JP4125582B2 - 半導体レーザ駆動装置 - Google Patents

半導体レーザ駆動装置 Download PDF

Info

Publication number
JP4125582B2
JP4125582B2 JP2002318092A JP2002318092A JP4125582B2 JP 4125582 B2 JP4125582 B2 JP 4125582B2 JP 2002318092 A JP2002318092 A JP 2002318092A JP 2002318092 A JP2002318092 A JP 2002318092A JP 4125582 B2 JP4125582 B2 JP 4125582B2
Authority
JP
Japan
Prior art keywords
voltage
circuit unit
current
output
light amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002318092A
Other languages
English (en)
Other versions
JP2004153116A (ja
Inventor
浩明 京極
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002318092A priority Critical patent/JP4125582B2/ja
Publication of JP2004153116A publication Critical patent/JP2004153116A/ja
Application granted granted Critical
Publication of JP4125582B2 publication Critical patent/JP4125582B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーザプリンタの光書き込み、光データ通信、光ディスク等に用いられる半導体レーザ駆動装置に関し、特にサンプルホールド回路を備えた半導体レーザ駆動装置に関するものである。
【0002】
【従来の技術】
半導体レーザは、小型で安価で電流を流すだけで容易にレーザ光を得ることができるため、プリンタ、光ディスク及び光通信等の分野で広く使用されている。しかし、半導体レーザの電流−光出力特性は温度依存性を有するため、一定の光出力を得るためには半導体レーザの光量制御を行う必要があり、該光量制御は、APC(Automatic Power Control)と呼ばれている。
【0003】
APCは、半導体レーザに内蔵されているフォトダイオード(PinPD:PIN Photo Diode)の出力電流を用いて行われる。フォトダイオードは、半導体レーザの発光量に応じた電流を出力し、しかもその出力電流は温度依存性を持たないため、該出力電流の電流値をモニタすることによって半導体レーザの光出力を一定に制御することができる。
【0004】
図11は、APC回路を使用した半導体レーザ駆動装置の従来例を示した図である。
図11の半導体レーザ駆動装置100において、アナログスイッチ103が制御回路101からのASW制御信号Saによってオンしている状態がAPC作動中であり、制御回路101からのデータ信号Sdがスイッチ回路106に入力され、スイッチ回路106がオンすると、レーザダイオードLDが発光する。フォトダイオードPDは、レーザダイオードLDの発光量に比例した電流を可変抵抗108に供給し、可変抵抗108の両端電圧が上昇する。フォトダイオードPDと可変抵抗108との接続部の電圧は、演算増幅器102の反転入力端に入力される。
【0005】
演算増幅器102の非反転入力端には基準電圧発生回路107からの所定の基準電圧Vrが入力されていることから、演算増幅器102の出力電圧は、電圧−電流変換回路105で電流に変換され、可変抵抗108の両端の電圧が基準電圧Vrに等しくなるまで、レーザダイオードLDの電流を増減させる。一方、ホールドコンデンサ104が演算増幅器102の出力電圧で充電されていることから、ホールドコンデンサ104の高圧側電圧(以下、ホールドコンデンサ104の電圧と呼ぶ)は、演算増幅器102の出力電圧と同じになる。アナログスイッチ103がオフすると、このときの演算増幅器102の出力電圧が、ホールドコンデンサ104に充電されて記憶される。
【0006】
図12は、図11のアナログスイッチ103の回路例を示した図であり、図12において、アナログスイッチ103は、Nチャネル型MOSトランジスタ(以下、NMOSトランジスタと呼ぶ)111、Pチャネル型MOSトランジスタ(以下、PMOSトランジスタと呼ぶ)112及びインバータ113で構成されている。
NMOSトランジスタ111のゲートには制御回路101からのASW制御信号Saが入力されると共に、該ASW制御信号Saはインバータ113で信号レベルが反転されてPMOSトランジスタ112のゲートに入力される。
【0007】
更に、NMOSトランジスタ111のサブストレートゲートは接地電圧に接続され、PMOSトランジスタ112のサブストレートゲートは電源電圧Vddに接続されている。このような構成において、ASW制御信号Saがハイレベルになると、NMOSトランジスタ111及びPMOSトランジスタ112がそれぞれオンし、ASW制御信号Saがローレベルになると、NMOSトランジスタ111及びPMOSトランジスタ112がそれぞれオフする。
【0008】
通常動作時は、アナログスイッチ103のオン及びオフは短時間(数μsec〜数msec)周期で繰り返されているが、レーザダイオードLDが点灯中に、製造時の検査工程や何らかの事故が発生して、アナログスイッチ103がオフしている期間が数秒から数十秒に達する場合がある。このような状態のときに、演算増幅器102の出力電圧が、電源電圧Vdd側か、接地電圧側に大きく振れていると、演算増幅器102の出力電圧がアナログスイッチ103のリーク電流となってホールドコンデンサ104を充放電し、ホールドコンデンサ104の電圧を変化させていた。
【0009】
しかし、従来はホールドコンデンサ104が集積回路に外付けされ、ホールドコンデンサ104にかなり大きな容量のものが使用されていたため、前記リーク電流によるホールドコンデンサ104の電圧変化はわずかであり、特に問題にはならなかった。例えば、リーク電流が1pAで、ホールドコンデンサ104の容量が10000pFの場合、APC動作が10秒間停止した場合でも、ホールドコンデンサ104の電圧変化は1mVと小さく、無視できるレベルであった。
【0010】
【発明が解決しようとする課題】
しかし、近年、部品点数の削減によるコスト低減や小型化等のため、ホールドコンデンサ104も集積回路に内蔵させる必要が高まってきた。従来使用されていたホールドコンデンサ104の容量を半導体で構成するには、非常に大きなチップ面積が必要となることから実用的ではなく、ホールドコンデンサ104の容量をできるだけ小さくする必要があった。
【0011】
半導体で集積できる静電容量はせいぜい100pF程度であり、ホールドコンデンサ104の容量を100pF程度まで小さくすると、前記のように、アナログスイッチ103がオフしている期間が数秒から数十秒に達した場合、アナログスイッチ103のリーク電流による、ホールドコンデンサ104の電圧変化を無視することができなかった。例えば、リーク電流が1pAで、ホールドコンデンサ104の容量が100pFの場合、APC動作が10秒間停止すると、ホールドコンデンサ104の電圧変化は100mVになる。このような大きな電圧変化がレーザダイオードLDの光量を増加させると、レーザダイオードLDの光出力の絶対最大定格値を超える場合があり、レーザダイオードLDに不具合が発生するという問題があった。
【0012】
本発明は、上記のような問題を解決するためになされたものであり、ホールドコンデンサの容量を半導体に集積できるレベルまで小さくしても、レーザダイオードの電流増加を防止することができるAPC回路を備えた半導体レーザ駆動装置を得ることを目的とする。
【0013】
【課題を解決するための手段】
この発明に係る半導体レーザ駆動装置は、レーザダイオードの光量をモニタして該光量に応じた電流を出力するフォトダイオードの出力電流を検出し、該検出した出力電流に基づいて前記レーザダイオードの光量が所定値になるように制御するAPC回路を備えた半導体レーザ駆動装置において、
前記フォトダイオードの出力電流を電圧に変換して出力する電流−電圧変換回路部と、
入力された電圧を電流に変換して前記レーザダイオードに供給する電圧−電流変換回路部と、
前記電流−電圧変換回路部からの出力電圧があらかじめ設定された所定値になるように該電圧−電流変換回路部の入力電圧を制御して前記レーザダイオードの光量を制御する光量制御回路部と、
入力された第1制御信号に応じて、該光量制御回路部から出力された電圧の前記電圧−電流変回路部への出力制御を行う第1スイッチ回路部と、
前記光量制御回路部から該第1スイッチ回路部を介して前記電圧−電流変換回路部に出力された電圧を保持するホールドコンデンサからなる電圧保持回路部と、
入力された第2制御信号に応じて、前記電圧−電流変換回路部から出力された電流の前記レーザダイオードへの出力制御を行う第2スイッチ回路部と、
前記第1スイッチ回路部及び第2スイッチ回路部に対して、対応する前記第1制御信号及び第2制御信号をそれぞれ出力して動作制御を行う制御回路部と、
を備え、
前記第1スイッチ回路部は、
NMOSトランジスタとPMOSトランジスタが並列に接続されてなるアナログスイッチ回路と、
該アナログスイッチ回路における各MOSトランジスタの内、少なくとも一方のMOSトランジスタのサブストレートゲートに前記ホールドコンデンサの高電圧側の電圧を印加するバッファアンプ回路と、
を備え、
前記第1スイッチ回路部は、サブストレートゲートに前記ホールドコンデンサの高電圧側の電圧が印加されたMOSトランジスタがスイッチングされることによって前記出力制御を行うものである。
【0015】
また、この発明に係る半導体レーザ駆動装置は、レーザダイオードの光量をモニタして該光量に応じた電流を出力するフォトダイオードの出力電流を検出し、該検出した出力電流に基づいて前記レーザダイオードの光量が所定値になるように制御するAPC回路を備えた半導体レーザ駆動装置において、
前記フォトダイオードの出力電流を電圧に変換して出力する電流−電圧変換回路部と、
入力された電圧を電流に変換して前記レーザダイオードに供給する電圧−電流変換回路部と、
前記電流−電圧変換回路部からの出力電圧があらかじめ設定された所定値になるように該電圧−電流変換回路部の入力電圧を制御して前記レーザダイオードの光量を制御する光量制御回路部と、
入力された第1制御信号に応じて、該光量制御回路部から出力された電圧の前記電圧−電流変換回路部への出力制御を行う第1スイッチ回路部と、
前記光量制御回路部から該第1スイッチ回路部を介して前記電圧−電流変換回路部に出力された電圧を保持するホールドコンデンサからなる電圧保持回路部と、
入力された第2制御信号に応じて、前記電圧−電流変換回路部から出力された電流の前記レーザダイオードへの出力制御を行う第2スイッチ回路部と、
前記第1スイッチ回路部及び第2スイッチ回路部に対して、対応する前記第1制御信号及び第2制御信号をそれぞれ出力して動作制御を行う制御回路部と、
を備え、
前記第1スイッチ回路部は、
前記制御回路部によって動作制御され、サブストレートゲートにホールドコンデンサの高電圧側の電圧が印加された第1のNMOSトランジスタと、
前記制御回路部によって動作制御され、サブストレートゲートに光量制御回路部の出力電圧が印加された第2のNMOSトランジスタと、
前記制御回路部によってそれぞれ動作制御される第1及び第2の各PMOSトランジスタと、
を備え、
前記第1及び第2の各NMOSトランジスタが直列に接続された直列回路と、前記第1及び第2の各PMOSトランジスタが直列に接続された直列回路が並列に接続され、第1及び第2の各PMOSトランジスタのサブストレートゲートは、第1及び第2の各PMOSトランジスタの接続部にそれぞれ接続され、前記第1スイッチ回路部は、サブストレートゲートに前記ホールドコンデンサの高電圧側の電圧が印加されたMOSトランジスタがスイッチングされることによって前記出力制御を行うものである。
【0016】
また、この発明に係る半導体レーザ駆動装置は、レーザダイオードの光量をモニタして該光量に応じた電流を出力するフォトダイオードの出力電流を検出し、該検出した出力電流に基づいて前記レーザダイオードの光量が所定値になるように制御するAPC回路を備えた半導体レーザ駆動装置において、
前記フォトダイオードの出力電流を電圧に変換して出力する電流−電圧変換回路部と、
入力された電圧を電流に変換して前記レーザダイオードに供給する電圧−電流変換回路部と、
前記電流−電圧変換回路部からの出力電圧があらかじめ設定された所定値になるように該電圧−電流変換回路部の入力電圧を制御して前記レーザダイオードの光量を制御する光量制御回路部と、
入力された第1制御信号に応じて、該光量制御回路部から出力された電圧の前記電圧−電流変換回路部への出力制御を行う第1スイッチ回路部と、
前記光量制御回路部から該第1スイッチ回路部を介して前記電圧−電流変換回路部に出力された電圧を保持するホールドコンデンサからなる電圧保持回路部と、
入力された第2制御信号に応じて、前記電圧−電流変換回路部から出力された電流の前記レーザダイオードへの出力制御を行う第2スイッチ回路部と、
前記第1スイッチ回路部及び第2スイッチ回路部に対して、対応する前記第1制御信号及び第2制御信号をそれぞれ出力して動作制御を行う制御回路部と、
を備え、
前記第1スイッチ回路部は、
前記制御回路部によって動作制御され、サブストレートゲートに所定の電圧が印加された第1のNMOSトランジスタと、
前記制御回路部によってそれぞれ動作制御される第1及び第2の各PMOSトランジスタと、
を備え、
前記第1のNMOSトランジスタと、第1及び第2の各PMOSトランジスタが直列に接続された直列回路が並列に接続され、第1及び第2の各PMOSトランジスタのサブストレートゲートは、第1及び第2の各PMOSトランジスタの接続部にそれぞれ接続され、前記第1スイッチ回路部は、サブストレートゲートに前記ホールドコンデンサの高電圧側の電圧が印加されたMOSトランジスタがスイッチングされることによって前記出力制御を行うものである。
【0017】
また、この発明に係る半導体レーザ駆動装置は、レーザダイオードの光量をモニタして該光量に応じた電流を出力するフォトダイオードの出力電流を検出し、該検出した出力電流に基づいて前記レーザダイオードの光量が所定値になるように制御するAPC回路を備えた半導体レーザ駆動装置において、
前記フォトダイオードの出力電流を電圧に変換して出力する電流−電圧変換回路部と、
入力された電圧を電流に変換して前記レーザダイオードに供給する電圧−電流変換回路部と、
前記電流−電圧変換回路部からの出力電圧があらかじめ設定された所定値になるように該電圧−電流変換回路部の入力電圧を制御して前記レーザダイオードの光量を制御する光量制御回路部と、
入力された第1制御信号に応じて、該光量制御回路部から出力された電圧の前記電圧−電流変換回路部への出力制御を行う第1スイッチ回路部と、
前記光量制御回路部から該第1スイッチ回路部を介して前記電圧−電流変換回路部に出力された電圧を保持するホールドコンデンサからなる電圧保持回路部と、
入力された第2制御信号に応じて、前記電圧−電流変換回路部から出力された電流の前記レーザダイオードへの出力制御を行う第2スイッチ回路部と、
前記第1スイッチ回路部及び第2スイッチ回路部に対して、対応する前記第1制御信号及び第2制御信号をそれぞれ出力して動作制御を行う制御回路部と、
を備え、
前記第1スイッチ回路部は、
前記制御回路部によって動作制御され、サブストレートゲートにホールドコンデンサの高電圧側の電圧が印加された第1のNMOSトランジスタと、
前記制御回路部によって動作制御され、サブストレートゲートに光量制御回路部の出力電圧が印加された第2のNMOSトランジスタと、
前記制御回路部によって動作制御され、サブストレートゲートに所定の電圧が印加された第1のPMOSトランジスタと、
を備え、
前記第1及び第2の各NMOSトランジスタが直列に接続された直列回路と、前記第1のPMOSトランジスタが並列に接続され、前記第1スイッチ回路部は、サブストレートゲートに前記ホールドコンデンサの高電圧側の電圧が印加されたMOSトランジスタがスイッチングされることによって前記出力制御を行うものである。
【0020】
一方、前記光量制御回路部は、所定の基準電圧を生成して出力する基準電圧発生回路と、前記電流−電圧変換回路部の出力電圧と該基準電圧との電圧を比較し、該比較結果を示す電圧を出力する電圧比較回路とを備え、該電圧比較回路、前記電圧電流変換回路部、スイッチ回路部、電圧保持回路部及び制御回路部は1つのICに集積されるようにしてもよい。
【0021】
【発明の実施の形態】
次に、図面に示す実施の形態に基づいて、本発明を詳細に説明する。
第1の実施の形態.
図1は、本発明の第1の実施の形態における半導体レーザ駆動装置の例を示した図である。
図1において、半導体レーザ駆動装置1は、演算増幅器2、アナログスイッチ3、演算増幅器2の出力電圧を記憶するホールドコンデンサ4、電圧−電流変換回路5、入力された制御信号に応じてスイッチングを行うスイッチ回路6、可変抵抗7及び所定の基準電圧Vrを生成して出力する基準電圧発生回路8を備えている。
【0022】
更に、半導体レーザ駆動装置1は、アナログスイッチ3とスイッチ回路6の動作制御をそれぞれ行う制御回路9及びフォトダイオードPDを備えている。なお、図1では、演算増幅器2の出力電圧が大きくなるほどレーザダイオードLDに流れる電流が増加する場合を例にして示している。また、演算増幅器2及び基準電圧発生回路8は光量制御回路部をなすと共に演算増幅器2は電圧比較回路をなし、アナログスイッチ3はスイッチ回路部を、ホールドコンデンサ4は電圧保持回路部を、可変抵抗7は電流−電圧変換回路部を、制御回路9は制御回路部をそれぞれなす。
【0023】
演算増幅器2の非反転入力端と接地電圧との間に基準電圧発生回路8が接続され、演算増幅器2の非反転入力端には基準電圧発生回路8からの基準電圧Vrが入力されている。演算増幅器2の出力端はアナログスイッチ3の一端に接続され、該接続部を接続部Bとする。アナログスイッチ3の他端は電圧−電流変換回路5に接続され、該接続部をAとし、接続部Aと接地電圧との間にはホールドコンデンサ4が接続されている。アナログスイッチ3は、制御回路9からASW制御信号Saが入力され、該入力されたASW制御信号Saに応じてスイッチングを行う。このことにより、アナログスイッチ3は、ホールドコンデンサ4の高圧側電圧(以下、ホールドコンデンサ4の電圧と呼ぶ)をホールドするために、ホールドコンデンサ4と演算増幅器2の出力端との接続の切断を行う。
【0024】
電圧−電流変換回路5は、入力された電圧をレーザダイオードLDの駆動電流に変換するものであり、スイッチ回路6を介してレーザダイオードLDのカソードに接続され、レーザダイオードLDのアノードは電源電圧Vddに接続されている。スイッチ回路6は、制御回路9からDATA信号Sdが入力され、該入力されたDATA信号Sdに応じてスイッチングを行う。このことにより、スイッチ回路6は、レーザダイオードLDに駆動電流を供給するために、電圧−電流変換回路5とレーザダイオードLDとの接続制御を行う。一方、フォトダイオードPDのカソードは電源電圧に接続され、フォトダイオードPDのアノードと接地電圧との間に可変抵抗7が接続されている。また、フォトダイオードPDのアノードと可変抵抗7との接続部は演算増幅器2の反転入力端に接続されている。
【0025】
図2は、アナログスイッチ3の回路例を示した図であり、図2において、アナログスイッチ3は、NMOSトランジスタ21、PMOSトランジスタ22、インバータ23及びバッファアンプ24,25で構成されている。なお、NMOSトランジスタ21及びPMOSトランジスタ22がアナログスイッチ回路(厳密に言うとインバータ23も含む)をなし、バッファアンプ24及び25がバッファアンプ回路をなす。
前記接続部Aと接続部Bとの間にはNMOSトランジスタ21及びPMOSトランジスタ22が並列に接続されている。また、NMOSトランジスタ21のゲートには制御回路9からのASW制御信号Saが入力されると共に、該ASW制御信号Saはインバータ23で信号レベルが反転されてPMOSトランジスタ22のゲートに入力されている。
【0026】
バッファアンプ24,25は、演算増幅器でボルテージホロワを形成した構成をそれぞれなし、バッファアンプ24,25において、該演算増幅器の反転入力端と出力端は接続され、演算増幅器の非反転入力端がバッファアンプの入力端をなし、演算増幅器の出力端がバッファアンプの出力端をなしている。バッファアンプ24において、入力端は前記接続部Aに接続され、出力端はPMOSトランジスタ21のサブストレートゲート(バックゲートともいう)に接続されている。また、バッファアンプ25において、入力端は前記接続部Aに接続され、出力端はNMOSトランジスタ22のサブストレートゲートに接続されている。
【0027】
ASW制御信号Saがハイレベルになると、NMOSトランジスタ21及びPMOSトランジスタ22がそれぞれオンし、ASW制御信号Saがローレベルになると、NMOSトランジスタ21及びPMOSトランジスタ22がそれぞれオフする。アナログスイッチ3がASW制御信号Saによりオンして導通した状態がAPC作動状態であり、DATA信号Sdがスイッチ回路6に入力され、スイッチ回路6がオンして導通状態になると、レーザダイオードLDが発光する。また、アナログスイッチ3がオフして遮断した状態がAPC作動停止状態である。フォトダイオードPDは、レーザダイオードLDの発光量をモニタしレーザダイオードLDの発光量に比例した電流を可変抵抗7に供給し、可変抵抗7は、フォトダイオードPDから供給された電流を電圧Vpdに変換し、該電圧Vpdは演算増幅器2の反転入力端に入力される。
【0028】
演算増幅器2は、入力された電圧Vpdが基準電圧Vrに等しくなるように、電圧−電流変換回路5に入力される電圧を制御してレーザダイオードLDに流れる電流を制御し、レーザダイオードLDの発光量を制御する。また、ホールドコンデンサ4の電圧は、演算増幅器2の出力電圧で充電されているため、演算増幅器2の出力電圧と同じである。アナログスイッチ3がオフすると、このときの演算増幅器2の出力電圧が、ホールドコンデンサ4に記憶される。
【0029】
このような構成において、アナログスイッチ3のNMOSトランジスタ21とPMOSトランジスタ22の各サブストレートゲートは常にホールドコンデンサ4の電圧と同じになる。このことから、NMOSトランジスタ21及びPMOSトランジスタ22において、サブストレートゲートを介してホールドコンデンサ4に流入又は流出するリーク電流がなくなり、ホールドコンデンサ4の電圧を安定させることができる。このため、ホールドコンデンサ4の容量を小さくすることができ、ホールドコンデンサ4をIC内に設けることができる。図1の場合、演算増幅器2、アナログスイッチ3、ホールドコンデンサ4、電圧−電流変換回路5、スイッチ回路6及び制御回路9が1つのICに集積される。
【0030】
一方、図2では、2つのバッファアンプ24,25を使用した。しかし、演算増幅器2の出力電圧が上昇すると、レーザダイオードLDの電流が増加する場合は、図3で示すように、アナログスイッチ3がオフした後、ホールドコンデンサ4の電圧が低下するときは特に問題がないことから、アナログスイッチ3のPMOSトランジスタ22のバックゲートをホールドコンデンサ4の電圧と同じになるようにバッファアンプ25の出力端に接続し、NMOSトランジスタ21のサブストレートゲートを接地電圧に接続するようにしてもよい。
【0031】
同様に、演算増幅器2の出力電圧が上昇すると、レーザダイオードLDの電流が減少する場合は、図4で示すように、アナログスイッチ3がオフした後、ホールドコンデンサ4の電圧が上昇するときは特に問題がないことから、アナログスイッチ3のNMOSトランジスタ21のバックゲートをホールドコンデンサ4の電圧と同じになるようにバッファアンプ24の出力端に接続し、PMOSトランジスタ22のサブストレートゲートを電源電圧Vddに接続するようにしてもよい。図3及び図4で示したようにアナログスイッチ3のバッファアンプを1つにすることによって、回路の簡素化を図ることができる。
【0032】
このように、本第1の実施の形態における半導体レーザ駆動装置は、アナログスイッチ3を構成するNMOSトランジスタ21のサブストレートゲートにバッファアンプ24を用いてホールドコンデンサ4の電圧を印加するようにし、及び/又はアナログスイッチ3を構成するPMOSトランジスタ22のサブストレートゲートにバッファアンプ25を用いてホールドコンデンサ4の電圧を印加するようにした。
【0033】
このことから、アナログスイッチ3を構成するNMOSトランジスタ及びPMOSトランジスタの各サブストレートゲートを介してホールドコンデンサに流入又は流出するリーク電流をなくすことができ、万一事故等で、レーザダイオードLDが点灯した状態でアナログスイッチ3がオフしている期間が長くなったり、アナログスイッチ3がオフした後でレーザダイオードLDが点灯しても、レーザダイオードLDの電流を増大させて、レーザダイオードLDの最大定格電流値を超えることによる不具合の発生を防止することができる。このため、レーザダイオードLDの電流が最大定格値を超えることなくホールドコンデンサ4の容量を小さくすることができ、従来ICに外付けされていたホールドコンデンサを他の回路要素と共に1つのICに集積させることができ、装置の小型化及びコストの低減を図ることができる。
【0034】
第2の実施の形態.
図5は、本発明の第2の実施の形態における半導体レーザ駆動装置を示した図である。なお、図5では、図1と同じもの又は同様のものは同じ符号で示しており、ここではその説明を省略すると共に図1との相違点のみ説明する。
図5における図1との相違点は、図1のアナログスイッチ3の回路構成を変えたことにあり、これに伴って図1のアナログスイッチ3をアナログスイッチ3aに、図1の半導体レーザ駆動装置1を半導体レーザ駆動装置1aにした。
【0035】
半導体レーザ駆動装置1aは、演算増幅器2、アナログスイッチ3a、ホールドコンデンサ4、電圧−電流変換回路5、スイッチ回路6、可変抵抗7、基準電圧発生回路8、アナログスイッチ3aとスイッチ回路6の動作制御をそれぞれ行う制御回路9及びフォトダイオードPDを備えている。なお、図5においても、演算増幅器2の出力電圧が大きくなるほどレーザダイオードLDに流れる電流が増加する場合を例にして示している。また、アナログスイッチ3aはスイッチ回路部をなす。
【0036】
演算増幅器2の出力端はアナログスイッチ3aの一端に接続され、該接続部を接続部Bとする。アナログスイッチ3aの他端は電圧−電流変換回路5に接続され、該接続部をAとし、接続部Aと接地電圧との間にはホールドコンデンサ4が接続されている。アナログスイッチ3aは、制御回路9からASW制御信号Saが入力され、該入力されたASW制御信号Saに応じてスイッチングを行う。このことにより、アナログスイッチ3aは、ホールドコンデンサ4の電圧をホールドするために、ホールドコンデンサ4と演算増幅器2の出力端との接続の切断を行う。
【0037】
図6は、アナログスイッチ3aの回路例を示した図である。なお、図6では、図2と同じもの又は同様のものは同じ符号で示し、ここではその説明を省略すると共に図2との相違点のみ説明する。
図6における図2との相違点は、バッファアンプ24,25を削除してNMOSトランジスタ31及びPMOSトランジスタ32を追加したことにある。
アナログスイッチ3aは、NMOSトランジスタ21,31、PMOSトランジスタ22,32及びインバータ23で構成されている。なお、NMOSトランジスタ21が第1のNMOSトランジスタを、NMOSトランジスタ31が第2のNMOSトランジスタをそれぞれなし、PMOSトランジスタ22が第1のPMOSトランジスタを、PMOSトランジスタ32が第2のPMOSトランジスタをそれぞれなす。
【0038】
前記接続部Aと接続部Bとの間には、NMOSトランジスタ21及び31が直列に接続された直列回路と、PMOSトランジスタ32及び22が直列に接続された直列回路が並列に接続されている。NMOSトランジスタ21及び31の直列回路は、NMOSトランジスタ21が接続部A側にNMOSトランジスタ31が接続部B側にそれぞれなるように接続されている。また、PMOSトランジスタ22及び32の直列回路は、PMOSトランジスタ22が接続部B側にPMOSトランジスタ32が接続部A側にそれぞれなるように接続されている。NMOSトランジスタ21及び31の各ゲートには制御回路9からのASW制御信号Saがそれぞれ入力されると共に、該ASW制御信号Saはインバータ23で信号レベルが反転されてPMOSトランジスタ22及び32の各ゲートにそれぞれ入力される。
【0039】
また、NMOSトランジスタ21のサブストレートゲートは接続部Aに接続されると共に、NMOSトランジスタ31のサブストレートゲートは接続部Bに接続され、PMOSトランジスタ22及び32の各サブストレートゲートは、PMOSトランジスタ22及び32の接続部にそれぞれ接続されている。また、NMOSトランジスタ21及び31には寄生ダイオードD1及びD2が対応して形成され、PMOSトランジスタ22及び32には寄生ダイオードD3及びD4が対応して形成されている。
【0040】
このような構成において、NMOSトランジスタ21及びPMOSトランジスタ22,32の各サブストレートゲートは常にホールドコンデンサ4の電圧と同じになる。
ここで、ASW制御信号SaがローレベルになってNMOSトランジスタ21,31及びPMOSトランジスタ22,32がそれぞれオフした場合について説明する。
【0041】
この場合、接続部Aの電圧が接続部Bの電圧よりも大きいときは、寄生ダイオードD2及び寄生ダイオードD3によって接続部Aから接続部Bに電流が流れるのを防止する。また、接続部Bの電圧が接続部Aの電圧よりも大きいときは、寄生ダイオードD1及び寄生ダイオードD4によって接続部Bから接続部Aに電流が流れるのを防止する。これらのことから、アナログスイッチ3aがオフした場合に、ホールドコンデンサ4に流入又は流出するリーク電流をなくすことができ、ホールドコンデンサ4の電圧を安定させることができる。このため、ホールドコンデンサ4の容量を小さくすることができ、ホールドコンデンサ4をIC内に設けることができる。図5の場合、演算増幅器2、アナログスイッチ3a、ホールドコンデンサ4、電圧−電流変換回路5、スイッチ回路6及び制御回路9が1つのICに集積される。
【0042】
ここで、ホールドコンデンサ4の電圧が上昇したときにレーザダイオードLDの電流が増加する場合は、図6のアナログスイッチ3aを図7のようにしてもよい。図7における図6との相違点は、NMOSトランジスタ31をなくして接続部Aと接続部Bとの間にNMOSトランジスタ21を接続し、NMOSトランジスタ21のサブストレートゲートを接地電圧に接続したことにある。また、アナログスイッチ3aがオフしているときに接続部Bから接続部Aに電流が流れない場合は、図7のアナログスイッチ3aを図8のようにしてもよい。図7及び図8のようにすることで回路の簡素化を図ることができる。
【0043】
一方、ホールドコンデンサ4の電圧が低下したときにレーザダイオードLDの電流が増加する場合は、図6のアナログスイッチ3aを図9のようにしてもよい。図9における図6との相違点は、PMOSトランジスタ32をなくして接続部Aと接続部Bとの間にPMOSトランジスタ22を接続し、PMOSトランジスタ22のサブストレートゲートを電源電圧Vddに接続したことにある。また、アナログスイッチ3aがオフしているときに接続部Aから接続部Bに電流が流れない場合は、図9のアナログスイッチ3aを図10のようにしてもよい。図9及び図10のようにすることで回路の簡素化を図ることができる。
【0044】
このように、本第2の実施の形態における半導体レーザ駆動装置は、接続部Aと接続部Bとの間には、NMOSトランジスタ21及び31が直列に接続された直列回路と、PMOSトランジスタ32及び22が直列に接続された直列回路を並列に接続し、NMOSトランジスタ21のサブストレートゲートを接続部Aに、NMOSトランジスタ31のサブストレートゲートを接続部Bにそれぞれ接続すると共に、PMOSトランジスタ22及び32の各サブストレートゲートを、PMOSトランジスタ22及び32の接続部にそれぞれ接続してなるアナログスイッチ3aを備えるようにした。このことから、前記第1の実施の形態と同様の効果を得ることができる。
【0045】
【発明の効果】
上記の説明から明らかなように、本発明の半導体レーザ駆動装置によれば、電圧保持回路部のホールドコンデンサに対してサンプルホールド動作を行わせるスイッチ回路部のリーク電流をなくしたことから、該リーク電流によるレーザダイオードの光量増加を防止することができ、ホールドコンデンサの容量を小さくすることができるため、ホールドコンデンサを他の回路要素と共に1つのICに集積させることができ、装置の小型化及びコストの低減を図ることができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態における半導体レーザ駆動装置の例を示した図である。
【図2】 図1のアナログスイッチ3の回路例を示した図である。
【図3】 図1のアナログスイッチ3の他の回路例を示した図である。
【図4】 図1のアナログスイッチ3の他の回路例を示した図である。
【図5】 本発明の第2の実施の形態における半導体レーザ駆動装置の例を示した図である。
【図6】 図5のアナログスイッチ3aの回路例を示した図である。
【図7】 図5のアナログスイッチ3aの他の回路例を示した図である。
【図8】 図5のアナログスイッチ3aの他の回路例を示した図である。
【図9】 図5のアナログスイッチ3aの他の回路例を示した図である。
【図10】 図5のアナログスイッチ3aの他の回路例を示した図である。
【図11】 APC回路を使用した半導体レーザ駆動装置の従来例を示した図である。
【図12】 図11のアナログスイッチ103の回路例を示した図である。
【符号の説明】
1,1a 半導体レーザ駆動装置
2 演算増幅器
3,3a アナログスイッチ
4 ホールドコンデンサ
5 電圧−電流変換回路
6 スイッチ回路
7 可変抵抗
8 基準電圧発生回路
9 制御回路
LD レーザダイオード
PD フォトダイオード

Claims (5)

  1. レーザダイオードの光量をモニタして該光量に応じた電流を出力するフォトダイオードの出力電流を検出し、該検出した出力電流に基づいて前記レーザダイオードの光量が所定値になるように制御するAPC回路を備えた半導体レーザ駆動装置において、
    前記フォトダイオードの出力電流を電圧に変換して出力する電流−電圧変換回路部と、
    入力された電圧を電流に変換して前記レーザダイオードに供給する電圧−電流変換回路部と、
    前記電流−電圧変換回路部からの出力電圧があらかじめ設定された所定値になるように該電圧−電流変換回路部の入力電圧を制御して前記レーザダイオードの光量を制御する光量制御回路部と、
    入力された第1制御信号に応じて、該光量制御回路部から出力された電圧の前記電圧−電流変回路部への出力制御を行う第1スイッチ回路部と、
    前記光量制御回路部から該第1スイッチ回路部を介して前記電圧−電流変換回路部に出力された電圧を保持するホールドコンデンサからなる電圧保持回路部と、
    入力された第2制御信号に応じて、前記電圧−電流変換回路部から出力された電流の前記レーザダイオードへの出力制御を行う第2スイッチ回路部と、
    前記第1スイッチ回路部及び第2スイッチ回路部に対して、対応する前記第1制御信号及び第2制御信号をそれぞれ出力して動作制御を行う制御回路部と、
    を備え、
    前記第1スイッチ回路部は、
    NMOSトランジスタとPMOSトランジスタが並列に接続されてなるアナログスイッチ回路と、
    該アナログスイッチ回路における各MOSトランジスタの内、少なくとも一方のMOSトランジスタのサブストレートゲートに前記ホールドコンデンサの高電圧側の電圧を印加するバッファアンプ回路と、
    を備え、
    前記第1スイッチ回路部は、サブストレートゲートに前記ホールドコンデンサの高電圧側の電圧が印加されたMOSトランジスタがスイッチングされることによって前記出力制御を行うことを特徴とする半導体レーザ駆動装置。
  2. レーザダイオードの光量をモニタして該光量に応じた電流を出力するフォトダイオードの出力電流を検出し、該検出した出力電流に基づいて前記レーザダイオードの光量が所定値になるように制御するAPC回路を備えた半導体レーザ駆動装置において、
    前記フォトダイオードの出力電流を電圧に変換して出力する電流−電圧変換回路部と、
    入力された電圧を電流に変換して前記レーザダイオードに供給する電圧−電流変換回路部と、
    前記電流−電圧変換回路部からの出力電圧があらかじめ設定された所定値になるように該電圧−電流変換回路部の入力電圧を制御して前記レーザダイオードの光量を制御する光量制御回路部と、
    入力された第1制御信号に応じて、該光量制御回路部から出力された電圧の前記電圧−電流変換回路部への出力制御を行う第1スイッチ回路部と、
    前記光量制御回路部から該第1スイッチ回路部を介して前記電圧−電流変換回路部に出力された電圧を保持するホールドコンデンサからなる電圧保持回路部と、
    入力された第2制御信号に応じて、前記電圧−電流変換回路部から出力された電流の前記レーザダイオードへの出力制御を行う第2スイッチ回路部と、
    前記第1スイッチ回路部及び第2スイッチ回路部に対して、対応する前記第1制御信号及び第2制御信号をそれぞれ出力して動作制御を行う制御回路部と、
    を備え、
    前記第1スイッチ回路部は、
    前記制御回路部によって動作制御され、サブストレートゲートにホールドコンデンサの高電圧側の電圧が印加された第1のNMOSトランジスタと、
    前記制御回路部によって動作制御され、サブストレートゲートに光量制御回路部の出力電圧が印加された第2のNMOSトランジスタと、
    前記制御回路部によってそれぞれ動作制御される第1及び第2の各PMOSトランジスタと、
    を備え、
    前記第1及び第2の各NMOSトランジスタが直列に接続された直列回路と、前記第1及び第2の各PMOSトランジスタが直列に接続された直列回路が並列に接続され、第1及び第2の各PMOSトランジスタのサブストレートゲートは、第1及び第2の各PMOSトランジスタの接続部にそれぞれ接続され、前記第1スイッチ回路部は、サブストレートゲートに前記ホールドコンデンサの高電圧側の電圧が印加されたMOSトランジスタがスイッチングされることによって前記出力制御を行うことを特徴とする半導体レーザ駆動装置。
  3. レーザダイオードの光量をモニタして該光量に応じた電流を出力するフォトダイオードの出力電流を検出し、該検出した出力電流に基づいて前記レーザダイオードの光量が所定値になるように制御するAPC回路を備えた半導体レーザ駆動装置において、
    前記フォトダイオードの出力電流を電圧に変換して出力する電流−電圧変換回路部と、
    入力された電圧を電流に変換して前記レーザダイオードに供給する電圧−電流変換回路部と、
    前記電流−電圧変換回路部からの出力電圧があらかじめ設定された所定値になるように該電圧−電流変換回路部の入力電圧を制御して前記レーザダイオードの光量を制御する光量制御回路部と、
    入力された第1制御信号に応じて、該光量制御回路部から出力された電圧の前記電圧−電流変換回路部への出力制御を行う第1スイッチ回路部と、
    前記光量制御回路部から該第1スイッチ回路部を介して前記電圧−電流変換回路部に出力された電圧を保持するホールドコンデンサからなる電圧保持回路部と、
    入力された第2制御信号に応じて、前記電圧−電流変換回路部から出力された電流の前記レーザダイオードへの出力制御を行う第2スイッチ回路部と、
    前記第1スイッチ回路部及び第2スイッチ回路部に対して、対応する前記第1制御信号及び第2制御信号をそれぞれ出力して動作制御を行う制御回路部と、
    を備え、
    前記第1スイッチ回路部は、
    前記制御回路部によって動作制御され、サブストレートゲートに所定の電圧が印加された第1のNMOSトランジスタと、
    前記制御回路部によってそれぞれ動作制御される第1及び第2の各PMOSトランジスタと、
    を備え、
    前記第1のNMOSトランジスタと、第1及び第2の各PMOSトランジスタが直列に接続された直列回路が並列に接続され、第1及び第2の各PMOSトランジスタのサブストレートゲートは、第1及び第2の各PMOSトランジスタの接続部にそれぞれ接続され、前記第1スイッチ回路部は、サブストレートゲートに前記ホールドコンデンサの高電圧側の電圧が印加されたMOSトランジスタがスイッチングされることによって前記出力制御を行うことを特徴とする半導体レーザ駆動装置。
  4. レーザダイオードの光量をモニタして該光量に応じた電流を出力するフォトダイオードの出力電流を検出し、該検出した出力電流に基づいて前記レーザダイオードの光量が所定値になるように制御するAPC回路を備えた半導体レーザ駆動装置において、
    前記フォトダイオードの出力電流を電圧に変換して出力する電流−電圧変換回路部と、
    入力された電圧を電流に変換して前記レーザダイオードに供給する電圧−電流変換回路部と、
    前記電流−電圧変換回路部からの出力電圧があらかじめ設定された所定値になるように該電圧−電流変換回路部の入力電圧を制御して前記レーザダイオードの光量を制御する光量制御回路部と、
    入力された第1制御信号に応じて、該光量制御回路部から出力された電圧の前記電圧−電流変換回路部への出力制御を行う第1スイッチ回路部と、
    前記光量制御回路部から該第1スイッチ回路部を介して前記電圧−電流変換回路部に出力された電圧を保持するホールドコンデンサからなる電圧保持回路部と、
    入力された第2制御信号に応じて、前記電圧−電流変換回路部から出力された電流の前記レーザダイオードへの出力制御を行う第2スイッチ回路部と、
    前記第1スイッチ回路部及び第2スイッチ回路部に対して、対応する前記第1制御信号及び第2制御信号をそれぞれ出力して動作制御を行う制御回路部と、
    を備え、
    前記第1スイッチ回路部は、
    前記制御回路部によって動作制御され、サブストレートゲートにホールドコンデンサの高電圧側の電圧が印加された第1のNMOSトランジスタと、
    前記制御回路部によって動作制御され、サブストレートゲートに光量制御回路部の出力電圧が印加された第2のNMOSトランジスタと、
    前記制御回路部によって動作制御され、サブストレートゲートに所定の電圧が印加された1のPMOSトランジスタと、
    を備え、
    前記第1及び第2の各MOSトランジスタが直列に接続された直列回路と、前記第1のPMOSトランジスタが並列に接続され、前記第1スイッチ回路部は、サブストレートゲートに前記ホールドコンデンサの高電圧側の電圧が印加されたMOSトランジスタがスイッチングされることによって前記出力制御を行うことを特徴とする半導体レーザ駆動装置。
  5. 前記光量制御回路部は、所定の基準電圧を生成して出力する基準電圧発生回路と、前記電流−電圧変換回路部の出力電圧と該基準電圧との電圧を比較し、該比較結果を示す電圧を出力する電圧比較回路とを備え、該電圧比較回路、前記電圧−電流変換回路部、スイッチ回路部、電圧保持回路部及び制御回路部は1つのICに集積されることを特徴とする請求項1、2、3又は4記載の半導体レーザ駆動装置。
JP2002318092A 2002-10-31 2002-10-31 半導体レーザ駆動装置 Expired - Fee Related JP4125582B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002318092A JP4125582B2 (ja) 2002-10-31 2002-10-31 半導体レーザ駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318092A JP4125582B2 (ja) 2002-10-31 2002-10-31 半導体レーザ駆動装置

Publications (2)

Publication Number Publication Date
JP2004153116A JP2004153116A (ja) 2004-05-27
JP4125582B2 true JP4125582B2 (ja) 2008-07-30

Family

ID=32461315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318092A Expired - Fee Related JP4125582B2 (ja) 2002-10-31 2002-10-31 半導体レーザ駆動装置

Country Status (1)

Country Link
JP (1) JP4125582B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8379681B2 (en) 2007-12-28 2013-02-19 Ricoh Company, Ltd. Laser diode driving device and image forming apparatus including the same
US8724082B2 (en) 2010-03-04 2014-05-13 Ricoh Company, Ltd. Semiconductor laser driver and image forming apparatus incorporating same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351945A (ja) * 2005-06-17 2006-12-28 Ricoh Co Ltd 半導体レーザ駆動回路
US7897895B2 (en) * 2006-05-01 2011-03-01 General Electric Company System and method for controlling the power level of a laser apparatus in a laser shock peening process
JP4921181B2 (ja) * 2007-01-15 2012-04-25 キヤノン株式会社 発光装置
CN106501136B (zh) * 2016-11-23 2023-10-03 西南大学 一种复合离子电极电动势的采集电路系统和采集方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8379681B2 (en) 2007-12-28 2013-02-19 Ricoh Company, Ltd. Laser diode driving device and image forming apparatus including the same
US8724082B2 (en) 2010-03-04 2014-05-13 Ricoh Company, Ltd. Semiconductor laser driver and image forming apparatus incorporating same

Also Published As

Publication number Publication date
JP2004153116A (ja) 2004-05-27

Similar Documents

Publication Publication Date Title
US6661279B2 (en) Semiconductor integrated circuit which outputs first internal power supply voltage and second internal power supply voltage lower than first internal supply power voltage
US6466595B2 (en) Laser diode driving method and circuit which provides an automatic power control capable of shortening the start-up period
US8483250B2 (en) Semiconductor laser driving device and image forming apparatus having the same
US7653101B2 (en) Excessive current input suppressing semiconductor laser light emitting circuit
US7480320B2 (en) Semiconductor laser driving device, semiconductor laser driving method, and image forming apparatus using semiconductor laser driving device
CN101025639B (zh) 带隙恒压电路
JP4570862B2 (ja) 半導体レーザ駆動回路
JP4125582B2 (ja) 半導体レーザ駆動装置
US7856039B2 (en) Semiconductor device and semiconductor laser driving device
US20060285564A1 (en) Semiconductor laser driving circuit less susceptible to noise interference
JP4108321B2 (ja) 半導体レーザ装置
JP4213945B2 (ja) 半導体レーザ駆動装置
JP4109815B2 (ja) レーザダイオード駆動装置およびレーザダイオード駆動方法
US7141936B2 (en) Driving circuit for light emitting diode
US5661739A (en) Semiconductor laser driving circuit
JP4337842B2 (ja) 光送信回路
JPH07273388A (ja) 光送信器
US7227119B2 (en) Current voltage converter circuit
JP2005268338A (ja) レーザー駆動回路
JPH088478A (ja) Ld駆動電流制限回路
JP2005063998A (ja) 発光素子駆動装置及び画像形成装置
JPH10294514A (ja) レーザ駆動装置
JPH1093181A (ja) 半導体レーザ制御装置
JP2002084031A (ja) 発光素子の駆動回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees