JP2023132212A - 積層体 - Google Patents

積層体 Download PDF

Info

Publication number
JP2023132212A
JP2023132212A JP2022037402A JP2022037402A JP2023132212A JP 2023132212 A JP2023132212 A JP 2023132212A JP 2022037402 A JP2022037402 A JP 2022037402A JP 2022037402 A JP2022037402 A JP 2022037402A JP 2023132212 A JP2023132212 A JP 2023132212A
Authority
JP
Japan
Prior art keywords
film
laminate
piezoelectric
magnetostrictive
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022037402A
Other languages
English (en)
Inventor
靖久 岡野
Yasuhisa Okano
隆男 野口
Takao Noguchi
睦子 中野
Mutsuko Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2022037402A priority Critical patent/JP2023132212A/ja
Publication of JP2023132212A publication Critical patent/JP2023132212A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

【課題】電気出力の向上を図ることができる積層体を提供する。【解決手段】正磁歪膜11と、負磁歪膜12と、少なくとも1以上の圧電膜20と、少なくとも1以上の電極膜30と、を含む積層体1aは、圧電膜として、第1圧電膜20aと、第2圧電膜20bとを含み、電極膜として、第1電極膜30aと、第2電極膜30bとを含み、第1電極膜、第1圧電膜、正磁歪膜、負磁歪膜、第2圧電膜及び第2電極膜の順に積層してある。各構成膜を上記の順序で積層することで、電気出力をより増加させることができる。【選択図】図1A

Description

本開示は、圧電膜と磁歪膜とを含む積層体に関する。
特許文献1に示すように、圧電膜と磁歪膜とを有する積層体が知られている。この積層体では、離間したところから非接触で送信される磁場や電磁波などのエネルギー(入力信号)を電気出力に変換することができる。そのため、当該積層体を、非接触給電システムなどで用いられる磁気電気変換素子に応用することが期待されている。ただし、上記積層体を、非接触給電システムなどで実用に供するためには、出力の向上を図ることが求められている。
実全昭58-040853号公報
本開示は、このような実情を鑑みてなされ、その目的は、電気出力の向上を図ることができる積層体を提供することである。
上記の目的を達成するために、本開示に係る積層体は、
正磁歪膜と、負磁歪膜と、少なくとも1以上の圧電膜と、少なくとも1以上の電極膜とを含む。
本開示の積層体では、外部磁場に対して相反する磁歪挙動を示す正磁歪膜および負磁歪膜を積層することで、圧電膜に生じる歪を増大させることができる。その結果、本開示の積層体では、単一の磁歪膜を積層した従来の積層体よりも、大きな電気出力を得ることができる。
好ましくは、前記積層体が、前記圧電膜として、第1圧電膜と、第2圧電膜とを含み、前記電極膜として、第1電極膜と、第2電極膜とを含み、
前記第1電極膜、前記第1圧電膜、前記正磁歪膜、前記負磁歪膜、前記第2圧電膜、および前記第2電極膜の順に積層してある。
各構成膜を上記の順序で積層することで、電気出力をより増加させることができる。
好ましくは、前記第1圧電膜、または/および、前記第2圧電膜が、エピタキシャル成長した膜である。
エピタキシャル成長した圧電膜に対して、正磁歪膜および負磁歪膜を積層することで、積層体の磁気電気変換係数をより向上させることができる。
好ましくは、非磁性体を含む中間膜が、前記正磁歪膜と前記負磁歪膜との間に積層してある。
正磁歪膜と負磁歪膜との間に中間膜を介在させることで、積層体の強度を高めることができる。また、中間膜により正磁歪と負磁歪とが打ち消しあうことを抑制することができる。
図1Aは、本開示の一実施形態に係る積層体を示す概略断面図である。 図1Bは、本開示の他の実施形態に係る積層体を示す概略断面図である。 図1Cは、本開示の他の実施形態に係る積層体を示す概略断面図である。 図1Dは、積層体の変形例を示す概略断面図である。 図2Aは、図1Aに示す積層体を含む磁気電気変換素子の一例を示す平面図である。 図2Bは、図2Aに示すIIB-IIB線に沿う断面図である。
以下、本開示を、図面に示す実施形態に基づき詳細に説明する。
第1実施形態
本実施形態に係る積層体1aは、正磁歪膜11と、負磁歪膜12と、少なくとも1以上の圧電膜20と、少なくとも1以上の電極膜30と、を含む。積層体1aに含まれる圧電膜20の数は、2つであることが好ましい。すなわち、積層体1aは、図1Aに示すように、圧電膜20として、第1圧電膜20aおよび第2圧電膜20bを含むことが好ましい。なお、積層体1aは、2つの電極膜30を含んでおり、
Z軸下方の電極膜30を第1電極膜30aと称し、Z軸上方の電極膜30を第2電極膜30bと称する。
積層体1aを構成する各膜は、いずれもX軸およびY軸を含む平面に沿って存在しており、Z軸方向に沿って積層してある。具体的に、第1電極膜30a、第1圧電膜20a、正磁歪膜11、負磁歪膜12、第2圧電膜20b、および、第2電極膜30bが、記載の順に積層してあることが好ましい。なお、積層方向の上下は反転していてもよい。つまり、図1Aでは、Z軸の最下方に第1電極膜20aが位置し、Z軸の最上方に第2電極膜20bが位置しているが、上下反転して、Z軸最下方に第2電極膜20bが位置し、Z軸最上方に第1電極膜20aが位置していてもよい。なお、図1Aにおいて、X軸、Y軸、およびZ軸は、相互に垂直である。
図1Aに示す積層体1aでは、第1圧電膜20aが、第1電極膜30aの上面と接しており、正磁歪膜11が、第1圧電膜20aの上面と接している。つまり、第1圧電膜20aが、第1電極膜30aと正磁歪膜11との間に挟まれて積層してある。積層体1aでは、第1圧電膜20aで生じた電荷を、第1電極膜30aおよび正磁歪膜11を介して外部に取り出すことができる。また、第1電極膜30aおよび正磁歪膜11を介して、第1圧電膜20aに対して電圧を印加することも可能である。本実施形態では、第1電極膜30aの下面から正磁歪膜11の上面までの範囲を、第1積層部と称することとする。
また、積層体1aでは、第2圧電膜20bが、第2電極膜30bの下面と接しており、負磁歪膜12が、第2圧電膜20bの下面と接している。つまり、第2圧電膜20bが、負磁歪膜12と第2電極膜30bとの間に挟まれて積層してある。積層体1aでは、第2圧電膜20bで生じた電荷を、負磁歪膜12および第2電極膜30bを介して外部に取り出すことができる。また、負磁歪膜12および第2電極膜30bを介して、第2圧電膜20bに対して電圧を印加することも可能である。本実施形態では、負磁歪膜12の下面から第2電極膜30bの上面までの範囲を、第2積層部と称することとする。
本実施形態の積層体1aでは、負磁歪膜12の下面が、正磁歪膜11の上面に直に接しており、正磁歪膜11と負磁歪膜12との間に、接合界面8が存在する。
積層体1aの平面視形状は、特に限定されず、積層体1aの用途に応じて適宜決定すればよい。また、積層体1aのX軸方向の寸法、および、Y軸方向の寸法は、特に限定されず、積層体1aの用途に応じて適宜決定すればよい。積層体1aのZ軸方向の厚みは、積層体1aに含まれる各膜の厚みに依存し、各膜の厚みを所定の範囲に制御することが好ましい。
以下、積層体1aに含まれる各膜の特徴について詳述する。
(磁歪膜)
正磁歪膜11は、正の磁歪定数を有する磁性材(以下、正磁歪材と称する)で構成してある。一方、負磁歪膜12は、負の磁歪定数を有する磁性材(以下、負磁歪材と称する)で構成してある。ここで、磁歪(磁気ひずみ)とは、磁場の印加により形状変化(歪)が生じる現象を意味する。また、正磁歪とは、磁性材が磁場の印加方向に沿って伸長することを意味し、正の磁歪定数を有する磁性材が、正磁歪を示す。一方、負磁歪とは、磁性材が磁場の印加方向に沿って収縮することを意味し、負の磁歪定数を有する磁性材が、負磁歪を示す。
具体的に、正磁歪材としては、たとえば、Fe-Co合金、Fe-Ga合金、Fe-Co-B合金、Fe-Co-Si合金、Fe-Co-Si-B合金、Fe-Ga-B合金、Fe-Ga-Si合金、および、Fe-Ga-Si-B合金などの金属磁性材が挙げられる。正磁歪膜11は、上記の金属磁性材で構成することができ、上記の金属磁性材のなかでも、特に、アモルファスの軟磁性合金を含むことが好ましい。アモルファスの軟磁性合金としては、たとえば、B、Si、Pなどのメタロイド元素を1種以上含むFeCo基合金およびFeGa基合金が挙げられ、このようなFeCo基およびFeGa基のアモルファス合金は正の磁歪定数を有する。なお、正磁歪膜11におけるメタロイド元素の含有率は、特に限定されないが、たとえば、50at%未満とすることが好ましい。
一方、負磁歪材としては、たとえば、Fe、Fe-Sm合金、Fe-Sm-B合金、Fe-Sm-Si合金、Fe-Sm-Si-B合金、Fe-Tb合金、Fe-Tb-B合金、Fe-Tb-Si合金、Fe-Tb-Si-B合金などの金属磁性材が挙げられる。負磁歪膜12は、上記の金属磁性材で構成することができ、上記の金属磁性材のなかでも、特に、アモルファスの軟磁性合金を含むことが好ましい。アモルファスの軟磁性合金としては、たとえば、B、Si、Pなどのメタロイド元素を1種以上含むFe基合金、FeSm基合金、およびFeTb基合金が挙げられ、このようなFe基、FeSm基、およびFeTb基のアモルファス合金は負の磁歪定数を有する。なお、負磁歪膜12におけるメタロイド元素の含有率は、特に限定されないが、たとえば、50at%未満とすることが好ましい。
ここで、アモルファスとは、結晶のような長距離秩序は有していないが、短距離秩序は存在する原子配列の状態を意味する。正磁歪膜11および負磁歪膜12の原子配列は、X線回折(XRD)、透過型電子顕微鏡(TEM)による電子線回折、TEM像の高速フーリエ変換処理(FFT)、TEM像の位相コントラストに基づく画像解析、中性子線回折(ND)などにより解析することができる。X線回折(XRD)や電子線回折において、回折ピークや回折スポットが現れる場合、結晶に起因する長距離秩序が存在すると判断でき、ハローパターンが現れる場合、アモルファスの短距離秩序が存在すると判断できる。なお、長距離秩序と短距離秩序とは併存可能である。
たとえば、XRDの2θ/θ測定により正磁歪膜11および負磁歪膜12の構造解析を実施した場合、各磁歪膜のXRDパターンは、2θ=30°~60°の範囲において、半値幅が0.5°以上のブロードなハローパターンを有することが好ましく、結晶に起因する回折ピークが観測されないことがより好ましい。TEMの電子線回折で正磁歪膜11および負磁歪膜12の構造解析を実施した場合には、輪郭が不鮮明な同心円状のハローパターンが観測されることが好ましく、結晶に起因する回折スポットや、多結晶の存在を示すデバイ・リングは、観測されないことがより好ましい。
なお、正磁歪膜11または/および負磁歪膜12がアモルファスの合金組成を有する場合であっても、アモルファス相中に僅かに結晶相が含まれていてもよい。つまり、正磁歪膜11または/および負磁歪膜12では、結晶相とアモルファス相とが混在していてもよい。正磁歪膜11の非晶質化度は、80%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましい。同様に、負磁歪膜12の非晶質化度は、80%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましい。
非晶質化度は、たとえば、各磁歪膜の断面に占めるアモルファス相の面積比率により算出することができる。位相コントラストによるTEM像やHRTEM像では、結晶質部分では、格子が規則的に配列している様子が確認でき、アモルファス部分では、規則性のないランダムな模様が確認できる。そのため、位相コントラストに基づいて、結晶相とアモルファス相とを識別して、アモルファス相の面積割合を概算することができる。
各磁歪膜(11,12)において、0.1ppmの正磁歪または負磁歪が発生する磁場をしきい磁場HTHとし、飽和磁歪λmaxに達する磁場を飽和磁場HSとする。積層体1aでは、正磁歪膜11における「しきい磁場HTHから飽和磁場HSまでの範囲R1」と、負磁歪膜12における「しきい磁場HTHから飽和磁場HSまでの範囲R2」とが、重複していることが好ましい。「R1とR2とが重複する」とは、R1の一部がR2の一部と重複している場合、R1がR2の範囲内に収まっている場合、R2がR1の範囲内に収まっている場合、および、R1とR2とが概ね一致する場合を含む。
正磁歪膜11の厚みtM1は、特に限定されず、たとえば、tM1の平均(平均厚み)が、30nm~5000nmの範囲内であることが好ましく、100nm~1000nmの範囲内であることがより好ましい。面内方向におけるtM1のバラツキは、±5%の範囲内であることが好ましい。また、負磁歪膜12の厚みtM2(平均厚み)は、特に限定されず、たとえば、tM1の平均が、30nm~5000nmの範囲内であることが好ましく、100nm~1000nmの範囲内であることがより好ましい。面内方向におけるtM2のバラツキは、±5%の範囲内であることが好ましい。
積層体1aでは、tM1の平均とtM2の平均とが、概ね一致していることが好ましい。具体的に、tM1の平均に対するtM2の平均の比(tM2/tM1)が、0.67~1.33であることが好ましく、0.9~1.1であることがより好ましい。
なお、正磁歪膜11の厚みtM1、および、負磁歪膜12の厚みtM2は、いずれも、図1Aに示すような、膜厚方向に沿う積層体1aの断面を画像解析することで、計測すればよい。そして、平均厚みや厚みのバラツキは、tM1およびtM2を、それぞれ、少なくとも3箇所で計測することで算出することが好ましい。
(圧電膜)
第1圧電膜20aおよび第2圧電膜20bは、いずれも、圧電材料で構成してあり、圧電効果または逆圧電効果を奏する。圧電効果とは、外力(応力)が加わることで電荷を発生する効果を意味し、逆圧電効果とは、電圧を加えることで歪が発生する効果を意味する。このような効果を奏する圧電材料としては、水晶、ニオブ酸リチウム、窒化アルミニウム(AlN)、酸化亜鉛(ZnO)、チタン酸ジルコン酸鉛(PZT:Pb(Zr,Ti)O3)、ニオブ酸カリウムナトリウム(KNN:(K,Na)NbO3)、ジルコン酸チタン酸バリウムカルシウム(BCZT:(Ba,Ca)(Zr,Ti)O3)、などが例示される。
第1圧電膜20aおよび第2圧電膜20bは、上記の圧電材料のうち、特に、PZT、KNN、およびBCZTなどのペロブスカイト構造を有する圧電材料を含むことが好ましい。各圧電膜20が、ペロブスカイト構造を有することで、優れた圧電特性と、高い信頼性と、を両立して得ることができる。なお、各圧電膜20には、特性を改善するために、適宜副成分が添加してあってもよい。また、第1圧電膜20aと第2圧電膜20bとは、同じ材料で構成してあってもよいし、互いに異なる材料で構成してあってもよい。
第1圧電膜20aまたは/および第2圧電膜20bは、エピタキシャル成長した膜であることが好ましい。本実施形態の積層体1aでは、第1圧電膜20aおよび第2圧電膜20bが、両方とも、エピタキシャル成長した膜であることがより好ましい。ここで、エピタキシャル成長とは、成膜の際に、膜の結晶が、下地材料の結晶格子に整合する形で、膜厚方向(Z軸方向)および平面方向(X軸およびY軸方向)に揃いながら成長することをいう。そのため、エピタキシャル成長の場合、圧電膜20は、成膜中の高温状態において、結晶が、X軸方向、Y軸方向、およびZ軸方向の3軸すべての方向に揃って配向した状態(3軸配向)となる。
なお、3軸配向するようにエピタキシャル成長しているか否かは、薄膜形成過程において反射高速電子線回折評価(RHEED評価)を行うことで確認できる。成膜中の膜表面において、結晶配向に乱れがある場合には、RHEED像は、リング状に伸びたパターンを示す。一方で、上記のようにエピタキシャル成長している場合には、RHEED像は、スポット状またはストリーク状のシャープなパターンを示す。上記のようなRHEED像は、あくまでも成膜中の高温状態で観測される。
また、エピタキシャル成長した場合、圧電膜20は、成膜後の室温状態において、結晶粒界がほとんど形成されず、単結晶に近い(完全な単結晶ではない)結晶構造を有する。より具体的に、成膜後における圧電膜20の結晶構造は、3軸配向したうえで、複数の結晶相を有することが好ましく、また、少なくとも3種のドメイン(域)を含むドメイン構造を有することが好ましい。圧電膜20がドメイン構造を有することで、圧電特性がより向上する。
圧電膜20がドメイン構造を有する場合、ドメイン構造の具体的な構成は、使用する圧電材料によって異なる。たとえば、圧電膜20がPZTのエピタキシャル成長した膜である場合には、正方晶と菱面体晶の少なくとも2種の結晶相を有することが好ましい。そして、この場合、正方晶は、c軸(直方体(結晶格子)の長手方向の軸)が膜厚方向を向いたドメインと、c軸が面内方向を向いたドメインと、を有する。また、菱面体晶の結晶相は、膜厚方向に対して(100)面が平行となるように配向している。すなわち、圧電膜20がPZTのエピタキシャル成長した膜である場合には、正方晶の2種のドメインと、菱面体晶のドメインとの計3種のドメインを含むことが好ましい。
一方、圧電膜20がKNNのエピタキシャル成長した膜である場合には、斜方晶の2種のドメインと、単斜晶の1種のドメインと(計3種のドメイン)を有することが好ましい。上記の場合、斜方晶の2種のドメインとは、斜方晶の(001)面が膜厚方向に対して略平行となるように配向したドメイン(aドメイン)と、斜方晶の(010)面が膜厚方向に対して略平行となるように配向したドメイン(cドメイン)とが存在し得る。また、単斜晶のドメインでは、(100)面または(010)面が膜厚方向に対して略平行となっていることが好ましい。
また、圧電膜20がBCZTのエピタキシャル成長膜である場合には、正方晶の2種のドメインと、斜方晶の2種のドメインと(計4種のドメイン)を有することが好ましい。
上述したような複数のドメインは、共通のドメイン境界を挟んで接しているため、各ドメインの結晶軸の向きは、膜厚方向や面内方向から最大数度程度ずれていても良い。また、上述したような複数のドメインは、少なくとも成膜時の高温状態においては、同じ結晶系の同じ方位に配向した等価なドメインであり、成膜後に室温や使用温度に冷却される過程で、より安定な結晶相やドメインに転移することで形成される。
なお、上述したような複数のドメインが混在して存在する様子は、圧電膜20を、透過型電子顕微鏡(TEM)の電子線回折またはX線回折(XRD)などで分析することにより確認できる。たとえば、XRDを用いてCu-Kα線によるθ-2θ測定をした場合、2θ=42°~46°の範囲において、圧電膜20に由来する反射ピークが確認される。圧電膜20がドメイン構造を有する場合、この反射ピークは、ドメインの数に応じて複数個観測される場合がある。もしくは、各ドメインに対応する複数のピークが重なることで、半値幅が0.2°以上のブロードな反射ピークとして観測される場合もある。
第1圧電膜20aの厚みtP1は、特に限定されず、たとえば、tP1の平均(平均厚み)が0.5μm~10μmであることが好ましく、0.5μm~2μmの範囲内であることがより好ましい。面内方向におけるtP1のバラツキは、±5%の範囲内であることが好ましい。また、第2圧電膜20bの厚みtP2は、特に限定されず、たとえば、tP2の平均(平均厚み)が0.5μm~10μmであることが好ましく、0.5μm~2μmの範囲内であることがより好ましい。面内方向におけるtP2のバラツキは、±5%の範囲内であることが好ましい。
積層体1aでは、tP1の平均とtP2の平均とが、概ね一致していることが好ましい。具体的に、tP1の平均に対するtP2の平均の比(tP2/tP1)が、0.67~1.33であることが好ましく、0.9~1.1であることがより好ましい。
なお、第1圧電膜20aの厚みtP1、および、第2圧電膜20bの厚みtP2は、いずれも、図1Aに示すような、膜厚方向に沿う積層体1aの断面を画像解析することで、計測すればよい。そして、平均厚みや厚みのバラツキは、tP1およびtP2を、それぞれ、少なくとも3箇所で計測することで算出することが好ましい。
(電極膜)
第1電極膜30aおよび第2電極膜30bは、いずれも、導電性材料を含む。第1電極膜30aと第2電極膜30bとは、同じ材料で構成してあってもよいし、互いに異なる材料で構成してあってもよい。
第1圧電膜20aをエピタキシャル成長した膜とする場合、第1電極膜30aもエピタキシャル成長した膜であることが好ましい。具体的に、第1電極膜30aは、面心立方構造の金属膜、ペロブスカイト構造の酸化物導電体膜、もしくは、面心立方構造の金属膜とペロブスカイト構造の酸化物導電体膜とを含む積層膜であることが好ましい。第1電極膜30aが積層膜である場合には、第1圧電膜20aと接する上面側に酸化物導電体膜が位置することが好ましい。
なお、面心立方構造の金属膜としては、たとえば、Pt膜、Ir膜、Au膜、および、当該金属元素を1種以上含む合金膜などが挙げられる。また、ペロブスカイト構造の酸化物導電体膜としては、たとえば、ルテニウム酸ストロンチウム(SrRuO3:以下SROと略す)膜、および、ニッケル酸リチウム(LiNiO3)膜などが挙げられる。
第2圧電膜20bをエピタキシャル成長した膜とする場合、第2電極膜30bも、エピタキシャル成長した膜であることが好ましい。具体的に、第2電極膜30bは、面心立方構造の金属膜、ペロブスカイト構造の酸化物導電体膜、もしくは、面心立方構造の金属膜とペロブスカイト構造の酸化物導電体膜とを含む積層膜であることが好ましい。第2電極膜30bが積層膜である場合には、第2圧電膜20bと接する下面側に酸化物導電体膜が位置することが好ましい。
第1電極膜30aの厚みtE1は、特に限定されず、たとえば、tE1の平均(平均厚み)は、3nm~200nmであることが好ましい。第2電極膜30bの厚みtE2は、特に限定されず、たとえば、tE2の平均(平均厚み)は、3nm~200nmであることが好ましい。また、tE1の平均とtE2の平均とが、概ね一致していることが好ましい。具体的に、tE1の平均に対するtE2の平均の比(tE2/tE1)が、0.67~1.33であることが好ましく、0.9~1.1であることがより好ましい。
積層体1aにおいて、第1積層部の平均厚みをTU1とし、第2積層部の平均厚みをTU2とすると、TU1とTU2とが概ね一致することが好ましい。具体的に、TU1に対するTU2の比(TU2/TU1)は、0.67~1.33であることが好ましく、0.9~1.1であることがより好ましい。
正磁歪膜と負磁歪膜とが直に接していると、磁場を印加していない状態で、積層体に反りが生じる場合がある。このように磁場負荷のない状態で積層体に本有的な反りが生じていると、磁場を印加した際において、本有的な反りが、Z軸方向の変位を阻害する恐れがある。本実施形態の積層体1aでは、正磁歪膜11の下方、および、負磁歪膜12の上方に、所定の厚みを有する圧電膜20を積層している。このような積層順において、第1積層部の厚みと第2積層部の厚みとを概ね等しくすることで、本有的な反りの発生を抑制することができる。その結果、積層体1aでは、Z軸方向の変位をより大きくすることができ、電気出力をより大きくすることができる。
なお、積層体1aでは、第1積層部と第2積層部とが後述する熱圧着により接合されている。つまり、正磁歪膜11の上面と負磁歪膜12の下面とが熱圧着により接合されて、正磁歪膜11と負磁歪膜12との間に接合界面8が形成されている。正磁歪膜と負磁歪膜とが直に接している場合、磁歪膜間の密着が弱いと、正磁歪と負磁歪とが打ち消しあう場合がある。熱圧着により正磁歪膜11と負磁歪膜12とを強固に密着させることで、正磁歪と負磁歪とが打ち消しあうことを抑制できる。
積層体1aに含まれる各膜の組成は、エネルギー分散型X線分析(EDS)、波長分散型X線分析(WDS)、誘導結合プラズマ発光分光分析(ICP)、蛍光X線分析(XRF)、もしくは、X線光電子分光法(XPS)などを用いて分析することができる。また、上記の分析法を併用して、各膜の組成を分析してもよい。
次に、図1Aに示す積層体1aの製造方法の一例について説明する。
まず、第1積層部を形成する第1基板と、第2積層部を形成する第2基板とを準備する。第1基板の材質、および、第2基板の材質は、特に限定されないが、たとえば、単結晶の基板であることが好ましい。単結晶基板としては、Si、MgO、チタン酸ストロンチウム(SrTiO3)、ニオブ酸リチウム(LiNbO3)などが挙げられる。特に、第1基板および第2基板は、いずれも、表面がSi(100)面の単結晶となっているシリコン基板(ウェハ)もしくはSOIウェハ(Silicon on Insulator)であることがより好ましい。上記のような単結晶基板を用いることで、圧電膜20および電極膜30を、エピタキシャル成長させることができる。
第1基板の表面には、まず、第1電極膜30aを形成する。第1電極膜30aは、第1電極膜30aの材質に応じて公知の成膜方法で形成すればよいが、エピタキシャル成長させることが好ましい。第1電極膜30aをエピタキシャル成長させることで、第1電極膜30aもエピタキシャル成長させることができる。
次に、第1電極膜30aの上に、第1圧電膜20aを形成する。第1圧電膜20aの成膜方法としては、蒸着法、スパッタリング法、ゾルゲル法、CVD法、PLD法などの物理的または化学的な方法を用いることができ、特に、スパッタリング法を採用することが好ましい。スパッタリング法では、圧電特性の高い膜を、大面積に安定的に作製することができる。
たとえば、スパッタリング法により第1圧電膜20aを形成する場合、安定的にエピタキシャル成長をさせるためには、スパッタリングターゲットの組成、基板温度、成膜速度、ガス組成、真空度、基板-ターゲット間距離などを適正に制御することが好ましい。また、第1圧電膜20aがドメイン構造を有するためには、特に、スパッタリングターゲットの組成、基板温度、もしくは、積層する正磁歪膜11の応力などを制御することが好ましい。
たとえば、スパッタリングターゲットの組成は、圧電材料の材質に応じて、複数のドメインや結晶相が形成されやすい組成を選択すると共に、蒸気圧の高い元素を、化学量論的組成の20~120%増しとすることが好ましい。PZTを例にとると、Pb/(Zr+Ti)で表される原子比が、1.2~2.2であることが好ましく、Zr/(Zr+Ti)で表される原子比が、1~1.5となるように制御することが好ましい。
また、基板温度については、550~650℃となるように制御することが好ましく、正磁歪膜11の応力は、圧縮応力とすることが好ましい。なお、第1圧電膜20aの結晶構造をドメイン構造とする場合、成膜後に、酸化雰囲気において300℃~500℃の温度でアニール処理することも効果的である。
正磁歪膜11は、真空堆積法により、第1圧電膜20aの上に形成する。真空堆積法としては、スパッタリング法、真空蒸着法、PLD法、イオンビーム蒸着法(IBD法)などが挙げられ、特に、スパッタリング法を選択することが好ましい。また、スパッタリング法でアモルファスの正磁歪膜11を得るためには、真空度、基板温度、不活性ガスの流量、および、成膜圧力などの成膜条件を所定の範囲に制御することが好ましい。
具体的に、成膜時の真空度は、0.1Pa以下とすることが好ましく、0.05Pa以下であることがより好ましく、0.02Pa~0.05Paの範囲内であることがさらに好ましい。成膜時の真空度とは、成膜中における成膜室内のプロセスガスと残留ガス等その他のガスによる圧力の合計を意味しており、値が低いほど真空度が高いことを意味する。一方、成膜前の成膜室内の圧力は、1.0×10-5 Pa以下とすることが好ましく、5.0×10-6Pa以下であることがより好ましく、1×10-6Pa~5.0×10-6Paの範囲内であることがさらに好ましい。また、正磁歪膜11を成膜する前には、プリスパッタを十分に長く実施し、成膜室内に残留する酸素や窒素などの残留ガスを低減することが好ましい。なお、プリスパッタとは、製品への成膜直前にダミー基板へスパッタすることを意味する。
成膜時における第1基板の温度は、200℃以下であることが好ましく、60℃未満であることがより好ましく、25℃(室温)~40℃の範囲内であることがさらに好ましい。また、供給源であるターゲットから第1基板までの距離は、100mm以上であることが好ましい。当該距離の上限は、成膜可能な範囲であればよく、特に限定されない。
また、成膜時には、Arなどの不活性ガスを導入するが、その不活性ガスの流量を多くして、成膜圧力を高くすることが好ましい。具体的に、不活性ガスの流量は30sccm超過であることが好ましく、60sccm以上であることがより好ましい。不活性ガスの流量の上限は、たとえば、100sccm以下である。また、成膜圧力は、0.016Pa超過であることが好ましく、0.03Pa以上であることがより好ましい。成膜圧力の上限は、たとえば、0.05Pa以下である。なお、単位:sccmは、1atm(1013hPa)で25℃の条件に換算(標準状態換算)した場合の流量cm3/minを意味する。
上述した方法で、第1電極膜30a、第1圧電膜20a、および、正磁歪膜11を成膜することで、第1積層部が形成された第1基板が得られる。第2積層部については、第1積層部と同様の方法で、第2基板の上に形成すればよい。つまり、第2基板のうえに、第2電極膜30b、第2圧電膜20b、および、負磁歪膜12を、記載の順に成膜すればよい。この際、第2電極膜30bおよび第2圧電膜20bは、エピタキシャル成長させることが好ましく、負磁歪膜12はアモルファスが得られる条件で成膜することが好ましい。
次に、第1積層部の表面と、第2積層部の表面とを、向かい合わせて、熱圧着する。具体的に、第1積層部における正磁歪膜11の表面、および、第2積層部における負磁歪膜12の表面を、洗浄して、清浄な面とする。そして、正磁歪膜11の表面に対して負磁歪膜12の表面を面接触させて、熱および圧力を加えることで、正磁歪膜11と負磁歪膜12とを接合する。当該熱圧着により、正磁歪膜11と負磁歪膜12との間に接合界面8が形成される。
上記のように、第1積層部と第2積層部とを接合した後、反応性イオンエッチングなどのドライエッチング、もしくは、異方性ウェットエッチングにより第1基板および第2基板を除去する。この際、第1基板もしくは第2基板のいずれか一方の一部を残存させ、残存させた基板の上に積層体1aの一部を固定してもよい。もしくは、第1基板および第2基板を完全に除去してもよい。以上の工程により、図1Aに示す積層体1aが得られる。
積層体1aは、基板上に固定せずともよく、基板に固定されていない積層体1a自体を磁気電気変換素子として用いることができる。この場合、積層体1aの端縁において、各電極膜30および各磁歪膜(11,12)に配線を接続するための引出部を設ければよい。たとえば、各磁歪膜に対して配線を接続するためには、電極膜30の一部を除去し、圧電膜20を貫通して磁歪膜と電気的に接続するビアホール電極を形成すればよい。
(第1実施形態のまとめ)
第1実施形態に係る積層体1aは、第1電極膜30a、第1圧電膜20a、正磁歪膜11、負磁歪膜12、第2圧電膜20b、および、第2電極膜30bを含み、これらの膜が記載の順に積層してある。
積層体1aでは、正磁歪膜11および負磁歪膜12が、外部からの磁場(外部磁場)に対して相反する伸縮挙動を示す。たとえば、図1Aに示す積層体1aに対して、X軸方向に沿って特定の直流磁場を印加した場合、正磁歪膜11はX軸方向の外側に向かって伸長し、負磁歪膜12はX軸方向の内側に向かって収縮する。この場合、積層体1aは、X軸方向の中央がZ軸下方に向かって凹むように、大きく変形する。なお、外部磁場を印加する方向は特に限定されず、外部磁場は交流磁場であってもよい。積層体1aに対して交流磁場を印加した場合は、磁場の周期に従って積層体1aが振動する。
積層体1aでは、正磁歪膜11と負磁歪膜12の組合せにより、単一の磁歪膜よりも、磁気歪定数を大きくすることができ、各圧電膜20(20a,20b)に生じる歪を増大させることができる。その結果、積層体1aでは、単一の磁歪膜を積層した従来の積層体よりも、大きな電気出力を得ることができる。
また、積層体1aでは、基板などによる変形抑制作用を軽減させることができる。特に、積層体1aは、固定用の基板を完全に除去した状態で、磁気電気変換素子として利用することができる。圧電膜と単一の磁歪膜とを含む従来の積層体の場合、基板を完全に除去すると、電気出力が低下する場合がある。基板と積層体との間に生じる表面張力が消失することで、Z軸方向の変位(反り)が発生し難くなるためと考えられる。本実施形態の積層体1aでは、正磁歪膜11と負磁歪膜12との間の接合界面8において、十分な表面張力を発生させることができ、従来の積層体よりもZ軸方向の変位をより大きくすることができる。そのため、積層体1aでは、基板の厚みを薄くするほど、磁歪による変位が増加する傾向となる。そのうえ、積層体1aでは、積層方向の下方に基板を残存させた場合よりも、基板を完全に除去した場合のほうが、磁歪による変位をより増大させることができ、電気出力をより向上させることができる。
また、積層体1aでは、正磁歪膜11の下方に第1圧電膜20aおよび第1電極膜30aが積層してあると共に、負磁歪膜12の上方においても第2圧電膜20bおよび第2電極膜30bが積層してある。つまり、2つの圧電膜20と2つの電極膜30とが、Z軸方向において、正磁歪膜11と負磁歪膜12との界面を中心として、対称的に配置してある。このような積層構造とすることで、磁場負荷がない状態で積層体1aに本有的な反りが生じることを抑制できる。その結果、磁歪による変位をより増大させることができ、電気出力をより向上させることができる。
正磁歪膜11と負磁歪膜12とが直に接していると、正磁歪と負磁歪とが打ち消しあうことがあるが、密着力を向上させた場合、このような相殺現象を抑制できる。つまり、積層体1aにおいて、正磁歪膜11と負磁歪膜12との間に強固な接合界面8を形成することで、正磁歪と負磁歪とが打ち消しあうことを抑制できる。その結果、磁歪による変位をより増大させることができ、電気出力をより向上させることができる。
また、積層体1aでは、第1圧電膜20aまたは/および第2圧電膜20bが、エピタキシャル成長した膜であり、より好ましくは、第1圧電膜20aと第2圧電膜20bの両方がエピタキシャル成長した膜である。各圧電膜20をエピタキシャル成長させて形成することで、圧電特性の改善が図れ、磁気電気変換係数をより向上させることができる。
本実施形態の積層体1aでは、エピタキシャル成長させた圧電体膜20a上に、正磁歪膜11と負磁歪膜12をエピタキシャル成長で形成し、その上に圧電体膜20bをエピタキシャル成長させて積層構造体を形成してもよい。
第2実施形態
第2実施形態では、図1Bに示す積層体1bについて説明する。なお、第2実施形態において、第1実施形態と共通の構成に関しては、同じ符号を使用し、説明を省略する。
図1Bの積層体1bは、第1実施形態の積層体1aと同様に、第1電極膜30a、第1圧電膜20a、正磁歪膜11、負磁歪膜12、第2圧電膜20b、および、第2電極膜30bを含む。そのうえ、積層体1bは、正磁歪膜11と負磁歪膜12との間に介在する樹脂層41を含む。第1実施形態では、熱圧着により第1積層部と第2積層部とを接合しているが、第2実施形態の積層体1bでは、樹脂層41が、第1積層部と第2積層部とを接合している。
樹脂層41は、正磁歪膜11と負磁歪膜12とを接合できる材質で構成してあればよく、樹脂層41の材質は、特に限定されない。たとえば、樹脂層41は、エポキシ樹脂、アクリル樹脂、ユリア樹脂、シリコーン樹脂、ポリイミド、またはレジスト材料などを含むことができ、特に、ポリイミド、またはレジスト材料を含むことが好ましい。また、樹脂層41の厚みtRは、特に限定されず、たとえば、tRの平均(平均厚み)が、1μm~100μmであることが好ましく、5μm~30μmであることがより好ましい。
積層体1bの製造では、第1実施形態と同様の方法で、第1基板の上に第1積層部を形成し、第2基板の上に第2積層部を形成する。そして、正磁歪膜11の表面または/および負磁歪膜12の表面に、樹脂層41を構成する樹脂を塗布し、正磁歪膜11の表面と負磁歪膜12の表面とを貼り合わせる。その後、第1実施形態と同様に、第1基板および第2基板を除去することで、積層体1bが得られる。積層体1bの樹脂を用いた製造方法は、熱圧着法を用いた積層体1aの製造方法よりも、工数を減らすことができ、簡便である。
積層体1bでは、熱圧着法を用いる場合よりも、正磁歪膜11に対する負磁歪膜12の密着性(接合強度)を高めることができる。そのため、積層体1bは、積層体1aよりも耐久性が優れる。また、積層体1aでは、正磁歪膜11と負磁歪膜12との間に樹脂層41を介在させることで、正磁歪と負磁歪とが打ち消しあうことをより効果的に抑制することができる。
積層体1bの構成は、樹脂層41が存在すること以外は、積層体1aの構成と同様であり、積層体1bでは、第1実施形態と同様の作用効果が得られる。
(第3実施形態)
第3実施形態では、図1Cに示す積層体1cについて説明する。なお、第3実施形態において、第1実施形態と共通の構成に関しては、同じ符号を使用し、説明を省略する。
第1実施形態および第2実施形態では、2つの成膜用基板を準備し、各基板に形成した積層膜を貼り合わせることで、図1Aおよび図1Bに示す積層体(1a,1b)を得た。一方、第3実施形態の積層体1cは、一連の真空プロセスにより単一の基板上に各膜を積層することで製造する。
第3実施形態の積層体1cは、第1電極膜30a、第1圧電膜20a、正磁歪膜11、中間膜42、および、負磁歪膜12を含み、これらの膜が記載の順に積層してある。積層体1cに含まれる第1電極膜30a、第1圧電膜20a、正磁歪膜11、および負磁歪膜12は、それぞれ、第1実施形態と同様の構成とすることができ、第1実施形態で述べた材質および厚みを有していればよい。積層体1cでも、積層体1aおよび積層体1cと同様に、正磁歪膜11と負磁歪膜12とを含むため、単一の磁歪膜を積層した従来の積層体よりも、大きな電気出力を得ることができる。
中間膜42は、正磁歪膜11と負磁歪膜12との間に介在しており、非磁性材で構成してある。たとえば、中間膜42は、非磁性材として、Al23、ZnO、ZrO2、TiO2、AlN、もしくは、Si3N2などの無機材料を含むことができ、樹脂よりもヤング率が大きい酸化物を含むことが好ましい。中間膜42の厚みtIは、特に限定されないが、tIの平均(平均厚み)が、30nm~2000nmであることが好ましく、50nm~500nmであることがより好ましい。
一連の真空プロセスで積層体を製造する場合、正磁歪膜11の上に直に負磁歪膜12を成膜すると、正磁歪と負磁歪とが打ち消しあう相殺現象が生じ易くなる。積層体1cのように、正磁歪膜11と負磁歪膜12との間に非磁性の中間膜42を介在させることで、相殺現象を効果的に抑制することができる。また、中間膜42としてヤング率の大きい酸化物膜を積層することで、第1圧電膜20aに生じる歪を増加させることができる。そのため、積層体1cでは、基板を除去した状態でも、従来よりも大きい電気出力を得ることができる。
積層体1cの製造では、第1電極膜30a、第1圧電膜20b、および正磁歪膜11は、第1実施形態と同様の方法で成膜すればよく、第1圧電膜20bはエピタキシャル成長させて成膜することが好ましい。中間膜42は、スパッタリング法などの公知の方法で、正磁歪膜11の上に形成すればよい。また、負磁歪膜11は、第1実施形態と同様の方法で、中間膜42の上に形成すればよい。このように積層体1cは、一連の真空プロセス(たとえばスパッタリング法)で製造することができ、第1実施形態および第2実施形態で示す製造方法よりも、工数を削減することができる。
なお、積層体1cにおいて、負磁歪膜12の上に第2圧電膜20bおよび第2電極膜30bを積層してもよい。ただし、一連の真空プロセスで負磁歪膜12の上に第2圧電膜20bを成膜する場合、当該第2圧電膜20bはエピタキシャル成長させることはできず、等方的な膜となる。
以上、本開示の実施形態について説明してきたが、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲において種々に改変することができる。
(変形例)
たとえば、積層体には、図1A~図1Cで図示していない他の膜が含まれていてもよい。上述した各実施形態では、正磁歪膜11が第1圧電膜20aの表面と接していたが、正磁歪膜11と第1圧電膜20bとの間には他の電極膜が介在していてもよい。同様に、負磁歪膜12と第2圧電膜20bとの間にも他の電極膜が介在していてもよい。
磁歪膜(11,12)と圧電膜20との間に積層する他の電極膜は、電極膜30と同様に、Pt膜、Ir膜、Au膜などの金属膜、もしくはSROなどの酸化物導電体膜とすることができ、金属膜と酸化物導電体膜との積層膜としてもよい。他の電極膜を積層膜とする場合には、圧電膜20と接する側に酸化物導電体膜を積層することが好ましい。また、上記の他の電極膜の平均厚みは、3nm~200nmであることが好ましい。
また、第1電極膜30aのZ軸下方には、バッファ層を積層してもよい。同様に、第2電極膜30bのZ軸上方にバッファ層を積層してもよい。つまり、成膜用基板の表面にバッファ層を形成し、その後、バッファ層の表面に電極膜30を積層してもよい。バッファ層は、酸化ジルコニウム(ZrO2)、もしくは、1種以上の希土類元素により安定化された酸化ジルコニウム(安定化ジルコニア)を主成分とすることが好ましく、バッファ層がエピタキシャル成長した膜であることが好ましい。バッファ層は、電極膜30や圧電膜20の結晶性を制御する機能を有し、バッファ層を形成することで、電極膜30および圧電膜20をエピタキシャル成長させ易くすることができる。
また、バッファ層は、エッチングにより成膜用基板(第1基板および第2基板)を除去する際に、エッチングストッパ層としても機能する。バッファ層の平均厚みは、5nm~100nmとすることが好ましい。
図1Aおよび図1Bに示す積層体(1a,1b)の製造過程では、正磁歪膜11の表面と負磁歪膜12の表面とを接合したが、基板側を接合してもよい。たとえば、図1Dに示す積層体1dでは、正磁歪膜11、第1圧電膜20a、第1電極膜30a、第2電極膜30b、第2圧電膜20b、および、負磁歪膜12が、記載の順に積層してある。そして、第1積層部と第2積層部の間、すなわち、第1電極膜30aと第2電極膜30bとの間には、第1基板51、樹脂層41、および第2基板52が介在している。
つまり、積層体1dでは、第1基板51の下面と第2基板52の下面とを、第樹脂層41により接合している。具体的に、第1積層部および第2積層部を形成した後に、エッチングもしくは研削加工などを実施して、第1基板51および第2基板52を、それぞれ、所望の厚みとなるまで薄くする。そして、樹脂(樹脂層41)により第1基板51の下面と第2基板52の下面とを貼り合わせる。なお、基板の下面とは、第1積層部または第2積層部が形成してある基板表面の反対側の面を意味する。上記の工程により積層体1dを得ることができる。
積層体1dにおいて、第1基板51の平均厚みtS1、および、第2基板52の平均厚みtS2は、それぞれ、350nm~1000nmであることが好ましい。積層体1dにおいても、正磁歪膜11と負磁歪膜12との組み合わせにより、単一の磁歪膜よりも、磁気歪定数を大きくすることができる。ただし、積層体1dでは、各積層部よりも剛性が強い基板(51,52)を含むため、積層体1aや積層体1bよりも、変形が生じ難い場合がある。
なお、第1基板51および第2基板52を除去して、第1電極膜30aの表面と第2電極膜30bの表面とを、熱圧着により接合してもよい。この場合、電極膜間の接合界面は、基板同士の結合よりも強固な溶融結合となるため、図1Dの積層体1dよりも電気出力をより大きくすることができる。
積層体(1a,1b,1c,または1d)を含む磁気電気変換素子は、たとえば、エアブリッジ構造(両持ち梁型の構造)やカンチレバー型の構造を有していてもよい。たとえば、図2Aおよび図2Bに示す磁気電気変換素子100が、積層体1aを含むエアブリッジ構造の素子の一例である。
磁気電気変換素子100の基板50は、X-Y平面の略中央において、空洞である開口部55を有する。そして、磁気電気変換素子100では、積層体1aが、基板50の上に形成してあり、開口部55の上部開口面に跨るようにして存在している。積層体1aにおいて、開口部55と対向する部分、すなわち、開口部55の上方に位置する部分を本体部101と称する。図2Aに示す平面視において、本体部101の外周縁と、開口部55の内周縁とは、互いに接触しておらず、本体部101の外周縁と開口部55の内周縁との間には、隙間が存在する。
積層体1aのX軸方向の両端は、それぞれ固定部(102a,102b)となっており、当該固定部が基板50の表面に接続してある。また、積層体1aは、2つの支持部103を有し、各支持部103が、X軸方向に沿って、本体部101と固定部(102a,102b)とを連結している。
各固定部は、正磁歪膜11、負磁歪膜12、および各電極膜30に対して配線を接続できる構造とすることが好ましい。各固定部の具体的な構造は特に限定されない。たとえば、固定部102aでは、負磁歪膜12に対して配線を接続できるように、取出電極3aおよびビアホール電極6が形成してある。固定部102bでは、第1積層部に存在する正磁歪膜11および第1電極膜30aに対して配線を接続できるように、第2積層部の一部が除去してある。そして、第1圧電膜20aを貫通するビアホール電極(図示せず)と、取出電極3bとが形成してあり、ビアホール電極を介して第1電極膜30aと取出電極3bとが導通している。
磁気電気変換素子100に対して、交流磁場を印加すると、正磁歪膜11および負磁歪膜12に磁歪が発生し、積層体1aの本体部101が振動する。つまり、本体部101が振動子として機能する。本体部101が振動することで、圧電効果により各圧電膜20(20aおよび20b)に電荷が発生する。このような機構により、外部磁場などの入力信号を電気出力に変換することができる。
なお、積層体(1a,1b,1c,または1d)を含む磁気電気変換素子の構造は、特に限定されない。たとえば、磁気電気変換素子は、図2Aに示すようなエアブリッジ構造が単一の基板上に複数形成されたアレー素子であってもよい。
以下、実施例および比較例を用いて、本開示をさらに詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。
実施例1
実施例1では、以下に示す手順で、図1Aに示す構造の積層体試料を製造した。まず、第1基板として単結晶のシリコン基板を用い、当該第1基板の上に第1積層部を形成した。具体的に、第1積層部における第1電極膜30aは、Pt膜と、SRO膜の積層構造とし、第1基板の上にPt膜をエピタキシャル成長させた後に、Pt膜の上にSRO膜をエピタキシャル成長させた。そして、SRO膜の上にエピタキシャル成長させたPZT膜(第1圧電膜20a)を形成した。なお、Pt膜、SRO膜、およびPZT膜の成膜時には、RHEED評価を行い、各膜がエピタキシャル成長していることを確認した。次に、PZT膜の上に、正磁歪膜11として、アモルファスのFeCoSiB合金膜を形成した。当該FeCoSiB合金膜の組成は、Feが64at%、Coが16at%、Siが8at%、Bが12at%であった。なお、上記の各膜はスパッタリング法により形成した。
また、第2基板として単結晶のシリコン基板を用い、当該第2基板の上に第2積層部を形成した。第2積層部における第2電極膜30bは、Pt膜と、SRO膜の積層構造とし、第2基板の上にPt膜をエピタキシャル成長させた後に、Pt膜の上にSRO膜をエピタキシャル成長させた。そして、SRO膜の上にエピタキシャル成長させたPZT膜(第2圧電膜20b)を形成した。なお、Pt膜、SRO膜、およびPZT膜の成膜時には、RHEED評価を行い、各膜がエピタキシャル成長していることを確認した。次に、PZT膜の上に、負磁歪膜12として、アモルファスのFeSmSi合金膜を形成した。当該FeSmSi合金膜の組成は、Feが64at%、Smが16at%、Siが20at%であった。なお、上記の各膜はスパッタリング法により形成した。
次に、熱圧着により第1積層部と第2積層部とを接合した。この際、第1積層部のFeCoSiB合金膜と、第2積層部のFeSmSi合金膜とを面接触させ、この状態で熱と圧力を加えて、FeCoSiB合金膜とFeSmSi合金膜とを接合した。その後、RIEエッチングにより、第1基板および第2基板をすべて除去し、実施例1に係る積層体試料を得た。
実施例1の積層体試料において、第1電極膜30aの平均厚みは120nm、第1圧電膜20aであるPZT膜の平均厚みは1000nm、FeCoSiB合金膜の平均厚みは500nm、FeSmSi合金膜の平均厚みは600nm、第2圧電膜20bであるPZT膜の平均厚みは1000nm、第2電極膜30bの平均厚みは120nmであった。また、第1電極膜30aにおけるPt膜の平均厚みは100nm、SRO膜の平均厚みは20nmであった。同様に、第2電極膜30bにおけるPt膜の平均厚みは100nm、SRO膜の平均厚みは20nmであった。
実施例2
実施例2では、図1Bに示す構造の積層体試料を製造した。まず、実施例1と同様の方法で、第1積層部と第2積層部とを製造した。実施例2において、第1積層部および第2積層部に含まれる各膜の材質および平均厚みは、実施例1と同じであった。第1積層部および第2積層部を製造した後、FeCoSiB合金膜の表面にポリイミドを塗布し、FeCoSiB合金膜の表面とFeSmSi合金膜の表面とを当該樹脂により接合した。この樹脂接合により、FeCoSiB合金膜とFeSmSi合金膜との間に樹脂層41が形成され、当該樹脂層41の平均厚みは12μmであった。上記以外の実験条件は、実施例1と同様として、実施例2に係る積層体試料を得た。
実施例3
実施例3では、図1Cに示す構造の積層体試料を製造した。まず、実施例1と同様の方法で、単結晶のシリコン基板の上に、Pt膜、SRO膜、PZT膜、およびFeCoSiB合金膜を記載の順に形成した。これらの各膜の平均厚みは実施例1と同様であり、Pt膜、SRO膜、および、PZT膜は、いずれもエピタキシャル成長させて成膜した。次に、スパッタリング法によりPZT膜の表面に、平均厚みが100nmのAl23膜を形成した。そして、このAl23膜の表面に、実施例1と同様の方法で、アモルファスのFeSmSi合金膜を形成した。当該FeSmSi合金膜の平均厚みも、実施例1と同様であった。その後、RIEエッチングによりシリコン基板を除去し、実施例3に係る積層体試料を得た。
比較例1
比較例1では、負磁歪膜12を含まない積層体試料を製造した。具体的に、単結晶のシリコン基板の上に、Pt膜、SRO膜、PZT膜、およびFeCoSiB合金膜を記載の順に形成した。比較例1における各膜の平均厚みは、実施例1と同様であった。また、比較例1においても、Pt膜、SRO膜、および、PZT膜は、いずれもエピタキシャル成長させて成膜した。比較例1では、シリコン基板を除去せずに、Pt膜の下方に残存させたままとし、残存しているシリコン基板の平均厚みは300μmであった。
比較例2
比較例2では、基板の厚みを比較例1よりも薄くした積層体試料を製造した。比較例2では、成膜用の基板として単結晶のSOI基板を用い、当該SOI基板の上に、Pt膜、SRO膜、PZT膜、およびFeCoSiB合金膜を記載の順に形成した。そして、RIEエッチングにより、SOI基板の下面側を削り、SOI基板の表面に存在するSiO2層のみを残存させた。残存したSiO2層(基板)の平均厚みは1μmであった。基板の厚みを変更したこと以外の製造条件は、比較例1と同様とし、比較例2に係る積層体試料を得た。
評価
各実施例および各比較例で製造した積層体試料の磁気電気変換素子としての性能を評価した。具体的に、積層体試料に対して、1MHz,±2387A/m(±30Oe)の交流磁場を印加して、積層体試料に発生する出力電圧をロックインアンプにより測定した。当該評価では、3.0mV以上の出力が得られた試料を良好と判断した。評価結果を表1に示す。
Figure 2023132212000002
表1に示すように、単一の磁歪膜を積層した比較例1では、出力電圧が3.0mV未満であった。比較例2では、基板の厚みを比較例1よりも薄くすることで、出力電圧が、比較例1より僅かに増加したが、比較例2の出力電圧も3.0mV未満であり、十分な出力向上効果が得られなかった。なお、比較例1および比較例2の積層構造の場合、基板を全て除去すると、出力電圧が比較例1よりも低下してしまった。
一方、正磁歪膜11と負磁歪膜12とを積層した実施例1~3では、比較例1および比較性2よりも出力電圧が向上し、3.0mV以上となった。特に、実施例1において最も大きい出力電圧が得られた。
以上の結果から、正磁歪膜11と負磁歪膜12との組み合わせにより、出力電圧の向上が図れることがわかった。また、実施例1および実施例2のように、第1電極膜30a、第1圧電膜20a、正磁歪膜11、負磁歪膜12、第2圧電膜20b、第2電極膜30bを記載の順に積層することで、より大きい出力電圧が得られることがわかった。また、正磁歪膜11および負磁歪膜12を含む積層体では、基板を全て除去することで、基板を残存させる場合よりも、出力電圧の向上効果をより高められることがわかった。
1a,1b,1c,1d … 積層体
11 … 正磁歪膜
12 … 負磁歪膜
20 … 圧電膜
20a … 第1圧電膜
20b … 第2圧電膜
30 … 電極膜
30a … 第1電極膜
30b … 第2電極膜
41 … 樹脂層
42 … 中間膜
51 … 第1基板
52 … 第2基板
100 … 磁気電気変換素子

Claims (5)

  1. 正磁歪膜と、負磁歪膜と、少なくとも1以上の圧電膜と、少なくとも1以上の電極膜とを含む積層体。
  2. 前記積層体が、前記圧電膜として、第1圧電膜と、第2圧電膜とを含み、前記電極膜として、第1電極膜と、第2電極膜とを含み、
    前記第1電極膜、前記第1圧電膜、前記正磁歪膜、前記負磁歪膜、前記第2圧電膜、および前記第2電極膜の順に積層してある請求項1に記載の積層体。
  3. 前記第1圧電膜、または/および、前記第2圧電膜が、エピタキシャル成長した膜である請求項2に記載の積層体。
  4. 非磁性体を含む中間膜が、前記正磁歪膜と前記負磁歪膜との間に積層してある請求項1に記載の積層体。
  5. 前記圧電膜がエピタキシャル成長した膜である請求項4に記載の積層体。
JP2022037402A 2022-03-10 2022-03-10 積層体 Pending JP2023132212A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022037402A JP2023132212A (ja) 2022-03-10 2022-03-10 積層体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022037402A JP2023132212A (ja) 2022-03-10 2022-03-10 積層体

Publications (1)

Publication Number Publication Date
JP2023132212A true JP2023132212A (ja) 2023-09-22

Family

ID=88065862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022037402A Pending JP2023132212A (ja) 2022-03-10 2022-03-10 積層体

Country Status (1)

Country Link
JP (1) JP2023132212A (ja)

Similar Documents

Publication Publication Date Title
US10608162B2 (en) Stacked film, electronic device substrate, electronic device, and method of fabricating stacked film
US7732996B2 (en) Piezoelectric thin film device
US8114307B2 (en) Piezoelectric body and liquid discharge head
US8148878B2 (en) Piezoelectric element and gyroscope
US11411164B2 (en) Piezoelectric thin film device
TWI831917B (zh) 膜構造體、壓電體膜及超導體膜
US10697090B2 (en) Thin-film structural body and method for fabricating thereof
US20170263847A1 (en) Piezoelectric Alloy Films
CN104064670B (zh) 压电薄膜元件、压电传感器和振动发电机
JP7363556B2 (ja) 積層体および電子デバイス
JP7415426B2 (ja) 電子デバイス用素子
JP7428961B2 (ja) 電子デバイス用素子
JP2023132212A (ja) 積層体
JP7463757B2 (ja) 磁気電気変換素子
JP2017017211A (ja) 積層薄膜構造体の製造方法、積層薄膜構造体及びそれを備えた圧電素子
JP7415425B2 (ja) 積層薄膜および電子デバイス
US10211043B2 (en) Stacked film, electronic device substrate, electronic device, and method of fabricating stacked film
JP2007242788A (ja) 圧電薄膜素子
JP2023049810A (ja) 積層体、および、積層体を有する磁気電気変換素子
WO2022255035A1 (ja) 圧電薄膜素子、微小電気機械システム、及び超音波トランスデューサ
JP7136057B2 (ja) 薄膜積層体、薄膜素子及び積層型基板
US20170317267A1 (en) Thin film piezoelectric element and manufacturing method thereof
JP2022152431A (ja) 積層体
US20240180043A1 (en) Heterojunction semiconductor flexible substrate, manufactring method thereof, and electronic device using the same
Kathiresan et al. Migration of Conventional PZT to Thin Film PZT for Underwater Acoustic Sensing Applications