JP4097038B2 - 文化財、彫刻品等の立体形状測定方法と装置 - Google Patents

文化財、彫刻品等の立体形状測定方法と装置 Download PDF

Info

Publication number
JP4097038B2
JP4097038B2 JP2004364408A JP2004364408A JP4097038B2 JP 4097038 B2 JP4097038 B2 JP 4097038B2 JP 2004364408 A JP2004364408 A JP 2004364408A JP 2004364408 A JP2004364408 A JP 2004364408A JP 4097038 B2 JP4097038 B2 JP 4097038B2
Authority
JP
Japan
Prior art keywords
reflecting mirror
optical system
concave reflecting
photographing
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004364408A
Other languages
English (en)
Other versions
JP2005208048A (ja
Inventor
俊治 村井
章茂 白澤
正樹 岩倉
晴展 小日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airport Facilities Co Ltd
Original Assignee
Kokusai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Kogyo Co Ltd filed Critical Kokusai Kogyo Co Ltd
Priority to JP2004364408A priority Critical patent/JP4097038B2/ja
Publication of JP2005208048A publication Critical patent/JP2005208048A/ja
Application granted granted Critical
Publication of JP4097038B2 publication Critical patent/JP4097038B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、埋蔵文化財、彫刻品等の立体形状の測定方法と装置に関し、特に、奥行きのある文化財、彫刻品等の立体形状を正確に再現することのできる文化財、彫刻品等の立体形状測定方法と装置に関するものである。
近年、埋蔵文化財の調査物件が爆発的に増加しているが、その調査は報告書の提出が義務付けられており、これに付随する膨大な出土遺物実測図の製作が大きな負担になっている。しかもこの実測図製作には、対象物に関する知識、図化の方法に関する知識、図化の技術など、複合的な熟練が必要であり、作業の効率化を妨げている。
また、このような文化財の形状の計測は、直接、人がスケールやデバイス等を当てて測りながらスケッチするか、接触式の計測器で土器などの表面をなぞるようにして形状を計測するなどの方法と、ステレオ撮影装置や、スリット光をあてて撮影したりレーザー光をあてるなどの種々の手段によって画像として取り込み、その画像を計測する方法などがあるが、文化財や彫刻などの芸術品における計測の場合、直接、被測定体にスケールやデバイス等を当てたり接触式の計測器で形状を計測するなどの測定子を接触させることが困難であることが多い。そのため、種々の手段によって画像として取り込んで、その画像を計測する方法が有効である。
例えば特許文献1に示されているステレオ撮影装置は、対象物を撮影するステレオ撮影部と、対象物との位置関係を相対的に移動させる相対位置変更部と、ステレオ撮影部が対象物を撮影する複数の方向におけるステレオ撮影パラメータを記憶する手段と、前記ステレオ撮影パラメータの記憶された前記複数の方向から、ステレオ撮影部により対象物を撮影して、対象物のステレオ画像を生成するステレオ画像生成手段と、対象物のステレオ画像から対象物の表面形状を測定する表面形状演算処理手段とを備えて表面形状を測定するようにしている。
しかしながら、被測定体をこのようにして画像として取り込む方法では、精度がその画像取り込み方法に大きく依存し、精度を上げようとすると高額になって産業上、有効な手段が得られ難いのが現状である。すなわち一般的なフィルムや撮像素子と、光学系として収束光学系を用いたシステムでは、立体形状では奥行きの距離差があるため、正確な形状の再現ができない。これを補正するため、距離差を計算によって補正する方法もあるが容易ではなく、特に大量の埋蔵文化財の計測作業は迅速性を求められるため、適当ではない。
そのため、特許文献2に示されたようなテレセントリック光学系を用いた形状寸法測定機が提案されている。すなわちテレセントリック光学系は図17に示したように、レンズ11とレンズ12の焦点位置(fo、fi)13に設けられた絞り14により、高さhoの被測定体15側から光軸16に対して斜めにレンズ11に入射した光線は焦点13を通過できず、光軸16に平行にレンズ11に入射する光線17のみが、絞り14を通過してレンズ12により結像面18に高さhiの像19として結像される。従って、被測定体15は焦点深度が非常に深くなると共に、被測定体15はどの位置にあっても結像面18では像高hiが維持される。
特開2003−42730公報 特開2001−27726公報
しかしながらこのテレセントリック光学系も、平行光線を導くために被測定体15の大きさ(高さho)を超える口径の光学系を必要とし、例えば200mm程度の被測定体を対象とする場合、これ以上の口径のレンズを用意する必要があって、非常に高価となってしまう。そのため、被測定体15、又はカメラを移動して複数の画像を取り込み、それを合成して一枚の画像とする方法もあるが、被測定体15、又はカメラを正確に移動させる装置が必要になると共に移動量を計測して指標を合わせるための装置が必要となり、必然的に高価になると共に画像を合成するためそれだけ精度が落ちてしまう。
なお、このテレセントリック光学系は図18に示したように、凹面反射鏡21を用いた場合もレンズを用いた場合と同様に成立するから、天体観測用に使用される大口径の凹面反射鏡を使用して構成することもできる。この場合、凹面反射鏡21とレンズ22の焦点位置23に設けられた絞り24により、図17における25’の位置に被測定体を置いたレンズの場合と同様に、被測定体25側から光軸26に対して斜めに凹面反射鏡21に入射した光線は焦点23を通過できず、光軸26に平行に凹面反射鏡21に入射する光線27のみが、絞り24を通過してレンズ22により結像面28に像29として結像される。
また凹面反射鏡21は、レンズ11のような色収差の心配がないから大口径としても安価に構成できるが、反面、凹面反射鏡21の中央部は絞り24が置かれてレンズ22へ入射する光線の光路となり、被測定体25を置くことができないから、被測定体25を撮影できる範囲は口径の1/3以下となり、非常に大きな凹面反射鏡21を用いる必要がある。望遠鏡の場合はこのような形式でも大きな問題はないが、近接物体の測定に於いては口径の増大は実用的ではない。
上記事情に鑑み本発明は、奥行きのある文化財、彫刻品等の被測定体の立体形状を、小型、安価で、しかも正確に再現することのできる文化財、彫刻品等の立体形状測定方法と装置を提供することが課題である。
上記課題を解決するため本発明になる文化財、彫刻品等の立体形状測定方法は、
凹面反射鏡と、被測定体像を撮影する撮影装置の光学系とで構成したテレセントリック光学系により、前記被測定体像を前記撮影装置に結像させて測定する文化財、彫刻品等の立体形状測定方法であって、
前記テレセントリック光学系を構成する凹面反射鏡への被測定体像の入射光軸線と、出射光軸線とが異なるよう前記凹面反射鏡を傾斜させ、前記凹面反射鏡への被測定体像の入射光軸線を、反射鏡で反射した後前記凹面反射鏡へ入射させて測定することを特徴とする。
そして、前記凹面反射鏡からの出射光軸線を反射鏡で反射した後、前記撮影装置へ送るようにする。
また、前記凹面反射鏡への入射光軸線と出射光軸線のなす角度は、略20度以下とする。
また本発明になる文化財、彫刻品等の立体形状測定方法は、凹面反射鏡と、被測定体像を撮影する撮影装置の光学系とで構成したテレセントリック光学系により、前記被測定体像を前記撮影装置に結像させて測定する文化財、彫刻品等の立体形状測定方法であって、
前記テレセントリック光学系を構成する凹面反射鏡への被測定体像を、ハーフミラーで反射した後前記凹面反射鏡へ入射させ、該凹面反射鏡で反射した被測定体像を前記ハーフミラーを透過して前記撮影装置へ導いて測定することを特徴とする。
そして本発明になる文化財、彫刻品等の立体形状測定装置は、
凹面反射鏡と、被測定体像を撮影して測定する撮影装置の光学系とで構成したテレセントリック光学系とで構成された文化財、彫刻品等の立体形状測定装置であって、
前記凹面反射鏡から見て、前記撮影装置と前記被測定体とが重ならないよう光学系が構成されるとともに、前記テレセントリック光学系は、両側テレセントリック光学系からなること特徴とする。
(削除)
また本発明では、凹面反射鏡と、被測定体像を撮影して測定する撮影装置の光学系とで構成したテレセントリック光学系とで構成された文化財、彫刻品等の立体形状測定装置であって、前記凹面反射鏡から見て、前記撮影装置と前記被測定体とが重ならないよう光学系が構成されるとともに、前記被測定体像を、反射した後前記凹面反射鏡へ入射させる反射鏡を設けてなることを特徴とする。
さらに、前記凹面反射鏡からの被測定体像を、反射した後前記撮影装置へ送る反射鏡を設ける。
さらに、前記立体形状測定装置を構成する凹面反射鏡と撮影装置の光学系、及び撮影装置を筐体に収容し、該筐体に、前記被測定体を載置して、前記被測定体から前記凹面反射鏡までの距離と凹面反射鏡への入射光軸線に対する位置を変化可能とする機構を設ける。また前記被測定体像を反射した後前記凹面反射鏡へ入射させ、同凹面反射鏡で反射した被測定体像を透過して前記撮影装置に導くハーフミラーを設ける。
また、前記立体形状測定装置を構成する凹面反射鏡と撮影装置の光学系、及び撮影装置を筐体に収容し、該筐体の撮影用開口に、スライド、または任意角度回動可能な反射ミラーを設ける。
さらに、前記立体形状測定装置を載置し、前記立体形状測定装置の前記被測定体に対する距離と高さを変更する機構を有する架台を設けてもよい。
そして、前記立体形状測定装置を構成する凹面反射鏡と撮影装置の光学系、及び撮影装置を筐体に収容し、該筐体の撮影用開口に、所定部分を遮光可能としたリング状ライトを設ける。
本発明においては、凹面反射鏡と、被測定体像を撮影する撮影装置の光学系とで構成したテレセントリック光学系を用い、このテレセントリック光学系を構成する凹面反射鏡への被測定体像の入射光軸線と、出射光軸線とが異なるよう前記凹面反射鏡を傾斜させ、凹面反射鏡から見て、撮影装置と被測定体とが重ならないよう光学系を構成することにより、従来の凹面反射鏡を用いたテレセントリック光学系の場合のように、凹面反射鏡の中央部に被測定体を置くことができなくなることによって撮影できる範囲が口径の1/3以下となり、非常に大きな凹面反射鏡を用いる必要があるといった問題を起こさず、小型、安価で、しかも正確に被測定体を再現して測定することのできる、文化財、彫刻品等の立体形状測定方法と装置を提供することができる。
そして、前記凹面反射鏡への被測定体像の入射光軸線を、反射鏡で反射した後前記凹面反射鏡へ入射させるようにしたり、前記凹面反射鏡からの出射光軸線を反射鏡で反射した後、前記撮影装置へ送るようにしたりすることにより、被測定体を任意の位置に設置したり小型化が可能な立体形状測定方法と装置を提供することができる。
また前記被測定体像を反射した後前記凹面反射鏡へ入射させ、同凹面反射鏡で反射した被測定体像を透過して前記撮影装置に導くハーフミラーを設けることにより、前記凹面反射鏡に入射画像光に対して角度を付ける必要がなくなり、このため画像が角度を付けた方向に長くなることを是正することができる。
また、前記凹面反射鏡への入射光軸線と出射光軸線のなす角度は、略20度以下とすることで、収差及び歪曲は無視できる程度となる。
そして、前記テレセントリック光学系は、両側テレセントリック光学系であることにより、被測定体像を正確に縮小した画像を得ることができる。
さらに、前記立体形状測定装置を構成する凹面反射鏡と撮影装置の光学系、及び撮影装置を筐体に収容し、該筐体に、前記被測定体を載置して前記被測定体から前記凹面反射鏡までの距離と凹面反射鏡への入射光軸線に対する位置を変更する機構を設けることにより、屋外においても好適な条件で立体形状が測定できる装置を提供することができる。
また、前記立体形状測定装置を構成する凹面反射鏡と撮影装置の光学系、及び撮影装置を筐体に収容し、該筐体の撮影用開口に、スライド、または任意角度回動可能な反射ミラーを設けたり、立体形状測定装置を載置し、前記立体形状測定装置の前記被測定体に対する距離と高さを変更する機構を有する架台を設けたりすることにより、被測定体を動かさずに反射ミラーや架台を動かし、種々の角度から測定することができるようにすることができる。
そして、前記立体形状測定装置を構成する凹面反射鏡と撮影装置の光学系、及び撮影装置を筐体に収容し、該筐体の撮影用開口に、所定部分を遮光可能としたリング状ライトを設けることにより、被測定体に最も適した照明状態で測定を行うことができる。
以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明になる文化財、彫刻品等の立体形状測定方法と装置に用いる反射鏡を用いたテレセントリック光学系の構成を説明するための第1実施例の図、図2は光路の比較例を示す概略図、図3は第2実施例の構成概略図、図4は第3実施例の構成概略図、図5、図6は本発明になる文化財、彫刻品等の立体形状測定装置における第4実施例の構成概略図、図7は本発明になる文化財、彫刻品等の立体形状測定装置における第4実施例を用い、被測定体を側面から測定する場合(A)と、上面から測定する場合(B)の測定方法を説明するための図、図8は本発明になる文化財、彫刻品等の立体形状測定装置における第5実施例を用い、被測定体を側面から測定する場合(A)、(B)と、上面から測定する場合(C)、(D)の測定方法を説明するための図、図9はハーフミラーを用いた本発明装置の第6実施例を示す概略構成図、図10は、本発明に用いるラボジャッキの一例、図11は本発明に用いるZステージの一例、図12は本発明に用いるパノラマボールヘッドの一例、図13は本発明おける被測定体を保持する、ジンバル構造を用いたステージの一例、図14は本発明に用いる被測定体を保持するステージを上下させる機構の一例、図15は本発明に用いる被測定体を任意の方向から照明できるようにした照明装置の一例、図16は被測定体からの光を本発明の立体形状測定装置方向へ向けるための反射ミラー装置の一例である。
本発明になる文化財、彫刻品等の立体形状測定方法と装置は、図1にその構成の考え方を示したように、凹面反射鏡31と、撮影装置であるカメラ32の像側レンズ33との焦点位置34に設けられた絞り35によりテレセントリック光学系を構成し、被測定体36は、凹面反射鏡31からこのカメラ32側への出射光軸37とは異なった入射光軸38上の36、または反射鏡39によって光路を曲げられた36の位置に置き、凹面反射鏡31を用いたテレセントリック光学系への入射光軸38と、出射光軸37とを異ならせるよう凹面反射鏡31を傾斜させて測定するようにしたものである。すなわち、このテレセントリック光学系を構成する凹面反射鏡31から見て、被測定体36、または被測定体36からの光路を曲げる反射鏡39からの像を撮影するカメラ32と、被測定体36とが、互いに重ならずに配置できるようにしたものである。
このようにすることにより、凹面反射鏡31の中央部の光路を邪魔する物がないから、凹面反射鏡31の口径とほぼ同じ大きさの被測定体36を測定することが可能となり、図17に示した構成の場合のように、非常に大きな凹面反射鏡21を用いる必要がなくなる。しかも、例えば口径200mm、焦点距離900mm程度の凹面反射鏡31を用い、撮影装置としてのカメラ32と被測定体36、すなわち出射光軸37と入射光軸38とを、凹面反射鏡31の光軸に対してそれぞれ10度傾けて反射角20度とした場合の収差及び歪曲は無視できる程度であり、また焦点距離が大きいことで焦点深度も大きく、奥行きのある文化財、彫刻品等の被測定体36の立体形状を、小型、安価で、しかも正確に再現して測定することのできる文化財、彫刻品等の立体形状測定方法と装置を提供することができる。
図2は、光路の比較例を示す概略図である。この比較例においては、文化財、彫刻品等の立体形状測定装置の筐体40内に、主鏡である凹面(放物面)反射鏡41、平面反射鏡、または反射面を設けたプリズムなどで構成した副鏡42、テレセントリック光学系の後部を構成するレンズ系43と主鏡41の焦点位置に置かれた絞り44、画像取り込み用のフィルム、又はCCDやCMOSなどの電子撮像素子を使ったカメラ45、雲台を有する三脚46へ筐体40を取り付ける機構などが設けられ、被測定体47の像をカメラ45で撮影できるようになっている。
(削除)
図3は、本発明になる文化財、彫刻品等の立体形状測定装置における第2実施例の構成概略図である。図2に示した比較例では、副鏡42によって光路を折り曲げていたが、大きさの制限がない場合はこの図3の第2実施例のように、光路を折り曲げずに凹面(放物面)反射鏡51からの反射光を、レンズ52を通して撮像素子などで構成したカメラ53に直接入るようにしても良い。
この図3において、54は凹面反射鏡51とレンズ52の焦点位置に置いた絞り、55は被測定体56からの光路を曲げる副鏡としての反射ミラーで、被測定体56からの光は反射ミラー55で凹面反射鏡51側に向けられ、この凹面反射鏡51で反射されてレンズ52を通してカメラ53に入射する。そしてこの図3に示した第2実施例においては、被測定体56の大きさに対応して被測定体56の撮影高さや凹面反射鏡51(反射ミラー55)までの距離を容易に変えられるよう、ラック57と噛み合うピニオンを設けた上下ハンドル58の操作によって上下するアーム59上に、合焦ハンドル60によって回転されるボールネジ61のような精密移動機構で移動され、回転テーブル62によって回転可能としたワークホルダ63が設けられ、更に被測定体56を照明するため、リングライト64などが設けられている。
そのため、この図3に示した第2実施例の立体形状測定装置では、ワークホルダ63に被測定体56を載置し、上下ハンドル58によってワークホルダ63を上下させて被測定体56を最適な高さとすると共に、合焦ハンドル60を操作して反射ミラー55に対して前後させ、最適なピント位置に移動させる。そしてリングライト64を点灯して被測定体56を照明し、さらに必要に応じて回転テーブル62を回転させることで、被測定体56をワークホルダ63に載置した後は、被測定体56に全く手を触れずにその全周の撮影ができるようになっている。
このように立体形状測定装置を構成することにより、比較的小さな文化財、彫刻品等を簡単、迅速にその形状を測定することができる。なお、上下ハンドル58や合焦ハンドル60でワークホルダ63を上下、前後させる機構は、ラックピニオンやボールネジだけに限らず、例えばパンタグラフ式の上下機構やスライド式の移動機構など、一般的に用いられる上下機構や移動機構を用いることができることは自明である。
図4は、本発明になる文化財、彫刻品等の立体形状測定装置における第3実施例の構成概略図で、図中、図3の第2実施例と同じ構成要素には同一番号を付してある。この第3実施例は、図3に示した第2実施例の形状測定装置における被測定体56を載置する機構を形状測定装置内に入れ、図3に於ける反射ミラー55を使わずに測定ができるようにしたもので、凹面反射鏡51で反射した光を、焦点位置に設けた絞り54、撮影レンズ52を通してカメラ53で撮影する点は同一である。
そして図3に於けるワークホルダ63は、この図4においてはステージ65としてステージリフトハンドル66によって上下できるようにされ、左右微動ノブ67により図上手前と奥側への微動が、前後微動ノブ68の動きがクラッチ69で伝えられて図上左右方向への微動が、そして引き出しハンドル70によってステージ65が図上左方向に引き出せるようになっており、その引き出した状態で、被測定体をステージ65上に載置し、ステージ65を図上右方向に押し込んで被測定体を測定位置に位置させることで測定がおこなえるようになっている。そして立体形状測定装置内の測定位置に被測定体が位置したとき、その被測定体を照明するため、リング蛍光灯71の光を拡散して被測定体を照明できるよう、拡散シート72、拡散板73が設けられ、蛍光灯の熱を排出するために冷却ファン74が設置されている。また、そのリング蛍光灯71は、照明調光ノブ75によって明るさが調節できるようにされ、カメラ53で撮影された被測定体の像は、モニター76で見られるようになっている。そして撮影が行われているとき、振動がこの立体形状測定装置に伝わって像がぶれないよう、足部に防振パッド77が設けられている。
このようにすることにより、図3における反射ミラー55を使わずに済む分、立体形状測定装置を安価に構成できると共に、外光に影響されずに一定の光量のもと、光量損失を最小限に押さえ、さらにモニター76によって撮影状況を確認しながら撮影することが可能となる。
図5は、図2の比較例で示した文化財、彫刻品等の立体形状測定装置における、平面反射鏡、または反射面を設けたプリズムなどで構成した副鏡42、テレセントリック光学系の後部を構成するレンズ系43と主鏡(凹面反射鏡)41の焦点位置に置かれた絞り44、画像取り込み用のフィルム、又はCCDやCMOSなどの電子撮像素子を使ったカメラ45を、図6に示したように、筐体80内に設けた主鏡である凹面(放物面)反射鏡41の上側に設置し、被測定体を動かさずに側面と上面からの計測を可能にする架台81に設置できるようにした本発明の第4実施例である。なお、主鏡(凹面反射鏡)41は、筐体80内で画角の変更などに対応できるよう、取り外し可能に構成されている。
この第4実施例では、立体形状測定装置の筐体80の撮影用開口82前面にハンドル83によって所定角度回動できるよう構成した反射ミラー84が設けられ、この反射ミラー84を跳ね上げたときは図7(A)に示したように被測定体85の側面を、また、図7(B)のように反射ミラー84を撮影用開口82に対して45度とすることで、被測定体85の上面を測定することができるよう構成してある。
すなわちこの第4実施例における架台81は、立体形状測定装置の筐体80を載置する上部枠86が、足部87に取り付けた油入りダンパーやガス入りスプリングなどの緩衝機構88により、図5(B)の状態から図5(A)の状態に立ち上がれるよう構成され、さらにハンドル89で回転できるようにされた軸90に切られたネジにより、立体形状測定装置の筐体80を載置する載置台91が移動して、ピントの調節や被測定体に対する距離の調節を行えるようになっている。
そのため図7(A)に示したように、被測定体85の側面を測定するときは足部87を寝た状態として反射ミラー84を跳ね上げ、ハンドル89によって立体形状測定装置の筐体80を前後に移動させて、被測定体85との距離を調節して最適な測定位置とし、被測定体85の上面を測定するときは、緩衝機構88を用いて足部87を立ち上げ、さらに反射ミラー84を撮影用開口82に対して45度とすると、足部87の立ち上がりによって立体形状測定装置の筐体80が被測定体85に近づくと共に、反射ミラー84を被測定体85の上に位置させることができ、被測定体85の上面からの光は反射ミラー84で反射されて撮影用開口82から立体形状測定装置の筐体80内に送り込まれる。
そのため、被測定体85を寝かせたり高さや位置を調節することなく、また、被測定体85からの距離を調節することなく側面からの測定距離と、上面からの測定距離を略一定に測定することも可能となり、非常に簡単に被測定体85の側面、上面の測定をおこなうことができる。
なお、この図5、図7に示した第4実施例においては、反射ミラー84を跳ね上げ式としたが、この場合、図7(B)のように45度の位置での位置決めが難しいことも考えられる。そのため、この第4実施例の変形例としての図8に示した第5実施例では、反射ミラー92を一定角度で(例えば45度)固定とし、スライド式としたものである。すなわち、図8(A)のように被測定体85の側面を測定するときは、図7(A)に示した場合と同様足部87を寝た状態として反射ミラー92を図8(B)のようにスライドさせ、ハンドル89によって立体形状測定装置の筐体80を前後に移動させて、被測定体85との距離を調節して最適な測定位置とする。そして被測定体85の上部を測定するときは、図8(C)のように緩衝機構88を用いて足部87を立ち上げ、さらに図8(D)のように反射ミラー92を撮影用開口82の位置とし、足部87の立ち上がりによって立体形状測定装置の筐体80を被測定体85に近づけると共に、反射ミラー92により、被測定体85の上面からの光を反射ミラー92で反射して撮影用開口82から立体形状測定装置の筐体80内に送り込むようにする。このようにすることで、反射ミラー92は常に一定角度のまま測定をおこなうことができる。
図9は、ハーフミラーを用いた本発明装置の第6実施例を示す。図6において、この第6実施例においては、文化財、彫刻品等の立体形状測定装置の筐体110内に、主鏡である凹面(放物面)反射鏡111、平面反射鏡、または反射面を設けたプリズムなどで構成した副鏡112、撮影装置であるカメラ113の像側レンズ114との焦点位置115に設けられた絞り116、及び凹面反射鏡111と副鏡112との間に凹面反射鏡111の出射光軸117に対して45度に角度で配置されたハーフミラー119によりテレセントリック光学系が構成されている。
かかる装置において、被測定体120の像はハーフミラー119に当って直角方向に曲げられ、凹面反射鏡111に当り、凹面反射鏡111で反射されて、ハーフミラー119を透過した後、副鏡112で光軸118の方向に反射され、焦点位置115にある絞り116を通って被測定体120の像をカメラ113で撮影できるようになっている。
凹面反射鏡に入射する被測定体の画像に対し、凹面反射鏡に角度を付けて入射させる場合、画像が角度を付けた方向に長くなる欠点があるが、本第6実施例によれば、ハーフミラー119により被測定体120の画像を凹面反射鏡111側に反射させ、かつ凹面反射鏡111からの反射光を透過した副鏡112に当てるようにしているので、前述の欠点を解消することができるという利点がある。
なお、前記第4、第5実施例の説明に於いては、被測定体85を載置する台96については特に説明してこなかったが、この台96は、図10に示したような市販のラボジャッキや図11に示したようなZステージ94などを用いることができる。
この図10(A)に示したラボジャッキ93は、パンタグラフ101の支持部材102に切られたメネジにハンドル103で回転可能にした軸104に切られたネジを螺合させ、ステージ105を上下できるようにして被測定体85を上下させるもので、図10(B)のものは更にステージ105に、ウオームギアを組み込んだハンドル106によって回転可能に構成された回転ステージ107を載せ、ハンドル106の操作によって、回転ステージ107に載せた被測定体85を回転できるようにしたものである。
また図11に示したZステージ94は、回転環121の内側に切られたメネジに軸122に切られたネジが螺合し、回転環121を回転させることでステージ123が上下できるようにしたものである。この場合も、ステージ123に図10(B)に示した、ウオームギアを組み込んだハンドル106によって回転可能に構成された回転ステージ107を載せ、ハンドル106の操作によって、回転ステージ107に載せた被測定体85を回転できるようにしても良いことは勿論である。
また、このようなラボジャッキ93やZステージ94だけでなく、例えば図12に示したようなカメラ用のパノラマボールヘッド95を用いても良い。このパノラマボールヘッド95は、ステージ125の支持部材126にボール127が設けてあり、このボール127をレバー128の回転で締め付けられるようになっていて、ステージ125を任意の方向、角度で固定できるようになっている。そのため、ステージ125上に被測定体85を載置すれば、任意の方向から測定することが可能となる。なお、この図12において、129はスペース板、130は三脚用ネジである。
また図13は、ステージ135をジンバル構造で保持して被測定体85を自由な角度から測定できるようにしたもので、基台136に立設した支柱137にネジ138で回動可能に取り付けた枠体139に、ステージ135を固定した支持枠140をネジ141で回動可能に取り付けてある。そして、枠体139に取り付けた半円状の孔142を有する板143をネジ144で締め付け、枠体139の回動を固定できるようにすると共に、枠体139に取り付けた半円状の孔145を有する板146をネジ147で締め付け、支持枠140の回動を固定できるようにして、ステージ135を任意角度で固定できるようにしたものである。
さらに、ステージを単に上下させるだけなら図14に示したように、ベース151に立設したスタンド152に取り付けたギアボックス153内に、ハンドル154で回転するピニオンを設け、支柱155に設けたラックと噛合させてハンドル154で上下できるようにしても良い。この場合ステージは、ネジ156に取り付ける。
図15は、図2または図5に示した立体形状測定装置の筐体40または80の撮影用開口に取り付け、被測定体85を任意の方向から照明できるようにした照明装置の一例である。すなわちこういった立体形状測定装置では、照明の役割は非常に重要であるが、卓上スタンドや各種の照明セットでは満足な結果が得られないことが多い。そのためこの図15に示した照明装置は、拡散板等を付けた高照度蛍光灯などのリングライト161の周りにフラップアップ式遮光板162を蝶番で開閉できるように取り付け、この遮光板162の全てを開いたとき、被測定体85に影ができないようにして撮影ができるようにすると共に、任意の位置の遮光板162で光を遮ることで、被測定体85を最適な照明状態で撮影することができるようになっており、さらにこのリングライト161の支持板163に設けた支柱164が、任意量筐体80に挿入して固定できるように構成することで、設定ガイド165によってリングライト161の位置を設定して測定ができるようになっている。
また、前記図5、図8に示した第4実施例、第5実施例においては、立体形状測定装置の筐体80に反射ミラー84を直接取り付ける構成としたが、図16のように独立して設けられた反射ミラー171を用いるようにしても良い。すなわちこの図16に示した反射ミラーは、ベース172に立設した支柱173に取り付けたクランプホルダー174により、ミラー171を任意角度に向けられるようにしたもので、前記図5、図8に示した第4実施例、第5実施例の立体形状測定装置と組み合わせることで、特定位置に固定されているような文化財や彫刻品等であっても測定を可能とすることができる。
以上種々述べてきたように、凹面反射鏡と、被測定体像を撮影する撮影装置の光学系とで構成したテレセントリック光学系を用い、このテレセントリック光学系を構成する凹面反射鏡への被測定体像の入射光軸線と、出射光軸線とが異なるよう前記凹面反射鏡を傾斜させ、凹面反射鏡から見て、撮影装置と被測定体とが重ならないよう光学系を構成することにより、従来の凹面反射鏡を用いたテレセントリック光学系の場合のように、凹面反射鏡の中央部に被測定体を置くことができなくなることによって撮影できる範囲が口径の1/3以下となり、非常に大きな凹面反射鏡を用いる必要があるといった問題を起こさず、小型、安価で、しかも正確に被測定体を再現することのできる、文化財、彫刻品等の立体形状測定方法と装置を提供することができる。
そして、前記凹面反射鏡への被測定体像の入射光軸線を、反射鏡で反射した後前記凹面反射鏡へ入射させるようにしたり、前記凹面反射鏡からの出射光軸線を反射鏡で反射した後、前記撮影装置へ送るようにしたりすることにより、被測定体を任意の位置に設置したり小型化が可能な立体形状測定方法と装置を提供することができる。
また前記被測定体像を反射した後前記凹面反射鏡へ入射させ、同凹面反射鏡で反射した被測定体像を透過して前記撮影装置に導くハーフミラーを設けることにより、前記凹面反射鏡に入射画像光に対して角度を付ける必要がなくなり、このため画像が角度を付けた方向に長くなることを是正することができる。
また、前記凹面反射鏡への入射光軸線と出射光軸線のなす角度は、略20度以下とすることで、収差及び歪曲は無視できる程度となる。
そして、前記テレセントリック光学系は、両側テレセントリック光学系であることにより、被測定体像を正確に縮小した画像を得ることができる。
さらに、前記立体形状測定装置を構成する凹面反射鏡と撮影装置の光学系、及び撮影装置を筐体に収容し、該筐体に、前記被測定体を載置して前記被測定体から前記凹面反射鏡までの距離と凹面反射鏡への入射光軸線に対する位置を変更する機構を設けることにより、屋外においても好適な条件で立体形状が測定できる装置を提供することができる。
また、前記立体形状測定装置を構成する凹面反射鏡と撮影装置の光学系、及び撮影装置を筐体に収容し、該筐体の撮影用開口に、スライド、または任意角度回動可能な反射ミラーを設けたり、立体形状測定装置を載置し、前記立体形状測定装置の前記被測定体に対する距離と高さを変更する機構を有する架台を設けたりすることにより、被測定体を動かさずに反射ミラーや架台を動かし、種々の角度から測定することができるようにすることができる。
そして、前記立体形状測定装置を構成する凹面反射鏡と撮影装置の光学系、及び撮影装置を筐体に収容し、該筐体の撮影用開口に、所定部分を遮光可能としたリング状ライトを設けることにより、被測定体に最も適した照明状態で測定を行うことができる。
本発明によれば、従来の凹面反射鏡を用いたテレセントリック光学系の場合のように、凹面反射鏡の中央部に被測定体を置くことができなくなることによって撮影できる範囲が口径の1/3以下となり、非常に大きな凹面反射鏡を用いる必要があるといった問題を起こさず、小型、安価で、しかも正確に被測定体を再現することのできる、文化財、彫刻品等の立体形状測定方法と装置を提供することができる。
本発明になる文化財、彫刻品等の立体形状測定方法と装置に用いる反射鏡を用いたテレセントリック光学系の構成を説明するための第1実施例の図である。 光路の比較例の概略図である。 本発明になる文化財、彫刻品等の立体形状測定装置における第2実施例の構成概略図である。 本発明になる文化財、彫刻品等の立体形状測定装置における第3実施例の構成概略図である。 本発明になる文化財、彫刻品等の立体形状測定装置における第4実施例の構成概略図である。 本発明になる文化財、彫刻品等の立体形状測定装置における第4実施例の構成概略図である。 本発明になる文化財、彫刻品等の立体形状測定装置における第4実施例を用い、被測定体を側面から測定する場合(A)と、上面から測定する場合(B)の測定方法を説明するための図である。 本発明になる文化財、彫刻品等の立体形状測定装置における第5実施例を用い、被測定体を側面から測定する場合(A)、(B)と、上面から測定する場合(C)、(D)の測定方法を説明するための図である。 ハーフミラーを用いた本発明装置の第6実施例を示す概略構成図である。 本発明に用いるラボジャッキの一例である。 本発明に用いるZステージの一例である。 本発明に用いるパノラマボールヘッドの一例である。 本発明おける被測定体を保持する、ジンバル構造を用いたステージの一例である。 本発明に用いる被測定体を保持するステージを上下させる機構の一例である。 本発明に用いる被測定体を任意の方向から照明できるようにした照明装置の一例である。 被測定体からの光を本発明の立体形状測定装置方向へ向けるための反射ミラー装置の一例である。 テレセントリック光学系の説明図である。 凹面反射鏡を用いたテレセントリック光学系の説明図である。
符号の説明
31 凹面反射鏡
32 カメラ
33 像側レンズ
34 焦点位置
35 絞り
36 被測定体
37 出射光軸
38 入射光軸
39 反射鏡

Claims (12)

  1. 凹面反射鏡と、被測定体像を撮影する撮影装置の光学系とで構成したテレセントリック光学系により、前記被測定体像を前記撮影装置に結像させて測定する文化財、彫刻品等の立体形状測定方法であって、
    前記テレセントリック光学系を構成する凹面反射鏡への被測定体像の入射光軸線と、出射光軸線とが異なるよう前記凹面反射鏡を傾斜させ、前記凹面反射鏡への被測定体像の入射光軸線を、反射鏡で反射した後前記凹面反射鏡へ入射させて測定することを特徴とする文化財、彫刻品等の立体形状測定方法。
  2. 前記凹面反射鏡からの出射光軸線を反射鏡で反射した後、前記撮影装置へ送ることを特徴とする請求項1に記載した文化財、彫刻品等の立体形状測定方法。
  3. 前記凹面反射鏡への入射光軸線と出射光軸線のなす角度は、略20度以下としたことを特徴とする請求項1に記載した文化財、彫刻品等の立体形状測定方法。
  4. 凹面反射鏡と、被測定体像を撮影する撮影装置の光学系とで構成したテレセントリック光学系により、前記被測定体像を前記撮影装置に結像させて測定する文化財、彫刻品等の立体形状測定方法であって、
    前記テレセントリック光学系を構成する凹面反射鏡への被測定体像を、ハーフミラーで反射した後前記凹面反射鏡へ入射させ、該凹面反射鏡で反射した被測定体像を前記ハーフミラーを透過して前記撮影装置へ導いて測定することを特徴とする文化財、彫刻品等の立体形状測定方法。
  5. 凹面反射鏡と、被測定体像を撮影して測定する撮影装置の光学系とで構成したテレセントリック光学系とで構成された文化財、彫刻品等の立体形状測定装置であって、
    前記凹面反射鏡から見て、前記撮影装置と前記被測定体とが重ならないよう光学系が構成されるとともに、前記テレセントリック光学系は、両側テレセントリック光学系からなること特徴とする文化財、彫刻品等の立体形状測定装置。
  6. 凹面反射鏡と、被測定体像を撮影して測定する撮影装置の光学系とで構成したテレセントリック光学系とで構成された文化財、彫刻品等の立体形状測定装置であって、
    前記凹面反射鏡から見て、前記撮影装置と前記被測定体とが重ならないよう光学系が構成されるとともに、前記被測定体像を、反射した後前記凹面反射鏡へ入射させる反射鏡を設けてなることを特徴とする文化財、彫刻品等の立体形状測定装置。
  7. 凹面反射鏡と、被測定体像を撮影して測定する撮影装置の光学系とで構成したテレセントリック光学系とで構成された文化財、彫刻品等の立体形状測定装置であって、
    前記凹面反射鏡から見て、前記撮影装置と前記被測定体とが重ならないよう光学系が構成されるとともに、前記被測定体像を反射した後前記凹面反射鏡へ入射させ、同凹面反射鏡で反射した被測定体像を透過して前記撮影装置に導くハーフミラーを設けてなることを特徴とする文化財、彫刻品等の立体形状測定装置。
  8. 前記凹面反射鏡からの被測定体像を、反射した後前記撮影装置へ送る反射鏡を設けたことを特徴とする請求項5または6に記載した文化財、彫刻品等の立体形状測定装置。
  9. 凹面反射鏡と、被測定体像を撮影して測定する撮影装置の光学系とで構成したテレセントリック光学系とで構成された文化財、彫刻品等の立体形状測定装置であって、
    前記凹面反射鏡から見て、前記撮影装置と前記被測定体とが重ならないよう光学系が構成され、前記立体形状測定装置を構成する凹面反射鏡と撮影装置の光学系、及び撮影装置を筐体に収容し、該筐体に、前記被測定体を載置して、前記被測定体から前記凹面反射鏡までの距離と凹面反射鏡への入射光軸線に対する位置を変化可能とする機構を設けたことを特徴とする文化財、彫刻品等の立体形状測定装置。
  10. 凹面反射鏡と、被測定体像を撮影して測定する撮影装置の光学系とで構成したテレセントリック光学系とで構成された文化財、彫刻品等の立体形状測定装置であって、
    前記凹面反射鏡から見て、前記撮影装置と前記被測定体とが重ならないよう光学系が構成され、前記立体形状測定装置を構成する凹面反射鏡と撮影装置の光学系、及び撮影装置を筐体に収容し、該筐体の撮影用開口に、スライド、または任意角度回動可能な反射ミラーを設けたことを特徴とする文化財、彫刻品等の立体形状測定装置。
  11. 凹面反射鏡と、被測定体像を撮影して測定する撮影装置の光学系とで構成したテレセントリック光学系とで構成された文化財、彫刻品等の立体形状測定装置であって、
    前記凹面反射鏡から見て、前記撮影装置と前記被測定体とが重ならないよう光学系が構成され、前記立体形状測定装置を載置し、前記立体形状測定装置の前記被測定体に対する距離と高さを変更する機構を有する架台を設けたことを特徴とする文化財、彫刻品等の立体形状測定装置。
  12. 凹面反射鏡と、被測定体像を撮影して測定する撮影装置の光学系とで構成したテレセントリック光学系とで構成された文化財、彫刻品等の立体形状測定装置であって、
    前記凹面反射鏡から見て、前記撮影装置と前記被測定体とが重ならないよう光学系が構成され、前記立体形状測定装置を構成する凹面反射鏡と撮影装置の光学系、及び撮影装置を筐体に収容し、該筐体の撮影用開口に、所定部分を遮光可能としたリング状ライトを設けたことを特徴とする文化財、彫刻品等の立体形状測定装置。
JP2004364408A 2003-12-22 2004-12-16 文化財、彫刻品等の立体形状測定方法と装置 Expired - Fee Related JP4097038B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004364408A JP4097038B2 (ja) 2003-12-22 2004-12-16 文化財、彫刻品等の立体形状測定方法と装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003425929 2003-12-22
JP2004364408A JP4097038B2 (ja) 2003-12-22 2004-12-16 文化財、彫刻品等の立体形状測定方法と装置

Publications (2)

Publication Number Publication Date
JP2005208048A JP2005208048A (ja) 2005-08-04
JP4097038B2 true JP4097038B2 (ja) 2008-06-04

Family

ID=34913959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004364408A Expired - Fee Related JP4097038B2 (ja) 2003-12-22 2004-12-16 文化財、彫刻品等の立体形状測定方法と装置

Country Status (1)

Country Link
JP (1) JP4097038B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10719915B2 (en) 2016-02-29 2020-07-21 Carl Zeiss Industrielle Messtechnik Gmbh Method and apparatus for determining a defocusing valve and for image-based determination of a dimensional size

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102736396B (zh) * 2012-07-23 2015-02-04 中国人民解放军国防科学技术大学 双曲凹面折反射全景相机及其制作方法和应用
JP6401979B2 (ja) * 2014-09-04 2018-10-10 オリンパス株式会社 顕微鏡システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10719915B2 (en) 2016-02-29 2020-07-21 Carl Zeiss Industrielle Messtechnik Gmbh Method and apparatus for determining a defocusing valve and for image-based determination of a dimensional size

Also Published As

Publication number Publication date
JP2005208048A (ja) 2005-08-04

Similar Documents

Publication Publication Date Title
JP2000188712A5 (ja)
JPS61275713A (ja) 顕微鏡
JP2005309434A (ja) デジタルカメラの自動焦点制御方法
JPH01245104A (ja) 顕微鏡的構造を測定する装置を有する顕微鏡
KR20230122989A (ko) 가상 시험 이미지를 이용한 이미징 렌즈 정렬 장치 및 방법
US2351753A (en) Photographic apparatus
KR20150087538A (ko) 카메라 모듈 초점 조정 장치 및 방법
KR100744604B1 (ko) 카메라 모듈 초점 조절장치 및 초점 조절방법
JP4097038B2 (ja) 文化財、彫刻品等の立体形状測定方法と装置
JPH0139082B2 (ja)
WO2006054377A1 (ja) 検査用光学装置、当該光学装置を備えた検査装置及び検査方法
JP2001166360A (ja) 画像記録システムの合焦装置
US9253472B2 (en) Method and apparatus for macro photographic stereo imaging
JP2012181139A (ja) レンズ検査装置
JP2000505203A (ja) 低側面像形成装置
RU2265284C2 (ru) Опорная поверхность устройства для оптической съемки объектов
KR101584455B1 (ko) 부품의 내부를 촬영하는 촬영 모듈 및 이를 이용한 촬영 시스템
TWI294985B (en) Device for optically recording an object
EP4050412A1 (en) Optical device for use in macrophotography and stereomicroscopy
KR102481722B1 (ko) 공칭 검사용 텔레센트릭 광학 시스템
JP4300601B2 (ja) 双眼顕微鏡と双眼顕微鏡による撮像方法
JPH01502137A (ja) 視準装置
KR20170108525A (ko) Dslr 카메라와 오목거울을 이용한 2차원 투영 측정장치
JP7308095B2 (ja) ステレオカメラの補正方法及びステレオカメラの補正装置
JP5252851B2 (ja) 撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080304

R150 Certificate of patent or registration of utility model

Ref document number: 4097038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees