JP4100812B2 - GaAs single crystal and manufacturing method thereof - Google Patents

GaAs single crystal and manufacturing method thereof Download PDF

Info

Publication number
JP4100812B2
JP4100812B2 JP09852899A JP9852899A JP4100812B2 JP 4100812 B2 JP4100812 B2 JP 4100812B2 JP 09852899 A JP09852899 A JP 09852899A JP 9852899 A JP9852899 A JP 9852899A JP 4100812 B2 JP4100812 B2 JP 4100812B2
Authority
JP
Japan
Prior art keywords
gas
pure
gaas
single crystal
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09852899A
Other languages
Japanese (ja)
Other versions
JP2000290098A (en
Inventor
隆一 鳥羽
統夫 伊藤
長仁 成田
剛 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP09852899A priority Critical patent/JP4100812B2/en
Publication of JP2000290098A publication Critical patent/JP2000290098A/en
Application granted granted Critical
Publication of JP4100812B2 publication Critical patent/JP4100812B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は,GaAs単結晶の製造方法に係り,さらに詳細には,液体封止引上法(以下,LEC法という)によるGaAs単結晶の製造方法に関するものである。
【0002】
【従来の技術】
近年において,LSI,レーザ,LEDなどの各種半導体デバイスが高密度化,高性能化したことにより,各種電子部品,電気製品の高機能化,小型化が実現している。特に,シリコンに比較して5倍程度動作速度が速く,消費電力も少なく,雑音に強いという特長を有するGaAs基板が,FET,IC等の高速,高周波素子などに多用されるようになってきた。このGaAs基板は,チョクラルスキー法,水平ブリッジマン法,垂直ブリッジマン法,VGF法などの方法で成長した単結晶インゴットをスライス加工し種々の加工処理を経て作製される。かかるGaAs単結晶の一般的な製造方法であるLEC法(Liquid Encapusulated Czocralski法)を図2に基づいて説明する。
【0003】
図2は,GaAs単結晶を製造するための結晶成長装置の概略構成を示した断面図である。GaAs単結晶成長装置は,圧力容器1,ヒータ3,下軸4,上軸8などから構成されている。そして,圧力容器1の内部には原料Ga5,原料As6,液体封止剤(B)7を収容するためのPBN製ルツボ2が設置され,その周囲にはヒータ3が設けられている。下軸4は,圧力容器1内に下側から挿入され,その先端には,PBN製ルツボ2が固定されている。この下軸4は,回転昇降機構(図示せず)が接続されているので,PBN製ルツボ2を一定の速度で回転しながら所定の速度で昇降することができる。
【0004】
一方,上軸8は,圧力容器1の上側から下軸4と同軸になるように挿入され,その下端にはGaAs単結晶から所定方位に切り出した種結晶9が取り付けられている。この上軸8は,回転昇降機構(図示せず)が接続されているので,種結晶9を一定速度で回転しながら所定速度で昇降することができる。
【0005】
また,圧力容器1の上側部にはガス導入管10が接続され,下側部にはガス排出管11が接続されている。ガス導入配管10は,純Arガス導入配管12もしくは純Nガス導入配管13のいずれかの単独配管となっている。また,ガス排出管11にはバルブ16が取付られており,バルブ16を開けて炉内ガスを外部に放出し,容器内圧力の調整をおこなう。
【0006】
以下に,この結晶成長装置を用いて,GaAs単結晶の成長方法について説明する。
【0007】
まず,PBN製ルツボ2内に,原料Ga5,原料As6,液体封止材(B)7を入れ,圧力容器1内の所定の位置に設置する。次いで,例えば純Nガスにより圧力容器1内を加圧し,ヒータ3でPBN製ルツボ2内の原料Ga5,原料As6を加熱してGaAs多結晶を直接合成する。その後さらに加熱を続け,GaAs多結晶を溶解してGaAs融液を形成する。このとき,液体封止材(B)7は,GaAs融液の表面を覆うかたちで融解しており,GaAs融液中からAsが揮発するのを防止している。
【0008】
このとき,容器内圧力はGaAs多結晶の溶解加熱のため炉内温度が上昇するため,上昇する。このとき,粘性の高いB7に気体が融解していると,GaAs単結晶育成中に気泡を巻き込むおそれがあるので,容器内を減圧し,一定時間放置して,B7中の気泡を発泡,放出させる。
【0009】
次いで,ガス導入配管10を通して圧力容器1内に純Nガスを導入し,加圧し,一定時間放置する。その後,上軸8の下端に取り付けた種結晶9を3〜10rpmで回転させながら徐々に降下してGaAs融液の表面に接触させる。このとき,GaAs融液の入っているPBN製ルツボ2は,10〜40rpmの回転速度で回転している。
【0010】
そして,GaAs融液と種結晶9の種付けが完了したら,種結晶9を回転させながら所定の速度で引き上げ,徐々に結晶径を大きくしてコーン部を形成する。その後,種結晶9を3〜10rpmで回転させながら4〜15mm/hrの速度で結晶径がほぼ均一な直胴部を形成した後,テイル部を形成してGaAs結晶を育成する。引き上げ終了後,所定の条件で冷却をおこない,所望のGaAs結晶を得ることができる。このような方法により,例えば4インチのGaAs結晶を得ることができる。
【0011】
【発明が解決しようとする課題】
しかしながら,GaAs多結晶を純Nガス雰囲気下で直接合成すると,直接合成前あるいは直接合成中に,原料がNガスと反応し窒化してしまうという問題がある。この窒化物は,GaAs多結晶を融解したときにGaAs融液表面上(すなわち,BとGaAs融液との界面)に浮遊することになる。このGaAs融液中に浮遊している窒化物は,GaAs単結晶の成長中に入り込んで正規の原子配列を乱すため,双晶や多結晶の発生原因となる。このため,GaAs多結晶を純Nガス雰囲気下で直接合成をおこなうと,GaAs単結晶成長の際に双晶や多結晶の発生頻度が高くなり,GaAs単結晶の歩留まりが低下するなどの問題が生じる。
【0012】
一方,純Arガス雰囲気下でGaAs多結晶を直接合成し,さらに純Arガス雰囲気下でGaAs単結晶成長をおこなうと,GaAs単結晶に不純物であるホウ素が混入し易くなるという問題がある。また,純Arガス雰囲気下でGaAs単結晶の成長をおこなうと純Nガス雰囲気下で結晶成長する方法に比べ単結晶が得られ易いという利点があるものの,純Nガスを使用した場合と比較してコストが高くなるという問題もある。
【0013】
また,GaAs多結晶を他の方法で予め合成し,GaAs単結晶成長用の出発原料とする場合には,GaAs多結晶を合成するための新たな工程が必要となり,余計なコストがかかってしまうという問題もある。
【0014】
したがって,本発明は,上記のような問題点に鑑みてなされたものであり,本発明の目的は,GaAs多結晶を合成する際に窒化物の形成を抑制して双晶や多結晶の発生率を低減し,高品質のGaAs単結晶を再現性良くかつ低コストで製造することが可能な,新規かつ改良されたGaAs単結晶の製造方法を提供することにある。
【0015】
【課題を解決するための手段】
上記課題を解決するために,本発明の第1の観点によれば,請求項1に記載の発明のように,加圧した容器内でGaAs多結晶を合成したのち融解し,所定圧力下で液体封止引き上げ法により結晶成長をおこなうGaAs単結晶の製造方法において,前記容器内を純Arガスで所定圧力に加圧し,原料Gaと原料Asを加熱してGaAs多結晶を合成する工程と,前記GaAs多結晶を加熱して融解する工程と,前記容器内を減圧して液体封止材中の気泡を放出させる工程と,前記容器内の純Arガス雰囲気中に純Nガスを所定の混合比で混合して,所定の圧力に加圧する工程と,前記純Arガスおよび純Nガスの混合ガス雰囲気中の加圧された所定圧力下で,液体封止引き上げ法により結晶成長をおこなう工程とを有することを特徴とするGaAs単結晶の製造方法が提供される。
【0016】
かかる構成によれば,純Arガス雰囲気下でGaAs多結晶を直接合成し,純Arガスに純Nガスの混合雰囲気下でGaAs単結晶を成長することができるので,GaAs単結晶を再現性よく成長することができる。また,純Arガス雰囲気中でGaAs単結晶を成長する方法と比較して,不純物であるホウ素が混入しにくくなり,品質の高いGaAs単結晶を得ることができる。また,純Arガスの一部を純Nガスで置換しているため,高価格の純Arガスの消費量を減らすことができ,製造コストを低減することができる。
【0017】
また,請求項2に記載の発明のように,前記容器内の純Arガス雰囲気中に純Nガスを所定の混合比で混合して,所定の圧力に加圧する工程は,前記容器内のガスを,少なくとも一回以上,前記容器外部に放出して前記容器内を減圧する工程と,前記減圧した容器内に純Nガスを導入する工程とからなることを含めれば,炉内の純Arガスと純Nガスの混合比や炉内の圧力を容易に実現することができる。
【0018】
また,請求項3に記載の発明のように,前記純Arガスと前記純Nガスの混合比(Ar/N)は,1/2〜1/100であることあることを含めれば,GaAs単結晶中に混入するホウ素の濃度を低く押さえることができる。また,純Arガスと純Nガスの混合比の調整に要する時間も短くリードタイムが長くなることもない。
【0019】
また,本発明の第2の観点によれば,請求項4に記載の発明のように,GaAs単結晶中のホウ素の含有濃度が5×1016cm−3以下であり,実質的に双晶や多結晶を含有しないことを特徴とするGaAs単結晶が提供される。
【0020】
【本発明の実施の形態】
以下に,本発明の実施の形態について図1に基づいて説明をおこなう。図1は,本実施形態にかかるGaAs単結晶を製造するための結晶成長装置の概略構成を示した断面図である。
【0021】
本実施形態にかかるGaAs単結晶成長装置は,圧力容器1,ヒータ3,下軸4,上軸8などから構成されている。圧力容器1の内部には原料Ga5,原料As6,液体封止剤(B)7を収容するためのPBN製ルツボ2が設置され,その周囲にはヒータ3が設けられている。下軸4は,圧力容器1内に下側から挿入され,その先端には,PBN製ルツボ2が固定されている。この下軸4は,回転昇降機構(図示せず)が接続されているので,PBN製ルツボ2を一定の速度で回転しながら所定の速度で昇降することができる。
【0022】
一方,上軸8は,圧力容器1の上側から下軸4と同軸になるように挿入され,その下端にはGaAs単結晶から所定方位に切り出した種結晶9が取り付けられている。この上軸8は,回転昇降機構(図示せず)が接続されているので,種結晶9を一定速度で回転しながら所定速度で昇降することができる。
【0023】
また,圧力容器1の上側部にはガス導入管10が接続され,下側部にはガス排出管11が接続されている。ガス導入管10は,純Arガス導入配管12もしくは純Nガス導入配管13が接続されており,それぞれのガス導入配管12,13には,バルブ14,15が取り付けられている。このバルブ14,15を開閉することによって,炉内に導入するガスを切替えることができる。また,ガス排出管11にはバルブ16が取付られており,バルブ16を開けて炉内ガスを外部に放出し,圧力容器1内の圧力調整をおこなう。
【0024】
以下に,この結晶成長装置を用いて,本実施形態にかかるGaAs単結晶の成長方法について説明する。
【0025】
まず,PBN製ルツボ2内に,原料Ga5,原料As6,例えば含有水分量100〜500ppmのB7を入れ,圧力容器1内の所定の位置に設置する。次いで,例えば純Arガスにより圧力容器1内を例えば25〜45kgf/cmに加圧し,ヒータ3でPBN製ルツボ2内の原料Ga5,原料As6を加熱してGaAs多結晶を直接合成する。その後さらに加熱を続け,GaAs多結晶を溶解してGaAs融液を形成する。このとき,液体封止材(B)7は,GaAs融液の表面を覆うかたちで融解しており,GaAs融液中からAsが揮発するのを防止している。
【0026】
このとき,加熱前に25〜45kgf/cmであった容器内圧力はGaAs多結晶の溶解加熱のため炉内温度が上昇し,圧力容器が例えば60〜70kgf/cm程度になっている。このとき,粘性の高いB7に気体が融解していると,GaAs単結晶育成中に気泡を巻き込むおそれがあるので,容器内を例えば3〜10kgf/cmまで減圧し例えば0.5〜3時間放置して,B7中の気泡を発泡,放出させる。
【0027】
次いで,バルブ14を開き純Nガス導入配管13,ガス導入配管10を通して圧力容器1内に純Nガスを導入する。この純Nガスの導入は,例えば容器内圧力が10〜30kgf/cmになるまで加圧し,例えばガス混合比(Ar/N)が1/2〜1/100となるようにおこなう。また,一回の純Nガスの導入だけでは,所望のガス混合比(Ar/N)を得ることができない場合には,この混合ガスを外部に放出して圧力容器1内を減圧してから,再度純Nガスを圧力容器1内に導入して加圧する。このように,ガス混合比に応じて,圧力容器1内の減圧や加圧の回数を決めて,圧力容器1内のガス混合比を調節する。
【0028】
なお,圧力容器1内の純Arガスと純Nガスの混合比(Ar/N)は,1/2〜1/100であることが望ましい。すなわち,このガス混合比よりもNの含有率が高い場合には,純Arガスと純Nガスの混合比の調整に要する時間が長くなり,リードタイムが長くなってしまうからである。一方,このガス混合比よりもNの含有率が低い場合には,GaAs単結晶中に混入するホウ素の濃度が高くなってしまうからである。すなわち,純Arガス雰囲気中でGaAs単結晶を成長すると,不純物であるホウ素が混入しやすかったが,この純Arガス雰囲気中に純Nガスを混合すると,GaAs融液中に混入したホウ素がB7を経由して純Nガスと反応し窒化ホウ素(BN)となるため,GaAs融液の外部に排出されるためであると考えられる。
【0029】
その後,上軸8の下端に取り付けた種結晶を3〜10rpmで回転させながら徐々に降下してGaAs融液の表面に接触させる。このとき,GaAs融液の入っているPBN製ルツボ2は,10〜40rpmの回転速度で回転している。
【0030】
そして,GaAs融液と種結晶9の種付けが完了したら,種結晶9を回転させながら所定の速度で引き上げ,徐々に結晶径を大きくしてコーン部を形成する。その後,種結晶9を3〜10rpmで回転させながら4〜15mm/hrの速度で結晶径が均一な直胴部を形成した後,テイル部を形成してGaAs単結晶を育成する。引き上げ終了後,所定の条件で冷却をおこない,所望のGaAS単結晶を得ることができる。このような方法により,例えば直径4インチのGaAs単結晶を得ることができる。
【0031】
本実施形態は,以上のように構成されており,純Arガス雰囲気下でGaAs多結晶を直接合成し,純Arガスに純Nガスの混合雰囲気下でGaAs単結晶を成長することができるので,GaAs単結晶を再現性よく成長することができる。また,純Arガス雰囲気中でGaAs単結晶を成長する方法と比較して,不純物であるホウ素が混入しにくくなり,品質の高いGaAs単結晶を得ることができる。また,純Arガスの一部を純Nガスで置換しているため,高価格の純Arガスの消費量を減らすことができ,製造コストを低減することができる。
【0032】
(実施例1)
上記実施形態に示した方法に基づいてGaAs単結晶を作製したので,この結果を以下に説明する。
【0033】
まず,PBN製ルツボ内に,出発原料として,原料Gaを5000g,原料Asを5500g,含有水分量200重量ppmの液体封止材(B)を入れ,圧力容器内の所定の位置に設置した。次いで,純Arガスを炉内に導入して37kgf/cmに加圧し,ヒータでPBN製ルツボ内の原料Ga,原料Asを加熱してGaAs多結晶を直接合成した。このとき,圧力容器内の圧力は65kgf/cmであった。
【0034】
次いで,ヒータでPBN製ルツボ内の多結晶GaAsを加熱し,GaAs融液を形成した。このとき,圧力容器1内の圧力は65kgf/cmであった。
【0035】
そして,GaAs融液を形成した後,圧力容器の圧力を4kgf/cmまで減圧して1時間放置してB中の気泡を脱泡した。次いで,純Nガス導入配管を通して圧力容器内に純Nガスを導入し,ガス混合比(Ar/N)を1/6となるように24kgf/cmまで加圧した後,30分間放置した。そして,この混合ガスを4kgf/cmまで減圧して30分間放置した。次いで,純Nガス導入配管を通して圧力容器内に純Nガスを導入し,ガス混合比(Ar/N)を1/36として24kgf/cmまで加圧した後,30分間放置した。
【0036】
その後,上軸の下端に取り付けたGaAs種結晶を3〜10rpmの回転速度で回転させながら徐々に降下してGaAs融液表面に接触させた。このとき,GaA融液の入っているPBN製ルツボは,10〜40rpmの回転速度で回転させていた。
【0037】
そして,GaAs融液と種結晶の種付けが完了した後,種結晶を3〜10rpmの回転速度で回転させながら4〜15mm/hrの速度で引き上げて,直径4インチのGaAs単結晶を成長させた。
【0038】
この方法によって得られたGaAs結晶はホウ素の含有量が5×1016cm−3以下で,実質的に双晶や多結晶を含有しない単結晶であった。
【0039】
(比較例1)
次に,比較例1に基づいてGaAs単結晶を作製したので,この結果を以下に説明する。
【0040】
まず,PBN製ルツボ内に,出発原料として,原料Gaを5000g,原料Asを5500g,含有水分量200重量ppmの液体封止材(B)を入れ,圧力容器内の所定の位置に設置した。次いで,純Nガスを炉内に導入して37kgf/cmに加圧し,ヒータでPBN製ルツボ内の原料Ga,原料Asを加熱してGaAs多結晶を直接合成した。このとき,圧力容器内の圧力は65kgf/cmであった。
【0041】
次いで,ヒータでPBN製ルツボ内の多結晶GaAsを加熱し,GaAs融液を形成した。このとき,圧力容器1内の圧力は65kgf/cmであった。
【0042】
そして,GaAs融液を形成した後,圧力容器の圧力を4kgf/cmまで減圧して1時間放置してB中の気泡を脱泡した。次いで,ガス導入配管を通して圧力容器内に純Nガスを導入し,24kgf/cmまで加圧した後,30分間放置した。
【0043】
その後,上軸の下端に取り付けたGaAs種結晶を3〜10rpmの回転速度で回転させながら徐々に降下してGaAs融液表面に接触させた。このとき,GaAs融液の入っているPBN製ルツボは,10〜40rpmの回転速度で回転させていた。
【0044】
そして,GaAs融液と種結晶の種付けが完了した後,種結晶を3〜10rpmの回転速度で回転させながら4〜15mm/hrの速度で引き上げて,直径4インチのGaAsの結晶を成長させた。
【0045】
この方法によって得られたGaAs結晶は双晶であり,単結晶を得ることができなかった。
【0046】
以上,添付図面を参照しながら本発明にかかるGaAs単結晶の製造方法の好適な実施形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到することは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。
【0047】
例えば,上記実施形態においては,原料投入量,圧力,時間,昇降速度,引き上げ速度,GaAsの径などについて具体的な数値を挙げて説明したが,本発明はかかる構成に限定されるものではなく,GaAsウェハの仕様,所望の結晶径や長さ,所望の結晶品位などに応じて適宜成長条件を設定することができる。
【0048】
【発明の効果】
純Arガス雰囲気下でGaAs多結晶を直接合成し,純Arガスに純Nガスの混合雰囲気下でGaAs単結晶を成長することができるので,GaAs単結晶を再現性よく成長することができる。また,純Arガス雰囲気中でGaAs単結晶を成長する方法と比較して,不純物であるホウ素が混入しにくくなり,ホウ素含有量5×1016cm−3以下で実質的に双晶や多結晶を含有しない品質の高いGaAs単結晶を再現性よく成長することができる。また,純Arガスの一部を純Nガスで置換しているため,高価格の純Arガスの消費量を減らすことができ,製造コストを低減することができる。
【図面の簡単な説明】
【図1】 本実施形態にかかるGaAs単結晶を製造するための結晶成長装置の概略構成を示した断面図である。
【図2】 GaAs単結晶を製造するための結晶成長装置の概略構成を示した断面図である。
[0001]
[Industrial application fields]
The present invention relates to a method for producing a GaAs single crystal, and more particularly to a method for producing a GaAs single crystal by a liquid sealing pulling method (hereinafter referred to as LEC method).
[0002]
[Prior art]
In recent years, various kinds of semiconductor devices such as LSIs, lasers, and LEDs have been increased in density and performance, and various electronic parts and electrical products have been improved in function and size. In particular, a GaAs substrate, which has a feature that its operating speed is about five times faster than silicon, consumes less power, and is resistant to noise, has been widely used for high-speed, high-frequency devices such as FETs and ICs. . This GaAs substrate is manufactured by slicing a single crystal ingot grown by a method such as the Czochralski method, the horizontal Bridgman method, the vertical Bridgman method, or the VGF method and performing various processings. An LEC method (Liquid Encapsulated Czocralski method), which is a general method for producing such a GaAs single crystal, will be described with reference to FIG.
[0003]
FIG. 2 is a cross-sectional view showing a schematic configuration of a crystal growth apparatus for producing a GaAs single crystal. The GaAs single crystal growth apparatus includes a pressure vessel 1, a heater 3, a lower shaft 4, an upper shaft 8, and the like. Inside the pressure vessel 1, a PBN crucible 2 for containing the raw material Ga5, the raw material As6, and the liquid sealant (B 2 O 3 ) 7 is installed, and a heater 3 is provided around it. . The lower shaft 4 is inserted into the pressure vessel 1 from below, and a PBN crucible 2 is fixed to the tip thereof. Since the lower shaft 4 is connected to a rotary lift mechanism (not shown), the PBN crucible 2 can be lifted and lowered at a predetermined speed while rotating at a constant speed.
[0004]
On the other hand, the upper shaft 8 is inserted from the upper side of the pressure vessel 1 so as to be coaxial with the lower shaft 4, and a seed crystal 9 cut out from a GaAs single crystal in a predetermined orientation is attached to the lower end thereof. Since the upper shaft 8 is connected to a rotary lifting mechanism (not shown), the upper shaft 8 can be lifted and lowered at a predetermined speed while rotating the seed crystal 9 at a constant speed.
[0005]
A gas introduction pipe 10 is connected to the upper part of the pressure vessel 1, and a gas discharge pipe 11 is connected to the lower part. The gas introduction pipe 10 is a single pipe of either the pure Ar gas introduction pipe 12 or the pure N 2 gas introduction pipe 13. Further, a valve 16 is attached to the gas exhaust pipe 11, and the valve 16 is opened to release the furnace gas to the outside, thereby adjusting the pressure in the container.
[0006]
The method for growing GaAs single crystals using this crystal growth apparatus is described below.
[0007]
First, PBN crucible 2, raw Ga5, raw AS6, put the liquid sealant (B 2 O 3) 7, is placed in a predetermined position within the pressure vessel 1. Next, the inside of the pressure vessel 1 is pressurized with, for example, pure N 2 gas, and the raw material Ga 5 and the raw material As 6 in the PBN crucible 2 are heated by the heater 3 to directly synthesize GaAs polycrystal. Thereafter, heating is continued to dissolve the GaAs polycrystal to form a GaAs melt. At this time, the liquid sealing material (B 2 O 3 ) 7 is melted so as to cover the surface of the GaAs melt, and As is prevented from evaporating from the GaAs melt.
[0008]
At this time, the pressure in the container rises because the furnace temperature rises due to melting and heating of the GaAs polycrystal. In this case, the gas to a higher B 2 O 3 7 viscosity is melted, there is a possibility to involve bubbles in GaAs single crystal growth, the vessel was depressurized and then left for a certain time, B 2 O 3 The bubbles in 7 are foamed and released.
[0009]
Next, pure N 2 gas is introduced into the pressure vessel 1 through the gas introduction pipe 10, pressurized, and left for a certain period of time. Thereafter, the seed crystal 9 attached to the lower end of the upper shaft 8 is gradually lowered while being rotated at 3 to 10 rpm and brought into contact with the surface of the GaAs melt. At this time, the PBN crucible 2 containing the GaAs melt is rotating at a rotation speed of 10 to 40 rpm.
[0010]
When the seeding of the GaAs melt and the seed crystal 9 is completed, the seed crystal 9 is pulled up at a predetermined speed while rotating, and the cone diameter is gradually increased to form a cone portion. Then, after rotating the seed crystal 9 at 3 to 10 rpm and forming a straight body portion having a substantially uniform crystal diameter at a speed of 4 to 15 mm / hr, a tail portion is formed to grow a GaAs crystal. After the completion of the pulling, the desired GaAs crystal can be obtained by cooling under predetermined conditions. By such a method, for example, a 4-inch GaAs crystal can be obtained.
[0011]
[Problems to be solved by the invention]
However, if GaAs polycrystal is directly synthesized in a pure N 2 gas atmosphere, there is a problem that the raw material reacts with N 2 gas and is nitrided before or during the direct synthesis. This nitride floats on the surface of the GaAs melt (that is, the interface between B 2 O 3 and the GaAs melt) when the GaAs polycrystal is melted. The nitride floating in the GaAs melt enters the GaAs single crystal growth and disturbs the normal atomic arrangement, which causes twins and polycrystals. For this reason, if GaAs polycrystals are directly synthesized in a pure N 2 gas atmosphere, the frequency of twins and polycrystals increases during GaAs single crystal growth, and the yield of GaAs single crystals decreases. Occurs.
[0012]
On the other hand, when GaAs polycrystals are directly synthesized in a pure Ar gas atmosphere and further GaAs single crystal growth is performed in a pure Ar gas atmosphere, there is a problem that boron, which is an impurity, is easily mixed into the GaAs single crystal. Although GaAs to grow a single crystal and the single crystal compared with the method of crystal growth in a pure N 2 gas atmosphere is advantageous in that easily obtained, when using pure N 2 gas and in a pure Ar gas atmosphere There is also a problem that the cost becomes higher in comparison.
[0013]
In addition, when a GaAs polycrystal is synthesized in advance by another method and used as a starting material for GaAs single crystal growth, a new process for synthesizing the GaAs polycrystal is required, and extra cost is required. There is also a problem.
[0014]
Therefore, the present invention has been made in view of the above problems, and the object of the present invention is to suppress the formation of nitrides when synthesizing GaAs polycrystals, thereby generating twins and polycrystals. It is an object of the present invention to provide a new and improved method for producing a GaAs single crystal capable of reducing the rate and producing a high-quality GaAs single crystal with good reproducibility and at a low cost.
[0015]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, according to the first aspect of the present invention, as in the first aspect of the present invention, GaAs polycrystals are synthesized in a pressurized container and then melted under a predetermined pressure. In a method for producing a GaAs single crystal in which crystal growth is carried out by a liquid sealing pulling method, the inside of the container is pressurized to a predetermined pressure with pure Ar gas, and the raw material Ga and the raw material As are heated to synthesize a GaAs polycrystal, A step of heating and melting the GaAs polycrystal, a step of depressurizing the interior of the container to release bubbles in the liquid sealing material , and pure N 2 gas in a pure Ar gas atmosphere in the container. were mixed at a mixing ratio, a step of pressing a predetermined pressure, said at a predetermined pressure under which the pressurized mixed gas atmosphere of pure Ar gas and pure N 2 gas, the crystal growth by liquid sealing pulling method Characterized by having a process to perform Method for producing a GaAs single crystal is provided.
[0016]
According to this configuration, a GaAs polycrystal can be directly synthesized in a pure Ar gas atmosphere, and a GaAs single crystal can be grown in a pure Ar gas mixed atmosphere of pure N 2 gas. Can grow well. In addition, compared with a method of growing a GaAs single crystal in a pure Ar gas atmosphere, boron as an impurity is less likely to be mixed, and a high quality GaAs single crystal can be obtained. In addition, since a portion of the pure Ar gas is replaced with pure N 2 gas, the consumption of high-priced pure Ar gas can be reduced and the manufacturing cost can be reduced.
[0017]
It is preferable as defined in claim 2, by mixing pure N 2 gas in the pure Ar gas atmosphere in the container at a predetermined mixing ratio, the step of pressure to a predetermined pressure, said container Including a step of releasing the gas at least once to the outside of the vessel and depressurizing the inside of the vessel, and a step of introducing pure N 2 gas into the depressurized vessel. The mixing ratio of pure Ar gas and pure N 2 gas and the pressure in the furnace can be easily realized.
[0018]
Further, as in the third aspect of the invention, if it is included that the mixing ratio (Ar / N 2 ) of the pure Ar gas and the pure N 2 gas may be 1/2 to 1/100, The concentration of boron mixed in the GaAs single crystal can be kept low. Further, the time required for adjusting the mixing ratio of pure Ar gas and pure N 2 gas is short, and the lead time is not long.
[0019]
According to the second aspect of the present invention, as in the fourth aspect of the present invention, the boron concentration in the GaAs single crystal is 5 × 10 16 cm −3 or less, which is substantially a twin crystal. There is provided a GaAs single crystal characterized in that it does not contain or polycrystal.
[0020]
[Embodiments of the Invention]
Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing a schematic configuration of a crystal growth apparatus for manufacturing a GaAs single crystal according to the present embodiment.
[0021]
The GaAs single crystal growth apparatus according to this embodiment includes a pressure vessel 1, a heater 3, a lower shaft 4, an upper shaft 8, and the like. Inside the pressure vessel 1, a PBN crucible 2 for housing the raw material Ga 5, the raw material As 6, and the liquid sealant (B 2 O 3 ) 7 is installed, and a heater 3 is provided around it. The lower shaft 4 is inserted into the pressure vessel 1 from below, and a PBN crucible 2 is fixed to the tip thereof. Since the lower shaft 4 is connected to a rotary lift mechanism (not shown), the PBN crucible 2 can be lifted and lowered at a predetermined speed while rotating at a constant speed.
[0022]
On the other hand, the upper shaft 8 is inserted from the upper side of the pressure vessel 1 so as to be coaxial with the lower shaft 4, and a seed crystal 9 cut out from a GaAs single crystal in a predetermined orientation is attached to the lower end thereof. Since the upper shaft 8 is connected to a rotary lifting mechanism (not shown), the upper shaft 8 can be lifted and lowered at a predetermined speed while rotating the seed crystal 9 at a constant speed.
[0023]
A gas introduction pipe 10 is connected to the upper part of the pressure vessel 1, and a gas discharge pipe 11 is connected to the lower part. A pure Ar gas introduction pipe 12 or a pure N 2 gas introduction pipe 13 is connected to the gas introduction pipe 10, and valves 14 and 15 are attached to the respective gas introduction pipes 12 and 13. The gas introduced into the furnace can be switched by opening and closing the valves 14 and 15. Further, a valve 16 is attached to the gas discharge pipe 11, and the pressure in the pressure vessel 1 is adjusted by opening the valve 16 to discharge the furnace gas to the outside.
[0024]
The method for growing a GaAs single crystal according to this embodiment will be described below using this crystal growth apparatus.
[0025]
First, in the crucible 2 made of PBN, raw material Ga5, raw material As6, for example, B 2 O 3 7 having a water content of 100 to 500 ppm is put in a predetermined position in the pressure vessel 1. Next, the inside of the pressure vessel 1 is pressurized to, for example, 25 to 45 kgf / cm 2 with pure Ar gas, for example, and the raw material Ga5 and the raw material As6 in the PBN crucible 2 are heated by the heater 3 to directly synthesize GaAs polycrystal. Thereafter, heating is continued to dissolve the GaAs polycrystal to form a GaAs melt. At this time, the liquid sealing material (B 2 O 3 ) 7 is melted so as to cover the surface of the GaAs melt, and As is prevented from evaporating from the GaAs melt.
[0026]
At this time, the internal pressure of the vessel, which was 25 to 45 kgf / cm 2 before heating, increased the temperature in the furnace due to melting and heating of the GaAs polycrystal, and the pressure vessel is about 60 to 70 kgf / cm 2, for example. At this time, if the gas is melted in the highly viscous B 2 O 3 7, there is a possibility that bubbles may be involved during the growth of the GaAs single crystal. Therefore, the inside of the container is decompressed to 3 to 10 kgf / cm 2 , for example, 0. Leave for 5 to 3 hours to foam and release the bubbles in B 2 O 3 7.
[0027]
Then, pure N 2 gas introduction pipe 13 by opening the valve 14, to introduce a pure N 2 gas into the pressure vessel 1 through the gas introducing pipe 10. The introduction of the pure N 2 gas is performed, for example, until the internal pressure of the container becomes 10 to 30 kgf / cm 2, and the gas mixing ratio (Ar / N 2 ) is ½ to 1/100, for example. If the desired gas mixture ratio (Ar / N 2 ) cannot be obtained by introducing pure N 2 gas only once, the pressure vessel 1 is decompressed by releasing the mixed gas to the outside. Then, pure N 2 gas is again introduced into the pressure vessel 1 and pressurized. As described above, the number of times of depressurization or pressurization in the pressure vessel 1 is determined according to the gas mixture ratio, and the gas mixture ratio in the pressure vessel 1 is adjusted.
[0028]
The mixing ratio (Ar / N 2 ) between the pure Ar gas and the pure N 2 gas in the pressure vessel 1 is preferably 1/2 to 1/100. That is, when the content ratio of N 2 is higher than this gas mixture ratio, the time required for adjusting the mixture ratio of pure Ar gas and pure N 2 gas becomes long, and the lead time becomes long. On the other hand, if the N 2 content is lower than this gas mixture ratio, the concentration of boron mixed in the GaAs single crystal will be high. That is, when a GaAs single crystal was grown in a pure Ar gas atmosphere, boron as an impurity was easily mixed. However, when pure N 2 gas was mixed in this pure Ar gas atmosphere, boron mixed in the GaAs melt was It is thought that this is because it reacts with pure N 2 gas via B 2 O 3 7 to become boron nitride (BN) and is discharged outside the GaAs melt.
[0029]
Thereafter, the seed crystal attached to the lower end of the upper shaft 8 is gradually lowered while rotating at 3 to 10 rpm and brought into contact with the surface of the GaAs melt. At this time, the PBN crucible 2 containing the GaAs melt is rotating at a rotation speed of 10 to 40 rpm.
[0030]
When the seeding of the GaAs melt and the seed crystal 9 is completed, the seed crystal 9 is pulled up at a predetermined speed while rotating, and the cone diameter is gradually increased to form a cone portion. Then, after rotating the seed crystal 9 at 3 to 10 rpm and forming a straight body portion having a uniform crystal diameter at a speed of 4 to 15 mm / hr, a tail portion is formed to grow a GaAs single crystal. After completion of the pulling, the desired GaAS single crystal can be obtained by cooling under predetermined conditions. By such a method, for example, a GaAs single crystal having a diameter of 4 inches can be obtained.
[0031]
This embodiment is configured as described above, and can synthesize GaAs polycrystals directly in a pure Ar gas atmosphere and grow a GaAs single crystal in a pure Ar gas mixed atmosphere of pure N 2 gas. Therefore, a GaAs single crystal can be grown with good reproducibility. In addition, compared with a method of growing a GaAs single crystal in a pure Ar gas atmosphere, boron as an impurity is less likely to be mixed, and a high quality GaAs single crystal can be obtained. In addition, since a portion of the pure Ar gas is replaced with pure N 2 gas, the consumption of high-priced pure Ar gas can be reduced and the manufacturing cost can be reduced.
[0032]
Example 1
Since a GaAs single crystal was fabricated based on the method described in the above embodiment, the result will be described below.
[0033]
First, 5000 g of raw material Ga, 5500 g of raw material As, and 200 ppm by weight of liquid moisture (B 2 O 3 ) are placed as starting materials in a PBN crucible, and placed in a predetermined position in the pressure vessel. installed. Next, pure Ar gas was introduced into the furnace and pressurized to 37 kgf / cm 2 , and the raw material Ga and raw material As in the PBN crucible were heated with a heater to directly synthesize GaAs polycrystals. At this time, the pressure in the pressure vessel was 65 kgf / cm 2 .
[0034]
Next, the polycrystalline GaAs in the PBN crucible was heated with a heater to form a GaAs melt. At this time, the pressure in the pressure vessel 1 was 65 kgf / cm 2 .
[0035]
After forming the GaAs melt, the pressure in the pressure vessel was reduced to 4 kgf / cm 2 and left for 1 hour to degas bubbles in B 2 O 3 . Then, by introducing a pure N 2 gas into the pressure vessel through a pure N 2 gas introduction pipe, after pressurized to 24kgf / cm 2 so that the gas mixing ratio (Ar / N 2) becomes 1/6, 30 min I left it alone. The mixed gas was decompressed to 4 kgf / cm 2 and left for 30 minutes. Then, by introducing a pure N 2 gas into the pressure vessel through a pure N 2 gas introduction pipe, after pressurizing gas mixing ratio (Ar / N 2) as 1/36 to 24kgf / cm 2, and allowed to stand for 30 minutes.
[0036]
Thereafter, the GaAs seed crystal attached to the lower end of the upper shaft was gradually lowered while being rotated at a rotational speed of 3 to 10 rpm and brought into contact with the surface of the GaAs melt. At this time, the PBN crucible containing the GaA melt was rotated at a rotation speed of 10 to 40 rpm.
[0037]
After the seeding of the GaAs melt and the seed crystal was completed, the seed crystal was pulled up at a speed of 4 to 15 mm / hr while rotating the seed crystal at a speed of 3 to 10 rpm to grow a GaAs single crystal having a diameter of 4 inches. .
[0038]
The GaAs crystal obtained by this method was a single crystal having a boron content of 5 × 10 16 cm −3 or less and substantially not containing twins or polycrystals.
[0039]
(Comparative Example 1)
Next, since a GaAs single crystal was fabricated based on Comparative Example 1 , the results will be described below.
[0040]
First, 5000 g of raw material Ga, 5500 g of raw material As, and 200 ppm by weight of liquid moisture (B 2 O 3 ) are placed as starting materials in a PBN crucible, and placed in a predetermined position in the pressure vessel. installed. Next, pure N 2 gas was introduced into the furnace and pressurized to 37 kgf / cm 2 , and the raw material Ga and raw material As in the PBN crucible were heated with a heater to directly synthesize GaAs polycrystals. At this time, the pressure in the pressure vessel was 65 kgf / cm 2 .
[0041]
Next, the polycrystalline GaAs in the PBN crucible was heated with a heater to form a GaAs melt. At this time, the pressure in the pressure vessel 1 was 65 kgf / cm 2 .
[0042]
After forming the GaAs melt, the pressure in the pressure vessel was reduced to 4 kgf / cm 2 and left for 1 hour to degas bubbles in B 2 O 3 . Next, pure N 2 gas was introduced into the pressure vessel through the gas introduction pipe, pressurized to 24 kgf / cm 2 , and left for 30 minutes.
[0043]
Thereafter, the GaAs seed crystal attached to the lower end of the upper shaft was gradually lowered while being rotated at a rotational speed of 3 to 10 rpm and brought into contact with the surface of the GaAs melt. At this time, the PBN crucible containing the GaAs melt was rotated at a rotational speed of 10 to 40 rpm.
[0044]
After the seeding of the GaAs melt and the seed crystal was completed, the seed crystal was pulled up at a speed of 4 to 15 mm / hr while rotating the seed crystal at a speed of 3 to 10 rpm to grow a GaAs crystal having a diameter of 4 inches. .
[0045]
The GaAs crystal obtained by this method was twinned and a single crystal could not be obtained.
[0046]
The preferred embodiment of the method for producing a GaAs single crystal according to the present invention has been described above with reference to the accompanying drawings, but the present invention is not limited to such an example. It is obvious for those skilled in the art to come up with various changes or modifications within the scope of the technical idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.
[0047]
For example, in the above embodiment, the raw material input amount, pressure, time, elevating speed, pulling speed, GaAs diameter and the like have been described with specific numerical values, but the present invention is not limited to such a configuration. The growth conditions can be appropriately set according to the specifications of the GaAs wafer, the desired crystal diameter and length, the desired crystal quality, and the like.
[0048]
【The invention's effect】
Since a GaAs polycrystal can be directly synthesized in a pure Ar gas atmosphere and a GaAs single crystal can be grown in a pure Ar gas mixed atmosphere of pure N 2 gas, the GaAs single crystal can be grown with good reproducibility. . Further, compared to a method of growing a GaAs single crystal in a pure Ar gas atmosphere, boron which is an impurity is less likely to be mixed, and a boron content of 5 × 10 16 cm −3 or less is substantially a twin or polycrystal. It is possible to grow a high-quality GaAs single crystal that does not contain, with good reproducibility. In addition, since a part of the pure Ar gas is replaced with pure N 2 gas, the consumption of high-priced pure Ar gas can be reduced, and the manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a schematic configuration of a crystal growth apparatus for producing a GaAs single crystal according to an embodiment.
FIG. 2 is a cross-sectional view showing a schematic configuration of a crystal growth apparatus for producing a GaAs single crystal.

Claims (3)

加圧した容器内でGaAs多結晶を合成した後に融解し,所定圧力下で液体封止引き上げ法により結晶成長をおこなうGaAs単結晶の製造方法において:
前記容器内を純Arガスで所定圧力に加圧し,原料Gaと原料Asを加熱してGaAs多結晶を合成する工程と;
前記GaAs多結晶を加熱して融解する工程と;
前記容器内を減圧して液体封止材中の気泡を放出させる工程と;
前記容器内の純Arガス雰囲気中に純Nガスを所定の混合比で混合して,所定の圧力に加圧する工程と;
前記純Arガスおよび純Nガスの混合ガス雰囲気中の加圧された所定圧力下で,液体封止引き上げ法により結晶成長をおこなう工程と;
を有することを特徴とするGaAs単結晶の製造方法。
In a GaAs single crystal manufacturing method, a GaAs polycrystal is synthesized after being synthesized in a pressurized container and then melted and crystal growth is performed by a liquid-sealed pulling method under a predetermined pressure:
Pressurizing the inside of the container to a predetermined pressure with pure Ar gas and heating the raw material Ga and the raw material As to synthesize GaAs polycrystal;
Heating and melting the GaAs polycrystal;
Depressurizing the inside of the container to release bubbles in the liquid sealing material;
By mixing pure N 2 gas in the pure Ar gas atmosphere in the container at a predetermined mixing ratio, a step of pressure to a predetermined pressure;
A step of performing crystal growth by a liquid sealing pulling method under a predetermined pressure under pressure in a mixed gas atmosphere of the pure Ar gas and pure N 2 gas;
A method for producing a GaAs single crystal, comprising:
前記容器内の純Arガス雰囲気中に純Nガスを所定の混合比で混合して,所定の圧力に加圧する工程は:
前記容器内のガスを,少なくとも一回以上,前記容器外部に放出して前記容器内を減圧する工程と;
前記減圧した容器内に純Nガスを導入する工程と;
からなることを特徴とする請求項1に記載のGaAs単結晶の製造方法。
Pure N 2 gas in the pure Ar gas atmosphere in the container were mixed at a predetermined mixing ratio, the step of pressure to a predetermined pressure:
Releasing the gas in the container to the outside of the container at least once to depressurize the container;
Introducing pure N 2 gas into the decompressed container;
The method for producing a GaAs single crystal according to claim 1, comprising:
前記純Arガスと前記純Nガスの混合比(Ar/N)は,1/2〜1/100であることを特徴とする請求項1または2に記載のGaAs単結晶の製造方法。3. The method for producing a GaAs single crystal according to claim 1, wherein a mixing ratio (Ar / N 2 ) between the pure Ar gas and the pure N 2 gas is ½ to 1/100.
JP09852899A 1999-04-06 1999-04-06 GaAs single crystal and manufacturing method thereof Expired - Lifetime JP4100812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09852899A JP4100812B2 (en) 1999-04-06 1999-04-06 GaAs single crystal and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09852899A JP4100812B2 (en) 1999-04-06 1999-04-06 GaAs single crystal and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000290098A JP2000290098A (en) 2000-10-17
JP4100812B2 true JP4100812B2 (en) 2008-06-11

Family

ID=14222186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09852899A Expired - Lifetime JP4100812B2 (en) 1999-04-06 1999-04-06 GaAs single crystal and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4100812B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113427651B (en) * 2021-06-25 2023-06-23 广东先导微电子科技有限公司 Method for judging linear twin crystal length in gallium arsenide crystal

Also Published As

Publication number Publication date
JP2000290098A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
US4040895A (en) Control of oxygen in silicon crystals
US8986446B2 (en) Si-doped GaAs single crystal ingot and process for producing the same, and Si-doped GaAs single crystal wafer produced from Si-doped GaAs single crystal ingot
JPS61158891A (en) Crystal growing method and crystal pull-up device
JP4100812B2 (en) GaAs single crystal and manufacturing method thereof
JPH1149597A (en) Quartz crucible for pulling up silicon single crystal
JP4092387B2 (en) GaAs single crystal, manufacturing method thereof, and manufacturing apparatus thereof
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP3551607B2 (en) Method for producing GaAs single crystal
JP2002356396A (en) Method of preparation of langasite type single crystal
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP3788156B2 (en) Method for producing compound semiconductor single crystal and PBN container used therefor
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
JP2004107099A (en) Method of manufacturing semi-insulative gallium arsenide single crystal
JPH03174390A (en) Production device for single crystal
JPH07196398A (en) Single crystal pull-up apparatus
JP2005112685A (en) Compound semiconductor crystal production method, compound semiconductor single crystal, and production apparatus therefor
RU2193079C1 (en) Method of production of monocrystalline silicon
JP2004123444A (en) Apparatus for manufacturing compound semiconductor single crystal
JP2009067620A (en) Method and apparatus for producing compound semiconductor single crystal
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JPH10194898A (en) Manufacture of gallium-arsenic seed crystal
JPH0559879B2 (en)
JP2004010467A (en) Method for growing compound semiconductor single crystal
JPH08151292A (en) Method for growing single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term