決まる。つまり、銅酸化物層の形成速度が速ければ速いほど、より速く金属層Mlayerをウェハ202の表面から除去することが可能となる。
【0038】
図4は、本発明の一実施態様における可変パーシャルオーバーラッピング(例えばサブアパーチャ)CMPシステム200bの簡略化された断面図である。図4の実施態様には研磨ヘッド208’が含まれる。研磨ヘッド208’は、研磨回転方向216に回転しながらウェハ202の中心部からウェハ202の端部へ移動方向216’の向きに移動する際、ウェハ202の表面を研磨する。研磨ヘッド208’はさらに、振動運動を起こすために、振動方向216’’に往復動する。図示のように、本実施例には、キャリア206が研磨ヘッド208’の下に配備されている。キャリア206は、留めリング204を用いてウェハ202をはめ込んでいる。図示のように、一実施態様において、留めリング204は、ウェハ202が研磨パッド208’によって研磨される間、ウェハ202との共面関係を維持する。本実施例において、ウェハ202の露出した表面は、研磨ヘッド208’と向き合うよう構成される。一実施態様において、ジンバル222はキャリア206の下に配備され、CMPプロセスの間、動作する研磨ヘッド208’にキャリア206を合わせるよう定義される。ジンバル222はウェハの回転方向207に回転する拡張軸224に取り付けられている。拡張軸はキャリア206に対して力Fを加える。
【0039】
調整ヘッド210は、研磨ヘッド208’を調整するために、キャリア206の右側(もしくはどちら側でも可)であると同時に研磨ヘッド208の下方に配備されている。研磨ヘッド208’と類似した調整ヘッド210は、研磨ヘッド208’と同じ回転方向(例えば研磨回転方向216)に回転する。調整ヘッド210は、調整スピンドル226に取り付けられている。調整スピンドル226は、調整ヘッド210に力Fを加える。コンテナ219a内に入っているスラリ218の供給は、スラリ送出ユニット219bを通り、調整器210の表面に向けて行われる。ランプ220は、スラリ218が調整ヘッド210と研磨ヘッド208’の調整接合面に配向され、続いて研磨ヘッド208’とウェハ202との研磨接触面に配向されると、スラリ218を活性化するために、調整ヘッド210の一部分の上方に配備される。さらに別の態様において、活性化状態にあるスラリは、研磨ヘッド208’に形成された送出経路(図示せず)を介してウェハ表面に供給可能である。一実施態様において、ランプ220は赤外線ランプもしくは紫外線ランプであっても良い。
【0040】
本実施例のスラリ218は、調整ヘッド210に導入された後に活性化されているが、別の態様において、スラリ218がコンテナ219aに位置する間に、供給するスラリを活性するものとしてもよい。その後、一旦スラリ218が活性化されると、活性化スラリ218’を調整界面を介して研磨界面に導入できるように、活性スラリ218’を調整ヘッド210上に導入することが可能である。研磨ヘッド208’の温度は、出来る限り低く維持するのが好ましいため、研磨ヘッド208’よりも調整ヘッド210に導入されたスラリ218に対して光を当てることが有益である。
【0041】
赤外線ランプおよび紫外線ランプは、スラリの活性化に有益なものとして説明されたが、他の種類の光照射システムをCMPシステムにおけるスラリの活性化に使用し得ることは、当業者にとって明らかである。さらに、実装例によっては、ランプの強度をRdisに関連付けながら所望のレベルRoxを実現するように制御しながら調整することが可能である。
【0042】
理解を深めるために従来技術をある程度詳しく説明したが、添付の特許請求の範囲内で一定の変更や修正が可能であることは明らかである。例えば、本明細書に記載された実施態様は、主にウェハの化学機械研磨を目的としたものであるが、本発明の化学機械平坦化工程は、どの種類の基板研磨にとっても大変都合がよい。さらに、本明細書に記載された実装は、特に銅の化学機械研磨を目的としているが、本発明の化学機械平坦化工程は、任意の種類の絶縁体や金属研磨に適するものであると理解すべきである。したがって、本実施態様は、例示的なものであって、制限的なものではないとみなされ、本発明は、本明細書に示した詳細に限定されず、添付の特許請求の範囲および等価物の範囲内で変更可能である。
【図面の簡単な説明】
【図1】 典型的な従来技術のCMPシステムを示す。
【図2A】 本発明の一実施態様における金属層と複数の酸化剤の化学反応の結果として溶解金属と金属層の副生成物が生成されたことを示す化学反応式のテーブルである。
【図2B】 本発明の別の実施態様における図2Aの化学反応式をグラフ表示したもので、温度の上昇に伴って活性化障壁を超えるために必要とされるエネルギ量が減少する様子を示す。
【図3A−1】 本発明のさらに別の実施態様におけるベルト型CMPシステムを上からみた透視図で、ウェハと研磨パッドとの接合面に到達する前のスラリの活性化を示す。
【図3A−2】 本発明のさらに別の実施態様における図3A−1のCMPシステム200aを簡略化して示す部分断面図で、単ランプを利用したスラリの活性化を示す。
【図3B−1】 本発明の一実施面におけるベルト型CMPシステムの一部を上から見た状態を簡略化して示す透視図である。
【図3B−2】 本発明の別の実施面における図3B−1のCMPシステムの一部の展開断面図で、異なる活性化レベルを有するスラリを生成するという本発明の特性を示す。
【図3C−1】 本発明のさらに別の実施面における銅層を有するウェハの一部の展開断面図である。
【図3C−2】 本発明のさらに別の実施面における活性化された銅層を有するウェハの上層の一部分の展開断面図で、活性化された銅層は複数の深さを有する。
【図3C−3】 本発明のさらに別の実施面における活性化された銅層を有するウェハの上層の一部分の展開断面図で、活性化された銅層の深さの一つは、活性化したスラリと反応している。
【図3C−4】 本発明のさらに別の実施面における活性化された銅層を有するウェハの上層の一部分の展開断面図で、活性化された銅層の深さの一つは除去されている。
【図3C−5】 本発明のさらに別の実施面における活性化された銅層を有するウェハの上層の一部分の展開断面図で、活性化された銅層のすべての深さは除去されている。
【図4】 本発明の一実装例における可変パーシャルオーバーラッピング(例えばサブアパーチャ)CMPシステムを示す。

Claims (13)

  1. 化学機械平坦化(CMP)装置であって
    スラリ薬剤を受ける研磨パッドと、
    金属表層を有するウェハを保持するキャリアヘッドと、前記ウェハの前記金属表層と前記研磨パッドとは、前記スラリ薬剤を用いて前記金属表層を研磨する間、機械的に接触し、
    棒状の形状を有し、前記ウェハの前記金属表層と前記研磨パッドとが前記機械的に接触する直前に、前記スラリ薬剤を放射線にさらすために、スラリが供給される位置の後ろで且つパッドがウェハの下に入る位置よりも前で前記研磨パッド上の幅方向にわたって放射線を加える放射ユニットを備え、前記放射ユニットは、マルチセグメントユニットであって、そのマルチセグメントユニットの各セグメントは、前記研磨パッド上を伝わる前記スラリ薬剤に対して異なる放射強度を適用する
    化学機械平坦化(CMP)装置。
  2. 請求項1に記載の化学機械平坦化(CMP)装置であって、前記放射ユニットは赤外線ランプ(IR)もしくは紫外線ランプ(UV)のいずれかである化学機械平坦化(CMP)装置。
  3. 請求項1に記載の化学機械平坦化(CMP)装置であって、前記研磨パッドはベルト型パッドであって、前記スラリ供給位置は、ウェハ実装位置より上流に定義され、前記放射ユニットは前記スラリ供給位置と前記ウェハ実装位置との間に配備される化学機械平坦化(CMP)装置。
  4. 請求項1に記載の化学機械平坦化(CMP)装置であって、前記研磨パッドは回転CMPパッドであって、前記スラリ供給位置はウェハ実装位置より上流に定義され、前記放射ユニットは前記スラリ供給位置と前記ウェハ実装位置との間に配備される化学機械平坦化(CMP)装置。
  5. 請求項1に記載の化学機械平坦化(CMP)装置であって、前記金属表層は銅もしくはタングステンのいずれかである化学機械平坦化(CMP)装置。
  6. 化学機械平坦化(CMP)システムにおいてウェハのウェハ層の除去を促進するための制御方法であって、
    研磨パッドを供給することと、
    スラリを研磨パッドに適用することと、
    スラリがウェハ層に供給される直前にスラリに放射線を当てるために研磨パッドの幅方向にわたって、各セグメントが前記研磨パッド上を伝わる前記スラリに対し、異なる放射強度を適用するマルチセグメント放射を加えること、
    ウェハを保持するキャリアヘッドを供給すること、
    前記研磨パッドと前記ウェハ層とを接触させることによって、前記研磨パッド、前記ウェハ層および前記被放射スラリ間に機械的研磨界面を作り出すこと
    を備える制御方法。
  7. 請求項6記載の制御方法であって、前記ウェハ層は金属表層である制御方法。
  8. 請求項7記載の制御方法であって、前記研磨パッドと前記ウェハ層とを接触させることによって前記研磨パッド、前記ウェハ層および前記スラリ間に機械的研磨界面を作り出すことは、さらに、
    上面層を形成するために前記金属表層上に前記被放射スラリを供給することと、
    前記上面層を前記ウェハ層と接触させることによって機械的にその上面層を除去すること
    を備える制御方法。
  9. 請求項8記載の制御方法であって、上面層を形成するために前記金属表層上に前記被放射スラリを投入することは、さらに、
    金属結合を有する前記金属表層を分子結合を有する前記上面層に変換すること
    を備える制御方法。
  10. 請求項8記載の制御方法であって、上面層を形成するために前記金属表層上に前記被放射スラリを投入することは、さらに、
    酸化金属表層を形成するために前記金属表層を酸化すること
    を備える制御方法。
  11. 請求項10記載の制御方法であって、前記金属表層上に前記被放射スラリを投入することは、前記金属表層の酸化物形成速度の増大に応じて前記金属表層の機械的な除去速度を増加する制御方法。
  12. 請求項1に記載の化学機械平坦化(CMP)装置であって、前記マルチセグメントユニットは3つのセグメントを備え、各セグメントはそれぞれ他のセグメントとは異なる放射強度で作動する化学機械平坦化(CMP)装置。
  13. 請求項6に記載の制御方法であって、前記マルチセグメント放射は3つのセグメント放射により実行され、各セグメント放射はそれぞれ他のセグメント放射とは異なる放射強度である制御方法。
JP2002534039A 2000-10-06 2001-10-02 活性スラリによるcmpシステムおよびcmpシステムの実装方法 Expired - Fee Related JP4141832B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/684,765 US6503129B1 (en) 2000-10-06 2000-10-06 Activated slurry CMP system and methods for implementing the same
PCT/US2001/030829 WO2002030618A1 (en) 2000-10-06 2001-10-02 Activated slurry cmp system and methods for implementing the same

Publications (2)

Publication Number Publication Date
JP2004511109A JP2004511109A (ja) 2004-04-08
JP4141832B2 true JP4141832B2 (ja) 2008-08-27

Family

ID=24749468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002534039A Expired - Fee Related JP4141832B2 (ja) 2000-10-06 2001-10-02 活性スラリによるcmpシステムおよびcmpシステムの実装方法

Country Status (9)

Country Link
US (2) US6503129B1 (ja)
EP (1) EP1322450B1 (ja)
JP (1) JP4141832B2 (ja)
KR (1) KR100846638B1 (ja)
CN (1) CN1217767C (ja)
AU (1) AU2001296492A1 (ja)
DE (1) DE60121008T2 (ja)
TW (1) TWI271795B (ja)
WO (1) WO2002030618A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503129B1 (en) * 2000-10-06 2003-01-07 Lam Research Corporation Activated slurry CMP system and methods for implementing the same
US7086932B2 (en) * 2004-05-11 2006-08-08 Freudenberg Nonwovens Polishing pad
JP2005019669A (ja) * 2003-06-26 2005-01-20 Matsushita Electric Ind Co Ltd 研磨パッド、研磨装置、及びウェハの研磨方法
US8012355B2 (en) * 2004-01-30 2011-09-06 Pss Acquisitionco Llc Molecular separator
JP4258663B2 (ja) * 2005-04-15 2009-04-30 セイコーエプソン株式会社 塗布装置および成膜装置
JP5199691B2 (ja) 2008-02-13 2013-05-15 株式会社荏原製作所 研磨装置
US8778203B2 (en) * 2010-05-28 2014-07-15 Clarkson University Tunable polish rates by varying dissolved oxygen content
US20140199840A1 (en) 2013-01-11 2014-07-17 Applied Materials, Inc. Chemical mechanical polishing apparatus and methods
US9962801B2 (en) * 2014-01-07 2018-05-08 Taiwan Semiconductor Manufacturing Company Limited Systems and methods for performing chemical mechanical planarization
US9987724B2 (en) * 2014-07-18 2018-06-05 Applied Materials, Inc. Polishing system with pad carrier and conditioning station
JP6586023B2 (ja) * 2015-06-29 2019-10-02 パナソニック株式会社 加工装置及び加工方法
JP2024508561A (ja) * 2021-02-16 2024-02-27 アラカ, インコーポレイテッド 化学機械平坦化スラリー処理技術並びにそれを使用して基板を研磨するためのシステム及び方法
US11752592B2 (en) * 2021-07-16 2023-09-12 Taiwan Semiconductor Manufacturing Co., Ltd. Slurry enhancement for polishing system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311203B2 (ja) * 1995-06-13 2002-08-05 株式会社東芝 半導体装置の製造方法及び半導体製造装置、半導体ウェーハの化学的機械的ポリッシング方法
US5811355A (en) 1996-10-31 1998-09-22 Aiwa Co., Ltd. Enhanced chemical-mechanical polishing (E-CMP) method of forming a planar surface on a thin film magnetic head to avoid pole recession
JP3672685B2 (ja) * 1996-11-29 2005-07-20 松下電器産業株式会社 研磨方法及び研磨装置
US6328642B1 (en) 1997-02-14 2001-12-11 Lam Research Corporation Integrated pad and belt for chemical mechanical polishing
DE19737849A1 (de) * 1997-08-29 1999-03-11 Siemens Ag Vorrichtung und Verfahren zum Beheizen eines flüssigen oder zähflüssigen Poliermittels sowie Vorrichtung zum Polieren von Wafern
US5957750A (en) * 1997-12-18 1999-09-28 Micron Technology, Inc. Method and apparatus for controlling a temperature of a polishing pad used in planarizing substrates
US6121144A (en) * 1997-12-29 2000-09-19 Intel Corporation Low temperature chemical mechanical polishing of dielectric materials
JP3075352B2 (ja) * 1998-04-15 2000-08-14 日本電気株式会社 化学的機械研磨液の供給方法および装置
JP2000015557A (ja) 1998-04-27 2000-01-18 Ebara Corp 研磨装置
US6177026B1 (en) 1998-05-26 2001-01-23 Cabot Microelectronics Corporation CMP slurry containing a solid catalyst
TW374051B (en) 1998-08-28 1999-11-11 Worldwide Semiconductor Mfg A chemical mechanical polishing table
US6315635B1 (en) * 1999-03-31 2001-11-13 Taiwan Semiconductor Manufacturing Company, Ltd Method and apparatus for slurry temperature control in a polishing process
US6227939B1 (en) * 2000-01-25 2001-05-08 Agilent Technologies, Inc. Temperature controlled chemical mechanical polishing method and apparatus
US6340326B1 (en) * 2000-01-28 2002-01-22 Lam Research Corporation System and method for controlled polishing and planarization of semiconductor wafers
US6585572B1 (en) * 2000-08-22 2003-07-01 Lam Research Corporation Subaperture chemical mechanical polishing system
US6443815B1 (en) * 2000-09-22 2002-09-03 Lam Research Corporation Apparatus and methods for controlling pad conditioning head tilt for chemical mechanical polishing
US6503129B1 (en) * 2000-10-06 2003-01-07 Lam Research Corporation Activated slurry CMP system and methods for implementing the same

Also Published As

Publication number Publication date
WO2002030618A1 (en) 2002-04-18
CN1479665A (zh) 2004-03-03
CN1217767C (zh) 2005-09-07
US6866567B2 (en) 2005-03-15
DE60121008T2 (de) 2007-07-05
KR20030034251A (ko) 2003-05-01
AU2001296492A1 (en) 2002-04-22
EP1322450A1 (en) 2003-07-02
US20030077988A1 (en) 2003-04-24
DE60121008D1 (de) 2006-08-03
EP1322450B1 (en) 2006-06-21
JP2004511109A (ja) 2004-04-08
KR100846638B1 (ko) 2008-07-16
US6503129B1 (en) 2003-01-07
TWI271795B (en) 2007-01-21

Similar Documents

Publication Publication Date Title
JP4141832B2 (ja) 活性スラリによるcmpシステムおよびcmpシステムの実装方法
US7118686B2 (en) Slurry for use in polishing semiconductor device conductive structures that include copper and tungsten and polishing methods
US6416401B1 (en) Method and apparatus for mechanical and chemical-mechanical planarization of microelectronic substrates with metal compound abrasives
US6579799B2 (en) Method and apparatus for controlling chemical interactions during planarization of microelectronic substrates
US6709316B1 (en) Method and apparatus for two-step barrier layer polishing
US6376381B1 (en) Planarizing solutions, planarizing machines, and methods for mechanical and/or chemical-mechanical planarization of microelectronic substrate assemblies
US6875088B2 (en) Polishing member and method of manufacturing semiconductor device
JP2004526296A (ja) 残留した材料を基板の平坦化時に除去するための方法および組成物
WO2015070168A1 (en) Method and hardware for enhanced removal of post etch polymer and hardmask removal
JPH0883780A (ja) 研磨剤および研磨方法
JP2006147773A (ja) 研磨装置および研磨方法
US6432825B1 (en) Semiconductor device production method
US20030168169A1 (en) Chemical-mechanical polishing apparatus, polishing pad and method for manufacturing semiconductor device
US6913525B2 (en) CMP device and production method for semiconductor device
US12037517B2 (en) Ruthenium CMP chemistry based on halogenation
JP2000077365A (ja) 研磨スラリー及び研磨方法
JP2001162517A (ja) 研磨装置
JPH0911117A (ja) 平坦化方法及び平坦化装置
JP2000301455A (ja) 研磨装置のドレッシング方法
JP2005072346A (ja) プラズマ処理方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070724

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4141832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees