JP4126370B2 - 薄膜型圧電センサ - Google Patents

薄膜型圧電センサ Download PDF

Info

Publication number
JP4126370B2
JP4126370B2 JP2002352567A JP2002352567A JP4126370B2 JP 4126370 B2 JP4126370 B2 JP 4126370B2 JP 2002352567 A JP2002352567 A JP 2002352567A JP 2002352567 A JP2002352567 A JP 2002352567A JP 4126370 B2 JP4126370 B2 JP 4126370B2
Authority
JP
Japan
Prior art keywords
piezoelectric
thin film
layer
piezoelectric sensor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002352567A
Other languages
English (en)
Other versions
JP2004184274A (ja
Inventor
直広 上野
守人 秋山
博 立山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002352567A priority Critical patent/JP4126370B2/ja
Priority to US10/529,746 priority patent/US7152482B2/en
Priority to PCT/JP2003/012379 priority patent/WO2004031711A1/ja
Priority to AU2003266663A priority patent/AU2003266663A1/en
Publication of JP2004184274A publication Critical patent/JP2004184274A/ja
Application granted granted Critical
Publication of JP4126370B2 publication Critical patent/JP4126370B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関のエンジン内部や、原子力発電所プラント等のプラント内部のような高温環境下で、アコースティックエミッションや、振動、加速度といった物理量を、圧電性セラミックス薄膜素子によって検出する薄膜型圧電センサに関するものである。
【0002】
【従来の技術】
原子力発電所などのプラントにおける配管やバルブ、あるいは内燃機関のエンジンなどの高温雰囲気を生じる構造物の異常探知を行うために、構造物の内部にセンサを設置している。例えば、亀裂や割れが生じる時に発生する弾性波であるアコースティックエミッションを検出するアコースティックエミッションセンサや、異常振動、加速度の情報を検出する圧電型の振動センサやが用いられており、これらには、圧縮型、片持ち梁型、ダイアフラム型、せん断型等種々の形式のものが知られている。
【0003】
この中で、圧縮型の薄膜型圧電センサは、台座、台座側電極、圧電体、荷重体側電極、及び荷重体を順次積層した積層体からなり、その台座の下面を被測定物体に剛に、すなわちしっかりと取り付けて使用されるものである。被測定物体に振動が発生すると、振動がセンサの台座側に伝達される。センサの台座側は被測定物体とともに振動するが、荷重体側は慣性力により振動に遅れが生じ、圧電体に振動加速度に比例した圧縮、あるいは引っ張り応力が発生する。そして、その応力に比例した電荷あるいは電圧が、圧電体の両面に発生し、圧電体両側に配設された前記2枚の電極がその電気を取り出す。その取り出された電気出力を測定することによって被測定物体の振動の大きさや加速度を検知することができる。
【0004】
従来、このような圧電型のセンサに用いられる圧電体としては、特許文献1や2に記載されているようなチタン酸ジルコン酸鉛やポリフッ化ビニリデンのような圧電体が使用されているが、このような圧電材料の圧電体は分極が消滅するキュリー温度が低く、その適用限界温度は最高でも300℃程度である。そこで、圧電体を適した温度に保つために、特許文献3には、ペルチェ素子によって圧電体を冷却するものが開示されている。しかし、ペルチェ素子は単に局所的な温度勾配を発生させる機能しかないため、外部に冷却機構が取り付けられず全体的に高温となる箇所への適用はできなかった。
【0005】
また、アコースティックエミッションのような振動は、途中の振動伝達物質の性質によって減衰したり、伝達経路途中において外部からの余計な振動の混入が発生したりするので、できるだけ発生箇所近傍で振動を計測することが望ましい。しかしながら、高温となる測定対象物に関しては、上記のように、従来の薄膜型圧電センサは高温に耐えられないため、振動伝達棒などを介して振動を遠隔の低温環境下まで誘導して計測していた。この場合、振動の減衰、雑音の混入などが起こり、測定対象物の振動を十分に正確に計測できなかった。
【0006】
そこで、高温にも耐えられる薄膜型圧電センサとして、圧電層にニオブ酸リチウム等のキュリー温度の高い圧電材料を使用する方法が特許文献4に示されている。ニオブ酸リチウムは、キュリー温度が約1140℃であり、冷却手段なしで高温環境下での使用が可能である。しかし、薄膜化が困難であり、また単結晶体でなければ圧電特性が得られず、作製や加工が困難でコストがかかるなどの難点がある。
【0007】
特許文献5に記載されている高温薄膜型振動センサでは、これらの問題を解決するためにキュリー温度が存在しない圧電性セラミックスとして酸化亜鉛やチッ化アルミニウムを用い、これをc軸方向に配向させた薄膜を圧電薄膜素子としている。
【0008】
【特許文献1】
特開平6−148011号公報(公開日1994年5月27日)
【0009】
【特許文献2】
特開平10−206399号公報(公開日1998年8月7日)
【0010】
【特許文献3】
特開平5−203665号公報(公開日1993年8月10日)
【0011】
【特許文献4】
特開平5−34230号公報(公開日1993年2月9日)
【0012】
【特許文献5】
特開平10−122948号公報(公開日1998年5月15日)
【0013】
【発明が解決しようとする課題】
しかし、特許文献5の、酸化亜鉛や窒化アルミニウムのような、結晶がウルツ鉱構造をもつ物質は、圧電特性を保つのが難しく、結晶軸をc軸配向させただけでは圧電特性を安定的に向上できない。すなわち、c軸配向も圧電特性向上に必要なファクターではあるが、それだけでは、安定して圧電特性を保つことができず、実験データからも、たとえ圧電特性が良好なものが作製できることがあっても、再現性がないことがわかっており、場合によっては全く圧電性が発現しないこともある。
【0014】
これは、特許文献5の方法で作製した圧電センサが、基板の上に直接に圧電層を設けており、安定的に圧電素子の結晶の双極子の方向を揃わせることができないからである。たとえ双極子配向度が高いものが作成できたとしても再現性よく圧電層の双極子配向度の高いものを得ることは困難であり、具体的には、圧電層の双極子配向度を75%以上に保てない。従って、圧電センサの圧電特性が保たれず、良好な圧力検知を行うことができないという問題があった。
【0015】
そこで、本発明は上記従来の問題点に鑑みてなされたものであって、その目的はキュリー温度が存在しない圧電材料を薄膜化し、薄膜中の結晶の極性を配向させることによって圧電特性を保証し、小型で冷却手段を要せず耐熱性に優れ、なおかつ低価格の、アコースティックエミッションや振動又は加速度を検出する薄膜型圧電センサを提供することにある。
【0016】
【課題を解決するための手段】
本発明者等は、キュリー温度が存在しない圧電材料の薄膜を形成する方法について種々研究を重ねた結果、酸化物系、炭素系、窒素系またはホウ化物系セラミックスの焼結体や石英ガラスからなる絶縁性の基板や、インコネル又はSUS630相当のような耐熱性金属材料からなる導電性基板上に圧電性セラミックスを極性を制御しながら単結晶状に成長させて薄膜を形成することにより、上記の目的を達成し得ることを見出し、かかる知見に基づいて本発明を完成させるに至った。
【0017】
すなわち、本発明に係る薄膜型圧電センサは、酸化物系、炭化物系、窒化物系又はホウ化物系セラミックスの焼結体や石英ガラスからなる絶縁性の基板や、インコネル又はSUS630相当のような耐熱性金属材料からなる導電性基板上に、キュリー温度が存在しない圧電セラミックスを単結晶状に成長させて薄膜を形成した高温薄膜型圧電センサであり、これは、圧縮型、片持ち梁型、ダイアフラム型、せん断型等種々の形式の薄膜型圧電センサに利用できる。
【0018】
本発明の薄膜型圧電センサは、基板表面に、第1の電極層、圧電層、および第2の電極層をこの順に積層して形成された薄膜型圧電センサであって、上記圧電層が、キュリー温度が存在しない圧電材料からなり、その双極子配向度が75%以上であることを特徴としている。
【0019】
本発明の薄膜型圧電センサは、基板上に第1の電極層、圧電層、第2の電極層を成膜して、積層一体化してなるものであるから、構造が単純で小型となる。また、上記第1の電極層を圧電層の双極子配向度を向上させる下地層として機能させることで圧電性を向上できる。
【0020】
また、上記「キュリー温度が存在しない圧電材料」とは、圧電特性を有し、かつ温度の上昇に伴った極性転位を起こさない材料であり、例えばウルツ鉱構造の結晶構造をもつ物質が挙げられる。ウルツ鉱構造の結晶構造をもつ物質としては、具体的には窒化アルミニウム(AlN)や酸化亜鉛(ZnO)等がある。
【0021】
窒化アルミニウム(AlN)や酸化亜鉛(ZnO)のようなウルツ鉱構造の結晶構造をもつ物質は、結晶に対称性が存在しないため本来圧電性を備え、しかも強誘電体のようにキュリー温度が存在せず、高温下でも極性転位を起こすことがないので、結晶が融解あるいは昇華するまで圧電性を失うことはない。たとえば、AlNの昇華温度は約2000℃であり、エンジンシリンダー内の燃焼温度500℃より十分に高く、その内部で冷却装置を使用することなく、使用が可能である。従って、係る圧電材料からなる圧電層は、耐熱性に優れ、高温でも圧電特性が劣化するようなことがない。また、加工性に優れ、薄膜化を図る上でも適している。
【0022】
また、「双極子配向度」とは、電気双極子をなす結晶柱の薄膜表面の極性が正あるいは負の、同一方向のものが占める割合であると定義する。もし、結晶柱の極性の方向が完全にランダムであれば、それぞれの結晶柱の圧電性は互いに打ち消しあって、薄膜全体では圧電性が消滅する。圧電素子の双極子配向度が75%より小さいと、見かけ上の圧電定数が双極子配向度100%時の半分以下になってしまい、圧電層の圧電特性が劣化し、良好な応力検知ができないが、圧電層の双極子配向度が75%以上となるように形成すれば、圧電性は良好に保たれる。
【0023】
従って、上記構成によれば、良好な圧電性を保持し、耐熱性を有する、小型で低価格の薄膜型圧電センサが得られる。
【0024】
また、本発明の薄膜型圧電センサは、上記の課題を解決するために、上記の構成に加え上記基板が、酸化物系、炭化物系、窒化物系またはホウ化物系セラミックスの焼結体あるいは石英ガラスからなる絶縁性基板であることを特徴としている。これによれば、上記セラミックス材料は、耐熱性に優れ、製造が容易で安価であるほか、硬度が高く、緻密な特性を有するものがあるので、性能が高く生産性に優れた薄膜型圧電センサが得られる。
【0025】
また、上記基板は、耐熱性金属材料からなる導電性基板であってもよい。これによれば、基板を第1の電極層から信号を取り出すためのリード線の代替とすることができるほか、基板を通常の機械加工により様々な形状に加工できる。
【0026】
また、本発明の薄膜型圧電センサは、上記の課題を解決するために、上記圧電層が物理気相成長法により形成されていることを特徴としている。
【0027】
「物理気相成長法」とは、物理的方法で物質を蒸発し、成膜する部材上で凝縮させて薄膜を形成する方法であり、主に、スパッタリング法や真空蒸着法などを指す。この方法によれば、圧電材料の針状の結晶柱が霜柱状に成長し、圧電材料の単結晶状態の薄膜を形成できる。
【0028】
なお、この結晶柱に応力が作用すると結晶柱の両端に正と負の電荷が発生し、電気双極子を形成するが、どちらの端に正の電荷が発生するかは結晶柱の双極子の方向がどちらを向いているかによる。よって、双極子配向度を高め、圧電層の薄膜に良好な圧電特性を確保するには、物理気相成長法を行う時に、結晶の双極子の配向制御を行う必要がある。具体的には、基板表面に圧電層の結晶の双極子配向を整える機能を有する第1の電極層を設けた後、物理気相成長法にて圧電層を形成させる時に、基板温度、基板ターゲット間距離およびガス圧を最適な値に設定し、結晶のc軸配向を揃えるという方法がある。
【0029】
また、本発明の薄膜型圧電センサは、上記の課題を解決するために、上記第1の電極層の圧電層と接する側の表面が、圧電層に含まれる金属で覆われていることを特徴としている。
【0030】
ここで、「圧電層に含まれる金属」とは、圧電層の材料として含まれている成分のうちの主な金属を言い、例えば圧電層が窒化アルミニウムの場合にはアルミニウムを、圧電層が酸化亜鉛の場合には亜鉛を指すものとする。また、第1の電極層は圧電層と接する側の表面のみが、圧電層に含まれる金属に覆われていてもよく、第1の電極層全体が圧電層に含まれる金属からなるものでもよい。具体的には、上記圧電層の材料が窒化アルミニウムの時には上記第1の電極層の材料をアルミニウムとし、上記圧電層の材料が酸化亜鉛の時には上記第1の電極層の材料を亜鉛としてもよい。
【0031】
これにより、圧電層の双極子配向度が高まり、双極子配向度が75%以上となるため、圧電層の圧電特性を保つことができ、薄膜型圧電センサが良好に応力検知を行うことができる。
【0032】
また、本発明の薄膜型圧電センサは、上記の課題を解決するために、上記の構成に加え、圧電層の厚みは、0.1μm以上100μm以下であることを特徴としている。
【0033】
これは、圧電層の厚みが0.1μmより薄いと、連続的な膜形成が難しい上、上下に電極を配した場合に短絡が発生しやすくなり、100μmより厚いと成膜時間が長時間になってしまうためである。よって、圧電層の厚みが上記範囲内であれば、良好に応力検知を行える薄膜型圧電センサを短時間で製造することができる。
【0034】
また、本発明の薄膜型圧電センサは、上記の課題を解決するために、上記の構成に加え、上記第2の電極層が、2個以上に分割されて形成されていることを特徴としている。
【0035】
これによれば、薄膜型圧電センサ内の位置によって、異なる圧力等の応力が作用した場合には、各電極によって異なる応力が発生し、各電極上に異なる電荷や電圧が発生する。片持ち梁型やダイアフラム型の圧電センサの場合には、圧電薄膜を形成した基板における応力の差分(つまり上記電極間の差分)を検出したほうが、感度的にも効果的な場合がある。特に片持ち梁型において、曲げ応力ではなく、せん断応力を検出の対象とする場合には、差分がハードウェアによリ検出可能となり、個々のアンプのダイナミックレンジに制約を受けずに高感度な検出を実現できる。
【0036】
【発明の実施の形態】
(実施の形態1)
本発明の実施の一形態について図1に基づいて説明すれば、以下の通りである。
【0037】
薄膜型圧電センサは、基板1上に、下地層(第1の電極層)2、圧電薄膜層(圧電層)3および上部電極(第2の電極層)4がこの順に成膜されてなるものである。
【0038】
それぞれの成膜には、物理気相成長法(PVD法)、すなわち、物理的方法で物質を蒸発し、成膜する部材上で凝縮させて薄膜を形成する方法を用いることができる。例えば、抵抗加熱蒸着または電子ビーム加熱蒸着等の真空蒸着法、DCスパッタリング、高周波スパッタリング、RFプラズマ支援スパッタリング、マグネトロンスパッタリング、ECRスパッタリングまたはイオンビームスパッタリング等の各種スパッタリング方法、高周波イオンプレーティング法、活性化蒸着またはアークイオンプレーティングなどの各種イオンプレーティング法、分子線エピタキシー法、レーザアプレーション法、イオンクラスタビーム蒸着法、並びにイオンビーム蒸着法などの方法である。
【0039】
図1は、本発明の実施の一形態に係る薄膜型圧電センサの断面図であり、基板層1、下部電極を兼ねる下地層2、圧電薄膜層3、及び上部電極4が順に積層され一体化して形成される。
【0040】
上記薄膜型圧電センサは、基板1の下面を被測定物体に取り付けて使用される。被測定物体に振動が発生すると、振動が基板1に伝達され、基板1は被測定物体とともに振動するが、薄膜型圧電センサの被測定物体の反対側は慣性力により振動に遅れが生じるので、圧電薄膜層3に振動加速度に比例した圧縮、あるいは引っ張り応力が発生する。そして、圧電薄膜層3がその応力に比例した電荷あるいは電圧が、圧電薄膜層3の両面に発生し、圧電薄膜層3両側に配設された下地層2および上部電極4がその電気を取り出し、その取り出された電気出力を測定することによって被測定物体の振動の大きさや加速度を検知することができる。
【0041】
基板1は、振動や圧力を直接に受けて、応力を発生させるものであり、絶縁性または導電性の基板を用いることができる。
【0042】
絶縁性基板としては、酸化物系、炭化物系、窒化物系又はホウ化物系セラミックスの焼結体や石英ガラスからなる基板を用いることができる。特にSiC(多結晶炭化ケイ素)を材料とする基板が望ましいが、その他の炭化物系セラミックス基板(例えば、B4C、TiC、WC、ZrC、NbC、HfCからなる基板)や、酸化物系セラミックス基板(例えば、Al23、ZrO2、TiO2、SiO2からなる基板)を使用でき、さらに、窒化物系セラミックス基板(例えば、cBN、AlN、TiNからなる基板)、また、ホウ化物系セラミックス基板(例えば、TiB2、ZrB2、CrB2、MoBからなる基板)を使用することができる。これらのセラミックス材料は、耐熱性に優れ、製造が容易で安価であるほか、硬度が高く、緻密な特性を有するものが望まれる。
【0043】
導電性の基板には、例えばインコネル又はSUS630相当の耐熱性金属材料のようなものが良く、その表面は、圧電薄膜層3のひびやはがれ、結晶軸の配向性を高めるために、研磨や化学的な方法によって鏡面加工していることが望ましい。
【0044】
下地層2は、その上に作製する圧電薄膜層3と基板1との緩衝層であり、圧電薄膜層3の双極子の配向や結晶軸の配向、基板1との濡れ性の改善などの役割を持つ。下地層2の材料としては、TiN、MoSi2、Si34、Cr、Fe、Mg、Mo、Nb、Ta、Ti、Zn、Zr、W、Pt、Al、Ni、Cu、Pd、Rh、Ir、Ru、Au又はAg、を用いることができ、単層あるいは複数の材料を用いた2層以上の複層とすることができる。
【0045】
圧電薄膜層3は、基板1が発生させた応力を受けて、それに比例した電荷、あるいは電圧を発生させる。
【0046】
圧電薄膜層3の材料としては、窒化アルミニウム(AlN)または酸化亜鉛(ZnO)が望ましいが、これに限らず、キュリー温度の存在しない圧電材料であればよい。キュリー温度の存在しない圧電材料は、結晶が融解あるいは昇華するまで圧電性を失うことがない。キュリー温度の存在しない圧電材料には、ウルツ鉱構造の結晶構造をもつ物質が挙げられ、AlN、ZnOの他にGaNが挙げられる。このようなウルツ鉱構造の結晶構造をもつ物質結晶は、対称性が存在しないため圧電性を備えており、また強誘電体でないので、キュリー温度が存在しない。したがって、係る圧電材料からなる圧電薄膜層3は、耐熱性に優れ、高温下でも圧電特性が劣化することがなく、エンジンのシリンダーのように500℃近い高温中に曝されたとしても、その圧電体としての機能を失うことがない。そのため、圧電薄膜層3の冷却手段が不要となり、温度の低い位置に圧電層を設置しなければならないという制限もなくなるので圧電センサの構造が単純化する。
【0047】
また、圧電薄膜層3は、双極子配向度が75%以上であり、さらに90%以上であることが好ましい。これは、双極子配向度が75%より小さいと、見かけ上の圧電定数が双極子配向度100%時の半分以下になってしまい、圧電薄膜層3の圧電特性が劣化し、良好に応力を検知できなくなるためである。双極子配向度が75%以上であれば、十分な圧電性が保たれる。
【0048】
圧電薄膜層3の双極子配向度を75%以上とするためには、結晶柱が成長する際に最初の原子をそろい易くする必要がある。一方、キュリー温度の存在しない圧電材料は、チタン酸ジルコン酸鉛のような強誘電体と異なり、結晶形成後に事後的に外部電場によって制御することは不可能であるため、圧電薄膜層3の双極子配向度を75%以上に保つには、圧電薄膜層3の形成時に双極子配向度を75%以上となるように圧電薄膜層3の結晶を制御しなければならない。具体的には、基板上に圧電層の結晶の双極子配向を整える機能を有する下地層2を設けた後、圧電薄膜層3形成時に、基板温度、基板ターゲット間距離およびガス圧を最適な値に設定し、結晶のc軸配向を揃える構成にすることで、圧電薄膜層3の双極子配向度を上げられる。このように、圧電特性を向上するためには、圧電素子の結晶をc軸方向に配向させるのが望ましい。
【0049】
さらに、下地層2の圧電薄膜層3と接する側の表面が、圧電薄膜層3に含まれる金属(圧電薄膜層3にAlNを用いる場合にはAl、圧電薄膜層3にZnOを用いる場合にはZn)で覆われている構成とすれば、より一層圧電薄膜層3の双極子配向度を高められる。このとき、下地層2を複層とする場合には、最上層(圧電薄膜層3と接する層)を圧電薄膜層3に含まれる金属とするのが望ましい。なお、双極子配向度とは、圧電薄膜層3表面の結晶柱の極性が正あるいは負の、同一方向のものが占める割合であると定義する。
【0050】
上部電極4は、印加応力によって発生した電荷を検出するものであり、下地層2と同様の材料を用いることができるが、同一のものである必要はなく、圧電薄膜層3との相性によって適宜選択しても良いし、またその構造も単層で構わない。
【0051】
また、本発明の薄膜型圧電センサの圧電薄膜層3の厚さは、0.1μmから100μmの範囲とすることが望ましく、0.5μm以上20μm以下とするのがより好ましく、1μm以上10μm以下とするのがさらに好ましい。0.1μmより薄いと、下地層2と上部電極4との間で短絡が発生しやすく、100μmより厚いと成膜時間が長時間になってしまう。
【0052】
なお、本発明は、以下の薄膜型圧電センサとして構成することもできる。
【0053】
酸化物系、炭化物系、窒化物系またはホウ化物系セラミックスの焼結体あるいは石英ガラスからなる絶縁性基板上に金属電極を形成し、その上にキュリー温度が存在しない圧電薄膜材料からなる双極子配向度が90%以上の圧電性セラミックス薄膜と、さらにその上に金属電極を積層一体化したことを特徴とする第1の高温薄膜型圧電センサ。
【0054】
インコネルまたはSUS630の相当のような耐熱性金属材料からなる導電性基板上に緩衝層となる金属薄膜を形成し、その上にキュリー温度が存在しない圧電薄膜材料からなる双極子配向度が90%以上の圧電性セラミックスの薄膜と、さらにその上に金属電極を積層一体化したことを特徴とする第2の高温薄膜型圧電センサ。
【0055】
上記第1または第2の薄膜型圧電センサにおいて、圧電薄膜素子が、厚み0.1μm〜0.1mmの圧電薄膜素子を用いたことを特徴とする薄膜型圧電センサ。
【0056】
上記第1または第2の薄膜型圧電センサにおいて、圧電薄膜素子が、窒化アルミニウムまたは酸化亜鉛の薄膜よりなることを特徴とする薄膜型圧電センサ。
【0057】
上記第1または第2の薄膜型圧電センサにおいて、圧電薄膜素子が、圧電性セラミックス薄膜の上に形成する金属電極が2個以上に分割されていることことを特徴とする薄膜型圧電センサ。
(実施の形態2)
本発明の実施の一形態について図2に基づいて説明すれば、以下の通りである。
【0058】
本発明の薄膜型圧電センサは、基板1上に、下地層(第1の電極層)2、圧電薄膜層(圧電層)3および複数の分割上部電極(第2の電極層)5がこの順に成膜してなるものである。
【0059】
基板1、下地層2、圧電薄膜層3の材料及び作製方法は、実施の形態1と同様であるが、本発明の圧電薄膜層3は、分割上部金属電極5が、2個以上に分離されて形成されている。
【0060】
分割上部金属電極5の材料及び作製方法も実施例1とほぼ同様であるが、圧電薄膜層3を成膜した後に、分離電極上部電極5を、パターンマスクなどを用いて成膜する。つまり、実施の形態1では上部電極4が一つの連続した層として形成されるのに対し、実施例2では成膜する際に、任意のパターンマスクを基板1上の圧電薄膜層3表面に配置することにより任意の形、個数に分割された分割上部電極5が作製される。
【0061】
このような構成によれば、薄膜型圧電センサの表面に場所によって異なる応力が生じた場合には、圧力等の応力が分割上部電極5の位置によって異なることになる。これにより、各分割上部電極5上に異なる電荷や電圧が発生し、その差分を検出することができるようになる。すなわち、応力が薄膜型圧電センサのどの部分に加わったかが検出できる。
【0062】
このような薄膜型圧電センサは、時間的な応力分布の変化を測定することにより、振動の方向の検出に利用することができる。また、片持ち梁型やダイアフラム型の薄膜型圧電センサを構成する場合には、上記応力の差分を検出することで、ハードウェアによる差分検出が可能となり、個々のアンプのダイナミックレンジに制約を受けずにせん断応力検出の高感度化を実現できる。
【0063】
【実施例】
直径17mm、厚さが1mmの石英ガラス基板の表面に、スパッタリング法により直径3mmの円形状のアルミニウム薄膜の下地層を形成し、さらにその上に、厚さ約1ミクロンのAlN(窒化アルミニウム)薄膜の圧電薄膜層をスパッタリング法により作製した。
【0064】
X線回折パターンを解析することにより、上記AlNが結晶性に優れ、c軸方向に配向していることがわかった。また、圧電層の双極子配向度は92%であった。
【0065】
次に、AlNの表面に、さらに上部電極として直径3mmの円形状のアルミニウム電極を、下部電極と重なるようにスパッタリング法によって作製した。
【0066】
図3は、上記薄膜型圧電センサを用いて圧縮型の薄膜型圧電センサを構成し、振動探知測定を行った結果を示すものである。横軸が時間を示し、縦軸が発生した電気の電圧を示している。測定は、上記薄膜型圧電センサを金属性構造物に固定し、横軸の時間における1.51秒時に、ハンマーによって上記金属性構造物を打撃することによって発生した振動を薄膜型圧電センサに与えて行われた。図3によると、ほぼ同一時刻の1.519秒で大きな電圧が発生しているので、薄膜型圧電センサ薄膜は振動に対応して電圧を発生している事が示された。すなわち、上記薄膜型圧電センサは適切な圧電特性を備えていた。
【0067】
【発明の効果】
以上に詳述したように、本発明の薄膜型圧電センサは、基板表面に、第1の電極層、圧電層、および第2の電極層をこの順に積層して形成された薄膜型圧電センサであって、上記圧電層が、ウルツ鉱構造の結晶構造をもつ物質のようなキュリー温度が存在しない圧電材料(例えば、窒化アルミニウムまたは酸化亜鉛)からなり、その双極子配向度が75%以上である構成である。
【0068】
上記構成によれば、圧電特性を保証し、小型で冷却手段を要せず、耐熱性に優れ、なおかつ低価格の、アコースティックエミッションや振動又は加速度を検出する薄膜型圧電センサを提供することができる。
【0069】
上記基板に、酸化物系、炭化物系、窒化物系またはホウ化物系セラミックスの焼結体あるいは石英ガラスからなる絶縁性基板、もしくは耐熱性金属材料からなる導電性基板を用いれば、生産性や、耐熱性、硬度等の特性が優れた薄膜型圧電センサとなる。
【0070】
また、上記圧電薄膜層を、物理気相成長法により形成すれば、キュリー温度が存在しない圧電材料の針状の結晶柱が霜柱状に成長し、圧電材料の単結晶状態の薄膜を形成できる。これにより、構造が単純で小型の薄膜型圧電センサとすることができる。さらに、上記圧電層の厚みを、0.1μm以上100μm以下とすれば、良好に応力検知を行え、短時間で製造することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る薄膜型圧電センサの積層基板の断面図である。
【図2】本発明の他の実施の形態に係る、複数の分割上部電極を形成した薄膜型圧電センサの積層基板の断面図である。
【図3】本発明の一実施の形態に係る薄膜型圧電センサを用いて振動検知測定を行った結果を示すグラフである。
【符号の説明】
1 基板
2 下地層(第1の電極層)
3 圧電薄膜層(圧電層)
4 上部電極(第2の電極層)
5 分割上部電極(第2の電極層)

Claims (7)

  1. 基板表面に、第1の電極層、圧電層、および第2の電極層をこの順に積層して形成された薄膜型圧電センサであって、
    上記第1の電極層の、圧電層と接する側の表面は、圧電層に含まれる金属で覆われており、
    上記圧電層が、キュリー温度が存在しない圧電材料からなり、その双極子配向度が75%以上であることを特徴とする薄膜型圧電センサ。
  2. 上記基板が、酸化物系、炭化物系、窒化物系またはホウ化物系セラミックスの焼結体あるいは石英ガラスからなる絶縁性基板であることを特徴とする請求項1に記載の薄膜型圧電センサ。
  3. 上記基板が、耐熱性金属材料からなる導電性基板であることを特徴とする請求項1に記載の薄膜型圧電センサ。
  4. 上記圧電層が、物理気相成長法により形成されていることを特徴とする請求項1ないし3の何れか1項に記載の薄膜型圧電センサ。
  5. 上記圧電層が、窒化アルミニウムまたは酸化亜鉛よりなることを特徴とする請求項1ないし4の何れか1項に記載の薄膜型圧電センサ。
  6. 上記圧電層の厚みが、0.1μm以上100μm以下であることを特徴とする請求項1ないし5の何れか1項に記載の薄膜型圧電センサ。
  7. 上記第2の電極層が、2個以上に分割されて形成されていることを特徴とする請求項1ないし6の何れか1項に記載の薄膜型圧電センサ。
JP2002352567A 2002-10-01 2002-12-04 薄膜型圧電センサ Expired - Lifetime JP4126370B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002352567A JP4126370B2 (ja) 2002-12-04 2002-12-04 薄膜型圧電センサ
US10/529,746 US7152482B2 (en) 2002-10-01 2003-09-26 Piezoelectric sensor and input device including same
PCT/JP2003/012379 WO2004031711A1 (ja) 2002-10-01 2003-09-26 圧電センサおよびそれを備えた入力装置
AU2003266663A AU2003266663A1 (en) 2002-10-01 2003-09-26 Piezoelectric sensor and input device comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352567A JP4126370B2 (ja) 2002-12-04 2002-12-04 薄膜型圧電センサ

Publications (2)

Publication Number Publication Date
JP2004184274A JP2004184274A (ja) 2004-07-02
JP4126370B2 true JP4126370B2 (ja) 2008-07-30

Family

ID=32754154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352567A Expired - Lifetime JP4126370B2 (ja) 2002-10-01 2002-12-04 薄膜型圧電センサ

Country Status (1)

Country Link
JP (1) JP4126370B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054496B2 (en) 2015-03-23 2018-08-21 Samsung Display Co., Ltd. Temperature sensing device, temperature sensor using the same, and wearable device having the same
US10439128B2 (en) 2015-03-23 2019-10-08 Samsung Display Co., Ltd. Piezoelectric device, piezoelectric sensor using the same, and wearable device having the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4328853B2 (ja) * 2003-01-22 2009-09-09 独立行政法人産業技術総合研究所 圧電素子およびその製造方法
JP4736599B2 (ja) * 2004-07-27 2011-07-27 独立行政法人産業技術総合研究所 圧電素子
JP2006114745A (ja) * 2004-10-15 2006-04-27 Nec Tokin Corp 積層型圧電セラミックス構造体及びその製造方法
JP4736021B2 (ja) * 2004-12-28 2011-07-27 独立行政法人産業技術総合研究所 圧電素子
JP2006212992A (ja) * 2005-02-04 2006-08-17 National Institute Of Advanced Industrial & Technology 液体噴射装置
JP4599510B2 (ja) * 2005-02-22 2010-12-15 独立行政法人産業技術総合研究所 圧電振動型慣性センサ及びその製造方法
JP2007263916A (ja) * 2006-03-30 2007-10-11 National Institute Of Advanced Industrial & Technology アクティブ型加速度センサ
JP5196552B2 (ja) * 2008-06-12 2013-05-15 独立行政法人産業技術総合研究所 圧電素子
JP5994135B2 (ja) * 2011-01-31 2016-09-21 地方独立行政法人 岩手県工業技術センター 圧力センサ素子
KR101952476B1 (ko) 2011-07-21 2019-02-26 피셔콘트롤스인터내쇼날엘엘씨 제어 밸브 모니터링 시스템
JP5869439B2 (ja) * 2012-06-29 2016-02-24 富士フイルム株式会社 ウルツァイト型複合酸化物及びそれを備えた圧電素子
CN104278249A (zh) * 2013-07-02 2015-01-14 上海和辉光电有限公司 坩埚材料量检测装置、方法及蒸镀机
CN113293355B (zh) * 2021-06-11 2023-05-05 武汉大学 一种智能螺栓用AlCrN/AlScN纳米复合压电涂层及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054496B2 (en) 2015-03-23 2018-08-21 Samsung Display Co., Ltd. Temperature sensing device, temperature sensor using the same, and wearable device having the same
US10439128B2 (en) 2015-03-23 2019-10-08 Samsung Display Co., Ltd. Piezoelectric device, piezoelectric sensor using the same, and wearable device having the same

Also Published As

Publication number Publication date
JP2004184274A (ja) 2004-07-02

Similar Documents

Publication Publication Date Title
JP4126370B2 (ja) 薄膜型圧電センサ
CN101322258B (zh) 压电元件及其制造方法
US7152482B2 (en) Piezoelectric sensor and input device including same
US8148878B2 (en) Piezoelectric element and gyroscope
EP1672091B1 (en) Laminate containing wurtzrite crystal layer, and method for production thereof
US9246080B2 (en) Ferroelectric thin film and method for producing same
US11495726B2 (en) Piezoelectric element, and resonator using piezoelectric element
JPS61177900A (ja) 圧電変換器およびその製造方法
JP6367331B2 (ja) 多層膜及びその製造方法
TWI389360B (zh) 壓電裝置、角速度感測器及製造壓電裝置之方法
JP4328854B2 (ja) 圧電素子およびその製造方法
CN219009917U (zh) 一种mems结构
JP7215426B2 (ja) 圧電薄膜素子
JP7215425B2 (ja) 圧電薄膜素子
JPWO2013011864A1 (ja) 薄膜デバイスおよび薄膜デバイスの製造方法
CN112928200B (zh) 一种锆钛酸铅压电薄膜及其制备方法与应用
JP2017017211A (ja) 積層薄膜構造体の製造方法、積層薄膜構造体及びそれを備えた圧電素子
CN108640078A (zh) 一种压力传感器及其形成方法
WO2007032259A1 (ja) 圧電センサ
JP2023132212A (ja) 積層体
JPH11284242A (ja) 圧電性薄膜およびその製造方法
JPH0530763A (ja) アクチユエータ
Nickles The development of lead zirconate titanate thin films for piezoelectric microactuators
郑萍 et al. Electrical properties of sol-gel derived Pb (Zr0. 53Ti0. 47) O3 thin films on LNO-coated metal substrates
JPH05283764A (ja) 半導体薄膜磁気抵抗素子及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4126370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term