JP4120459B2 - ガス濃度計測装置 - Google Patents

ガス濃度計測装置 Download PDF

Info

Publication number
JP4120459B2
JP4120459B2 JP2003121447A JP2003121447A JP4120459B2 JP 4120459 B2 JP4120459 B2 JP 4120459B2 JP 2003121447 A JP2003121447 A JP 2003121447A JP 2003121447 A JP2003121447 A JP 2003121447A JP 4120459 B2 JP4120459 B2 JP 4120459B2
Authority
JP
Japan
Prior art keywords
measuring
water
water vapor
gas
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003121447A
Other languages
English (en)
Other versions
JP2004325297A (ja
Inventor
政信 酒井
修司 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003121447A priority Critical patent/JP4120459B2/ja
Publication of JP2004325297A publication Critical patent/JP2004325297A/ja
Application granted granted Critical
Publication of JP4120459B2 publication Critical patent/JP4120459B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、水蒸気を含む3成分混合ガスを被測定ガスとするガス濃度計測装置に関し、詳しくは、純水素燃料電池の還流ガス経路における窒素ガス濃度の計測に好適なガス濃度計測装置に関する。
【0002】
【従来の技術】
純水素燃料ガスを使用する燃料電池においては、水素と水蒸気と窒素の3成分混合ガス系になるアノード側の還流路における水素の供給制御・窒素の排出制御のために、水素濃度,窒素濃度を測定することが要求される。
【0003】
上記のような混合ガスにおける成分濃度を測定する装置・方法としては、従来、特許文献1〜4に開示されるものがあった。特許文献1には、平均比熱比γを一定値扱いにして、ガス温度T及び音速C(超音波伝播速度)を測定することにより、ガスの平均分子量Mを求めて、この平均分子量Mから2成分混合ガスの成分濃度を各々求める方法が開示されている。
【0004】
また、特許文献2には、特許文献1のものと同様に、音速を求める関係式を利用して2成分ガス系の組成分析を行う一方、平均比熱比γと平均分子量Mをモル分率xの関数とし、該モル分率xを求めることによって2成分混合ガスの成分濃度を各々求める方法が開示されている。
【0005】
特許文献3には、メタンガス中に混合されている窒素ガスの含有率と音速との関係指標を予め求めておき、音速の測定結果を前記関係指標に当て嵌めることで、窒素ガスの含有率を求める方法が開示されている。
【0006】
更に、特許文献4には、水素と水蒸気と窒素の3成分混合ガスを被測定ガスとする構成において、水蒸気を一定濃度にして、実質、水素と窒素の2成分混合ガスとして、水素濃度と音速の関係指標を用いる構成の開示がある。
【0007】
【特許文献1】
特開2002−257801号公報
【特許文献2】
特開平10−073574号公報
【特許文献3】
特開2000−338093号公報
【特許文献4】
特開2000−304732号公報
【0008】
【発明が解決しようとする課題】
上記のように、音速を求める関係式を用いてガス濃度を求める従来方法は、いずれも2成分混合ガスへの適用が基本であり、3成分混合ガスに対して適用する場合には、1成分を既知に設定して2成分系化する方法を採るか、或いは、ガス分子量の観点で特筆するほどに軽い水素とその他の重いガスに2分して擬似的に2成分系化して、軽い水素ガス濃度を求める便宜的な方法を採るなど、適用が限定されており、それぞれの成分濃度が未知である3成分混合ガスに対して適用した例はなかった。
【0009】
このため、超音波式ガス濃度計を前述の燃料電池アノード側還流系における水素と水蒸気と窒素の3成分混合ガスに適用して、窒素濃度を検出することは困難であり、また、水素濃度を求める際でも、他の成分である水蒸気と窒素の比率が未知であると音速の値が一義的には定まらないことから、精度良く水素濃度を求めることができないという問題があった。
【0010】
そこで、本発明は、2成分混合ガスに適用される超音波式ガス濃度計を基本にしつつ、水蒸気を含む3成分混合ガス中の特定ガス成分濃度を精度良くかつ廉価に求めることができるガス濃度計測装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
そのため、本発明に係るガス濃度計測装置では、水蒸気を含む3成分混合ガス中の音速を測定する測定部を加湿手段で加湿することで、3成分混合ガス中の水蒸気を飽和水蒸気状態にして、測定部における温度及び圧力から水蒸気濃度が演算できるようにし、残る2成分の混合比率を音速から演算する構成とすると共に、前記加湿手段が、前記測定部及び/又は測定部の上流側に設けられる水溜まり部と、該水溜まり部に水を補給する水補給手段を含んで構成され、前記水溜まり部に溜められた水分の蒸発によって前記測定部を加湿する一方、前記水補給手段が、前記音速測定手段の測定部の下流側で3成分混合ガス中の水蒸気を凝縮させる凝縮器を含んで構成され、該凝縮器で凝縮された水を前記水溜まり部に供給するようにした。
また、水蒸気を含む3成分混合ガス中の音速を測定する測定部を加湿手段で加湿することで、3成分混合ガス中の水蒸気を飽和水蒸気状態にして、測定部における温度及び圧力から水蒸気濃度が演算できるようにし、残る2成分の混合比率を音速から演算する構成とすると共に、前記加湿手段が、前記測定部及び/又は測定部の上流側に設けられる水溜まり部と、該水溜まり部の水を吸水し、かつ、前記3成分混合ガスを通過させる気化フィルタとを含んで構成され、前記水溜まり部に溜められた水分の蒸発によって前記測定部を加湿するようにした。
【0012】
【発明の効果】
上記構成によると、水蒸気を含む3成分混合ガスのうち、水蒸気分を飽和水蒸気として扱えるようにしたことで、他の特定ガス濃度を、音速を求める関係式を用いて精度良く求めることができると共に、前記凝縮器で凝縮された水を水溜まり部に供給する構成では、飽和水蒸気状態に維持する必要のない測定部の下流側から加湿用水を得て、これを測定部に供給して被測定ガスの加湿に用いるから、測定部を飽和水蒸気状態に安定して保つことができる一方、前記気化フィルタを備える構成では、水溜まり部に溜められ た水分を効率良く蒸発させることができるという効果がある。
【0013】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1は、ガス濃度計測装置の第1参考例を示す。
【0014】
図1において、測定管1は、軸を略水平(X−Y平面)として設置される。
前記測定管1の上流端には、フランジ8aが形成され、該フランジ8aに対して配管11に形成されたフランジ12を、結合器具31を用いて結合させることで、測定管1と配管11とが接続される。
【0015】
また、図示省略したが、測定管1の下流端に形成されるフランジ8bにも、同様にして配管が接続される。これにより、前記測定管1は、被測定ガスを流す配管途中に介装され、測定管1の上流のガス取入口2から、測定管1内に被測定ガスが導入され、測定管1の下流のガス排出口3から排出される。
【0016】
前記配管11は、純水素燃料ガスを使用する燃料電池においてアノード側の還流路を構成するものであり、該配管経路内を水素と水蒸気と窒素の3成分混合ガスが流れる。
【0017】
前記測定管1内には、管の軸に対して斜めに交差する方向を軸とし、流路を挟んで対向する一対の格納スペース5a,5bが形成されており、該格納スペース5a,5bには、超音波送受信器4a,4bが設置される。
【0018】
即ち、超音波送受信器4a,4bの間で送受信される超音波の伝播経路6は、3成分混合ガスの流れ(図中矢印)を斜めに横断することになる。
ここで、超音波送受信器4a,4bの間の距離をL、3成分混合ガスの流速をV、音速をC、超音波送受信器4a,4bのジオメトリをθとすると、前記超音波送受信器4a,4b間を超音波が交互に伝播する時間t1,t2は、
t1=L/(C+V・cosθ)
t2=L/(C−V・cosθ)
となり、前記伝播時間t1,t2を測定することで、音速Cは、次式から求められる。
【0019】
C=0.5L(1/t1+1/t2)
前記超音波送受信器4a,4bにおける超音波の送信を制御し、受信信号を入力する計測ユニット51が設けられており、マイクロコンピュータを内蔵する前記計測ユニット51が、前記伝播時間t1,t2の計測及び音速Cの算出を行う。
また、前記測定管1の上流側には、内径を他の部分よりも大きくした拡径部9が形成されており、測定管1を流れる加湿ガスの液分若しくは結露水が、前記拡径部9の底側(水溜まり部)に溜められるようになっている。
【0020】
ここで、フランジ8a,12及び結合器具31が放熱機能を発揮することから、係る放熱部に近い管内壁は結露し易い状況となり、結露した水分は、前記拡径部9に溜められることになる。
【0021】
尚、前記拡径部9の底側に溜められる水位10の最大は、図1(b)に点線で示すように、隣接する内径の小さい部分の下端と一致する水位となる。
前記拡径部9の底側に溜められた水分が蒸発することで、超音波送受信器4a,4bが対向配置される音波測定部が飽和水蒸気状態に維持される。
【0022】
即ち、前記水溜まり部を形成する前記拡径部9が、本参考例における加湿手段を構成する。一方、前記音波測定部の上方には、温度測定器30が設置されている。
【0023】
前述のように、音波測定部は飽和水蒸気状態に維持されるから、前記計測ユニット51は、前記温度測定器30で測定された温度に基づいて飽和水蒸気圧Pwを算出する。
【0024】
更に、前記配管11に設置され、被測定ガスの圧力を検出する圧力計52の検出信号が、前記計測ユニット51に入力され、前記計測ユニット51は、前記飽和水蒸気圧Pwと圧力とから、水蒸気分圧、即ち、水蒸気濃度を演算する。
【0025】
本参考例において、前記被測定ガスは、水素と水蒸気と窒素の3成分混合ガスであるから、上記のようにして水蒸気濃度が求まれば、混合ガスは残る成分である水素と窒素の2成分に簡素化されることになり、2成分化されれば、前記音速Cを基にして、2成分の濃度を求めることができる。
【0026】
即ち、3成分混合ガスのうちの水蒸気濃度が分かっていれば、残る2成分は水素,窒素に限定されるから、2成分の一方の濃度は同時に他方の濃度を示すことになり、水蒸気濃度毎に水素濃度(又は窒素濃度)と音速Cとの相関が決まるから、音速Cから水素濃度(窒素濃度)を求めることができる。
【0027】
但し、水蒸気濃度の算出結果を基に、音速Cから水蒸気濃度(窒素濃度)を求める方法は、数値解析を行う方法、及び、検量データを用いる方法のいずれであっても良い。
【0028】
このように、拡径部9を設けてその底側に水分を溜め、該水分の蒸発により被測定ガスを飽和水蒸気状態に維持するようにしたので、温度及び圧力から水蒸気濃度を求めることが可能となり、水蒸気濃度が求められることで、3成分混合ガスが2成分化され、音速Cから水蒸気濃度(窒素濃度)を精度良く測定することができる。
【0029】
また、濃度検出のために超音波伝播時間を計測することで、同時に流量測定も可能で、混合ガス系の特定ガス成分の質量流量を求めることができる。このようにして、水素及び/又は窒素の濃度又は質量流量を検出することにより、燃料電池への水素供給量,窒素蓄積量,水蒸気量をリアルタイムに把握することができる。
【0030】
更に、上記のように、拡径部9を設けて水分を溜め、被測定ガスを飽和水蒸気状態に維持する構成であれば、廉価に飽和水蒸気状態に加湿することができる。ところで、上記参考例では、測定管1に拡径部9を形成することで、水溜まり部を設けたが、水溜まり部は種々の方法で設けることができ、以下に、その例を示す。
【0031】
尚、以下に示す参考例は、水溜まり部を含む加湿手段が異なる参考例であり、温度・圧力に基づく水蒸気濃度の検出、及び、音速Cに基づく水蒸気濃度(窒素濃度)の測定は、上記第1の参考例と同様にして行われるものとする。
【0032】
図2は、第2の参考例を示すものである。図2に示す第2の参考例においても、測定管1の上流端に形成されたフランジ8aに対して、配管11に形成されたフランジ12を、結合器具31を用いて結合させることで、測定管1上流側に配管11が接続される。
【0033】
また、測定管1の下流端に形成されたフランジ8bに対して、配管21に形成されたフランジ22を、結合器具32を用いて結合させることで、測定管1下流側に配管21が接続される。
【0034】
ここで、測定管1の内径Dを、配管11,21の内径D1,D2よりも大きくすることで、測定管1内の底部全域が水溜まり部として機能し、該水溜まり部に溜められた水分が蒸発することで、音波測定部が飽和水蒸気状態に維持されるようにしてある。
【0035】
係る構成であれば、測定管1の内部に特別な加工を施すことなく水溜まり部を形成して、飽和水蒸気状態に維持するための加湿手段を構成させることができるから、より廉価な構成とすることができる。
【0036】
図3は、第3の参考例を示すものである。本参考例では、図2に示した第2の参考例と同様に、測定管1の上流側・下流側に配管11,21が接続されるが、測定管1及び配管11,21の内径は、全て同じに径Dに設定されている。
【0037】
第3の参考例では、同軸に配置される配管11,21の軸心に対して、測定管1の軸心を下方に偏心させることで、測定管1内の底部全域が水溜まり部として機能するようにしてある。
【0038】
係る構成の場合も、測定管1の内部に特別な加工を施すことなく水溜まり部を形成して、飽和水蒸気状態に維持するための加湿手段を構成させることができるから、廉価な構成とすることができる。
【0039】
また、上記構成によると、測定管1の上流端において、天井が段差を介して下がる構造となるから、この段差部分で飛沫水を下部に落として、測定管1内の底部に水分を積極的に溜めることができる。
【0040】
図4は、第4の参考例を示すものである。本参考例では、測定管1の底部に軸方向に沿って溝1bを形成し、該溝1bが水溜まり部として機能し、該溝1bに溜められた水分が蒸発して、被測定ガスを加湿し、飽和水蒸気状態に維持されるようにしてある。
【0041】
係る構成では、溝1bの深さ・幅をある程度自由に選択できるため、溜める水分量及び溝1bからの蒸発量の設定に自由度を与えることができる。図5は、第5の参考例を示すものである。
【0042】
本参考例では、第1の参考例と同様に、測定管1の上流側に拡径部9を設けて、その底側(水溜まり部)に水が溜められるようにするが、更に、前記拡径部9の底側の水溜まり部に対して外部から水分を補給するための水補給手段として、前記拡径部9に補給管33を接続させてある。
【0043】
即ち、前記拡径部9の底側に溜められる水分が不足するようになると、前記補給管33を介して外部から水分を補給し、水分不足によって飽和水蒸気状態に維持できなくなることを回避する。
【0044】
尚、水分の補給は定期的に行わせても良いし、水分量の不足を判断して補給させる構成であっても良い。また、水分補給は、水噴射弁を介して行わせる構成であっても良い。
【0045】
図6は、第1の実施形態を示すものである。図6の構成では、測定管1の軸を含む垂直な平面上において超音波伝播経路がV字型をなすように、格納スペース5a,5bを形成すると共に、これら格納スペース5a,5bに超音波送受信器4a,4bを設置してある。
【0046】
即ち、図6に示す場合、一方の超音波送受信器4から送信された超音波は、測定管1の内壁に反射して他方の超音波送受信器4に受信される。また、測定管1の下流側の配管21には凝縮器50を設けてある。
【0047】
前記凝縮器50には、図示省略した放熱手段が熱結合されており、該放熱手段により被測定ガスの露点温度以下の温度に冷却される。前記凝縮器50の下方の配管21底側には、凝縮水を溜めるための取水受け42が凹陥形成されており、凝縮器50で凝縮した被測定ガス中の水は、前記取水受け42に滴下して溜められる。
【0048】
また、測定管1上流側の配管11の底側には、加湿タンク41(水溜まり部)が凹陥形成されており、前記取水受け42と加湿タンク41とは配水管43により連通される。
【0049】
そして、加湿タンク41の水位10が低下すると、前記配水管43を介して加湿タンク41に水が補給されるようになっている。尚、取水受け42よりも加湿タンク41が高位にある場合には、ポンプ等の手段を用いて強制的に取水受け42から加湿タンク41への水の移送を行わせれば良い。
【0050】
上記構成によると、飽和水蒸気状態に維持する必要のない測定部の下流側から加湿用水を得て、これを測定部上流側に供給して被測定ガスの加湿に用いるから、測定部を飽和水蒸気状態に安定して保つことができる。
【0051】
図7は、第2の実施形態を示すものである。
第2の実施形態では、前記図6に示した第1の実施形態の構成に加えて、加湿タンク41側に気化フィルタ60を設けてある。
【0052】
前記気化フィルタ60は、通気性及び吸水性を有し、その下端部が加湿タンク41の水に浸され、該フィルタ60の面に対して被測定ガスが略直角方向に通過するように設置される。
【0053】
前記気化フィルタ60は、例えば高分子や中空糸或いは綿などの繊維でメッシュ状に編んで形成される。前記加湿タンク41内の水は、浸透圧又は毛細管現象によって気化フィルタ60へ浸透した後、被測定ガスとの接触によって蒸発し、被測定ガスを加湿して飽和水蒸気状態に維持する。
【0054】
これにより、加湿タンク41に溜められる水分をより効率良く蒸発させることができる。尚、上記参考例・実施形態は、純水素燃料ガスを使用する燃料電池においてアノード側の還流路において、水素と水蒸気と窒素の3成分混合ガスにおける水素濃度・窒素濃度を測定する構成としたが、燃料電池におけるガス濃度検出に限定されるものではなく、また、被測定ガスを水素と水蒸気と窒素の3成分混合ガスに限定するものではなく、水蒸気を含む3成分混合ガスであれば、同様に適用可能である。
【0055】
また、上記参考例・実施形態では、被測定ガスの流れを横断する超音波伝播経路や、測定管1の内壁に超音波を反射させるV字型の超音波伝播経路によって、被測定ガス中における音速の測定を行わせる構成としたが、図8に示すように、一対の超音波送受信器4a,4bを、被測定ガスの流れ方向に沿って対向させる構成や、図9に示すように、超音波送受信器4を1つだけ用い、対向する壁7からの反射波を自分で受信する構成で、音速を計測させることができ、音速の測定方法を限定するものでもない。
【図面の簡単な説明】
【図1】ガス濃度計測装置の第1参考例を示す図であり、(a)は平面図、(b)は側面図。
【図2】ガス濃度計測装置の第2参考例を示す図であり、(a)は平面図、(b)は側面図。
【図3】ガス濃度計測装置の第3参考例を示す図であり、(a)は平面図、(b)は側面図。
【図4】ガス濃度計測装置の第4参考例を示す図であり、(a)は平面図、(b)は側面図。
【図5】ガス濃度計測装置の第5参考例を示す平面図。
【図6】本発明の第1実施形態を示す側面図。
【図7】本発明の第2実施形態を示す側面図。
【図8】超音波伝播経路の別の例を示す側面図。
【図9】超音波伝播経路の別の例を示す側面図。
【符号の説明】
1…測定管、1b…溝、2…ガス取入口、3…ガス排出口、4a,4b…超音波送受信器、5a,5b…格納スペース、6…超音波伝播経路、8a,8b…フランジ、9…拡径部、10…水位、11…配管、12…フランジ、21…配管、22…フランジ、30…温度測定器、31,32…結合器具、41…加湿タンク、42…取水受け、43…配水管、50…凝縮器、51…計測ユニット、52…圧力計、60…気化フィルタ

Claims (3)

  1. 水蒸気を含む3成分混合ガス中における音速を測定する音速測定手段と、
    該音速測定手段における測定部を加湿する加湿手段と、
    前記測定部における温度及び圧力を測定する温度・圧力測定手段と、
    前記3成分混合ガス中の水蒸気を飽和水蒸気として前記温度及び圧力に基づいて水蒸気濃度を演算し、水蒸気以外の成分濃度を前記音速測定手段で測定される音速に基づいて演算する演算手段と、
    を含んで構成されるガス濃度計測装置であって、
    前記加湿手段が、前記音速測定手段の測定部及び/又は測定部の上流側に設けられる水溜まり部と、該水溜まり部に水を補給する水補給手段を含んで構成され、前記水溜まり部に溜められた水分の蒸発によって前記測定部を加湿する一方、
    前記水補給手段が、前記音速測定手段の測定部の下流側で3成分混合ガス中の水蒸気を凝縮させる凝縮器を含んで構成され、該凝縮器で凝縮された水を前記水溜まり部に供給することを特徴とするガス濃度計測装置。
  2. 水蒸気を含む3成分混合ガス中における音速を測定する音速測定手段と、
    該音速測定手段における測定部を加湿する加湿手段と、
    前記測定部における温度及び圧力を測定する温度・圧力測定手段と、
    前記3成分混合ガス中の水蒸気を飽和水蒸気として前記温度及び圧力に基づいて水蒸気濃度を演算し、水蒸気以外の成分濃度を前記音速測定手段で測定される音速に基づいて演算する演算手段と、
    を含んで構成されるガス濃度計測装置であって、
    前記加湿手段が、前記音速測定手段の測定部及び/又は測定部の上流側に設けられる水溜まり部と、該水溜まり部の水を吸水し、かつ、前記3成分混合ガスを通過させる気化フィルタとを含んで構成され、前記水溜まり部に溜められた水分の蒸発によって前記測定部を加湿することを特徴とするガス濃度計測装置。
  3. 前記気化フィルタが、吸水性を有する材料によりメッシュ状に形成されることを特徴とする請求項記載のガス濃度計測装置。
JP2003121447A 2003-04-25 2003-04-25 ガス濃度計測装置 Expired - Fee Related JP4120459B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121447A JP4120459B2 (ja) 2003-04-25 2003-04-25 ガス濃度計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121447A JP4120459B2 (ja) 2003-04-25 2003-04-25 ガス濃度計測装置

Publications (2)

Publication Number Publication Date
JP2004325297A JP2004325297A (ja) 2004-11-18
JP4120459B2 true JP4120459B2 (ja) 2008-07-16

Family

ID=33500017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121447A Expired - Fee Related JP4120459B2 (ja) 2003-04-25 2003-04-25 ガス濃度計測装置

Country Status (1)

Country Link
JP (1) JP4120459B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454344A (zh) * 2013-06-04 2013-12-18 武汉四方光电科技有限公司 一种同时测量沼气成份与流量的装置及测量方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006030964A1 (de) 2006-07-03 2008-01-10 Endress + Hauser Flowtec Ag Vorrichtung und Verfahren zur Bestimmung der Konzentrationen von Komponenten eines Gasgemisches
WO2010109363A2 (en) * 2009-03-23 2010-09-30 Koninklijke Philips Electronics, N.V. Gas sensing using ultrasound
JP5938597B2 (ja) * 2011-05-20 2016-06-22 独立行政法人国立高等専門学校機構 超音波流量計を用いた酸素濃度計
DE102014001165A1 (de) * 2013-12-19 2015-06-25 Endress + Hauser Flowtec Ag Vorrichtung und Verfahren zur Bestimmung der Konzentrationen von Komponenten eines Gasgemisches
RU2550306C1 (ru) * 2014-02-12 2015-05-10 Борис Юхимович Каплан Способ измерения объемной концентрации водорода
KR101925502B1 (ko) * 2017-01-12 2019-02-27 서강대학교산학협력단 다원 기체의 농도 및 압력 산출 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1110618B (it) * 1979-02-09 1985-12-23 Sub Sea Oil Services Ssos Analizzatore idoneo alla misurazione istantanea delle percentuali dei componenti di una miscela gassosa ternaria, composta di anidride carbonica, ossigeno e vapore acqueo saturo specie per l'alimentazione di un motore di esclusivo impiego sottomarino
JPH07209259A (ja) * 1994-01-14 1995-08-11 Honda Motor Co Ltd 車載用ガス密度センサの取り付け構造
JP3390575B2 (ja) * 1995-06-30 2003-03-24 財団法人地球環境産業技術研究機構 ガスセンサの加湿装置
JP2000304732A (ja) * 1999-02-15 2000-11-02 Ngk Spark Plug Co Ltd ガス濃度センサ
JP2002213781A (ja) * 2001-01-18 2002-07-31 Hitachi Hometec Ltd 加湿器
JP4612218B2 (ja) * 2001-04-16 2011-01-12 帝人株式会社 酸素濃縮装置
JP2002350410A (ja) * 2001-05-23 2002-12-04 Ngk Spark Plug Co Ltd ガス濃度センサ調整方法
JP2002373697A (ja) * 2001-06-15 2002-12-26 Toyota Motor Corp 車載用燃料電池システム
JP4130319B2 (ja) * 2001-07-10 2008-08-06 本田技研工業株式会社 燃料電池制御装置
JP2003100321A (ja) * 2001-09-25 2003-04-04 Toyota Motor Corp 燃料電池用セパレータとその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454344A (zh) * 2013-06-04 2013-12-18 武汉四方光电科技有限公司 一种同时测量沼气成份与流量的装置及测量方法
CN103454344B (zh) * 2013-06-04 2014-08-13 武汉四方光电科技有限公司 一种同时测量沼气成份与流量的装置及测量方法

Also Published As

Publication number Publication date
JP2004325297A (ja) 2004-11-18

Similar Documents

Publication Publication Date Title
RU2690099C2 (ru) Способ и измерительное устройство для определения удельных параметров для свойства газа
JP4120459B2 (ja) ガス濃度計測装置
DK2035821T3 (en) Use of a device in a plant for the production of biogas and method for ultrasound to measure the concentrations of components in a biogas
CN101203750B (zh) 对气体中声速的压力引发的温度影响的减小的方法
CN103201606B (zh) 确定源自热传输流体的热流量
US5396807A (en) Means to determine liquid flow rate with gas present
JP2003194603A (ja) 流量センサ
JPH1090033A (ja) ガス流又は液流を瞬時に識別する方法及び該方法を実施するための装置
US3741009A (en) Carburetor flow stand
WO2003093812A2 (en) Monitoring medical gas xenon concentration using ultrasonic gas analyser
CN219496320U (zh) 气体湿度发生装置
JP4207662B2 (ja) 超音波式流体センサ
JP2002306603A (ja) 酸素濃縮装置
JP2004012169A (ja) 超音波流量計測装置
JP2004144563A (ja) 超音波式流量計
CN112414818A (zh) 用于气体组分浓度检测的湿度调节装置及湿度调节方法
JP2007240159A (ja) 超音波流体計測装置
Kulankara Effect of enhancement additives on the absorption of water vapor by aqueous lithium bromide
KR101247658B1 (ko) 이상 유체의 건도측정장치 및 이를 이용한 이상 유체의 건도측정방법
RU2100799C1 (ru) Устройство для калибровки и градуировки под давлением датчиков влажности газа
JP2002276902A (ja) 二相流体の乾き度又は湿り度制御装置
Kuroda et al. Calculation of Hydrogen Consumption for Fuel Cell Vehicles by Exhaust Gas Formulation
CN218917196U (zh) 基于光谱技术的管道内气体检测装置
d’Agostino et al. Separation and surface nuclei effects in a cavitation susceptibility meter
JP2002277449A (ja) 二相流体の乾き度又は湿り度測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080319

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees