JP4107791B2 - 半導体装置の製造において使われるプラズマによって誘起される電荷帯電程度を判別する方法およびこれに用いられる判別装置 - Google Patents

半導体装置の製造において使われるプラズマによって誘起される電荷帯電程度を判別する方法およびこれに用いられる判別装置 Download PDF

Info

Publication number
JP4107791B2
JP4107791B2 JP2000246501A JP2000246501A JP4107791B2 JP 4107791 B2 JP4107791 B2 JP 4107791B2 JP 2000246501 A JP2000246501 A JP 2000246501A JP 2000246501 A JP2000246501 A JP 2000246501A JP 4107791 B2 JP4107791 B2 JP 4107791B2
Authority
JP
Japan
Prior art keywords
graph
scans
degree
contact hole
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000246501A
Other languages
English (en)
Other versions
JP2001093892A (ja
Inventor
智 洙 金
▲けい▼ 燮 申
玩 哉 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2001093892A publication Critical patent/JP2001093892A/ja
Application granted granted Critical
Publication of JP4107791B2 publication Critical patent/JP4107791B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/266Measurement of magnetic- or electric fields in the object; Lorentzmicroscopy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/004Charge control of objects or beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/25Tubes for localised analysis using electron or ion beams
    • H01J2237/2505Tubes for localised analysis using electron or ion beams characterised by their application
    • H01J2237/2594Measuring electric fields or potentials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置の製造に係り、特にプラズマ工程に従うプラズマによって誘起される帯電程度を判別する方法、これを用いたコンタクトホールをオープンするか否かを判別する方法、プラズマによって誘起されるゲート絶縁膜の劣化程度を判別する方法およびこれに用いられる判別装置に関する。
【0002】
【従来の技術】
半導体装置を製造する工程中には、物質膜のエッチングのためにプラズマを使用する工程が使われている。たとえば、絶縁膜をエッチングして下部の物質膜を露出するコンタクトホールを形成する工程で、プラズマをエッチング媒介体として用いて絶縁膜をパタニングしている。この時、絶縁膜パターン内にはプラズマの電気的特性によって電荷分離が発生する。このような電荷分離によって、絶縁膜パターンのコンタクトホール内部、すなわち、コンタクトホールの底にはイオンなどが積もって電荷が帯電される。
【0003】
このような電荷の帯電は、半導体装置にいろいろな不良を発生させうる。たとえば、ゲート電極を露出するコンタクトホールを形成する時、プラズマ工程により発生する電荷の帯電は、ゲート電極下部のゲート絶縁膜を劣化させうる。
【0004】
図1は、プラズマ工程でコンタクトホール45を形成する時帯電された電荷の分布を概略的に示す。
【0005】
プラズマ工程によるゲート絶縁膜20の劣化をより詳細に説明すれば、プラズマ工程でコンタクトホール45を形成する時コンタクトホール45の底部および上側部に電荷分離が発生する。すなわち、シース(sheath)で加速されたプラズマ中のイオンは、ほとんど直進性を有することができ、コンタクトホール45の底部に積もりうる(参照符号50を参照)。反対に、プラズマ中の電子は角運動分布がほとんど等方性を有するので、コンタクトホール45の上側部に積もる(参照符号55を参照)。これはコンタクトホール45の底部とコンタクトホール45の上側部との間に各々異なる極性を有する電荷が帯電されたことを意味する。
【0006】
このような電荷帯電の現象は、前記のようなコンタクトホール45を形成する工程だけではなく、トレンチ、またはラインおよびスペース構造を形成するプラズマを用いる蝕刻工程でも発生する。
【0007】
このような電荷分離によってコンタクトホール45またはトレンチ、ラインおよびスペース構造の底部にはイオン50が積もり、これによりゲート電極30に正の電圧が印加された効果と同じ効果をゲート絶縁膜20に起こす。このようなゲート絶縁膜20上の帯電は、プラズマ工程が持続される間ずっと持続され、電荷分離によって帯電された電荷は、プラズマ工程が終わった以後にも残存してゲート絶縁膜20に正の電圧が印加され続く効果を持続する。このようなゲート絶縁膜20上の帯電、すなわち、正の電圧が持続的に印加される効果によって、ゲート絶縁膜20は損傷されて劣化される恐れがある。
【0008】
このようにプラズマ工程を遂行する時、プラズマによる帯電現象は避けられない。また、このような帯電現象によって前記のゲート絶縁膜20のような物質膜の劣化または損傷を避けられない。
【0009】
一方、半導体装置の高集積化は、デザインルールの減少を伴ってコンタクトホール45の縦横比の増加を起こす。これにより、コンタクトホール45の底の線幅減少が起こされ、絶縁膜パターン40が相対的に高くなる。これはプラズマによりパターン40に誘起される帯電程度を深化する。したがって、プラズマによる帯電に係るゲート絶縁膜20の劣化が深化される。
【0010】
このようなプラズマによる損傷または劣化を最小化したり乗り越えたりするためには、プラズマ工程による電荷帯電程度を測定する必要がある。プラズマによる電荷帯電程度を測定する方法としては、PDM(Plasma Damage Monitoring)が常用化されている。このようなPDMはウェーハ内の静電容量の変化を用いてプラズマによる損傷を測定している。しかし、このようなPDMは空間分解能および補正に制限があって、主に平坦な物質膜を対象として計測するのに用いられている。したがって、パターンが形成されたウェーハを対象として電荷帯電程度を測定するには限界がある。
【0011】
【発明が解決しようとする課題】
本発明が解決しようとする技術的課題は、パターンが形成されたウェーハを対象としてプラズマによって誘起される電荷帯電または電荷帯電程度を判別できる装置を提供することにある。
【0012】
本発明が解決しようとする他の技術的課題は、パターンが形成されたウェーハを対象としてプラズマによって誘起される電荷帯電または電荷帯電程度を判別できる方法を提供することにある。
【0013】
本発明が解決しようとする他の技術的課題は、コンタクトホールをオープンするか否かを判別する方法を提供することにある。
【0014】
本発明が解決しようとする他の技術的課題は、下部にゲート絶縁膜を有するゲート電極を露出するコンタクトホールを有する絶縁膜パターンをプラズマ工程で形成した後、プラズマ工程によって前記絶縁膜パターンに誘起される電荷帯電によって前記ゲート絶縁膜が劣化される程度を判別できる方法を提供することにある。
【0015】
【課題を解決するための手段】
前記の技術的課題を達成するための本発明の一観点は、プラズマ工程が遂行されたウェーハと、前記ウェーハの表面の一定領域を繰り返しスキャンする1次電子のビームを発生する電子ビーム発生部と、前記ウェーハの表面上に一定間隔離隔して導入され、前記1次電子ビームと前記ウェーハの表面との反応で発生する、前記ウェーハの表面外部に放出される2次電子を収集する検出部と、前記検出部で収集される前記2次電子の量の変化から、前記プラズマ工程で使われたプラズマによって前記ウェーハの表面に誘起される電荷帯電の程度を判別する判別部とを含む半導体装置の製造に使われるプラズマによって誘起される電荷帯電程度を判別する装置を提供する。前記判別部は、前記1次電子のスキャン数に対して前記検出部から収集される2次電子の量の変化を前記2次電子の量に比例する輝度のグラフで示した試片グラフを備え、前記試片グラフの波形をあらかじめ設定された基準グラフの波形と比べることによって、前記電荷帯電の程度を判別する。また、前記判別部は、前記試片グラフの最大ピーク点に対応するスキャン数を、前記基準グラフの最大ピーク点に対応するスキャン数と比べ、前記試片グラフの前記スキャン数と前記基準グラフの前記スキャン数との大きさの比較から前記電荷帯電の程度を定量化して判別しうる。また、前記判別部は、前記試片グラフの最大ピーク値を、前記基準グラフの最大ピーク値と比べ、前記試片グラフの最大ピーク値と前記基準グラフの最大ピーク値との小ささの比較から前記電荷帯電の程度を定量化して判別しうる。また、前記電子ビーム発生部は、前記1次電子のビームのスキャンをパルス形態で繰り返して前記スキャン数が順次に数えられるようにしうる。
【0016】
前記他の技術的課題を達成するための本発明の一観点は、プラズマ工程が遂行されたウェーハを導入する。前記ウェーハの表面の一定領域に1次電子のビームを繰り返しスキャンして前記1次電子ビームと前記ウェーハの表面との反応から発生して前記ウェーハの表面外部に放出される2次電子を収集する。前記収集される前記2次電子の量の変化から前記プラズマ工程で使われたプラズマによって前記ウェーハの表面に誘起される電荷帯電の程度を判別する。
【0017】
前記判別する段階は次のように遂行されうる。すなわち、前記収集される2次電子の量の変化を前記1次電子のスキャン数に対して示した試片グラフを備える。前記1次電子によって誘起された電荷帯電を除去した、標準状態で検出される2次電子の量の変化を前記1次電子のスキャン数に対して示した基準グラフを備える。前記基準グラフの波形に対して前記試片グラフの波形を比較することによって前記電荷帯電の程度を判別する。また、前記1次電子のビームを繰り返してスキャンすることは、前記1次電子のビームのスキャンをパルス形態で繰り返して前記スキャン数が順次に数えられるようにして行いうる。
【0018】
または前記判別する段階は、前記試片グラフの最大ピーク点に対応するスキャン数を前記基準グラフの最大ピーク点に対応するスキャン数と比べ、前記試片グラフの前記スキャン数と前記基準グラフの前記スキャン数との大きさの比較から前記電荷帯電の程度を定量化する。
【0019】
前記判別する段階は、前記試片グラフの最大ピーク値を前記基準グラフの最大ピーク値と比べて、前記試片グラフの最大ピーク値が前記基準グラフの最大ピーク値に比べて小さな程度から前記電荷帯電の程度を定量化する。
【0020】
前記他の技術的課題を達成するための本発明の一観点は、プラズマ工程によって下部の導電膜を露出するコンタクトホールが形成された絶縁膜パターンを表面上に有するウェーハを導入する。前記コンタクトホールの内部を1次電子のビームを繰り返しスキャンして前記1次電子ビームと前記コンタクトホールの内部の表面との反応で発生する、前記コンタクトホールの外部に放出される2次電子を収集する。前記収集される前記2次電子の量の変化から、前記コンタクトホールが前記下部の導電膜の表面を露出するかどうかを判別する段階とを含む。
【0021】
前記判別する段階は次のように遂行される。まず、前記収集される2次電子の量の変化を前記1次電子のスキャン数に対して示した試片グラフを備える。前記コンタクトホールがオープンされた標準状態で検出される2次電子の量の変化を前記1次電子のスキャン数に対して示した基準グラフを備える。前記基準グラフの波形に対して前記試片グラフの波形を比較することによって前記コンタクトホールをオープンするか否かを判別する。前記下部の導電膜は、前記ゲート絶縁膜を介在するゲート電極でありうる。また、前記1次電子のビームを繰り返してスキャンすることは、前記1次電子のビームのスキャンをパルス形態で繰り返して前記スキャン数が順次に数えられるようにして行いうる。
【0022】
この時、前記判別する段階は、前記試片グラフの波形が前記基準グラフの波形と重なる時前記コンタクトホールがオープンされたと判別し、前記試片グラフの波形が前記基準グラフの波形から分離される時前記コンタクトホールがオープンされないと判別する。
【0023】
または、前記判別する段階は、約200以下のスキャン数の範囲内で前記試片グラフの波形が前記基準グラフの波形の上側に分離される時、前記コンタクトホールがオープンされないと判別できる。
【0024】
前記他の技術的課題を達成するための本発明の一観点は、プラズマ工程が遂行された物質膜の下部に形成されたゲート絶縁膜を有するウェーハを導入する。前記物質膜の一定領域に1次電子のビームを繰り返しスキャンして前記1次電子ビームと前記物質膜の表面との反応で発生する、前記物質膜の外部に放出される2次電子を収集する。前記収集される前記2次電子の量の変化から前記プラズマ工程によって前記ゲート絶縁膜が劣化した程度を判別する。
【0025】
前記判別する段階は次のように遂行される。前記収集される2次電子の量の変化を前記1次電子のスキャン数に対して示した試片グラフを備える。前記ゲート絶縁膜が劣化しない標準状態で検出される2次電子の量の変化を前記1次電子のスキャン数に対して示した基準グラフを備える。前記基準グラフの波形と前記試片グラフの波形とを比較することによって前記ゲート絶縁膜の劣化程度を判別する。また、前記1次電子のビームを繰り返してスキャンすることは、前記1次電子のビームのスキャンをパルス形態で繰り返して前記スキャン数が順次に数えられるようにして行いうる。
【0026】
この時、前記判別する段階は、前記試片グラフの最大ピーク点に対応するスキャン数を前記基準グラフの最大ピーク点に対応するスキャン数と比べて、前記試片グラフの前記スキャン数と前記基準グラフの前記スキャン数との大きさの比較から前記ゲート絶縁膜の劣化程度を定量化する。
【0027】
または、前記判別する段階は、前記試片グラフの最大ピーク値を前記基準グラフの最大ピーク値と比較して、前記試片グラフの最大ピーク値と前記基準グラフの最大ピーク値との小ささの比較から前記ゲート絶縁膜の劣化程度を定量化する。
【0028】
または、前記判別する段階は、前記試片グラフのピーク値が実質的に0に減るスキャン数を前記基準グラフのピーク値が実質的に0に減るスキャン数と比較して、前記試片グラフの前記スキャン数との小ささの比較から前記ゲート絶縁膜の劣化程度を定量化する。
【0029】
【発明の実施の形態】
以下、添付した図面を参照して本発明の実施の形態を詳細に説明する。しかし、本発明の実施の形態は色々な他の形態に変形でき、本発明の範囲が後述する実施の形態によって限定されるとは解釈されない。本発明の実施の形態は、当業界で平均の知識を有する者に本発明をより完全に説明するために提供される。したがって、図面での要素の形状は、より明確な説明を強調するために誇張されたものであって、図面上で同じ符号で示された要素は同じ要素を意味する。
【0030】
本発明の実施の形態は、プラズマによる電荷帯電の程度を測定するために、1次電子のビームのスキャンによって発生する2次電子の量が帯電の程度によって変化する現象を主に用いる。より詳細に説明すれば、ウェーハの表面をスキャンする1次電子はウェーハの表面またはウェーハの表面に形成された物質膜の表面と反応して2次電子を発生させる。発生した2次電子はウェーハの表面から放出されるのでこれを検出して1次電子のビームのスキャン数に従って図示できる。
【0031】
この時、2次電子は電荷帯電されたイオンによって形成されるポテンシャルウェルに捕獲されることができ、実際2次電子の検出される量は帯電されたイオンの量に従って変化する。検出される2次電子の量から帯電されたイオンの量を測定できるので、結局、プラズマにより誘起される帯電程度を測定できる。このような論理に基づいて本発明を実施の形態を通じてより詳細に説明する。
【0032】
<第1の実施の形態>
図2は、本発明の第1の実施の形態に係るプラズマによって誘起される電荷帯電程度を測定する装置の原理を概略的に示し、図3は、図2の装置によって測定される2次電子の量の変化を1次電子のビームのスキャン数に従う輝度で示す図面である。
【0033】
図2を参照すれば、本発明の第1実施の形態に係る測定装置は、1次電子210を発生させてウェーハ110の表面をスキャンする電子ビーム発生部310および放出される2次電子250を収集して検出する検出部400を具備する。
【0034】
1次電子210は、ウェーハ110上の一定領域を反復的にスキャンしながらウェーハ110上に照射される。すなわち、スキャンが反復的に同じ領域になされて、結局、1次電子210がスキャンパルス形態で照射される。これにより、スキャン数が順次に数えられる。
【0035】
この時、電子ビーム発生部310は、示されなかったが、電子銃の光源と光源から発生した電子ビームを集束する集束レンズ、電子ビームがウェーハ表面をスキャンするように電子ビーム方向を変える走査コイルよりなる。この時、前記走査コイルに印加される電流の制御によって電子ビームが同じ領域のウェーハ110上にスキャンされる。電子ビームは焦点を調節する時に用いられる対物レンズと対物レンズに付着される対物レンズ絞りよりなされる対物レンズ部350によって適当なビーム大きさで制御される。
【0036】
ウェーハ110上に照射される1次電子210のビームは、ウェーハ110上に形成された絶縁膜パターン140よりなるコンタクトホール145内をスキャンする。この時、入射される1次電子210は、コンタクトホール145の底をなすゲート電極130のような物質膜と反応して2次電子250を発生させる。
【0037】
一方、ウェーハ110上に形成された絶縁膜パターン140は、プラズマ工程、たとえば、プラズマをエッチング媒介体として用いるエッチング工程によってパタニングされたものである。このようなプラズマ工程は、工程の結果物にプラズマによって電荷帯電を誘起させることができる。
【0038】
詳細に説明すれば、図1で説明したようにコンタクトホール45の上側部には電子55が積もり、コンタクトホール45の底部、たとえば、ゲート電極(図1の30、図2の130)にはイオン(図1の50、図2の151)が積もる電荷分離現象が発生する。このような電荷分離現象によって、実際コンタクトホール(図2の145)の底部をなすゲート電極130のような物質膜の表面はイオン151により電荷帯電される。
【0039】
このように帯電されたイオン151は周りに電気場を形成する。このような電気場によって形成されるポテンシャルウェルに1次電子210の照射によって発生する2次電子250の一部は捕獲されうる。また、発生する2次電子250は、積もったイオン151と電荷再結合をなすことができる。したがって、1次電子210の照射によってコンタクトホール145内で発生する2次電子250の全体量中相当部分は、前記のポテンシャルウェルによる捕獲および電荷再結合によってコンタクトホール145の外部に放出されられない。
【0040】
検出部400は、コンタクトホール145の外部に放出された2次電子250を収集する役割をする。したがって、検出部400によって収集される2次電子250の量は全体発生量に比べて相対的に減って少量になる。これは捕獲または電荷再結合により消耗される2次電子250の量によって発生し、このように消耗された2次電子250の量は、コンタクトホール145の底部に積もったイオン151の量に対して比例する。検出部400としては、PMT(Photo Multiply Tube)、ファラデーカップ(Faraday Cup)が挙げられる。
【0041】
したがって、積もったイオン151が多ければ2次電子250が捕獲されたり電荷再結合されたりする確率が増加するので、検出部400で収集されて検出される2次電子250の量は少なくなる。反対に、イオン151が少なく積もっていれば、検出される2次電子250の量が相対的に多くなる。したがって、検出される2次電子250の量を相互比較したり、またはプラズマによって誘起される電荷帯電現象を補償した結果物から検出される2次電子250の量の変化を比較したりすることによって、プラズマ工程で使われるプラズマによって結果物に誘起された電荷帯電程度を判別したりまたは相対的な値で定量化したりできる。
【0042】
詳細に説明すれば、検出部400から収集された2次電子250の量は1次電子210のスキャン数に従う輝度で示されうる。たとえば、1次電子210のビームのスキャン数は電子ビーム発生部310から得られる。そして、検出部400では収集された2次電子250の量は輝度または電流値に転換して判別部500に表示できる。また、このような収集された2次電子250の量に関する数値は判別部500で前記のスキャン数に同調する値で表示されうる。
【0043】
たとえば、判別部500ではX軸にスキャン数を示し、Y軸に輝度を示したグラフ形態で前記の2次電子250の量の変化をスキャン数に対して表示できる。すなわち、図3に示したように検出される2次電子250の量の変化はスキャン数に従う輝度のグラフで示される。このように示されるグラフの波形はある一定のスキャン数に対して最大ピーク点を示す傾向を有する。
【0044】
このような最大ピーク点または全体グラフの波形または形状に基づいてプラズマ工程により誘起される電荷帯電程度が把握できる。たとえば、最大ピーク点に対応するスキャン数はイオン151の帯電された程度に関連するので、このようなスキャン数を比較することによって電荷帯電された程度が把握できる。
【0045】
すなわち、イオン151の帯電された程度が激しければ、最大ピーク点に到達するためにはより多くのスキャンが必要である。したがって、最大ピーク点に対応するスキャン数は相対的に増加する。または、このように得られる試片グラフの波形と標準状態、たとえば、帯電された電荷が補償された、すなわち、電荷帯電が除去された試料から得られる基準グラフの波形を比較することによって、電荷帯電を判別したりこのような電荷帯電を相対的な値で定量化したりできる。
【0046】
<第2の実施の形態>
このような原理、すなわち、プラズマによって誘起される帯電されたイオンに影響されて検出される2次電子250の量が変化する原理に基づいて電荷帯電を判別し、より発展した電荷帯電程度を定量化して測定する方法を詳細に説明する。
【0047】
図4にプラズマによって誘起される電荷帯電程度を判別する方法に係る工程フローを概略的に示す。
【0048】
具体的に、プラズマ工程が遂行されたウェーハに、図2を参照して説明したような1次電子のビームをスキャンパルス形態で繰り返して照射し、放出される2次電子を検出できる装置に導入する(4010)。たとえば、図2に示したようにゲート絶縁膜120を介在するゲート電極130を覆う絶縁膜をプラズマをエッチング媒介体としてエッチングして、ゲート電極130を露出するコンタクトホール145が形成されたウェーハ110を導入する。またはラインおよびスペース構造またはトレンチなどが形成されたウェーハを導入する。
【0049】
その後に、ウェーハ110の表面の一定領域に1次電子210のビームを繰り返してスキャンする方法(パルススキャン)でスキャンする。たとえば、前記のようなコンタクトホール145の内部を繰り返してスキャンする。この時、スキャンされる1次電子210とウェーハ110の表面、たとえば、コンタクトホール145によって露出されるゲート電極130の表面が反応して2次電子250が発生して放出され、検出部400で収集される(4020)。
【0050】
その後に、収集された2次電子250の量の変化を1次電子210のスキャン数に対応させて示す。たとえば、図3のようにスキャン数に従う2次電子250の量の変化が2次電子250による輝度などの数値で表示される試片グラフを備える。
【0051】
このような試片グラフを比較または分析するために、別の段階で基準グラフを備える(4040)。このような基準グラフは標準状態の時、前記のような1次電子の反復的なスキャンによって発生する2次電子を収集して示すグラフを利用できる。この時、標準状態は電荷帯電のない状態、たとえば、帯電された電荷が補償されたりまたは帯電された電荷が除去された状態を意味する。
【0052】
このような基準グラフに対して、試片グラフを比較することによって電荷帯電を判別したりまたは電荷帯電程度を定量化したりする(4050)。たとえば、試片グラフの最大ピーク点に対応するスキャン数または2次電子の量の変化をあらかじめ設定された基準グラフのスキャン数と比較することによって、誘起された電荷帯電程度を判別したり定量化したりする。または、グラフ間の波形比較によって相互間の相対的な帯電程度を把握できる。つまり、検出部400が二次電子を収集し、これを電圧信号に転換させる。判別部500は電子ビーム発生部310を通してスキャンパルスに対する輝度情報を検出部400から収集する。それから、判別部500は試片の測定された輝度、およびピークに対するスキャン数を設定された(または記憶された)基準の輝度およびピークに対するスキャン数についてそれぞれ比較する。ここで、数値的積分または微分方法がピーク値を決定するのに使用されうる。
【0053】
前述したような実施の形態は次のような実験結果から支持されうる。
【0054】
<実験例1>
まず、プラズマ工程によって形成されたコンタクトホールを有する構造を例として、モンテカルロ模写を通じて1次電子および2次電子の軌跡を求めた。このような模写には図5に示したようなパターン断面構造を例として考慮した。
【0055】
図5は、モンテカルロ模写に使われたパターンの断面構造を概略的に示す。
【0056】
図5を参照すれば、D0ドメインの領域を基本としたし、左側反復領域のD−1、D−2、…などと右側反復領域のD1、D2、…などは表面のポテンシャルを計算するのに用いられた。このようなパターン構造でコンタクトホールの臨界線幅(CD;Critical Dimension)はプラズマバルクおよびシース領域の大きさに比べてかなり小さいので、構造の形態自体がプラズマおよびシースにおよぶ影響を無視できる。そして、コンタクトホールの底部は導体、たとえば多結晶質シリコン膜であって、コンタクトホールの形成はRFスパッタエッチングで酸化シリコン膜などの絶縁膜をエッチングしてなされた。
【0057】
そして、プラズマによる帯電で発生する電子のエネルギー分布(EAED;Electron Angular Energy Distribution)およびイオンのエネルギー分布を以前にモンテカルロ模写を通じて計算して入力値で入力した。たとえば、プラズマ密度を約1E+18(m-3)、イオン重量を40原子単位(a.u.)にし、イオン温度を0.025evにし、合わせてイオンと中性子との衝突はないという過程下で線形変化シースモデルを使用して計算した。
【0058】
このような条件による電荷分離または帯電影響下で、コンタクトホール内に1次電子をスキャンした。1次電子は空間的にコサイン分布を有すると仮定し、コンタクトホールの上部に散布された1次電子は運動式(equationofmotion)に従ってコンタクトホールの底部に到達する。このような1次電子の衝突によって2次電子が2次電子放出係数だけ発生してコンタクトホールの側壁に積もったりコンタクトホール内から抜け出たりする。このような電子個々の軌跡を模写した結果を次の図6に示した。
【0059】
図6は、コンタクトホール内での1次電子および2次電子の軌跡を模写した結果を示す。
【0060】
具体的に、一回スキャンされた1次電子の軌跡は図6に点線で示される。この時、一回のスキャンで照射される1次電子は200個と設定した。これによる2次電子の軌跡は図6に実線で示される。
【0061】
図6を参照すれば、1次電子は約数百evのエネルギーを有して軌跡の変化をほとんど示さない。反面、2次電子は約50ev以下の低いエネルギーを有するので、コンタクトホールの側壁に積もる2次電子の帯電によって影響されてねじり運動をする。すなわち、2次電子の側壁帯電によってとても狭い窓の電子だけがコンタクトホール内を抜け出ることができる。残りの2次電子は再び反射されてコンタクトホールの底部に積もる。
【0062】
コンタクトホールを抜け出る2次電子の数はコンタクトホール内部の環境条件の変動、特に電荷の分布の変動に従って変化できる。このような1次電子のビームのスキャン数に従う2次電子の数の変化を次の図7および図8に各々概略的に示した。
【0063】
図7は、コンタクトホールの底に電荷が積もった場合でのスキャン数に従う輝度を模写によって計算した結果であって、図8は、コンタクトホールの底に電荷が積もらない場合でのスキャン数に従う輝度を模写によって計算した結果である。
【0064】
具体的に、150nmのコンタクトホールの底線幅と50nmの絶縁膜パターンよりなされる側壁深度を設定し、模写を通じて1次電子のスキャン数に従って検出される2次電子の量を輝度で示した。電荷が積もった場合、すなわち、帯電された場合と帯電されない場合の波形が異なることが分かる。特に、図7および図8に各々点線で表示された最大ピーク点に対応するスキャン数が異なることが分かる。帯電された場合の図7の場合には、ピーク点に対応するスキャン数、すなわち、遅延スキャン数が約200内外である。反対に、帯電されない場合の図8の場合に遅延スキャン数が約10内外であることが分かる。すなわち、遅延スキャン数に対して帯電された場合と帯電されない場合が大きい差を示す。このような関係を用いれば、コンタクトホール内に帯電された程度を遅延スキャン数で判別できる。
【0065】
実験例1で模写した結果に基づいて実際試片に対してスキャン数に対する輝度の変化を測定した。
【0066】
<実験例2>
ゲート電極を露出するコンタクトホールの中心にフォーカスを合わせた以後に1次電子を照射した。1次電子のビームを繰り返してスキャンしながら検出部を通じて検出された2次電子の量を輝度で示した。
【0067】
図9は、1次電子のビームのスキャン数に従う検出される輝度を概略的に示す。
【0068】
図9で参照符号910の場合は、ゲート電極を露出するコンタクトホールをアルゴン(Ar)プラズマを用いて形成した以後に輝度を検出した場合である。この場合Arプラズマによってコンタクトホール内では電荷分離が発生してコンタクトホール内に電荷帯電が発生する。
【0069】
参照符号930は、参照符号910の場合に対して露出されるゲート電極の酸化のために酸素プラズマ処理をさらに実施した場合である。この場合、ゲート電極は多結晶質シリコンおよびタングステンシリサイドの二重膜でなされるので、ゲート電極上に酸化シリコンの絶縁膜が形成される。すなわち、コンタクトホールがオープンされない場合に該当する。
【0070】
一方、参照符号930に対して参照符号910の全般的な輝度が減少したことと提示されるのは、下部のタングステンシリサイド膜がコンタクトホールを形成する段階で消耗されるのに起因する。このような消耗によってコンタクトホールの縦横比が増加するので全般的な輝度が減少して示される。
【0071】
参照符号950は、Arプラズマでコンタクトホールを形成した後SC1などを用いた湿式洗浄を実施した場合である。この場合、コンタクトホール内に帯電された電荷に対して、湿式洗浄に用いられる洗浄液を媒介として電荷補償(または除去)がなされる。したがって、参照符号950は、電荷補償がなされた場合であって電荷帯電がない場合の標準状態の基準グラフを実質的に代表する。
【0072】
図9を参照すれば、前記三つの場合でのグラフの波形が各々異なることが分かる。これより波形の比較を通じて電荷帯電の可否を判断できることが分かる。
【0073】
たとえば、電荷帯電がない場合の参照符号950の波形は、点線で表示された地点の最大ピーク点でスキャン数、すなわち、遅延スキャン数が電荷帯電がある場合の参照符号910の波形に比べて小さい。これは、各場合の遅延スキャン数の比較を通じて電荷帯電するか否かを判断できることを意味する。また、遅延スキャン数の大きさ程度を比較することによって相対的な電荷帯電程度、たとえば、電荷帯電がない場合に比べて電荷帯電がある程度発生したかを判別できることが分かる。すなわち、電荷帯電程度を相対的な量で定量化できる。
【0074】
合わせて、最大ピーク点での輝度、すなわち、最大ピーク値を比べると、電荷帯電がある場合の参照符号910の場合(試片グラフに該当する)が電荷帯電がない場合の参照符号950の場合(基準グラフに該当する)に比べて非常に低いことが分かる。したがって、最大ピーク点での輝度を比較することによって、相対的な電荷帯電程度または電荷帯電するか否かを判別したり電荷帯電程度を相対的な値で定量化したりできる。
【0075】
一方、このようなプラズマによって電荷帯電程度を判別または判定する原理をコンタクトホールをオープンするか否かを工程中にインラインで判別する方法に適用できる。
【0076】
図9を再び参照すれば、コンタクトホールがオープンされない場合の参照符号930の波形は、全般的に輝度が、電荷帯電がなくコンタクトホールがオープンされた場合の参照符号950の波形に比べて高い数値を示すことが分かる。すなわち、試片グラフに該当する参照符号930の波形が、基準グラフに該当する参照符号950の波形から上側方向に分離されることが分かる。
【0077】
これは、コンタクトホールがオープンされない場合には絶縁膜がコンタクトホールの底をなす点に大きく起因する。詳細に説明すれば、コンタクトホールの底をなす絶縁膜上には2次電子が積もることができる。これにより、底に積もった2次電子は他の2次電子と反発作用をして他の2次電子を底から押し出す効果を発生させる。これにより、コンタクトホールの底に積もった2次電子は他の2次電子がコンタクトホール内から抜け出るのに役に立つ。したがって、検出される2次電子の量が増加し参照符号930の波形に示されるように相対的に高い輝度大きさを示す。
【0078】
反対に、コンタクトホールがオープンされて下部のゲート電極を露出する場合を示す参照符号950の場合に、コンタクトホールの底は導電体のゲート電極の表面よりなる。したがって、ゲート電極の表面に到達する2次電子はゲート電極を通じて伝導されて均等に広がるので、ゲート電極の表面に積もって存在できなくなる。したがって、コンタクトホールの底、すなわち、ゲート電極の表面に到達する2次電子は前記のような他の2次電子のコンタクトホール内部からの脱出を助けられなくなる。
【0079】
したがって、前記の二つの場合で得られた各々のグラフを重ねて、波形が分離されるかどうかを確認することによって、波形が分離される場合はコンタクトホールがオープンされなかったと判定できる。
【0080】
このような論旨でコンタクトホール内部を1次電子で反復的にスキャンしながら放出される2次電子を検出して、1次電子のビームのスキャン数に従う放出される2次電子の量の変化を比較することによって、コンタクトホールをオープンするか否かを判断できる。
【0081】
たとえば、次の図10に示した工程フローのようにプラズマ工程によるコンタクトホール形成工程を遂行した以後に、インライン方法または別の計測によってコンタクトホールをオープンするか否かを判別できる。
【0082】
<第3の実施の形態>
図10は、コンタクトホールをオープンするか否かを判別する方法の工程フローを概略的に示す。
【0083】
具体的に、ウェーハ(図2の110)の表面上にコンタクトホール(図2の145)がプラズマを用いたエッチング方法で形成されたウェーハ110を導入する(1010)。この時、コンタクトホール145はゲート電極(図2の130)のような導電膜を露出させる。以後に、コンタクトホール145内部に1次電子(図2の210)のビームを照射して反復的にスキャンする(1020)。コンタクトホール145内部に入射される1次電子210のビームは、コンタクトホール145の底と反応して2次電子(図2の250)を発生させる。
【0084】
発生された2次電子250はコンタクトホール145の外部に放出される。このような放出される2次電子250を検出部(図2の400)に収集する(1030)。収集される2次電子250は、先に図9を参照して説明したようにゲート電極(図2の130)などの下部物質膜の露出可否に従って、コンタクトホール145内を脱出して放出される程度が変わる。
【0085】
したがって、これと共に検出される2次電子250の量の変化に従う輝度程度を1次電子210のスキャン数に対して示して試片のグラフを備える(1030)。このような試片グラフを標準状態、たとえば、コンタクトホールがオープンされた状態で得られる基準グラフ1040と比較してコンタクトホール145のオープン可否を判別する(1050)。
【0086】
すなわち、判断の基準の基準グラフは、コンタクトホール145が完全にオープンされた状態で得られるスキャン数対輝度の波形であるので、試片グラフをこれと重ねて試片グラフの波形が基準グラフから分離されるかどうかを確認できる。波形の分離が発生する場合、コンタクトホール145がオープンされなかったと判断できる。また、波形が実質的に重なる時、コンタクトホール145がオープンされたと判別できる。
【0087】
図9を参照して再び説明すれば、試片グラフに該当する参照符号930の波形が、基準グラフに該当する参照符号950の波形から分離されることが分かる。これより参照符号930の波形の場合、コンタクトホール145がオープンされない状態で得られたと判別できる。
【0088】
または、一定のスキャン数に対する輝度の差を比較することによってオープン可否を判断できる。たとえば、スキャン数が約200以下で、図9のようにコンタクトホールがオープンされた状態の参照符号950(基準グラフ)は、コンタクトホールがオープンされない場合の参照符号930(試片グラフ)に比べて前記のスキャン数範囲内でより高い輝度を示す。すなわち、分離される試片グラフ930の波形が基準グラフ950の波形に比べて上側に位置する。
【0089】
したがって、前記のスキャン数の範囲内で試片グラフのピーク値が基準グラフのピーク値に比べて高い値を示せば、コンタクトホールがオープンされないと判断できる。一方、用いられる基準スキャン数は半導体装置の構造的な特性によって違うので半導体装置ごとに基準を別に定めるべきである。
【0090】
このようなコンタクトホールをオープンするか否かを判別する方法は、工程中に適用されてインラインでコンタクトホールをオープンするか否かを判断するのに使われる。このようなコンタクトホールをオープンするか否かの判断は、既存のインラインSEM(in line Scanning electron Microscope)を用いた視覚的な手段としてのコンタクトホールをオープンするか否か判断に比べてより定量化した側面を有する。これは、視覚的な手段に比べてより正確にコンタクトホールをオープンするか否かを区分できる点に起因する。したがって、後続工程での配線連結不良などを確実に防止できる。
【0091】
一方、再び図9を参照すれば、示した波形は全般的にスキャン数が増加するにつれて輝度が急激に減少することが分かる。たとえば、約200程度以上のスキャン数で輝度が急激に減少し始まっている。これはゲート電極の下部に介在されるゲート絶縁膜の劣化または絶縁破壊で解釈できる。これに対しては次の図11および図12を参照してより詳細に説明する。
【0092】
図11は、ゲート絶縁膜に流れる漏れ電流を測定した結果を概略的に示す。
【0093】
具体的に、ゲート絶縁膜に負の電圧を印加する時、ゲート絶縁膜に流れる漏れ電流を測定した。この時、漏れ電流の測定はSILC(Stress Induced Leakage Current)を測定する方法でなされた。ゲート絶縁膜の厚さが25Å、30Åおよび50Åの時の場合に対して測定した。図11で、高いストレス下で、すなわち、大きい値の負の電圧が加えられる時絶縁破壊によって電流が漏れることが分かる。
【0094】
負の電圧を加えることは、本発明の実施の形態での1次電子のビームをゲート電極に照射する時、電子らが帯電されることと同じ効果を意味する。したがって、1次電子のスキャン数が増加するほど高い値の負の電圧が加わる場合と同一に解釈できる。したがって、スキャン数が増加するにつれて輝度が減少することは、前記のようなゲート絶縁膜の電流漏れまたは絶縁破壊によることと類推できる。
【0095】
一方、ゲート絶縁膜の漏れ程度に影響を及ぼす要素中の一つとしてゲート絶縁膜の劣化が挙げられる。ゲート絶縁膜が劣化した場合には、ゲート絶縁膜が劣化しない場合に比べてより低い電圧下で電流漏れが発生することは明らかである。したがって、ゲート絶縁膜が劣化した場合とゲート絶縁膜が劣化しない場合でのスキャン数および輝度の相関関係は相互差がありうる。
【0096】
したがって、このようなスキャン数と2次電子の量、すなわち、輝度との関連関係を用いてゲート絶縁膜の劣化程度を判別したり定量化したりできる。このためにゲート絶縁膜が劣化した場合とゲート絶縁膜が劣化しない場合でのスキャン数に対する輝度を測定比較した。
【0097】
図12は、ゲート絶縁膜の程度差を有する試片に対するスキャン数に対する輝度のグラフを概略的に示す。
【0098】
具体的に、ゲート絶縁膜の劣化程度が異なる二つの試片を備えた。たとえば、図9で説明したようなコンタクトホールをプラズマを用いて形成する工程を遂行してゲート電極が露出される試片を備えられる。
【0099】
このように備えられた試片に対して1次電子を反復的にスキャンしながら放出される2次電子を検出した。その結果、参照符号1210の波形と参照符号1250の波形と同じ形態の相異なる波形が得られた。参照符号1210の波形では、参照符号1250の波形に比べて小さなスキャン数で輝度が実質的に0に減衰した。一方、参照符号1250の波形の場合には、輝度が実質的に0になる時対応するスキャン数が相対的に大きい値であった。また、参照符号1210の波形は急激な輝度の減少を示す。一方、図11を参照して説明したように輝度が減少することは電流漏れに大きく起因している。また、輝度が実際に0ということは、絶縁破壊を意味し電流漏れが大きく発生することを意味する。
【0100】
したがって、参照符号1210の波形を示す試片は、参照符号1250の波形を示す試片に比べて電流漏れまたは絶縁破壊程度が激しいと判断できる。これは二つの試片が同じ構造、たとえば、ゲート絶縁膜およびゲート電極の積層構造を有することを考慮する時、参照符号1210の波形を示す試片の場合、ゲート絶縁膜が前段階のコンタクトホールを形成するのに用いられたプラズマ工程によって劣化したことを意味する。そして、このようなゲート絶縁膜の劣化程度は、参照符号1250の波形を示す試片の場合に比べて非常に深刻であることが分かる。
【0101】
このような論旨からプラズマ工程などを前段階工程で伴う時、ゲート絶縁膜が前記プラズマによって劣化する程度を、1次電子を反復的にスキャンして2次電子を検出することによって測定できる。たとえば、参照符号1210の波形の場合輝度が実質的に0になるスキャン数は約200である。一方、参照符号1250の場合輝度が実質的に0になるスキャン数は約400である。したがって、参照符号1250の場合が参照符号1210に比べてゲート絶縁膜の劣化の観点でより適していると判断できる。
【0102】
<第4の実施の形態>
前記のような論旨で1次電子のビームを繰り返しスキャンして放出される2次電子を検出することによって、プラズマなどによるゲート絶縁膜の劣化程度を判別できることが分かる。たとえば、次の図13に示した工程フローを用いてゲート絶縁膜の劣化程度をインライン方法で工程途中にも判別できる。
【0103】
図13はゲート絶縁膜の劣化程度を判別する方法の工程フローを概略的に示す。
【0104】
具体的に、プラズマ工程が遂行された物質膜の下部にゲート絶縁膜を有するウェーハを導入する(1310)。たとえば、ゲート絶縁膜(図2の120)上にゲート電極(図2の130)を露出するコンタクトホールを有する絶縁膜パターン(図2の140)が形成されたウェーハを導入する。
【0105】
その後に、物質膜の一定領域、たとえば、コンタクトホール145の内部に1次電子(図2の210)のビームを照射して反復的にスキャンし、放出される2次電子(図2の250)を検出部(図2の400)で収集する(1320)。収集される2次電子250は、先に図12を参照して説明したようにゲート絶縁膜120のプラズマによる劣化程度に従って放出されて検出される程度が変わる。したがって、収集される2次電子250の量の変化をスキャン数に従って表示する試片グラフを備える(1330)。
【0106】
前記のプラズマ工程によってコンタクトホール内に電荷が帯電されれば、ゲート絶縁膜120はこのような電荷帯電によって過度な量の電圧が印加されたような影響を受ける。したがって、ゲート絶縁膜120は前記電圧の持続的な影響下で劣化する可能性がある。このような劣化程度は一般的に工程進行中には把握し難い。
【0107】
しかし、本発明の実施の形態では、図12に示したように検出される2次電子の量の変化を輝度などでスキャン数に対して示した後、基準グラフと比べることによってゲート絶縁膜130の劣化程度が測定できる。したがって、ゲート絶縁膜130が劣化しない標準状態で収集される2次電子のグラフを基準グラフとして備える(1340)。
【0108】
その後に、基準グラフと試片グラフを比較してゲート絶縁膜130の劣化程度を判別する(1350)。たとえば、図12の参照符号1250の波形は劣化しないゲート絶縁膜に対する波形、すなわち、基準グラフの波形で把握でき、参照符号1210の波形は劣化したゲート絶縁膜に対する波形、すなわち、試片グラフで把握できる。基準グラフ1250に対する試片グラフ1210の波形が全然違うので、試片グラフ1250は劣化が発生した状態を意味する。
【0109】
このような全体波形を標準状態の波形と比較する方法以外に、輝度の最大ピーク点のスキャン数を各々比較する方法でゲート絶縁膜の劣化程度が測定できる。図12の参照符号1210の波形はスキャン数が約10以下でピーク点が示されるが、参照符号1250の波形では約100程度のスキャン数でピーク点が示される。したがって、約100回程度のスキャンを通じて最大ピーク点に対応するスキャン数を比較することによって定量的に劣化程度を判断できる。すなわち、100回以下で最大ピーク点が示される試片グラフは、ゲート絶縁膜の劣化が発生した場合であると判別できる。または一定のスキャン数に対する輝度の大きさを比較することによってゲート絶縁膜の劣化程度を判別できる。
【0110】
または、輝度が実質的に0になる地点のスキャン数を比較することによって劣化程度を比較できる。たとえば、図12の参照符号1210の波形は約200のスキャン数で実質的に0の輝度が示されるが、参照符号1250の波形は約400のスキャン数で実質的に0の輝度が示される。したがって、参照符号1250の波形を良好な状態のグラフ、すなわち、基準グラフに該当するので約400以下、特に約200程度のスキャン数で試片グラフの波形の実質的な輝度が0に減少すれば、ゲート絶縁膜の劣化が深刻であると判断できる。
【0111】
この時、用いられるスキャン数の範囲または標準状態は半導体装置の構造的な特性によって違うので、半導体装置ごとに基準を別に定めるべきである。
【0112】
一方、ゲート絶縁膜の劣化または絶縁破壊が始まる時の1次電子のビームのスキャン数は次のように予測できる。たとえば、1次電子のビームのスキャン中の電子の電流密度をJe(A/cm2)とすれば、コンタクトホールの底に電荷帯電される電子の総量Q=Je・π・a2・t1・N・(1−c)で計算できる。この時、aはコンタクトホールの底の半径で、cは2次電子放出係数である。Nはスキャン数である。t1はスキャンされる間の時間である。
【0113】
特定の酸化膜(たとえば、シリコン二酸化膜)の劣化が始まる電気場は約16MV/cmで、これは電荷密度で5.44×10-6C/cm2である。Jeが約35A/c
m2で与えられ、t1が約10nsecで与えられるならばcは約0.9であるので、劣化し始まるスキャン数は約155程度である。したがって、図12に示した結果にこれを適用すれば、参照符号1210は約100以下で劣化が始まっているので、ゲート絶縁膜が劣化し過ぎてその質が非常に悪くなったことが分かる。
【0114】
また、図12および図9で輝度のピーク点に対応するスキャン数、すなわち、試片と基準の輝度ピーク間の一次電子の総遅延スキャン時間τを知れば前記式から電荷帯電されたイオンの量を計算できる。したがって、試片の輝度ピークにおけるスキャン数をN2とし基準の輝度ピークのスキャン数をN1とすれば、τは、N2−N1になる。すなわち、Je・π・a2・τ・(1−c)で電荷帯電されたイオンの量が計算される。この時、t1はτを測定できるほどに十分に小さいべきで、スキャンする間の時間が、t2は2次電子を測定するのに充分であるべきで、また帯電された電子が放電されるに十分に短い時間であるべきである。
【0115】
このような方法で電荷帯電されたイオンの量またはゲート絶縁膜が劣化する程度を定量化できる。
【0116】
【発明の効果】
今まで詳述した本発明によれば、1次電子のビームを反復的にスキャンし、放出される2次電子の量の変化を測定することによってプラズマ工程によってパターンに誘起される電荷帯電程度を判別できる。また、これを用いてコンタクトホールをオープンするか否かを判別できる。なお、プラズマ工程によってゲート絶縁膜が損傷されて劣化する程度を判別できる。これにより、プラズマ工程以後の後続工程に対する信頼性を確保できる。
【0117】
以上、本発明を具体的な実施の形態を通じて詳細に説明したが、本発明はこれに限られず、本発明の技術的思想内で当分野の通常の知識を有する者によりその変形や改良が可能である。
【図面の簡単な説明】
【図1】プラズマ工程でコンタクトホールを形成する時帯電された電荷の分布を説明するために概略的に示す図面である。
【図2】本発明の第1の実施の形態に係るプラズマによって誘起される電荷帯電程度を測定する装置を説明するために概略的に示す図面である。
【図3】図2の装置によって測定される2次電子の量の変化を1次電子のビームのスキャン数に従う輝度を示す図面である。
【図4】本発明の第2の実施の形態に係るプラズマによって誘起される電荷帯電程度を判別する方法を説明するために概略的に示す工程フローチャートである。
【図5】モンテカルロ模写に使われたパターンの断面構造を概略的に示す図面である。
【図6】コンタクトホール内での1次電子および2次電子の軌跡を模写した結果を概略的に示す図面である。
【図7】コンタクトホールの底にプラズマ工程で発生する電荷が積もった場合でのスキャン数に従う輝度の変化を模写によって計算した結果を示す図面である。
【図8】コンタクトホールの底に電荷が積もらない場合でのスキャン数に従う輝度の変化を模写によって計算した結果を示す図面である。
【図9】1次電子のビームのスキャン数に従う検出される輝度の変化を概略的に示す図面である。
【図10】本発明の第3の実施の形態に係るコンタクトホールをオープンするか否かを判別する方法を説明するために概略的に示す工程フローチャートである。
【図11】ゲート絶縁膜に発生する漏れ電流を説明するために漏れ電流を測定した結果を概略的に示す図面である。
【図12】ゲート絶縁膜の劣化程度において差のある試片に対するスキャン数に対する輝度の変化を概略的に示す図面である。
【図13】本発明の第4の実施の形態に係るゲート絶縁膜の劣化程度を判別する方法の工程フローを概略的に示す。
【符号の説明】
110 ウェーハ
120 ゲート絶縁膜
130 ゲート電極
140 絶縁膜パターン
145 コンタクトホール
151 イオン
210 1次電子
250 2次電子
310 電子ビーム発生部
350 対物レンズ部
400 検出部
500 判別部

Claims (18)

  1. プラズマ工程が遂行されたウェーハと、
    前記ウェーハの表面の一定領域を繰り返しスキャンする1次電子のビームを発生する電子ビーム発生部と、
    前記ウェーハの表面上に一定間隔離隔して導入され、前記1次電子ビームと前記ウェーハの表面との反応で発生する、前記ウェーハの表面外部に放出される2次電子を収集する検出部と、
    前記検出部で収集される前記2次電子の量の変化から、前記プラズマ工程で使われたプラズマによって前記ウェーハの表面に誘起される電荷帯電の程度を判別する判別部とを含み
    前記判別部は、前記1次電子のスキャン数に対して前記検出部から収集される2次電子の量の変化を前記2次電子の量に比例する輝度のグラフで示した試片グラフを備え、前記試片グラフの波形をあらかじめ設定された基準グラフの波形と比べることによって、前記電荷帯電の程度を判別することを特徴とする半導体装置の製造に使われるプラズマによって誘起される電荷帯電程度を判別する装置。
  2. 前記電子ビーム発生部は、
    前記1次電子のビームのスキャンをパルス形態で繰り返して前記スキャン数が順次に数えられるようにすることを特徴とする請求項1に記載の半導体装置の製造に使われるプラズマによって誘起される電荷帯電程度を判別する装置。
  3. 前記判別部は、
    前記試片グラフの最大ピーク点に対応するスキャン数を、前記基準グラフの最大ピーク点に対応するスキャン数と比べ、前記試片グラフの前記スキャン数と前記基準グラフの前記スキャン数との大きさの比較から前記電荷帯電の程度を定量化して判別することを特徴とする請求項1に記載の半導体装置の製造に使われるプラズマによって誘起される電荷帯電程度を判別する装置。
  4. 前記判別部は、
    前記試片グラフの最大ピーク値を、前記基準グラフの最大ピーク値と比べ、前記試片グラフの最大ピーク値と前記基準グラフの最大ピーク値との小ささの比較から前記電荷帯電の程度を定量化して判別することを特徴とする請求項1に記載の半導体装置の製造に使われるプラズマによって誘起される電荷帯電程度を判別する装置。
  5. プラズマ工程が遂行されたウェーハを導入する段階と、
    前記ウェーハの表面の一定領域に1次電子のビームを繰り返しスキャンして前記1次電子ビームと前記ウェーハの表面との反応で発生する、前記ウェーハの表面外部に放出される2次電子を収集する段階と、
    前記収集される前記2次電子の量の変化から、前記プラズマ工程で使われたプラズマによって前記ウェーハの表面に誘起される電荷帯電の程度を判別する段階とを含み、
    前記判別する段階は、前記収集される2次電子の量の変化を前記1次電子のスキャン数に対して示した試片グラフを備える段階と、前記1次電子によって誘起された電荷帯電を除去した、標準状態で検出される2次電子の量の変化を前記1次電子のスキャン数に対して示した基準グラフを備える段階と、前記基準グラフの波形に対して前記試片グラフの波形を比較することによって前記電荷帯電の程度を判別する段階とを含むことを特徴とする半導体装置の製造に使われるプラズマによって誘起される電荷帯電程度を判別する方法。
  6. 前記1次電子のビームを繰り返してスキャンする段階は、
    前記1次電子のビームのスキャンをパルス形態で繰り返して前記スキャン数が順次に数えられるようにすることを特徴とする請求項に記載の半導体装置の製造に使われるプラズマによって誘起される電荷帯電程度を判別する方法。
  7. 前記判別する段階は、
    前記試片グラフの最大ピーク点に対応するスキャン数を、前記基準グラフの最大ピーク点に対応するスキャン数と比べ、前記試片グラフの前記スキャン数と前記基準グラフの前記スキャン数との大きさの比較から前記電荷帯電の程度を定量化することを特徴とする請求項に記載の半導体装置の製造に使われるプラズマによって誘起される電荷帯電程度を判別する方法。
  8. 前記判別する段階は、
    前記試片グラフの最大ピーク値を、前記基準グラフの最大ピーク値と比べ、前記試片グラフの最大ピーク値と前記基準グラフの最大ピーク値との小ささの比較から前記電荷帯電の程度を定量化することを特徴とする請求項に記載の半導体装置の製造に使われるプラズマによって誘起される電荷帯電程度を判別する方法。
  9. プラズマ工程によって下部の導電膜を露出するコンタクトホールが形成された絶縁膜パターンを表面上に有するウェーハを導入する段階と、
    前記コンタクトホールの内部を1次電子のビームを繰り返しスキャンして前記1次電子ビームと前記コンタクトホールの内部の表面との反応で発生する、前記コンタクトホールの外部に放出される2次電子を収集する段階と、
    前記収集される前記2次電子の量の変化から、前記コンタクトホールが前記下部の導電膜の表面を露出するかどうかを判別する段階とを含み、
    前記判別する段階は、前記収集される2次電子の量の変化を前記1次電子のスキャン数に対して示した試片グラフを備える段階と、前記コンタクトホールがオープンされた標準状態で検出される2次電子の量の変化を前記1次電子のスキャン数に対して示した基準グラフを備える段階と、前記基準グラフの波形に対して前記試片グラフの波形を比較することによって前記コンタクトホールをオープンするか否かを判別する段階とを含むことを特徴とするプラズマを使用して形成された半導体装置のコンタクトホールをオープンするか否かを判別する方法。
  10. 前記下部の導電膜は、
    前記ゲート絶縁膜を介在するゲート電極であることを特徴とする請求項9に記載のプラズマを使用して形成された半導体装置のコンタクトホールをオープンするか否かを判別する方法。
  11. 前記1次電子のビームを繰り返してスキャンする段階は、
    前記1次電子のビームのスキャンをパルス形態で繰り返して前記スキャン数が順次に数えられるようにすることを特徴とする請求項9に記載のプラズマを使用して形成された半導体装置のコンタクトホールをオープンするか否かを判別する方法。
  12. 前記判別する段階は、
    前記試片グラフの波形が前記基準グラフの波形と重なる時前記コンタクトホールがオープンされたと判別し、
    前記試片グラフの波形が前記基準グラフの波形から分離される時前記コンタクトホールがオープンされないと判別することを特徴とする請求項に記載のプラズマを使用して形成された半導体装置のコンタクトホールをオープンするか否かを判別する方法。
  13. 前記判別する段階は、
    約200以下のスキャン数の範囲内で前記試片グラフの波形が前記基準グラフの波形の上側に分離される時、前記コンタクトホールがオープンされないと判別することを特徴とする請求項に記載のプラズマを使用して形成された半導体装置のコンタクトホールをオープンするか否かを判別する方法。
  14. プラズマ工程が遂行された物質膜の下部に形成されたゲート絶縁膜を有するウェーハを導入する段階と、
    前記物質膜の一定領域に1次電子のビームを繰り返しスキャンして前記1次電子ビームと前記物質膜の表面との反応で発生する、前記物質膜の外部に放出される2次電子を収集する段階と、
    前記収集される前記2次電子の量の変化から前記プラズマ工程によって前記ゲート絶縁膜が劣化した程度を判別する段階とを含み、
    前記判別する段階は、前記収集される2次電子の量の変化を前記1次電子のスキャン数に対して示した試片グラフを備える段階と、前記ゲート絶縁膜が劣化しない標準状態で検出される2次電子の量の変化を前記1次電子のスキャン数に対して示した基準グラフを備 える段階と、前記基準グラフの波形と前記試片グラフの波形とを比較することによって前記ゲート絶縁膜の劣化程度を判別する段階とを含むことを特徴とするプラズマ工程以後に半導体装置のゲート絶縁膜の劣化程度を判別する方法。
  15. 前記1次電子のビームを繰り返してスキャンする段階は、
    前記1次電子のビームのスキャンをパルス形態で繰り返して前記スキャン数が順次に数えられるようにすることを特徴とする請求項1に記載のプラズマ工程以後に半導体装置のゲート絶縁膜の劣化程度を判別する方法。
  16. 前記判別する段階は、
    前記試片グラフの最大ピーク点に対応するスキャン数を、前記基準グラフの最大ピーク点に対応するスキャン数と比べて、前記試片グラフの前記スキャン数と前記基準グラフの前記スキャン数との大きさの比較から前記ゲート絶縁膜の劣化程度を定量化することを特徴とする請求項1に記載のプラズマ工程以後に半導体装置のゲート絶縁膜の劣化程度を判別する方法。
  17. 前記判別する段階は、
    前記試片グラフの最大ピーク値を、前記基準グラフの最大ピーク値と比較し前記試片グラフの最大ピーク値と前記基準グラフの最大ピーク値との小ささの比較から前記ゲート絶縁膜の劣化程度を定量化することを特徴とする請求項1に記載のプラズマ工程以後に半導体装置のゲート絶縁膜の劣化程度を判別する方法。
  18. 前記判別する段階は、
    前記試片グラフのピーク値が実質的に0に減るスキャン数を、前記基準グラフのピーク値が実質的に0に減るスキャン数と比較して、前記試片グラフの前記スキャン数との小ささの比較から前記ゲート絶縁膜の劣化程度を定量化することを特徴とする請求項1に記載のプラズマ工程以後に半導体装置のゲート絶縁膜の劣化程度を判別する方法。
JP2000246501A 1999-08-17 2000-08-15 半導体装置の製造において使われるプラズマによって誘起される電荷帯電程度を判別する方法およびこれに用いられる判別装置 Expired - Fee Related JP4107791B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019990033858A KR100327337B1 (ko) 1999-08-17 1999-08-17 반도체 장치 제조에서 사용되는 플라즈마에 의해서 유기되는전하 대전 정도를 판별하는 방법 및 이에 이용되는 판별장치
KR99P33858 1999-08-17

Publications (2)

Publication Number Publication Date
JP2001093892A JP2001093892A (ja) 2001-04-06
JP4107791B2 true JP4107791B2 (ja) 2008-06-25

Family

ID=19607477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000246501A Expired - Fee Related JP4107791B2 (ja) 1999-08-17 2000-08-15 半導体装置の製造において使われるプラズマによって誘起される電荷帯電程度を判別する方法およびこれに用いられる判別装置

Country Status (3)

Country Link
US (2) US6657192B1 (ja)
JP (1) JP4107791B2 (ja)
KR (1) KR100327337B1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100327337B1 (ko) * 1999-08-17 2002-03-06 윤종용 반도체 장치 제조에서 사용되는 플라즈마에 의해서 유기되는전하 대전 정도를 판별하는 방법 및 이에 이용되는 판별장치
CA2316610A1 (en) * 2000-08-21 2002-02-21 Finn Uredenhagen System and method for interpolating a target image from a source image
JP3823073B2 (ja) * 2002-06-21 2006-09-20 株式会社日立ハイテクノロジーズ 電子線を用いた検査方法及び検査装置
KR100490837B1 (ko) * 2002-10-10 2005-05-19 동부아남반도체 주식회사 반도체 칩의 goi 데미지를 검출하기 위한 장치
JP4608272B2 (ja) * 2004-09-17 2011-01-12 株式会社リコー 耐絶縁性測定方法および装置および潜像担持体評価方法
US7239148B2 (en) 2003-12-04 2007-07-03 Ricoh Company, Ltd. Method and device for measuring surface potential distribution
JP4144035B2 (ja) * 2003-12-24 2008-09-03 株式会社島津製作所 Tftアレイ検査装置
EP2056128A3 (en) * 2007-11-05 2017-08-23 Shell Internationale Research Maatschappij B.V. Apparatus, system and method for receiving a vertical component of a signal and for determining a resistivity of a region below a geologic surface for hydrocarbon exploration
JP5428450B2 (ja) * 2009-03-30 2014-02-26 ソニー株式会社 イオン照射ダメージの予測方法とイオン照射ダメージのシミュレータ、およびイオン照射装置とイオン照射方法
KR20140028701A (ko) * 2012-08-30 2014-03-10 삼성전자주식회사 반도체 소자의 검사 방법 및 이에 사용되는 반도체 검사 장비
US9805910B1 (en) * 2015-03-14 2017-10-31 Kla-Tencor Corporation Automated SEM nanoprobe tool
JP7285728B2 (ja) 2019-08-07 2023-06-02 株式会社日立ハイテク 電気特性を導出するシステム及び非一時的コンピューター可読媒体
WO2024029060A1 (ja) * 2022-08-05 2024-02-08 株式会社日立ハイテク 試料測定装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193352A (ja) * 1986-02-19 1987-08-25 Toshiba Corp デ−タ伝送装置
US4745360A (en) * 1986-05-01 1988-05-17 North American Phillips Corporation, Signetics Division Electron-beam probe system utilizing test device having interdigitated conductive pattern and associated method of using the test device
JPH0191431A (ja) * 1987-04-16 1989-04-11 Sumitomo Eaton Noba Kk イオン打ち込み装置におけるウエハ帯電量検知装置
US4902631A (en) * 1988-10-28 1990-02-20 At&T Bell Laboratories Monitoring the fabrication of semiconductor devices by photon induced electron emission
GB2282480B (en) * 1990-07-05 1995-07-26 Olivetti Systems & Networks S Integrated circuit structure analysis
US5594245A (en) * 1990-10-12 1997-01-14 Hitachi, Ltd. Scanning electron microscope and method for dimension measuring by using the same
JPH0513037A (ja) * 1991-07-02 1993-01-22 Fujitsu Ltd 荷電粒子ビーム装置及びその制御方法
EP0604011A1 (en) * 1992-12-23 1994-06-29 Advanced Micro Devices, Inc. Ion implantation apparatus and method
US5572038A (en) * 1993-05-07 1996-11-05 Varian Associates, Inc. Charge monitor for high potential pulse current dose measurement apparatus and method
US5523694A (en) * 1994-04-08 1996-06-04 Cole, Jr.; Edward I. Integrated circuit failure analysis by low-energy charge-induced voltage alteration
JPH08111397A (ja) * 1994-10-07 1996-04-30 Hitachi Ltd プラズマ処理方法およびその装置
US5817533A (en) * 1996-07-29 1998-10-06 Fujitsu Limited High-yield methods of fabricating large substrate capacitors
JP4657394B2 (ja) * 1997-01-13 2011-03-23 シュルンベルジェ テクノロジーズ, インコーポレイテッド ウエハにおける欠陥を検知する方法及び装置
US6066849A (en) * 1997-01-16 2000-05-23 Kla Tencor Scanning electron beam microscope
JP3356056B2 (ja) * 1998-05-15 2002-12-09 日本電気株式会社 配線不良検出回路、配線不良検出用半導体ウェハ及びこれらを用いた配線不良検出方法
US6232787B1 (en) * 1999-01-08 2001-05-15 Schlumberger Technologies, Inc. Microstructure defect detection
KR100327337B1 (ko) * 1999-08-17 2002-03-06 윤종용 반도체 장치 제조에서 사용되는 플라즈마에 의해서 유기되는전하 대전 정도를 판별하는 방법 및 이에 이용되는 판별장치
JP4015352B2 (ja) * 2000-02-22 2007-11-28 株式会社日立製作所 荷電粒子ビームを用いた検査方法

Also Published As

Publication number Publication date
US6657192B1 (en) 2003-12-02
KR20010018057A (ko) 2001-03-05
KR100327337B1 (ko) 2002-03-06
US7145140B2 (en) 2006-12-05
JP2001093892A (ja) 2001-04-06
US20040061052A1 (en) 2004-04-01

Similar Documents

Publication Publication Date Title
JP4107791B2 (ja) 半導体装置の製造において使われるプラズマによって誘起される電荷帯電程度を判別する方法およびこれに用いられる判別装置
JP3973372B2 (ja) 荷電粒子線を用いた基板検査装置および基板検査方法
JP4914180B2 (ja) 時定数測定機能を搭載した走査型電子顕微鏡
JP4093662B2 (ja) 走査形電子顕微鏡
Saito et al. Study of ADI (after develop inspection) using electron beam
US7602197B2 (en) High current electron beam inspection
KR101013346B1 (ko) 컨택 홀 제조의 모니터링
KR102443807B1 (ko) 하전 입자선 장치
JP2006040991A (ja) 半導体装置の評価方法、および製造方法
JP2006054094A (ja) 走査型電子顕微鏡
US20140253137A1 (en) Test pattern design for semiconductor devices and method of utilizing thereof
WO2011058950A1 (ja) 電子線を用いた試料観察方法及び電子顕微鏡
JP2008252085A (ja) 荷電粒子線を用いた基板検査装置および基板検査方法
US6952105B2 (en) Inspection method and apparatus for circuit pattern of resist material
US8530866B2 (en) Pattern observation method
Miyoshi et al. Negative charging-up contrast formation of multilayered structures with a nonpenetrating electron beam in scanning-electron microscope
Hartig et al. Material contrast based inline metrology: process verification and control using back scattered electron imaging on CD-SEM
JP2009246012A (ja) 帯電電位測定方法、及び荷電粒子顕微鏡
JP4658783B2 (ja) 試料像形成方法
US7205539B1 (en) Sample charging control in charged-particle systems
JP4147233B2 (ja) 電子線装置
JP2002270655A (ja) 半導体装置の製造方法
Bai et al. Transient measurement of resist charging during electron beam exposure
JP4128691B2 (ja) 合わせずれ評価方法及び合わせずれ評価装置
Matsui et al. Evaluation of damage induced by electron-beam irradiation to MOS gate pattern and method for damage-free inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees