JP4136385B2 - 磁気軸受式ターボ分子ポンプ - Google Patents

磁気軸受式ターボ分子ポンプ Download PDF

Info

Publication number
JP4136385B2
JP4136385B2 JP2002020355A JP2002020355A JP4136385B2 JP 4136385 B2 JP4136385 B2 JP 4136385B2 JP 2002020355 A JP2002020355 A JP 2002020355A JP 2002020355 A JP2002020355 A JP 2002020355A JP 4136385 B2 JP4136385 B2 JP 4136385B2
Authority
JP
Japan
Prior art keywords
magnetic bearing
turbo molecular
magnetic
molecular pump
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002020355A
Other languages
English (en)
Other versions
JP2003222096A (ja
Inventor
知男 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002020355A priority Critical patent/JP4136385B2/ja
Publication of JP2003222096A publication Critical patent/JP2003222096A/ja
Application granted granted Critical
Publication of JP4136385B2 publication Critical patent/JP4136385B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気軸受式ターボ分子ポンプに関する。
【0002】
【従来の技術】
ターボ分子ポンプは固定翼と回転翼とを備えており、回転翼が設けられた回転体をモータで高速回転することにより真空排気を行っている。特に磁気軸受方式のターボ分子ポンプでは、回転体を磁気軸受により磁気浮上させることによって低振動やオイルフリー等の向上を図っている。なお、磁気軸受式ターボ分子ポンプでは、磁気軸受による磁気浮上が行われていないときの回転体を支持するために、機械式の保護ベアリングが設けられている。
【0003】
ところで、停電等により磁気軸受式ターボ分子ポンプへの電力供給が停止すると、磁気軸受による回転体の支持ができなくなる。そのため、従来の磁気軸受式ターボ分子ポンプでは電源装置にバッテリが設けられていて、停電等の緊急時にはバッテリから磁気軸受に給電して回転体を磁気浮上させるようにしている。また、最近では、バッテリの搭載を省略し、停電時にはモータを減速駆動することにより得られる回生電力を用いて、回転体を磁気浮上させるようにしている。
【0004】
通常の運転状態でポンプを停止する際には、回転体がほぼ回転停止状態または低速回転状態(数10rpm程度)になってから保護ベアリングに落下(以下ではタッチダウンと呼ぶことにする)させるようにしている。しかし、停電時にバッテリまたは回生電力により磁気軸受を作動させて停止する場合には、低速回転となる前の数1000rpmとなった時点で保護ベアリングにタッチダウンさせている。なぜならば、バッテリ駆動の場合には、バッテリ容量の関係で回転体がほぼ停止するまで磁気浮上を維持するのが難しいためであり、回生電力を利用する場合には、回転速度が低下するに従って回生電力も減少することに起因している。例えば、6000rpm程度まで減速すると磁気浮上を維持するのに必要な回生電力が得られなくなるため、磁気浮上を終了して保護ベアリング上にタッチダウンさせている。
【0005】
【発明が解決しようとする課題】
このような停電時のタッチダウンは保護ベアリングに大きな衝撃を与えるため、タッチダウンが許容回数を超えた場合には交換が必要となる。そのため、停電が頻繁に起こるような使用環境では、保護ベアリング交換の間隔が短くなってオーバーホールの回数が増加するという不都合があった。特に、大型のターボ分子ポンプの場合には保護ベアリングの寿命が小型のものに比べて短くなるため、頻繁にオーバーホールを実施する必要がある。
【0006】
本発明の目的は、保護ベアリングの寿命を向上させ、メンテナンス性の良い磁気軸受式ターボ分子ポンプを提供することにある。
【0007】
【課題を解決するための手段】
(1)請求項1の発明は、回転体を磁気浮上させる磁気軸受装置と、磁気軸受装置が動作していないときに回転体を支持する保護ベアリングと、外部電源から供給される電力により磁気軸受装置を動作させて回転体を磁気浮上させる通常運転モード、および回転体の減速回転時における回生電力により磁気軸受装置を動作させて回転体を磁気浮上させる回生運転モードのいずれかのモードで磁気軸受装置を駆動制御する磁気軸受制御装置とを備える磁気軸受式ターボ分子ポンプに適用される。そして、磁気軸受制御装置は、通常運転モードでは、回転体と保護ベアリングとの間の落下方向のギャップを第1の値に制御し、回生運転モードに移行すると、ギャップを通常運転モード時の第1の値よりも小さくなるように回転体の磁気浮上位置を変更し、該変更はタッチダウンを伴わずに行なわれることを特徴とする。
(2)請求項2の発明は、請求項1に記載の磁気軸受式ターボ分子ポンプにおいて、磁気軸受制御装置は、回生電力の電圧が磁気軸受装置による磁気浮上が不能となる磁気浮上不能電圧に低下する前に、磁気浮上位置を所定位置まで移動することを特徴とする。
(3)請求項3の発明は、請求項1または2に記載の磁気軸受式ターボ分子ポンプにおいて、外部電源からの電力供給の停止を検出するセンサを備え、センサの検出により回生運転モードを起動することを特徴とする。
(4)請求項4の発明は、請求項1〜3のいずれかに記載の磁気軸受式ターボ分子ポンプにおいて、磁気軸受装置に供給される電力の電圧を検出する電圧センサを備え、電圧センサの検出電圧が所定値以下の場合に回生運転モードを起動することを特徴とする。
(5)請求項5の発明は、請求項1〜4のいずれかに記載の磁気軸受式ターボ分子ポンプにおいて、ターボ分子ポンプの設置姿勢を検出する姿勢検出装置を備え、磁気軸受制御装置は、姿勢検出装置の検出結果に基づいて回転体の磁気浮上位置の変更を行うことを特徴とする。
【0008】
(6)請求項6の発明は、請求項4に記載の磁気軸受式ターボ分子ポンプにおいて、ギャップが予め定めた第2の値(<第1の値)となり、かつ、電圧センサの検出電圧が所定値よりも低い予め定めた閾値まで低下したとき、磁気軸受制御装置は、磁気浮上制御を中止することを特徴とする。
【0009】
【発明の実施の形態】
以下、図を参照して本発明の実施の形態を説明する。図1は磁気軸受式ターボ分子ポンプのポンプ本体1を示す断面図である。ケーシング20の内部には、複数段のロータ翼21およびネジ溝部22が形成されたロータ4と、ロータ翼21に対して交互に配設されるステータ翼23と、上記ネジ溝部22と対向するように配設される筒状部材24とが設けられている。ロータ4はラジアル電磁石51,52およびアキシャル電磁石53の吸引力により非接触支持され、これらの電磁石51〜53は後述するように5軸制御型磁気軸受を構成している。
【0010】
磁気軸受には、ラジアル電磁石51,52およびアキシャル電磁石53に対応して、ラジアル変位センサ71,72およびアキシャル変位センサ73が設けられており、これらの変位センサ71〜73によりロータ4の支持位置が検出される。ロータ翼21およびネジ溝部22が形成されたロータ4を、電磁石51〜53により非接触支持しつつモータ6により回転駆動すると、吸気口側のガスは矢印G1のように背圧側(空間S1)に排気され、背圧側に排気されたガスは排気口フランジ26に接続された補助ポンプによりポンプ本体外へ排気される。磁気軸受が作動していない場合には、ロータ4は保護ベアリング27,28により支持される。
【0011】
図2は5軸制御型磁気軸受の概念図であり、ロータ4の回転軸Jがz軸に一致するように示した。図2に示すように、図1のラジアル電磁石51は、4つの電磁石51a,51b,51c,51dで構成されている。電磁石51a,51bはそれぞれx軸に沿ったX1−方向、X1+方向に配設され、電磁石51c,51dはそれぞれy軸に沿ったY1−方向、Y1+方向に配設されている。同様に、ラジアル電磁石52も4つの電磁石52a,52b,52c,52dで構成されており、電磁石52a,52bはそれぞれx軸に沿ったX2−方向、X2+方向に配設され、電磁石52c,52dはそれぞれy軸に沿ったY2−方向、Y2+方向に配設されている。また、アキシャル電磁石53は、ロータ4の下端に設けられたディスク41をz軸に沿って挟むように対向して配設された電磁石53a,53bから成る。電磁石53a,53bは、それぞれz軸に沿ったZ−方向、Z+方向に配設される。
【0012】
これら5組の電磁石(51a,51b),(51c,51d),(52a,52b),(52c,52d),(53a,53b)により5軸制御型磁気軸受が構成されている。なお、図2には図示していないが、図1の変位センサ71,72は電磁石(51a,51b),(51c,51d),(52a,52b),(52c,52d)に対応してそれぞれ2組のラジアル変位センサで構成されている。
【0013】
図3は、本実施の形態のターボ分子ポンプの駆動制御回路を説明するブロック図である。ターボ分子ポンプはポンプ本体1と電源装置2とで構成される。電源装置2には一次電源3から交流電力が供給される。図3において、磁気軸受16は、図2に示した電磁石(51a,51b),(51c,51d),(52a,52b),(52c,52d),(53a,53b)と図1のセンサ71,72,73で構成されている。同様に、保護ベアリング17は、図1の保護ベアリング27,28で構成される。
【0014】
電圧センサ13は、AC/DCコンバータ5に入力される交流電力の電圧を検出する。AC/DCコンバータ5は、一次電源3から供給された交流電力を直流電力に変換する。AC/DCコンバータ5から出力された直流電力は、モータ6を駆動する3相インバータ8とDC/DCコンバータ7に入力される。電圧センサ14は、DC/DCコンバータ7に入力される直流電力の電圧を検出する。DC/DCコンバータ7の出力は、3相インバータ8をPWM制御等で制御するインバータ制御回路9、および磁気軸受16による浮上制御の制御を行う磁気軸受制御回路11のそれぞれに入力される。回転体4の単位時間当たりの回転数は回転数センサ18により検出され、インバータ制御回路9は回転数センサ18の検出結果に基づいて3相インバータ8を制御する。
【0015】
磁気軸受制御回路11は、磁気軸受16のセンサ71〜73の出力信号に基づいて電磁石51〜53の励磁電流を制御し、ロータ4を所定位置に磁気浮上させる。通常運転の際にはロータ4を保護ベアリング27,28の中心に支持するように制御されるが、さらに各電磁石51〜53の励磁電流を調整することによってロータ4の浮上位置を自在に変更することができる。インバータ制御回路9は、3相インバータを制御してポンプ本体1のモータ6を回転駆動するとともに、スイッチング素子として機能するトランジスタ12の動作を制御するトランジスタ制御回路19もコントロールしている。インバータ制御回路9と磁気軸受制御回路11とは個別のCPUで構成されることもあるし、一つのCPUに両方の機能を持たせることもある。
【0016】
本実施の形態のターボ分子ポンプでは、停電等により磁気軸受回路への電力供給が停止する異常事態の場合には、従来の磁気軸受式ターボ分子ポンプと同様にロータ減速による回生電力を利用して磁気浮上を維持させる。そして、従来のポンプでは、回生電力はロータ回転の減速とともに小さくなるので、磁気浮上を維持できなくなった時点でロータが保護ベアリング上にタッチダウンするようにしている。
【0017】
図4は、磁気浮上維持からタッチダウンまでのロータ浮上位置を示す図である。縦軸はロータ落下方向に関する保護ベアリングとロータとのギャップ量Δgを表しており、横軸は時間tを表している。すなわち、Δgは、ポンプ本体が正立姿勢の場合にはスラスト方向のギャップ量を表し、水平姿勢の場合にはラジアル方向のギャップ量を表す。従来のターボ分子ポンプの場合には、破線L1で示すように停電発生(t1)後もギャップ量Δgが一定(Δg0)となるように制御され、磁気浮上が維持できなくなった時点(t4)で保護ベアリング上にタッチダウンさせている。Δg0は、ロータが中心位置に浮上制御されているときのギャップ量である。
【0018】
一方、本実施の形態のターボ分子ポンプでは、磁気浮上を維持した後に、実線L2のように制御する。すなわち、時刻t2以後はギャップ量Δgが小さくなるようにロータ4の浮上位置を徐々に保護ベアリングに近づけ、ロータ4と保護ベアリングとのギャップ量Δgを十分に小さくさせた後にタッチダウンするようにする。図4では、ギャップ量がΔg1となるまでベアリングに近づけている。
【0019】
《動作説明》
次に、磁気軸受制御動作について説明する。通常運転状態の場合には、AC/DCコンバータ5に入力される一次電源3の電力により、モータ6の回転駆動および磁気軸受16によるロータ4の磁気浮上が行われる。また、ロータ4の回転を停止する際には。モータ駆動制御から回生制御に切り換えてモータ6を回生ブレーキとして機能させる。すなわち、通常運転時に非導通状態であったトランジスタ12を回生動作時には導通状態とし、回生電力を抵抗10で消費して回生ブレーキを動作させる。このとき、磁気軸受16はAC/DCコンバータ5からの電力によって駆動される。
【0020】
停電等によって一次電源3からの電力が停止した場合、モータ6および磁気軸受16への供給電力が停止してしまうので、このような場合にはターボ分子ポンプを減速運転へと切り換えるとともに、減速時の回生電力により磁気軸受16を駆動してロータ4の磁気浮上を維持させる。AC/DCコンバータ5の入力電力の低下は電圧センサ13により検出され、その検出信号はインバータ制御回路9に送られる。インバータ制御回路9は入力電力低下の検出信号を受信すると、モータ駆動制御から回生制御へと制御を切り換える。
【0021】
回生制御によって生じる回生電力は、ダイオード15が設けられているのでAC/DCコンバータ5側へ戻らずDC/DCコンバータ7に供給される。DC/DCコンバータ7に入力される電力の電圧は電圧センサ14により検出され、検出結果はインバータ制御回路9に送られる。トランジスタ12の導通・非導通は、トランジスタ制御回路19を介してインバータ制御回路9によりコントロールされている。
【0022】
なお、停電か否かは電圧センサ13の検出値だけでなく、電圧センサ14の検出値をモニタすることによっても検出することができる。さらに、電圧センサ14の検出値を利用することにより、一次電源3の電力停止に加えて、例えば、AC/DCコンバータ5の故障等によるDC/DCコンバータ7への電力供給停止も検出することができる。すなわち、インバータ制御回路9は電圧センサ13,14の検出値に基づいてDC/DCコンバータ7への電力供給停止状態を検出し、電力供給停止状態が検出された場合には回生制御に切り換えて磁気浮上を継続させる。例えば、電圧センサ14で検出される電圧値が、通常運転時の電圧よりも10%以上低下したならば、停電またはAC/DCコンバータ5の異常とみなして回生制御に切り換える。
【0023】
回生電力による磁気浮上動作時に、DC/DCコンバータ7に入力される回生電力が磁気浮上に必要な電力に比べて大きい場合には、すなわち、電圧センサ14で検出された電圧値が所定電圧値よりも大きい場合にはトランジスタ12は導通状態とされ、余分な電力は抵抗10によって消費される。一方、ロータ回転速度が減少して回生電力が必要電力範囲内となった場合には、トランジスタ12は非導通状態とされ、回生により得られた電力の100%が磁気浮上に利用される。
【0024】
図5はターボ分子ポンプの停電時の動作を説明するフローチャートである。電源装置の電源スイッチがオンされると図5に示す一連の処理がスタートする。ステップS1では、以下の▲1▼〜▲6▼の手順によりロータ4と保護ベアリング27,28との間のギャップ量を確認する。
【0025】
▲1▼電磁石51a,52aのみに電流を流してロータ4をx軸マイナス方向に吸引し、ロータ4を保護ベアリングに当接させる。そして、当接させた状態で、ラジアル変位センサ71,72のx軸方向に関するセンサ出力を記憶する。
▲2▼電磁石51b,52bのみに電流を流してロータ4をx軸プラス方向に吸引し、ロータ4を保護ベアリングに当接させた状態でラジアル変位センサ71,72のx軸方向に関するセンサ出力を記憶する。
▲3▼電磁石51c,52cのみに電流を流してロータ4をy軸マイナス方向に吸引し、ロータ4を保護ベアリングに当接させた状態でラジアル変位センサ71,72のy軸方向に関するセンサ出力を記憶する。
▲4▼電磁石51d,52dのみに電流を流してロータ4をy軸プラス方向に吸引し、ロータ4を保護ベアリングに当接させた状態でラジアル変位センサ71,72のy軸方向に関するセンサ出力を記憶する。
▲5▼電磁石53aのみに電流を流してロータ4をz軸マイナス方向に吸引し、ロータ4を保護ベアリングに当接させた状態でアキシャル変位センサ73のセンサ出力を記憶する。
▲6▼電磁石53bのみに電流を流してロータ4をz軸プラス方向に吸引し、ロータ4を保護ベアリングに当接させた状態でアキシャル変位センサ73のセンサ出力を記憶する。
【0026】
センサ出力とロータ変位量との関係は予め関数やテーブルとして記憶されており、それらと得られたセンサ出力とから各軸方向のギャップ量を算出するこができる。また、図4のギャップ量Δg1に対応するセンサ出力も算出し、その結果を記憶しておく。ステップS2では、励磁電流を磁気軸受の各電磁石に供給してロータ4の磁気浮上制御を開始する。このときの磁気浮上制御は通常運転時の浮上制御であって、ロータ4は保護ベアリングに対して中心位置に保持するように制御される。
【0027】
ステップS3では、ロータ4を中心位置に磁気浮上して、そのときの各電磁石51〜53に流れている電流の大きさから、ポンプ本体1の取付姿勢を確認してそれを記憶する。例えば、ポンプ本体1が鉛直方向に対して90(dge)横向きに設置されていて、電磁石51a〜51dの配置が図6に示すような配置となっている場合には、電磁石51b,51dに比べて電磁石51a,51cの方が電流値が大きくなる。また、正立状態で取り付けられている場合には電磁石53aよりも電磁石53bの方が電流値が大きく、倒立取付の場合には逆に電磁石53aの方が電流値が大きくなる。この取付姿勢の確認および記憶は、磁気軸受制御回路11によって行われる。
【0028】
ステップS1〜S3はポンプ運転開始(ロータ回転開始)前の準備動作であり、これらの処理が完了したならばステップS4において準備完了の信号を出力したり、表示をしたりする。ステップS5では、ポンプ運転開始を指示するスタートスイッチがオンされたか否かを判定する。ステップS5でオンと判定されるとステップS6へ進んでモータ6の回転駆動が開始され、オフの場合にはオンとなるまでステップS5の処理が繰り返し実行される。ステップS7では、電圧センサ13,14の検出値に基づいて、停電等の電力供給異常が発生したか否かを判定する。ステップS7において電力供給異常が発生したと判定されるとステップS8へ進み、発生していないと判定された場合にはステップS7の処理を再び実行する。
【0029】
ステップS7からステップS8へ進んだ場合には、回生制御を開始してロータ浮上を回生電力により維持させる。その結果、ロータ4は回生ブレーキにより減速を開始する。ステップS9では、インバータ制御回路9において回生電力の電圧値が予め設定された所定電圧V1以下となったか否かを判定し、所定電圧V1以下と判定されたならばステップS10へ進む。図7は電圧センサ14の検出電圧の時間変化を示す図であり、縦軸は検出電圧、横軸は時間を表している。ステップS9における所定電圧V1は、図7の時刻t2の時の電圧値である。ここでの所定電圧値V1はDC/DCコンバータ7の入力電圧仕様(動作可能入力電圧範囲)に依存しており、例えば、電圧範囲の下限値に対して「下限値+10%」程度に設定すれば良い。」
【0030】
なお、停電(時刻t1)直後から浮上位置を移動させずに、所定時間(=t2−t1)経過してから浮上位置を移動させているのは、高速回転中は回転体をできるだけベアリングから遠ざけたいという意図からである。回転数の低下した状態、すなわち、図7に示すように回生電力の電圧値が下がりだした状態から移動させるようにする。
【0031】
なお、所定電圧V1に代えて回生電力の電圧値が所定電圧V1となるときの回転速度R1を用いて、ロータ回転速度がR1以下か否かで判定しても良い。ステップS10では、ステップS3で確認されたポンプ取付姿勢に基づいて、上述したロータ浮上位置の変更を開始する。すなわち、タッチダウン時のロータ落下方向にロータ浮上位置を変化させて、落下方向の保護ベアリングとのギャップ量を小さくする。
【0032】
このときのロータ浮上位置の変化のさせかたは種々ある。例えば、ギャップ量をΔg1にしたときの回生電圧値V2を予め定めておき、大気リークなどの減速時の条件を考慮して回生電圧値がV1からV2に低下するまでの減速時間Δt(=t3−t2)を推定する。当然ながら、回生電力による磁気浮上が不能となってタッチダウンする回生電圧値、すなわち磁気浮上不能電圧をV3とすれば、V2>V3のように設置される。そして、ギャップ量Δgの変化率が(V1−V2)/Δtとなるようにロータ浮上位置を変化させる。この場合、所定時間間隔毎に回生電圧値を検出し、その都度、変化率ΔV/Δtを修正することにより、回生電圧値がほぼV2となったときにギャップ量をΔg1とすることができる。
【0033】
この場合も、回生電圧値に代えてロータ回転速度を用いて制御しても良い。すなわち、回生電圧値V1,V2に対応するロータ回転速度をR1,R2とすれば、ギャップ量Δgの変化率が(R1−R2)/Δtとなるようにロータ浮上位置を変化させる。
【0034】
ステップS11ではギャップ量ΔgがΔg1になったか否かを判定し、Δg1と判定されるとステップS12へ進む。ステップS12では回生電圧値がV3になった否かを判定し、V3と判定されるとステップS13へ進んで磁気浮上制御を停止する。その結果、ロータ4は保護ベアリング27,28上にタッチダウンして保護ベアリング27,28によって支持され、一連の制御処理が終了する。
【0035】
上述したように、本実施の形態の磁気軸受式ターボ分子ポンプでは、停電等の電力供給停止状態において回生電力による磁気浮上に移行したならば、落下方向に関する保護ベアリングとのギャップΔg1が通常運転時のギャップΔg0よりも小さくなるようにロータ4の浮上位置を変更するようにした。その結果、回生電力による磁気浮上が不能となってロータ4がタッチダウンしたときに、保護ベアリングに対する衝撃を従来よりも小さくすることができ、保護ベアリングの寿命の向上を図ることができる。
【0036】
なお、上述した実施の形態では、停電後、回生電圧値がV1となってから浮上位置変更を開始したが、停電直後から浮上位置変更を開始しても良い。また、図4に示した例では、L2の特性を直線(変化率一定)としたが、時間の経過とともに変化率を変えたものやステップ状に変化等、種々のものがある。さらに、時刻t3におけるΔg1は、ポンプ取付姿勢によって異なる場合もある。なお、ポンプ取付姿勢を水平とした場合には、ロータ4の磁気浮上位置は保護ベアリング27,28のベアリング中心に対して偏心した位置となる。
【0037】
以上説明した実施の形態と特許請求の範囲の要素との対応において、ロータ4は回転体を、磁気軸受制御回路11は制御装置を、磁気軸受制御回路11,磁気軸受16は磁気軸受装置および姿勢検出装置をそれぞれ構成する。
【0038】
【発明の効果】
以上説明したように、本発明によれば、回生運転モード時には、回転体と保護ベアリングとの間の落下方向のギャップを通常運転モード時のギャップよりも小さくされるので、回生電力による磁気浮上が不能となってタッチダウンした際の保護ベアリングに対する衝撃を軽減することができる。その結果、保護ベアリングの寿命が向上する。
また、タッチダウン時に、ターボ分子ポンプが接続された装置などの周辺機器に伝わる振動を低減することができる。
【図面の簡単な説明】
【図1】磁気軸受式ターボ分子ポンプのポンプ本体1を示す断面図である。
【図2】5軸制御型磁気軸受の概念図である。
【図3】本実施の形態のターボ分子ポンプの駆動制御回路を説明するブロック図である。
【図4】磁気浮上維持からタッチダウンまでのロータ浮上位置を示す図である。
【図5】ターボ分子ポンプの停電時の動作を説明するフローチャートである。
【図6】水平姿勢時のロータ4と電磁石51a〜51dとの配置を示す図である。
【図7】電圧センサ14の検出電圧の時間変化を示す図である。
【符号の説明】
1 ポンプ本体
2 電源装置
3 一次電源
4 ロータ
5 AC/DCコンバータ
6 モータ
7 DC/DCコンバータ
8 3相インバータ
9 インバータ制御回路
10 抵抗
11 磁気軸受制御回路
12 トランジスタ
13,14 電圧センサ
15 ダイオード
16 磁気軸受
17,27,28 保護ベアリング
18 回転数センサ
19 トランジスタ制御回路
51,51a〜51d,52,52a〜52d,53,53a,53b 電磁石
71〜73 変位センサ

Claims (6)

  1. 回転体を磁気浮上させる磁気軸受装置と、
    前記磁気軸受装置が動作していないときに前記回転体を支持する保護ベアリングと、
    外部電源から供給される電力により前記磁気軸受装置を動作させて前記回転体を磁気浮上させる通常運転モード、および前記回転体の減速回転時における回生電力により前記磁気軸受装置を動作させて前記回転体を磁気浮上させる回生運転モードのいずれかのモードで前記磁気軸受装置を駆動制御する磁気軸受制御装置とを備える磁気軸受式ターボ分子ポンプにおいて、
    前記磁気軸受制御装置は、前記通常運転モードでは、前記回転体と前記保護ベアリングとの間の落下方向のギャップを第1の値に制御し、前記回生運転モードに移行すると、前記ギャップを前記通常運転モード時の前記第1の値よりも小さくなるように前記回転体の磁気浮上位置を変更し、該変更はタッチダウンを伴わずに行なわれることを特徴とする磁気軸受式ターボ分子ポンプ。
  2. 請求項1に記載の磁気軸受式ターボ分子ポンプにおいて、
    前記磁気軸受制御装置は、前記回生電力の電圧が前記磁気軸受装置による磁気浮上が不能となる磁気浮上不能電圧に低下する前に、磁気浮上位置を所定位置まで移動することを特徴とする磁気軸受式ターボ分子ポンプ。
  3. 請求項1または2に記載の磁気軸受式ターボ分子ポンプにおいて、
    前記外部電源からの電力供給の停止を検出するセンサを備え、
    前記センサの検出により前記回生運転モードを起動することを特徴とする磁気軸受式ターボ分子ポンプ。
  4. 請求項1〜3のいずれかに記載の磁気軸受式ターボ分子ポンプにおいて、
    前記磁気軸受装置に供給される電力の電圧を検出する電圧センサを備え、
    前記電圧センサの検出電圧が所定値以下の場合に前記回生運転モードを起動することを特徴とする磁気軸受式ターボ分子ポンプ。
  5. 請求項1〜4のいずれかに記載の磁気軸受式ターボ分子ポンプにおいて、
    前記ターボ分子ポンプの設置姿勢を検出する姿勢検出装置を備え、
    前記磁気軸受制御装置は、前記姿勢検出装置の検出結果に基づいて前記回転体の磁気浮上位置の変更を行うことを特徴とする磁気軸受式ターボ分子ポンプ。
  6. 請求項4に記載の磁気軸受式ターボ分子ポンプにおいて、
    前記ギャップが予め定めた第2の値(<第1の値)となり、かつ、前記電圧センサの検出電圧が前記所定値よりも低い予め定めた閾値まで低下したとき、前記磁気軸受制御装置は、前記磁気浮上制御を中止することを特徴とするターボ分子ポンプ。
JP2002020355A 2002-01-29 2002-01-29 磁気軸受式ターボ分子ポンプ Expired - Lifetime JP4136385B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002020355A JP4136385B2 (ja) 2002-01-29 2002-01-29 磁気軸受式ターボ分子ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002020355A JP4136385B2 (ja) 2002-01-29 2002-01-29 磁気軸受式ターボ分子ポンプ

Publications (2)

Publication Number Publication Date
JP2003222096A JP2003222096A (ja) 2003-08-08
JP4136385B2 true JP4136385B2 (ja) 2008-08-20

Family

ID=27743868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002020355A Expired - Lifetime JP4136385B2 (ja) 2002-01-29 2002-01-29 磁気軸受式ターボ分子ポンプ

Country Status (1)

Country Link
JP (1) JP4136385B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325977A (ja) * 2004-05-17 2005-11-24 Shimadzu Corp 磁気軸受装置
JP4483431B2 (ja) * 2004-06-29 2010-06-16 株式会社ジェイテクト ターボ分子ポンプ装置
US9353755B2 (en) 2010-03-11 2016-05-31 Shimadzu Corporation Turbomolecular pump device
JP6079090B2 (ja) * 2011-12-08 2017-02-15 株式会社島津製作所 磁気浮上式真空ポンプおよび磁気浮上装置
JP2017172770A (ja) * 2016-03-25 2017-09-28 三菱重工業株式会社 回転機械の停止方法及び回転機械の制御装置
US10208760B2 (en) 2016-07-28 2019-02-19 General Electric Company Rotary machine including active magnetic bearing
JP6819304B2 (ja) * 2017-01-12 2021-01-27 株式会社島津製作所 真空バルブ、真空ポンプおよび真空排気システム
CN111911534B (zh) * 2020-07-01 2021-10-19 江苏理工学院 一种自动触发杠杆式保护轴承装置

Also Published As

Publication number Publication date
JP2003222096A (ja) 2003-08-08

Similar Documents

Publication Publication Date Title
US6617734B2 (en) Magnetic bearing control device
JP4136385B2 (ja) 磁気軸受式ターボ分子ポンプ
JP2007270829A (ja) 真空ポンプ
JP3677826B2 (ja) 磁気軸受装置
JP2008106909A (ja) 磁気軸受の制御装置およびターボ分子ポンプ
JPH10184586A (ja) ターボ分子ポンプ
JPS60190697A (ja) タ−ボ分子ポンプにおける磁気軸受の制御方式
JP2005325977A (ja) 磁気軸受装置
JP2005105846A (ja) 真空ポンプ
JP2791515B2 (ja) 磁気軸受用コントローラ
JP3772979B2 (ja) 回転機械の制動制御装置
JP2546625Y2 (ja) 磁気軸受の制御装置
JP3793856B2 (ja) 磁気軸受装置
JP2006009759A (ja) ターボ分子ポンプ装置
JP2021090256A (ja) 電動機システムおよびそれを備えたターボ圧縮機
US20210123449A1 (en) Vacuum pump, and control device of vacuum pump
JP3779105B2 (ja) 磁気軸受の停電補償システム
JP3176673B2 (ja) 磁気軸受制御装置
JP4483431B2 (ja) ターボ分子ポンプ装置
JPH09242754A (ja) 磁気軸受装置
JP2000136791A (ja) ターボ分子ポンプ
JPH06280874A (ja) 磁気軸受装置の給電装置
JP3414918B2 (ja) 磁気軸受搭載回転電機
JP2003065283A (ja) ターボ分子ポンプ
JP2005094852A (ja) モータ制御システム及び該モータ制御システムを搭載した真空ポンプ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Ref document number: 4136385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

EXPY Cancellation because of completion of term