JP4099990B2 - 燃料集合体 - Google Patents

燃料集合体 Download PDF

Info

Publication number
JP4099990B2
JP4099990B2 JP2001527296A JP2001527296A JP4099990B2 JP 4099990 B2 JP4099990 B2 JP 4099990B2 JP 2001527296 A JP2001527296 A JP 2001527296A JP 2001527296 A JP2001527296 A JP 2001527296A JP 4099990 B2 JP4099990 B2 JP 4099990B2
Authority
JP
Japan
Prior art keywords
fuel
rods
rod
water
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001527296A
Other languages
English (en)
Inventor
明仁 折井
淳一 小山
浩二 西田
雅夫 茶木
徹 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP4099990B2 publication Critical patent/JP4099990B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/326Bundles of parallel pin-, rod-, or tube-shaped fuel elements comprising fuel elements of different composition; comprising, in addition to the fuel elements, other pin-, rod-, or tube-shaped elements, e.g. control rods, grid support rods, fertile rods, poison rods or dummy rods
    • G21C3/328Relative disposition of the elements in the bundle lattice
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/322Means to influence the coolant flow through or around the bundles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

技術分野
本発明は、燃料集合体に係り、特に、沸騰水型原子炉に適用するのに好適な、10行10列に配置された複数の燃料棒を有する燃料集合体に関する。
背景技術
近年、ウラン資源の有効利用、及び使用済み燃料集合体の発生量低減の観点から、燃料集合体の高燃焼度化が望まれている。高燃焼度化のためには、燃料集合体中の核分裂性物質の平均濃縮度を高めることが必要となる。しかし、濃縮度の増加は、ボイド変化に伴う反応度変化が増大するため、ボイド係数の絶対値が増大し、炉心安定性が悪化する。炉心安定性は、燃料集合体内の減速材割合(減速材対燃料比)を増大することによって改善される。
このように、核分裂性物質を効率的に反応させ、沸騰水型原子炉の核熱水力安定性を保つためには、核分裂性物質の濃度の増加に伴って燃料集合体内の減速材の割合も増大させる必要がある。
特開平7−234293号公報は、燃料棒を9行9列に配置し、45GWd/tの燃焼度を得ることができる燃料集合体を記載している。この燃料集合体は、横断面の中央部に7本の燃料棒が配置可能な領域に2本の太径水ロッドを配置すると共に、他の燃料棒より軸方向の長さが短い8本の短尺燃料棒を配置している。これらの短尺燃料棒は、燃料集合体のボイド係数を改善する。更に、短尺燃料棒の使用は、燃料集合体の上部の気液二相流領域において冷却水流路面積を増加させるので、燃料集合体の圧力損失を低下させる。燃料棒配列が9行9列配列以上となる燃料集合体の多くは、短尺燃料棒を用いている。
また、特開平5−232273号公報は、10行10列の燃料棒配列を有する燃料集合体を記載する。この燃料集合体は、中性子減速効果を促進してボイド係数の改善効果が大きくなるように非沸騰水領域(水ロッド,ギャップ水領域)に隣接させて短尺燃料棒を配置している。
発明の開示
本発明の目的は、更に高燃焼度化を図り、従来の燃料集合体よりも圧力損失を増加させることなく、許容される炉心安定性を得ることができる燃料集合体を提供することにある。
上記目的を達成する第1発明の特徴は、複数の第1燃料棒、及び前記第1燃料棒よりも長さが短い複数の第2燃料棒を有し、これらの燃料棒が10行10列の燃料棒配列内に配置され、8本の燃料棒が配置可能な領域を占有する複数の水ロッドを備え、前記第2燃料棒が最外層の燃料棒配列内に配置されていない燃料集合体であって、前記水ロッドの横断面積の総和をAwr,前記燃料集合体下部での冷却材流路の横断面積をAch,前記第1燃料棒の燃料有効長をLf,前記第2燃料棒の本数をn,前記第2燃料棒の燃料有効長をLp、及び平均燃焼度をB(GWd/t)としたとき、以下の式に示された関係を満足するように構成する。
Figure 0004099990
上記の各式の条件を満足した本発明は、燃焼度を更に増加させることができ、従来の燃料集合体よりも圧力損失を増加させることなく、許容される炉心安定性を得ることができる。
上記目的を達成する第2発明の特徴は、複数の第1燃料棒、及び前記第1燃料棒よりも長さが短い複数の第2燃料棒を有し、これらの燃料棒が10行10列の燃料棒配列内に配置され、9本の燃料棒が配置可能な領域を占有する複数の水ロッドを備え、前記第2燃料棒が最外層の燃料棒配列内に配置されていない燃料集合体であって、前記水ロッドの横断面積の総和をAwr,前記燃料集合体下部での冷却材流路の横断面積をAch,前記第1燃料棒の燃料有効長をLf,前記第2燃料棒の本数をn,前記第2燃料棒の燃料有効長をLp、及び平均燃焼度をB(GWd/t)としたとき、以下の式に示された関係を満足するように構成する。
Figure 0004099990
第2発明も、第1発明と同じ効果を得ることができる。
上記の目的を達成する第3発明の特徴は、複数の第1燃料棒、及び前記第1燃料棒よりも長さが短い複数の第2燃料棒を有し、これらの燃料棒が10行10列の燃料棒配列内に配置され、10本の燃料棒が配置可能な領域を占有する複数の水ロッドを備え、前記第2燃料棒が最外層の燃料棒配列内に配置されていない燃料集合体であって、前記水ロッドの横断面積の総和をAwr,前記燃料集合体下部での冷却材流路の横断面積をAch,前記第1燃料棒の燃料有効長をLf,前記第2燃料棒の本数をn,前記第2燃料棒の燃料有効長をLp、及び平均燃焼度をB(GWd/t)としたとき、以下の式に示された関係を満足するように構成する。
Figure 0004099990
第3発明も、第1発明と同じ効果を得ることができる。
上記目的を達成する第4発明の特徴は、複数の第1燃料棒、及び前記第1燃料棒よりも長さが短い複数の第2燃料棒を有し、これらの燃料棒が10行10列の燃料棒配列内に配置され、8本の燃料棒が配置可能な領域を占有する複数の水ロッドを備え、前記第2燃料棒が、最外層の燃料棒配列内の位置及び前記水ロッドに隣接した位置の両方、及び最外層の燃料棒配列内の位置のみ、のいずれかに配置された燃料集合体であって、前記水ロッドの横断面積の総和をAwr,前記燃料集合体下部での冷却材流路の横断面積をAch,前記第1燃料棒の燃料有効長をLf,前記第2燃料棒の本数をn,前記第2燃料棒の燃料有効長をLp、及び平均燃焼度をB(GWd/t)としたとき、以下の式に示された関係を満足するように構成する。
Figure 0004099990
第4発明も、第1発明と同じ効果を得ることができる。
上記目的を達成する第5発明の特徴は、複数の第1燃料棒、及び前記第1燃料棒よりも長さが短い複数の第2燃料棒を有し、これらの燃料棒が10行10列の燃料棒配列内に配置され、9本の燃料棒が配置可能な領域を占有する複数の水ロッドを備え、前記第2燃料棒が、最外層の燃料棒配列内の位置及び前記水ロッドに隣接した位置の両方、及び最外層の燃料棒配列内の位置のみ、のいずれかに配置された燃料集合体であって、前記水ロッドの横断面積の総和をAwr,前記燃料集合体下部での冷却材流路の横断面積をAch,前記第1燃料棒の燃料有効長をLf,前記第2燃料棒の本数をn,前記第2燃料棒の燃料有効長をLp、及び平均燃焼度をB(GWd/t)としたとき、以下の式に示された関係を満足するように構成する。
Figure 0004099990
第5発明も、第1発明と同じ効果を得ることができる。
上記目的を達成する第6発明の特徴は、複数の第1燃料棒、及び前記第1燃料棒よりも長さが短い複数の第2燃料棒を有し、これらの燃料棒が10行10列の燃料棒配列内に配置され、10本の燃料棒が配置可能な領域を占有する複数の水ロッドを備え、前記第2燃料棒が、最外層の燃料棒配列内の位置及び前記水ロッドに隣接した位置の両方、及び最外層の燃料棒配列内の位置のみ、のいずれかにて配置された燃料集合体であって、前記水ロッドの横断面積の総和をAwr,前記燃料集合体下部での冷却材流路の横断面積をAch,前記第1燃料棒の燃料有効長をLf,前記第2燃料棒の本数をn,前記第2燃料棒の燃料有効長をLp、及び平均燃焼度をB(GWd/t)としたとき、以下の式に示された関係を満足するように構成する。
Figure 0004099990
第6発明も、第1発明と同じ効果を得ることができる。
発明を実施するための最良の形態
(実施例1)
このように、ボイド係数は、主に水ロッド面積,短尺燃料棒の本数,長さ、さらに配置に影響される。しかしながら、上記従来例では、炉心安定性へ与える短尺燃料棒本数,長さによるボイド係数の影響が定量的に評価されていない。現行炉心へのバックフィットを考えると、従来燃料と同程度となる炉心安定性とする必要があり、上記ボイド係数の評価が十分でないと、高燃焼度化を達成できる炉心安定性の評価(水ロッド面積,短尺燃料棒本数,長さ)も十分とはいえない。さらに、バックフィット上重要である集合体の圧力損失への影響、言い換えれば、水ロッド面積,短尺燃料棒本数,長さが及ぼす圧力損失への影響が考慮されていない。
以下、本発明の好適な一実施例である燃料集合体を、第1図及び第2図を用いて説明する。この燃料集合体1は、沸騰水型原子炉の炉心に装荷される。燃料集合体1は、燃料棒2を10行10列の正方格子状に配置している。燃料棒2は、軸方向の長さが長い燃料棒2A、及び燃料棒2Aよりも軸方向の長さが短い短尺燃料棒2Bを含んでいる。燃料集合体1の横断面中央には、2本の水ロッド3が配置される。各々の水ロッド3は、横断面が円形であって、4本の燃料棒が配置可能な領域を占有する大きさを有する。2本の水ロッド3は、各々の軸心が燃料集合体1の1つの対角線上に配置される。これらの水ロッド3は、燃料棒配列の外側から4層目以内の領域に配置され、もう1つの対角線(燃料集合体1が沸騰水型原子炉の炉心内に装荷された状態で制御棒に面するコーナー部8に対する対角線)に対して線対称の位置に配置される。燃料棒2A及び水ロッド3は、上端部が上部タイプレート4に保持され、下端部が下部タイプレート5に保持される。短尺燃料棒2Bは、下端部が下部タイプレート5に保持される。燃料棒2A,2B及び水ロッド3は、燃料スペーサ5によって相互の間に所定の間隔を保って保持される。これらの燃料棒は、上部タイプレート4に取付けられたチャンネルボックス7内に収納されている。
16本の短尺燃料棒2Bのうち12本は、燃料棒配列の外側から2層目に配置されている。2層目の燃料棒配列において、12本の短尺燃料棒2Bは、各コーナー及び各コーナーから1本間を置いた位置にそれぞれ配置される。残りの4本の短尺燃料棒2Bは、水ロッド3に隣接して配置される。本実施例において、チャンネルボックス7の内幅Dcbは約134mm、燃料棒2A及び2Bの外径Dfは10.26mm、燃料棒ピッチPfは12.95mm、燃料棒2Aの燃料有効長Lfは約3.7mである。本実施例は、短尺燃料棒2Bを燃料棒配列の最外層に配置していない。
本実施例の燃料集合体1は、短尺燃料棒1Bの燃料有効長Lp,水ロッド2の総横断面積Awrを、(数1)から(数6)の条件を満たすよう構成されたものである。(数1)から(数6)の条件は、発明者らの検討によって見出されたものである。これらの検討結果を以下に詳細に説明する。
まず、燃料集合体の圧力損失から決定された(数6)について説明する。本発明者らは、10行10列の燃料集合体において、短尺燃料棒の本数,短尺燃料棒の燃料有効長をパラメータとして、特開平7−234293号公報に示す9行9列の従来の燃料集合体(以下、単に従来燃料集合体という)の圧力損失と同じ圧力損失となる水ロッド3の総横断面積を求め、短尺燃料棒の本数,短尺燃料棒の燃料有効長Lpと全水ロッドの総横断面積の関係を明らかにした。第3図にそれらの関係を示す。第3図において横軸は燃料棒2Aの燃料有効長Lfに対する短尺燃料棒2Bの燃料有効長Lpとの比(Lp/Lf)を、縦軸は燃料集合体下部での燃料集合体の冷却材流路面積Achに対する燃料集合体内の全水ロッドの総横断面積Awrとの比(Awr/Ach)をそれぞれ示している。ところで、冷却材流路面積Achは、概略、次式で表される。燃料集合体の冷却材流路は、チャンネルボックス7内における、燃料棒2及び水ロッド3の外側の領域である。
Figure 0004099990
(数20)に本実施例での前述の該当する数値を代入すると、
Figure 0004099990
となる。
また、横軸の値が0.5の場合、短尺燃料棒2Bの有効長が約1.85m(3.7m×0.5)であることを意味している。第3図において、L1,L2,L3は、短尺燃料棒2Bの本数の違いによる境界線である。境界線L1は短尺燃料棒2Bが12本、境界線L2は短尺燃料棒2Bが16本、及び境界線L3は短尺燃料棒2Bが20本の場合を示す。短尺燃料棒2Bが16本の場合には、図中に示した境界線L2が、従来燃料集合体と圧力損失が同一となる条件を満足する境界である。なお、短尺燃料棒2Bが16本の場合には、境界線L2、及び境界線L2よりも下側の領域が、従来燃料集合体の圧力損失よりも大きくならない領域である。従って、全水ロッドの総横断面積が境界線L2を含む下側の領域となるように構成すれば、本実施例の燃料集合体の圧力損失が従来燃料集合体のそれ以下にすることができる。すなわち、Awr/Achは、(数6)を満足すればよい。第3図において、燃料集合体内の短尺燃料棒2Bの本数によって異なる各境界線は、短尺燃料棒の本数nをパラメータとして含む(数6)で現される。
また、第3図内の点線Kは、燃料棒8本分を占有する全水ロッドの総横断面積Awrの最大値を示しており、次式で表される。
Figure 0004099990
よって、全水ロッドの総横断面積の上限値に対するAwr/Achの値は、
Figure 0004099990
となる。従って、Awr/Achは、0.149以下にしなければならない(数3)。
更に、点線Jの横軸に対応する値は、短尺燃料棒2Bの燃料有効長が燃料棒2Aのそれの11/24(0.458)となる長さに相当する。この長さでは、ガスプレナム(燃料棒内に形成)の長さを含めた短尺燃料棒は、燃料集合体の、軸方向のほぼ中央部に配置された燃料スペーサ6で上端部を支持される。しかしながら、短尺燃料棒2Bの燃料有効長を更に短くしようとすると、短尺燃料棒の流動振動の観点から短尺燃料棒の燃料有効長は、燃料棒2Aのそれの8/24程度にする必要がある。このように短尺燃料棒2Bの燃料有効長を11/24よりも短くした場合には、ウランインベントリが減少しすぎ、燃料サイクル費が悪くなる。このため、Lp/Lfは11/24以上にする必要がある(数4)。
次に炉心安定性から決定された(数5)について説明する。炉心安定性は、ある外乱が炉心に加えられた後における炉心全体の炉心流量および原子炉出力の変動に係わる特性である。今、正弦波の炉心流量の外乱が炉心に加えられたとする。また、外乱が加えられた後における炉心内の炉心流量の変動が第4図のようであったとする。第4図の変動では、変動幅は時間とともに減少し、やがて安定な状態に戻る。
ここで、炉心に加えられた外乱の振幅をy0、その1周期後の振幅をy1とし、y1/y0の値を減幅比として定義する。第4図の場合、減幅比は1よりも小さく、炉心は安定な状態(定常状態)に戻る。このような場合、炉心は安定であるという。一方、第5図の場合は、減幅比は1よりも大きく、炉心内の炉心流量の変動は時間の経過に伴って大きくなり、炉心は不安定となる。これは、原子炉の運転上、好ましくない状態である。従って、炉心安定性の減幅比が1より小さい場合は安定、それが1より大きい場合は不安定であると評価できる。よって、1未満であれば安定と評価できるが、実際には、若干の余裕をとって減幅比が0.8以下となるように設計している。
本発明者らは、10行10列の燃料集合体において、短尺燃料棒の本数、短尺燃料棒の燃料有効長をパラメータとして、減幅比が0.8となる水ロッドの横断面積を求め、短尺燃料棒の本数、その燃料有効長と、水ロッドの横断面積との関係を明らかにした。なお、9行9列の従来燃料集合体の平均取り出し燃焼度45GWd/tよりさらに高燃焼度となるように、平均取り出し燃焼度は60GWd/tとした。第6図に解析結果を示す。第6図の縦軸及び横軸は第3図の各々と同じである。圧力損失における解析結果と同様に、短尺燃料棒の本数毎に境界線がそれぞれ発生する。境界線M1は短尺燃料棒が12本、境界線M2は短尺燃料棒が16本、及び境界線M3は短尺燃料棒が20本の、それぞれの場合における結果である。短尺燃料棒の本数16本の場合には、境界線M2が減幅比0.8となる条件を満足する境界であり、境界線M2、及び境界線M2よりも上側の領域が減幅比0.8以下となる領域である。従って、全水ロッドの総横断面積が実線M2を含む上側の領域となるように構成すれば、平均取り出し燃焼度60GWd/tを達成でき、かつ許容される炉心安定性を維持できる。すなわち、Awr/Achは、(数5)を満足すればよい。第6図において、燃料集合体内の短尺燃料棒2Bの本数によって異なる各境界線は、短尺燃料棒の本数nをパラメータとして含む(数5)で現される。
第3図に示す圧力損失に対する各境界線、第6図に示す炉心安定性に対する各境界線、更に境界線J及びKを、第7図に示す。短尺燃料棒が12本の場合は、炉心安定性から決まる最低限必要となる全水ロッドの総横断面積を示す境界線M1が、点線Kよりも上側に位置する。このため、短尺燃料棒が12本の場合には、本実施例での燃料棒8本が占有する領域において最大となる全水ロッドの総横断面積以上の、全水ロッドの総横断面積が、必要となる。従って、短尺燃料棒が12本では、平均取り出し燃焼度60GWd/tの条件で、炉心安定性を満足することができない。
以上のように、燃料棒8本が占有する領域に水ロッドを配置し、燃料棒配列の最外層以外に短尺燃料棒を配置した場合には、圧力損失及び炉心安定性の観点から、15本以上の短尺燃料棒が必要となる。ところで、短尺燃料棒の本数を21本よりも増大すると、ボイド係数は改善されるが、ウランインベントリの減少し過ぎ、及び燃料棒の間隔を所定幅に保持する、短尺燃料棒の上端よりも上方に位置する燃料スペーサの強度の観点から望ましくない。このため、短尺燃料棒の本数は20本以下にする必要がある。このため、短尺燃料棒の本数nは、15≦n≦20を満足する必要がある(数2)。
第7図において、ハッチングを施した領域が、16本の短尺燃料棒を配置した本実施例の10行10列の燃料集合体に対して、(数1),(数3)から(数6)を満足する領域である。この領域になるように、Lp/Lf及び水ロッド3の横断面積が設定される。しかしながら、15≦n≦20の場合においても、(数1),(数3)から(数6)を満足させる領域がそれぞれ存在する。
本実施例によれば、平均取り出し燃焼度60GWd/t以上を達成でき、従来の燃料集合体よりも圧力損失を増加させることなく、許容される炉心安定性を得ることができる。更に、本実施例の燃料集合体は、既設の沸騰水型原子炉に適用することができる。特開平5−232273号公報は、10行10列の燃料棒配列を有する燃料集合体で燃焼度60GWd/t以上を達成することについて何も言及していない。本実施例の燃料集合体は、(数1)から(数6)の条件を満足することによって、燃焼度60GWd/t以上を達成する、10行10列の燃料棒配列を有する燃料集合体において、従来の燃料集合体よりも圧力損失を増加させることなく、許容される炉心安定性を得ることができるようになったのである。
本実施例においては、短尺燃料棒を、最外層に配置しなければ、第1図と異なる位置に配置しても、同じ効果が得られる。また、水ロッドも、総横断面積が同一であれば、第8図に示すように矩形の水ロッド3Aとしても、またこれら以外の形状としても同じ効果を生じる。なお、本実施例は(数20)にチャンネルボックス内幅Dcb、燃料棒の外径Dfが含まれているので、燃料棒の外径,チャンネルボックス内幅の若干の変化にも適用できる。
(実施例2)
以下、本発明の第2実施例である燃料集合体を、第9図を用いて説明する。本実施例の燃料集合体1Cは、沸騰水型原子炉の炉心に装荷される。燃料集合体1Cは、第1図に示す燃料集合体1の2本の水ロッド3を、1本の水ロッド3Cに替えたものである。本実施例の他の構成は、第1図に示す燃料集合体と同じである。水ロッド3Cは、横断面が円形をしており、9本の燃料棒が配置可能な領域を占有している。水ロッド3Cの軸心は、燃料集合体の軸心よりも、沸騰水型原子炉の炉心内に装荷された状態で燃料集合体1Cの制御棒に面するコーナー部8の反対側にずれている。このため、コーナー部8側では、水ロッド3Cチャンネルボックス7との間に4層の燃料棒配列が存在する。また、コーナー部8の反対側では、水ロッド3Cチャンネルボックス7との間に3層の燃料棒配列が存在する。12本の短尺燃料棒2Bが、外側から2層目の燃料棒配列において各コーナー及び各コーナーから1本間を置いた位置に配置される。チャンネルボックス7の内幅Dcb,燃料棒2の外径Df,燃料棒ピッチPf、及び燃料棒2Aの燃料有効長Lfの寸法は、燃料集合体1のそれぞれと同じである。本実施例も、短尺燃料棒2Bを燃料棒配列の最外層に配置していない。
燃料集合体1Cは、短尺燃料棒2Bの燃料有効長Lp,水ロッド3Cの総横断面積Awrを、(数1),(数4),(数7)から(数10)の条件を満たすよう構成したものである。(数7)から(数10)の条件は、発明者らの検討によって見出されたものである。
実施例1と同様に、本実施例の燃料集合体1Cにおける圧力損失及び炉心安定性それぞれの解析から導出した境界線の一例を、第10図に示す。第10図に示す境界線L4は、燃料棒配列の最外層以外で燃料集合体1C内に12本の短尺燃料棒2Bを配置したときの圧力損失に対する境界線である。境界線M4は、同様に、12本の短尺燃料棒2Bを配置したときの炉心安定性に対する境界線である。
ところで、燃料集合体1Cにおける冷却材流路面積Achは、概略、次式で表される。
Figure 0004099990
(数24)に本実施例での前述の該当する数値を代入すると、
Figure 0004099990
となる。
また、第10図内の点線K1は9本の燃料棒が配置可能な領域を占有する水ロッドの総横断面積Awrの最大値を示しており、次式で表される。
Figure 0004099990
よって、水ロッド総横断面積の上限値に対するAwr/Achの値は、
Figure 0004099990
となる。従って、Awr/Achは、0.169以下にしなければならない(数8)。
また、本実施例において、必要とする短尺燃料棒2Bの本数は、実施例1と同様な検討によって、10〜20の範囲となった。
第10図において、(数8)は点線K1を含みかつ点線K1よりも下方の領域に該当し、(数4)は点線Jを含みかつ点線Jよりも右側の領域に該当する。第10図においてハッチングを施した領域は、12本の短尺燃料棒2Bが第9図のように配置された場合において(数1),(数4)及び(数8)から(数10)を満足する領域である。この領域になるように、Lp/Lf及び水ロッド3の横断面積が設定される。しかしながら、(数7)を満足する場合、すなわち10≦n≦20の場合においても、(数1),(数4)及び(数8)から(数10)を満足させる領域がそれぞれ存在する。
本実施例によれば、第1実施例と同様の効果が得られる。また、短尺燃料棒は最外層に配置しなければ、第9図と異なる配置としても、更に、第11図に示す燃料集合体1Dとしてもよい。燃料集合体1Dは、燃料集合体1Cにおいて水ロッド3Cを矩形の横断面を有する水ロッド3Dに替えたものである。
(実施例3)
以下、本発明第3実施例である燃料集合体を、第12図を用いて説明する。本実施例の燃料集合体1Eは、沸騰水型原子炉の炉心に装荷される。燃料集合体1Eは、燃料集合体1(第1図)の2本の水ロッド3を、3本の水ロッド3Eに替えたものである。3本の水ロッド3Eは、燃料集合体1Eの制御棒に面するコーナー部8に対する対角線と直交する他の対角線上に位置しており、互いに隣接している。真中の1本の水ロッド3Eは、コーナー部8に対する対角線上にも配置される。すなわち、この1本の水ロッド3Eは燃料集合体1Eの軸線上に位置する。3本の水ロッド3Eは、10本の燃料棒2が配置可能な領域を占有している。水ロッド3Eの外径は水ロッド3(第1図)の外径よりも小さい。短尺燃料棒2Bは10本配置される。そのうちの8本の短尺燃料棒2Bは、外側から2層目の燃料棒配列内に配置される。残りの2本の短尺燃料棒2Bは、外側から4層目の燃料棒配列の各コーナーに配置される。2層目の燃料棒配列では、各コーナーに短尺燃料棒2Bが配置される。本実施例のチャンネルボックス7の内幅Dcb,燃料棒2の外径Df,燃料棒ピッチPf、及び燃料棒2Aの燃料有効長Lfの寸法は、燃料集合体1のそれぞれと同じである。本実施例は、燃料棒配列の最外層には、短尺燃料棒2Bを配置していない。
燃料集合体1Eは、短尺燃料棒2Bの燃料有効長Lp、水ロッド3Eの総横断面積Awrを、(数1),(数4),(数11)から(数14)の条件を満たすよう構成したものである。(数11)から(数14)の条件は、発明者らの検討によって見出されたものである。
実施例1と同様に、本実施例の燃料集合体1Eにおける圧力損失及び炉心安定性それぞれの解析から導出した境界線の一例を、第13図に示す。第13図に示す境界線L5は、燃料棒配列の最外層以外で燃料集合体1E内に10本の短尺燃料棒2Bを配置したときの圧力損失に対する境界線である。境界線M5は、同様に10本の短尺燃料棒2Bを配置したときの炉心安定性に対する境界線である。
ところで、燃料集合体1Eにおける冷却材流路面積Achは、概略、次式で表される。
Figure 0004099990
(数27)に本実施例での前述の該当する数値を代入すると、
Figure 0004099990
となる。
また、第13図の点線K2は10本の燃料棒が配置可能な領域を占有する水ロッドの総横断面積Awrの最大値を示しており、次式で表される。
Figure 0004099990
よって、水ロッド総横断面積の上限値に対するAwr/Achの値は、
Figure 0004099990
となる。従って、Awr/Achは、0.190以下にしなければならない(数12)。
また、本実施例において、必要とする短尺燃料棒2Bの本数は、実施例1と同様な検討によって、9〜20の範囲となった。
第13図において、(数12)は点線K1を含みかつ点線K2よりも下方の領域に該当し、(数4)は点線Jを含みかつ点線Jよりも右側の領域に該当する。第13図においてハッチングを施した領域は、10本の短尺燃料棒2Bが第12図のように配置された場合において(数1),(数4)及び(数12)から(数14)を満足する領域である。この領域になるように、Lp/Lf及び水ロッド3の横断面積が設定される。しかしながら、(数11)を満足する場合、すなわち10≦n≦20の場合においても、(数1),(数4)及び(数12)から(数14)を満足させる領域がそれぞれ存在する。
本実施例によれば、第1実施例と同様の効果が得られる。また、短尺燃料棒は最外層に配置しなければ、第12図と異なる配置としても、更に、第14図に示す燃料集合体1Fとしてもよい。燃料集合体1Fは、燃料集合体1Eにおいて3本の水ロッド3Eを1本に併せた水ロッド3Fに替えたものである。水ロッド3Fは、3本の水ロッド3Cと同じ位置に配置される。
(実施例4)
以下、本発明の第4実施例である燃料集合体1Gを、第15図を用いて説明する。燃料集合体1Gは、沸騰水型原子炉の炉心に装荷される。燃料集合体1Gは、第1図に示す燃料集合体1において短尺燃料棒2Bの配置を替えた構成を有する。すなわち、短尺燃料棒2Bは、外側から2層目の燃料棒配列内に配置されていなく、最外層の燃料棒配列内に配置されている。最外層においては、各辺の中央部に2本の短尺燃料棒2Bが互いに隣接して配置される。燃料集合体1Gの他の構成は、燃料集合体1と同じである。チャンネルボックス7の内幅Dcb,燃料棒2の外径Df,燃料棒ピッチPf、及び燃料棒2Aの燃料有効長Lfの寸法は、燃料集合体1のそれぞれと同じである。
燃料集合体1Gは、短尺燃料棒2Bの燃料有効長Lp,水ロッド3の総横断面積Awrを、(数1),(数3),(数4),(数6),(数11)及び(数15)の条件を満たすよう構成したものである。これらの数式で示される条件は、発明者らの検討によって見出されたものである。
実施例1と同様に、本実施例の燃料集合体1Gにおける圧力損失及び炉心安定性それぞれの解析から導出した境界線の一例を第16図に示す。第16図に示す境界線L6は、最外層の燃料棒配列内を含んで燃料集合体1G内に12本の短尺燃料棒2Bを配置したときの圧力損失に対する境界線である。境界線M6は、同様に、12本の短尺燃料棒2Bを配置したときの炉心安定性に対する境界線である。本実施例では、ボイド係数の改善効果が大きい位置、すなわち燃料棒配列の最外層及び水ロッドに隣接した位置に短尺燃料棒2Bを全て配置しているので、炉心安定性に対する条件(数15)が実施例1における炉心安定性に対する条件(数5)と異なっている。同じ炉心安定性であれば、本実施例における水ロッド3の総横断面積は、実施例1のそれよりも小さくなる。一方、本実施例において圧力損失から決定される条件(数6)は、短尺燃料棒の配置には影響されず、実施例1と同じである。また、Awr/Achの上限値は、実施例1と同様に(数23)で示される値である。本実施例において、必要とする短尺燃料棒2Bの本数は、実施例1と同様な検討によって、9〜20の範囲となった。
第16図においてハッチングを施した領域は、12本の短尺燃料棒2Bが第15図のように配置された場合において(数1),(数3),(数4),(数6)及び(数15)を満足する領域である。この領域になるように、Lp/Lf及び水ロッド3の横断面積が設定される。しかしながら、(数11)を満足する場合、すなわち10≦n≦20の場合においても、(数1),(数3),(数4),(数6)及び(数15)を満足させる領域がそれぞれ存在する。
短尺燃料棒2Bを最外層に配置することによって、外側から2層目の燃料棒配列に短尺燃料棒2Bを配置した場合に比べて倍以上にボイド係数が低下する。短尺燃料棒2Bが最外層のコーナーに配置したとき、ボイド係数の低下率は最も大きくなる。しかしながら、短尺燃料棒2Bを最外層のコーナーに配置した場合には、反応度損失、及びそのコーナーに配置した短尺燃料棒2Bの局所出力ピーキングが共に大きくなる。このため、短尺燃料棒2Bをそのコーナーに配置することは避けなければならない。最外層においてコーナー以外の位置に短尺燃料棒2Bを配置することによって反応度損失を低減できる。更に、本実施例のように、各水ロッド3が配置されている行又は列の燃料棒配列と交差する、最外層の燃料棒配列内の位置(具体的には最外層の各辺において中央部に配置された4本の燃料棒位置)に、短尺燃料棒2Bを配置することによって、反応度損失及び局所出力ピーキングを低減できる。
本実施例によれば、第1実施例と同様の効果が得られ、更にボイド係数を低減できる。また、反応度損失及び局所出力ピーキングも低減できる。
短尺燃料棒は、最外層内の位置及び水ロッドに隣接した位置の両方、または最外層内の位置のみに配置すれば、第15図と異なる配置としても、更に、第17図に示す燃料集合体1Hとしてもよい。燃料集合体1Hは、燃料集合体1Gにおいて水ロッド3を横断面が矩形の水ロッド3Aに替えたものである。2本の水ロッド3Aは、2本の水ロッド3と同じ位置に配置される。
(実施例5)
以下、本発明の第5実施例である燃料集合体1Iを、第18図を用いて説明する。燃料集合体1Iは、沸騰水型原子炉の炉心に装荷される。燃料集合体1Iは、第9図に示す燃料集合体1Cにおいて短尺燃料棒2Bの配置を替えた構成を有する。燃料集合体1Iの他の構成は、燃料集合体1Cと同じである。燃料集合体1Iの水ロッド3Cの配置も、燃料集合体1Cと同じである。本実施例は、12本の短尺燃料棒2Bを備えている。これらの短尺燃料棒2Bは、外側から2層目の燃料棒配列に配置されていない。8本の短尺燃料棒2Bは、最外層の燃料棒配列内に配置されており、この燃料棒配列の各辺の中央部に2本ずつ互いに隣接して配置されている。残りの4本の短尺燃料棒2Bは、燃料集合体1Iが沸騰水型原子炉の炉心内に装荷された状態で制御棒に面する側のコーナー部8側において、外側から4層目の燃料棒配列内に配置され、コーナー部8とは反対側において、外側から3層目の燃料棒配列内に配置される。これらの4本の短尺燃料棒2Bはいずれも水ロッド3Cに隣接している。チャンネルボックス7の内幅Dcb,燃料棒2の外径Df,燃料棒ピッチPf、及び燃料棒2Aの燃料有効長Lfの寸法は、燃料集合体1のそれぞれと同じである。
燃料集合体1Iは、短尺燃料棒2Bの燃料有効長Lp、水ロッド3の総横断面積Awrを、(数1),(数4),(数8),(数10),(数16)及び(数17)の条件を満たすよう構成したものである。これらの数式で示される条件は、発明者らの検討によって見出されたものである。
実施例1と同様に、本実施例の燃料集合体1Iにおける圧力損失及び炉心安定性それぞれの解析から導出した境界線の一例を第19図に示す。第19図に示す境界線L7は、最外層の燃料棒配列内を含んで燃料集合体1I内に12本の短尺燃料棒2Bを配置したときの圧力損失に対する境界線である。境界線M7は、同様に、12本の短尺燃料棒2Bを配置したときの炉心安定性に対する境界線である。本実施例では、ボイド係数の改善効果が大きい位置、すなわち燃料棒配列の最外層内の位置、及び水ロッドに隣接した位置に短尺燃料棒2Bを全て配置しているので、炉心安定性に対する条件(数17)が実施例2における炉心安定性に対する条件(数9)と異なっている。同じ炉心安定性であれば、本実施例における水ロッド3Cの総横断面積は、実施例2のそれよりも小さくなる。一方、本実施例において圧力損失から決定される条件(数10)は、短尺燃料棒の配置には影響されず、実施例2と同じである。また、Awr/Achの上限値は、実施例2と同様に(数27)で示される値である。本実施例において、必要とする短尺燃料棒2Bの本数は、実施例1と同様な検討によって、8〜20の範囲となった。
第19図においてハッチングを施した領域は、12本の短尺燃料棒2Bが第18図のように配置された場合において(数1),(数4),(数8),(数10)及び(数17)を満足する領域である。この領域になるように、Lp/Lf及び水ロッド3Cの横断面積が設定される。しかしながら、(数16)を満足する場合、すなわち8≦n≦20の場合においても、(数1),(数4),(数8),(数10)及び(数17)を満足させる領域がそれぞれ存在する。
本実施例によれば、第4実施例と同様の効果が得られる。また、短尺燃料棒は、最外層内の位置及び水ロッドに隣接した位置の両方、または最外層内の位置のみに配置すれば、第18図と異なる配置としても、更に、第20図に示す燃料集合体1Jとしてもよい。燃料集合体1Jは、燃料集合体1Iにおいて水ロッド3Cを横断面が矩形の水ロッド3Dに替えたものである。水ロッド3Dは、水ロッド3Cと同じ位置に配置される。
(実施例6)
以下、本発明の第6実施例である燃料集合体1Kを、第21図を用いて説明する。燃料集合体1Kは、沸騰水型原子炉の炉心に装荷される。燃料集合体1Kは、第12図に示す燃料集合体1Eにおいて短尺燃料棒2Bの配置を替えた構成を有する。燃料集合体1Kの他の構成は、燃料集合体1Eと同じである。燃料集合体1Kの水ロッド3Eの配置も、燃料集合体1Eと同じである。本実施例は、10本の短尺燃料棒2Bを備えている。これらの短尺燃料棒2Bは、外側から2層目の燃料棒配列に配置されていない。8本の短尺燃料棒2Bは、実施例4と同様に最外層の燃料棒配列内に配置されており、この燃料棒配列の各辺の中央部に2本ずつ互いに隣接して配置されている。残りの2本の短尺燃料棒2Bは、外側から4層目の燃料棒配列内に配置され、いずれも水ロッド3Eに隣接している。チャンネルボックス7の内幅Dcb,燃料棒2の外径Df,燃料棒ピッチPf、及び燃料棒2Aの燃料有効長Lfの寸法は、燃料集合体1のそれぞれと同じである。
燃料集合体1Kは、短尺燃料棒2Bの燃料有効長Lp、水ロッド3の総横断面積Awrを、(数1),(数4),(数12),(数14),(数18)及び(数19)の条件を満たすよう構成したものである。これらの数式で示される条件は、発明者らの検討によって見出されたものである。
実施例1と同様に、本実施例の燃料集合体1Kにおける圧力損失及び炉心安定性それぞれの解析から導出した境界線の一例を第22図に示す。第22図に示す境界線L8は、最外層の燃料棒配列内を含んで燃料集合体1K内に10本の短尺燃料棒2Bを配置したときの圧力損失に対する境界線である。境界線M8は、同様に、12本の短尺燃料棒2Bを配置したときの炉心安定性に対する境界線である。本実施例では、ボイド係数の改善効果が大きい位置、すなわち燃料棒配列の最外層内の位置及び水ロッドに隣接した位置に短尺燃料棒2Bを全て配置しているので、炉心安定性に対する条件(数19)が実施例3における炉心安定性に対する条件(数13)と異なっている。同じ炉心安定性であれば、本実施例における水ロッド3Cの総横断面積は、実施例2のそれよりも小さくなる。一方、本実施例において圧力損失から決定される条件(数14)は、短尺燃料棒の配置には影響されず、実施例3と同じである。また、Awr/Achの上限値は、実施例3と同様に(数31)で示される値である。本実施例において、必要とする短尺燃料棒2Bの本数は、実施例1と同様な検討によって、7〜20の範囲となった。
第22図においてハッチングを施した領域は、10本の短尺燃料棒2Bが第21図のように配置された場合において(数1),(数4),(数12),(数14)及び(数19)を満足する領域である。この領域になるように、Lp/Lf及び水ロッド3Eの横断面積が設定される。しかしながら、(数18)を満足する場合、すなわち7≦n≦20の場合においても、(数1),(数4),(数12),(数14)及び(数19)を満足させる領域がそれぞれ存在する。
本実施例によれば、第4実施例と同様の効果が得られる。また、短尺燃料棒は、最外層内の位置及び水ロッドに隣接した位置、または最外層内の位置のみに配置すれば、第21図と異なる配置としても、更に、第22図に示す燃料集合体1Lとしてもよい。燃料集合体1Lは、燃料集合体1Kにおいて水ロッド3Eを横断面が矩形の水ロッド3Fに替えたものである。水ロッド3Fは、水ロッド3Eと同じ位置に配置される。
産業上の利用可能性
本発明の燃料集合体は、沸騰水型原子炉の炉心に装荷するのに好都合である。
【図面の簡単な説明】
第1図は本発明の好適な一実施例である燃料集合体の縦断面図、第2図は第1図に示す燃料集合体の横断面図、第3図は圧力損失から決定された、短尺燃料棒2Bの燃料有効長Lp/燃料棒2Aの燃料有効長Lfと水ロッド総横断面積Awr/燃料集合体内の冷却材流路面積Achとの関係を示す特性図、第4図は安定な状態における、安定性の指標である減幅比の説明図、第5図は不安定な状態における、安定性の指標である減幅比の説明図、第6図は炉心安定性から決定された、短尺燃料棒2Bの燃料有効長Lp/燃料棒2Aの燃料有効長Lfと水ロッド総横断面積Awr/燃料集合体内の冷却材流路面積Achとの関係を示す特性図、第7図は第3図及び第6図に示された各特性を示す特性図、第8図及び第9図は本発明の他の実施例である燃料集合体の横断面図、第10図は第9図の燃料集合体における、圧力損失及び炉心安定性から決定された、短尺燃料棒2Bの燃料有効長Lp/燃料棒2Aの燃料有効長Lfと水ロッド総横断面積Awr/燃料集合体内の冷却材流路面積Achとの関係を示す特性図、第11図及び第12図は本発明の他の実施例である燃料集合体の横断面図、第13図は第12図の燃料集合体における、圧力損失及び炉心安定性から決定された、短尺燃料棒2Bの燃料有効長Lp/燃料棒2Aの燃料有効長Lfと水ロッド総横断面積Awr/燃料集合体内の冷却材流路面積Achとの関係を示す特性図、第14図及び第15図は本発明の他の実施例である燃料集合体の横断面図、第16図は第15図の燃料集合体における、圧力損失及び炉心安定性から決定された、短尺燃料棒2Bの燃料有効長Lp/燃料棒2Aの燃料有効長Lfと水ロッド総横断面積Awr/燃料集合体内の冷却材流路面積Achとの関係を示す特性図、第17図及び第18図は本発明の他の実施例である燃料集合体の横断面図、第19図は第18図の燃料集合体における、圧力損失及び炉心安定性から決定された、短尺燃料棒2Bの燃料有効長Lp/燃料棒2Aの燃料有効長Lfと水ロッド総横断面積Awr/燃料集合体内の冷却材流路面積Achとの関係を示す特性図、第20図及び第21図は本発明の他の実施例である燃料集合体の横断面図、第22図は第21図の燃料集合体における、圧力損失及び炉心安定性から決定された、短尺燃料棒2Bの燃料有効長Lp/燃料棒2Aの燃料有効長Lfと水ロッド総横断面積Awr/燃料集合体内の冷却材流路面積Achとの関係を示す特性図、第23図は本発明の他の実施例である燃料集合体の横断面図である。

Claims (7)

  1. チャンネルボックスの内幅が134mmであり、外径が10 . 26 mm 複数の第1燃料棒、及び前記第1燃料棒よりも長さが短い外径が10 . 26 mm 複数の第2燃料棒を有し、これらの燃料棒が10行10列の燃料棒配列内にピッチ12 . 95mmで配置され、8本の燃料棒が配置可能な領域を占有する複数の水ロッドを備え、前記第2燃料棒が最外層の燃料棒配列内に配置されていない燃料集合体であって、前記水ロッドの横断面積の総和をAwr,前記燃料集合体下部での冷却材流路の横断面積をAch,前記第1燃料棒の燃料有効長をLf,前記第2燃料棒の本数をn,前記第2燃料棒の燃料有効長をLp、及び平均燃焼度をB(GWd/t)としたとき、
    B≧60
    15≦n≦20(n:整数)
    Awr/Ach≦0.149
    Lp/Lf≧11/24
    Awr/Ach≧(3.00×10-4×n2+6.00×10-4
    ×n−1.2×10-2)×(Lp/Lf−1)
    +1.75×10-1
    Awr/Ach≦(8.63×10-4×n2−6.09×10-2×n
    +1.33×10-1)×(Lp/Lf−8.32
    ×10-1
    を満足することを特徴とする燃料集合体。
  2. 請求項1において、前記第2燃料棒の一部が前記水ロッドに隣接して配置され、残りの前記第2燃料棒は外側から2層目の燃料棒配列内に配置されている燃料集合体。
  3. 請求項1又は2において、前記水ロッドは4本の燃料棒が配置可能な領域に配置される横断面積を有し、2本の前記水ロッドを備えている燃料集合体。
  4. チャンネルボックスの内幅が134mmであり、外径が10 . 26 mm 複数の第1燃料棒、及び前記第1燃料棒よりも長さが短い外径が10 . 26 mm 複数の第2燃料棒を有し、これらの燃料棒が10行10列の燃料棒配列内にピッチ12 . 95mmで配置され、10本の燃料棒が配置可能な領域を占有する複数の水ロッドを備え、前記第2燃料棒が最外層の燃料棒配列内に配置されていない燃料集合体であって、
    前記水ロッドの横断面積の総和をAwr,前記燃料集合体下部での冷却材流路の横断面積をAch,前記第1燃料棒の燃料有効長をLf,前記第2燃料棒の本数をn,前記第2燃料棒の燃料有効長をLp、及び平均燃焼度をB(GWd/t)としたとき、
    B≧60
    9≦n≦20(n:整数)
    Awr/Ach≦0.190
    Lp/Lf≧11/24
    Awr/Ach≧(2.31×10-4×n2+3.69×10-3×n
    −2.71×10-2)×(Lp/Lf−1)
    +1.60×10-1
    Awr/Ach≦(6.18×10-4×n2−5.18×10-2×n
    +4.41×10-2)×(Lp/Lf−8.72
    ×10-1
    を満足することを特徴とする燃料集合体。
  5. 請求項4において、前記第2燃料棒の少なくとも一部が、外側から2層目の燃料棒配列内に配置されている燃料集合体。
  6. 請求項4又は5において、前記水ロッドは、制御棒に面するコーナー部に対する対角線と直交する他の対角線上に配置されている燃料集合体。
  7. チャンネルボックスの内幅が134mmであり、外径が10 . 26 mm 複数の第1燃料棒、及び前記第1燃料棒よりも長さが短い外径が10 . 26 mm 複数の第2燃料棒を有し、これらの燃料棒が10行10列の燃料棒配列内にピッチ12 . 95 mmで配置され、8本の燃料棒が配置可能な領域を占有する複数の水ロッドを備え、前記第2燃料棒が、最外層の燃料棒配列内の位置及び前記水ロッドに隣接した位置の両方、及び最外層の燃料棒配列内の位置のみ、のいずれかに配置され、2層目の燃料棒配列内には前記第1燃料棒のみが配置された燃料集合体であって、
    前記水ロッドの横断面積の総和をAwr,前記燃料集合体下部での冷却材流路の横断面積をAch,前記第1燃料棒の燃料有効長をLf,前記第2燃料棒の本数をn,前記第2燃料棒の燃料有効長をLp、及び平均燃焼度をB(GWd/t)としたとき、
    B≧60
    9≦n≦20(n:整数)
    Awr/Ach≦0.149
    Lp/Lf≧11/24
    Awr/Ach≧(3.00×10-4×n2+6.00×10-4×n
    +6.80×10-2)×(Lp/Lf−1)
    +1.75×10-1
    Awr/Ach≦(8.63×10-4×n2−6.09×10-2×n
    +1.33×10-1)×(Lp/Lf−8.32
    ×10-1
    を満足することを特徴とする燃料集合体。
JP2001527296A 1999-09-29 1999-09-29 燃料集合体 Expired - Fee Related JP4099990B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/005354 WO2001024196A1 (fr) 1999-09-29 1999-09-29 Ensemble combustible

Publications (1)

Publication Number Publication Date
JP4099990B2 true JP4099990B2 (ja) 2008-06-11

Family

ID=14236840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001527296A Expired - Fee Related JP4099990B2 (ja) 1999-09-29 1999-09-29 燃料集合体

Country Status (2)

Country Link
JP (1) JP4099990B2 (ja)
WO (1) WO2001024196A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559586B2 (en) * 2003-12-31 2013-10-15 Global Nuclear Fuel-Americas, Llc Distributed clumping of part-length rods for a reactor fuel bundle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2873132B2 (ja) * 1991-12-26 1999-03-24 株式会社日立製作所 燃料集合体
JP3159959B2 (ja) * 1992-08-06 2001-04-23 株式会社日立製作所 燃料集合体
JP2804205B2 (ja) * 1992-09-18 1998-09-24 株式会社日立製作所 燃料集合体及び炉心
JP3165278B2 (ja) * 1993-04-12 2001-05-14 株式会社日立製作所 原子炉燃料集合体及び上部タイプレート
JP3356542B2 (ja) * 1994-05-09 2002-12-16 株式会社東芝 燃料集合体
JP3514869B2 (ja) * 1995-04-20 2004-03-31 株式会社東芝 沸騰水型原子炉用燃料集合体
JP3262057B2 (ja) * 1997-02-13 2002-03-04 株式会社日立製作所 燃料集合体
JP3262022B2 (ja) * 1997-05-23 2002-03-04 株式会社日立製作所 燃料集合体
JP2856728B2 (ja) * 1997-10-31 1999-02-10 株式会社日立製作所 燃料集合体
JP2873230B2 (ja) * 1998-06-12 1999-03-24 株式会社日立製作所 燃料集合体

Also Published As

Publication number Publication date
WO2001024196A1 (fr) 2001-04-05

Similar Documents

Publication Publication Date Title
JP3977532B2 (ja) 燃料集合体、原子炉の炉心及びチャンネルボックス
US4926450A (en) Fuel assembly
US4632805A (en) Fuel assembly with square cross section for water-cooled nuclear reactors
JP4099990B2 (ja) 燃料集合体
JPH04143694A (ja) 燃料集合体
US6735267B2 (en) Fuel assembly
US6885722B2 (en) Fuel assembly
US6061416A (en) Fuel assembly
US5383229A (en) Fuel assembly and reactor core
US5349619A (en) Fuel assembly for light water reactor and light water reactor core
JP3177062B2 (ja) 軽水炉用燃料集合体及び軽水炉炉心
JPH0345354B2 (ja)
JPS6318152B2 (ja)
JP3036129B2 (ja) 燃料集合体
JP2563287B2 (ja) 原子炉用燃料集合体
JPH0816711B2 (ja) 燃料集合体
US4826654A (en) Fuel assembly
JP3012687B2 (ja) 燃料集合体
JPS6367870B2 (ja)
JP2522501B2 (ja) 燃料集合体
JP3164670B2 (ja) 燃料集合体
JPH065316B2 (ja) 燃料集合体
JP2626841B2 (ja) 沸騰水型原子炉用燃料集合体
JP2002062390A (ja) 沸騰水型原子炉用燃料集合体
JPH0534479A (ja) 燃料集合体及び炉心

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040330

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees