JP4096927B2 - LED lighting source - Google Patents

LED lighting source Download PDF

Info

Publication number
JP4096927B2
JP4096927B2 JP2004226480A JP2004226480A JP4096927B2 JP 4096927 B2 JP4096927 B2 JP 4096927B2 JP 2004226480 A JP2004226480 A JP 2004226480A JP 2004226480 A JP2004226480 A JP 2004226480A JP 4096927 B2 JP4096927 B2 JP 4096927B2
Authority
JP
Japan
Prior art keywords
led
transparent substrate
light source
main surface
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004226480A
Other languages
Japanese (ja)
Other versions
JP2006049026A (en
Inventor
正 矢野
高橋  清
正則 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004226480A priority Critical patent/JP4096927B2/en
Publication of JP2006049026A publication Critical patent/JP2006049026A/en
Application granted granted Critical
Publication of JP4096927B2 publication Critical patent/JP4096927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Description

本発明は、LED照明光源に関し、特に、高い放熱性を有する高輝度LED照明光源に関する。   The present invention relates to an LED illumination light source, and more particularly to a high-intensity LED illumination light source having high heat dissipation.

従来、照明器具の光源として、白熱灯や蛍光灯などが使用されていたが、これらの寿命は短く、寿命のたびに光源を交換しなければならないという煩わしさがあった。それに対して、LED光源は、従来の光源に比べて寿命が長いので、特に、ランプ交換が困難な屋外建築の組み込み照明や、高所の照明などの用途に適している。また、LED光源は、小型で、かつ消費電力が小さいので、照明器具の小型・薄型化ができ、従来の照明器具では取り付けられない場所・用途への展開も期待できる。   Conventionally, incandescent lamps, fluorescent lamps, and the like have been used as light sources for lighting fixtures, but their lifetimes are short, and there is annoyance that the light source must be replaced every time the lifetime is reached. On the other hand, the LED light source has a longer life than conventional light sources, and is particularly suitable for applications such as built-in lighting in outdoor buildings where it is difficult to replace the lamp, and lighting in high places. In addition, since the LED light source is small and consumes little power, the lighting fixture can be reduced in size and thickness, and can be expected to be used in places and applications that cannot be mounted with conventional lighting fixtures.

一方、単体のLED光源は、他の光源に比べ輝度が低いため、十分な輝度を得るために、多数のLEDをアレイ状に配列させたLEDの集合体として光源を構成していた。   On the other hand, since a single LED light source has lower luminance than other light sources, the light source is configured as an aggregate of LEDs in which a large number of LEDs are arranged in an array in order to obtain sufficient luminance.

しかしながら、多数のLEDを用いることは、光源を大型化してしまうことになり、LED固有の小型という特徴を逸失させることになる。また、多数のLEDが必要になるので、コストアップにもつながる。   However, the use of a large number of LEDs results in an increase in the size of the light source, thereby losing the characteristic small size inherent to LEDs. In addition, a large number of LEDs are required, leading to an increase in cost.

そこで、LEDチップの高出力化を図る取り組みがなされ、LEDに流す電流を増やすことにより、少ない数のLED集合体でも、従来の光源に匹敵する高輝度のLED照明光源が得られるようになってきた。   Therefore, efforts have been made to increase the output of the LED chip, and by increasing the current flowing to the LED, a high-luminance LED illumination light source comparable to conventional light sources can be obtained even with a small number of LED assemblies. It was.

しかしながら、電流を増すと、LEDチップからの発熱が増え、それにより放熱とのバランスがくずれ、照明器具の温度が上がってしまうという問題が生じた。LEDの寿命は温度が上がると急激に低下するという性質をもつので、LED光源の高寿命を維持しようとすると、LEDチップを離して配列する必要があった。これでは、せっかくLEDチップ自身の高輝度化を図っても、集合体としてのLED光源の小型化は実現できない。   However, when the current is increased, heat is generated from the LED chip, thereby causing a problem that the balance with the heat dissipation is lost and the temperature of the lighting fixture is increased. Since the lifetime of the LED has a property of rapidly decreasing as the temperature rises, it is necessary to arrange the LED chips apart in order to maintain the long lifetime of the LED light source. In this case, even if the brightness of the LED chip itself is increased, the LED light source as an aggregate cannot be reduced in size.

そこで、LEDチップを高密度に配列させても温度上昇を生じさせないためには、LED光源の放熱効果を高める必要がある。図15は、放熱効果を高めるために、照明光源100に放熱板を設けた例を示す。図15に示すように、複数のLEDチップ101は、基板102の表面にフリップチップ実装されて、LED集合体としての光源をなしている。そして、基板102のLEDチップ101が実装されていない側の面に、複数の放熱板103が形成されている。基板102はヒートシンクとして働き、放熱板103は放熱フィンとしての効果を発揮する。LEDチップ101で発生した熱は、基板102に伝わり、放熱フィン103から放射により外部に放出される。これにより、基板102の温度上昇を防ぐ。また、放熱板として、図16に示すような形状の放熱フィンの形態も取り得る。   Therefore, in order not to cause a temperature rise even if the LED chips are arranged at high density, it is necessary to enhance the heat radiation effect of the LED light source. FIG. 15 shows an example in which a heat radiating plate is provided in the illumination light source 100 in order to enhance the heat radiation effect. As shown in FIG. 15, the plurality of LED chips 101 are flip-chip mounted on the surface of the substrate 102 to form a light source as an LED aggregate. A plurality of heat dissipation plates 103 are formed on the surface of the substrate 102 where the LED chip 101 is not mounted. The substrate 102 functions as a heat sink, and the heat radiating plate 103 exhibits an effect as a heat radiating fin. The heat generated in the LED chip 101 is transmitted to the substrate 102 and is emitted to the outside by radiation from the heat radiation fin 103. This prevents the temperature of the substrate 102 from rising. Further, as the heat radiating plate, a heat radiating fin having a shape as shown in FIG.

なお、LED照明光源の放熱効果を高めるための技術に関しては、特許文献1、2、3等に開示されている。
特開2000−031546号公報 特開2002−299700号公報 特開2002−304902号公報
In addition, about the technique for improving the thermal radiation effect of a LED illumination light source, it is disclosed by patent document 1, 2, 3, etc.
JP 2000-031546 A JP 2002-299700 A JP 2002-304902 A

図15または図16に示した放熱板103、103’を用いた放熱作用は、LED101で発生した熱を放熱板に伝え、当該放熱板の表面からの放射により外部に放出されることによってなされる。従って、放熱効果を高めるためには、放熱板の表面積を増やすしかないが、これでは、LED光源の小型化は図れない。   The heat radiating action using the heat radiating plates 103 and 103 ′ shown in FIG. 15 or 16 is performed by transferring heat generated by the LED 101 to the heat radiating plate and releasing it to the outside by radiation from the surface of the heat radiating plate. . Therefore, in order to enhance the heat dissipation effect, the surface area of the heat dissipation plate must be increased, but this makes it impossible to reduce the size of the LED light source.

また、LED照明光源の高輝度化を図るために、複数のLEDは基板表面に高密度に実装されるが、これにより、熱の発生源はより基板に集中することになる。従って、基板から放熱板への熱移動が効率的になされなければ、いくら放熱板の表面積を増やしても、放熱フィンによる放熱効果の実効は図れない。   Further, in order to increase the brightness of the LED illumination light source, the plurality of LEDs are mounted on the substrate surface with high density, which causes more heat generation sources to be concentrated on the substrate. Therefore, if heat transfer from the substrate to the heat sink is not performed efficiently, the heat dissipation effect by the heat dissipation fins cannot be achieved no matter how much the surface area of the heat sink is increased.

本発明はかかる点に鑑みてなされたもので、LEDの高密度化を図りつつ、放熱効率の高い小型のLED照明光源を提供することを目的とする。   This invention is made | formed in view of this point, and it aims at providing the small LED illumination light source with high heat dissipation efficiency, aiming at high density of LED.

本発明のLED照明光源は、絶縁基板と、前記絶縁基板に対向して配置された透明基板と、前記絶縁基板の第1の主面上に実装された複数の第1のLEDと、前記透明基板の第1の主面上に実装された複数の第2のLEDとを備え、前記絶縁基板の第1の主面と前記透明基板の第1の主面は、空間部を挟んで互いに対向して配置されており、前記第1のLEDと前記第2のLEDは、前記空間部において、互いに重ならずに配列されている。   The LED illumination light source of the present invention includes an insulating substrate, a transparent substrate disposed to face the insulating substrate, a plurality of first LEDs mounted on a first main surface of the insulating substrate, and the transparent A plurality of second LEDs mounted on a first main surface of the substrate, wherein the first main surface of the insulating substrate and the first main surface of the transparent substrate are opposed to each other across a space portion. The first LED and the second LED are arranged without overlapping each other in the space portion.

上記構成により、2つの異なる基板(絶縁基板と透明基板)に互いに重ならずに配列されて実装された第1及び第2のLEDから発生した熱は、それぞれが実装された基板から放熱されるので、同一基板に同密度で実装されたLED照明光源に比べ、約2倍の放熱効果が得られる。また、一つの基板に実装されるLEDの実装密度は、逆に2分の1になるので、LEDからの発熱源が2つの基板に分散され、より効果的に放熱することができる。さらに、2つの基板間に、気流パスが生じるので、放熱効果は一層高まる。これらの効果により、LEDの実装密度を維持しつつ、温度上昇の生じない小型のLED照明光源を実現することができる。   With the above configuration, the heat generated from the first and second LEDs arranged and mounted on two different substrates (insulating substrate and transparent substrate) without overlapping each other is dissipated from the substrate on which each is mounted. Therefore, the heat radiation effect is about twice as high as that of the LED illumination light source mounted on the same substrate at the same density. Moreover, since the mounting density of the LEDs mounted on one substrate is halved, the heat source from the LEDs is dispersed on the two substrates, and heat can be radiated more effectively. Furthermore, since an airflow path is generated between the two substrates, the heat dissipation effect is further enhanced. With these effects, it is possible to realize a small LED illumination light source that does not cause a temperature rise while maintaining the LED mounting density.

ある好適な実施形態において、前記第1のLEDと前記第2のLEDは、前記空間部において、互いに重ならずに交互に配列されている。これにより、2つの基板に実装された第1及び第2のLEDは、均一に分散されて配列されるので、LEDからの熱発生が基板内において均一化されるので、より効果的に放熱することができる。   In a preferred embodiment, the first LED and the second LED are alternately arranged in the space portion without overlapping each other. Accordingly, the first and second LEDs mounted on the two substrates are uniformly dispersed and arranged, so that heat generation from the LEDs is made uniform in the substrate, so that heat is radiated more effectively. be able to.

ある好適な実施形態において、前記第1のLEDは、前記絶縁基板の第1の主面上にフリップチップ実装され、前記第2のLEDは、前記透明基板の第1の主面上にフリップチップ実装されている。   In a preferred embodiment, the first LED is flip-chip mounted on the first main surface of the insulating substrate, and the second LED is flip-chip mounted on the first main surface of the transparent substrate. Has been implemented.

ある好適な実施形態において、前記絶縁基板の第1の主面上に実装された各第1のLED間に、複数の反射板が設置されている。   In a preferred embodiment, a plurality of reflectors are installed between the first LEDs mounted on the first main surface of the insulating substrate.

また、前記複数の反射板は、前記透明基板の第1の主面上に実装された第2のLEDに対向する位置に設置されていることが好ましい。   Moreover, it is preferable that the plurality of reflectors are installed at positions facing the second LED mounted on the first main surface of the transparent substrate.

ある好適な実施形態において、前記第1のLEDから出射された光は、前記透明基板を通過して該透明基板の第2の主面から外部に出射され、前記第2のLEDから出射された光は、前記絶縁基板の第1の主面上に設置された反射板で反射され、該反射光が前記透明基板を通過して該透明基板の第2の主面から外部に出射される。   In a preferred embodiment, the light emitted from the first LED passes through the transparent substrate, is emitted to the outside from the second main surface of the transparent substrate, and is emitted from the second LED. The light is reflected by a reflecting plate installed on the first main surface of the insulating substrate, and the reflected light passes through the transparent substrate and is emitted to the outside from the second main surface of the transparent substrate.

なお、前記透明基板は、セラミック基板からなることが好ましい。   The transparent substrate is preferably made of a ceramic substrate.

また、前記複数の第2のLEDは、前記透明基板の第1の主面上に形成された透明電極で互いに電気的に接続されていることが好ましい。   Moreover, it is preferable that the plurality of second LEDs are electrically connected to each other through a transparent electrode formed on the first main surface of the transparent substrate.

本発明のLED照明光源は、絶縁基板と、前記絶縁基板の主面上に配置された複数のLEDと、前記絶縁基板の主面に対向して配置された透明基板とを備え、前記LEDの出射面と反対面に形成された第1の電極端子は、前記絶縁基板の主面上に形成された第1の電極に接続され、前記LEDの出射面に形成された第2の電極端子は、前記透明基板の第1の主面上に形成された第2の電極に接続されている。   An LED illumination light source according to the present invention includes an insulating substrate, a plurality of LEDs disposed on a main surface of the insulating substrate, and a transparent substrate disposed to face the main surface of the insulating substrate. The first electrode terminal formed on the surface opposite to the emission surface is connected to the first electrode formed on the main surface of the insulating substrate, and the second electrode terminal formed on the emission surface of the LED is , Connected to a second electrode formed on the first main surface of the transparent substrate.

ある好適な実施形態において、前記複数のLEDから出射された光は、前記透明基板を通過して、該透明基板の第2の主面から出射される。   In a preferred embodiment, the light emitted from the plurality of LEDs passes through the transparent substrate and is emitted from a second main surface of the transparent substrate.

本発明に係るLED照明光源は、2つの異なる基板に互いに重ならずに配列されて実装されたLEDから発生した熱は、それぞれが実装された基板から放熱されるので、同一基板に同密度で実装されたLED照明光源に比べ、約2倍の放熱効果が得られる。また、一つの基板に実装されるLEDの実装密度は、逆に2分の1になるので、LEDからの発熱源が2つの基板に分散され、より効果的に放熱することができる。さらに、2つの基板間に、気流パスが生じるので、放熱効果は一層高まる。これらの効果により、LEDの実装密度を維持しつつ、温度上昇の生じない小型のLED照明光源を実現することができる。   In the LED illumination light source according to the present invention, heat generated from LEDs mounted on two different substrates without being overlapped with each other is dissipated from the substrates on which they are mounted. Compared to the mounted LED illumination light source, a heat dissipation effect of about twice is obtained. Moreover, since the mounting density of the LEDs mounted on one substrate is halved, the heat source from the LEDs is dispersed on the two substrates, and heat can be radiated more effectively. Furthermore, since an airflow path is generated between the two substrates, the heat dissipation effect is further enhanced. With these effects, it is possible to realize a small LED illumination light source that does not cause a temperature rise while maintaining the LED mounting density.

従来の放熱板(放熱フィン)による放熱効率の向上は、主として、LEDが実装される基板から放熱フィンへの熱抵抗を減らすとともに、放熱フィンの表面積を増やすことにより行なわれていた。   Improvement of heat radiation efficiency by a conventional heat radiation plate (heat radiation fin) has been performed mainly by reducing the thermal resistance from the substrate on which the LED is mounted to the heat radiation fin and increasing the surface area of the heat radiation fin.

しかしながら、LED照明光源の高輝度化を図ろうとすると、複数のLEDの基板表面の実装密度を高める必要があり、基板における熱発生は従来に増して集中することになり、放熱フィンによる放熱効果の実効を図ることが難しくなってきている。   However, in order to increase the brightness of the LED illumination light source, it is necessary to increase the mounting density of the substrate surface of the plurality of LEDs, and heat generation on the substrate will be concentrated more than before, and the heat dissipation effect of the radiation fins will be increased. It has become difficult to achieve effectiveness.

本願発明者は、放熱フィンによる放熱作用を検討していたところ、いくら放熱フィンの表面積を増やして外部への熱放射を助長しても、放熱フィン間の隙間が小さいと、その隙間に放射された熱は、外部に放出されることができず、その空間に蓄熱されてしまう点に着目し、放熱フィンから放射された熱を、効率良く外部に放出するためには、放熱フィン間の隙間は、ある程度の空間を確保しておくことが重要であることに気がついた。   The inventor of the present application has been studying the heat radiation action by the heat radiating fins, and no matter how much the surface area of the heat radiating fins is increased to promote heat radiation to the outside, if the gap between the heat radiating fins is small, the heat radiation is radiated into the gap. Focusing on the point that the heat that is radiated from the radiating fins cannot be released to the outside and is stored in the space, in order to efficiently radiate the heat radiated from the radiating fins to the outside, the gap between the radiating fins Noticed that it was important to ensure a certain amount of space.

すなわち、ある程度の空間の確保が必要な放熱フィンの隙間に、小型のLEDを配置することが可能であれば、放熱フィンを、LEDを実装する基板を兼ねることによって、複数のLEDを異なる基板(放熱フィン)に分散させて実装し得ることに思い至った。   In other words, if it is possible to arrange small LEDs in the gaps between the radiation fins that require a certain amount of space, a plurality of LEDs can be separated from each other by combining the radiation fins with the substrate on which the LEDs are mounted ( I came up with the idea that it could be dispersed and mounted on the heat dissipating fins.

このような構成が取れれば、平行に配置された基板に複数のLEDを分散させて実装することにより、一つの基板だけに実装されたLEDと実質的に同一の平面実装密度をもったLED照明光源が得られることになる。   If such a configuration is taken, LED lighting having substantially the same plane mounting density as that of LEDs mounted on only one board is achieved by dispersing and mounting a plurality of LEDs on boards arranged in parallel. A light source is obtained.

以下に、本発明の実施の形態について、図面を参照しながら説明する。以下の図面においては、説明の簡略化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。なお、本発明は以下の実施形態に限定されない。   Embodiments of the present invention will be described below with reference to the drawings. In the following drawings, components having substantially the same function are denoted by the same reference numerals for the sake of simplicity. In addition, this invention is not limited to the following embodiment.

(実施形態1)
図1は、本発明の実施形態におけるLED照明光源10の構成を模式的に示した図である。図1に示すように、LED照明光源10は、絶縁基板13と、絶縁基板13に対向して配置された透明基板14と、絶縁基板13の第1の主面上に実装された複数の第1のLED11aと、透明基板14の第1の主面上に実装された複数の第2のLED11bとを備えている。絶縁基板13の第1の主面と透明基板14の第1の主面は、空間部16を挟んで互いに対向して配置されており、第1のLED11aと第2のLED11bは、空間部16において、互いに重ならずに配列されている。
(Embodiment 1)
FIG. 1 is a diagram schematically showing the configuration of an LED illumination light source 10 according to an embodiment of the present invention. As shown in FIG. 1, the LED illumination light source 10 includes an insulating substrate 13, a transparent substrate 14 disposed to face the insulating substrate 13, and a plurality of first substrates mounted on the first main surface of the insulating substrate 13. 1 LED 11 a and a plurality of second LEDs 11 b mounted on the first main surface of the transparent substrate 14. The first main surface of the insulating substrate 13 and the first main surface of the transparent substrate 14 are arranged to face each other with the space 16 interposed therebetween, and the first LED 11a and the second LED 11b are arranged in the space 16. Are arranged without overlapping each other.

第1のLED11aは、絶縁基板13の第1の主面上にバンプ電極12aを介してフリップチップ実装され、同様に、第2のLED11bは、透明基板14の第1の主面上にバンプ電極12bを介してフリップチップ実装されている。   The first LED 11a is flip-chip mounted on the first main surface of the insulating substrate 13 via the bump electrode 12a. Similarly, the second LED 11b is bump electrode on the first main surface of the transparent substrate 14. It is flip-chip mounted via 12b.

また、図1に示すように、絶縁基板13の第1の主面上に実装された各第1のLED11a間には、複数の反射板15が設置されている。この複数の反射板15は、透明基板14の第1の主面上に実装された第2のLED11bに対向する位置に設置されている。   Further, as shown in FIG. 1, a plurality of reflecting plates 15 are installed between the first LEDs 11 a mounted on the first main surface of the insulating substrate 13. The plurality of reflectors 15 are installed at positions facing the second LEDs 11b mounted on the first main surface of the transparent substrate 14.

このように構成されたLED照明光源10において、第1のLED11aから出射された光(矢印A)は、透明基板14を通過して透明基板の第2の主面から外部に出射される(矢印A’)。また、第2のLED11bから出射された光(矢印B)は、絶縁基板13の第1の主面上に設置された反射板15で反射され、この反射光(矢印C)が透明基板14を通過して透明基板の第2の主面から外部に出射される(矢印C’)。   In the LED illumination light source 10 configured in this way, light (arrow A) emitted from the first LED 11a passes through the transparent substrate 14 and is emitted to the outside from the second main surface of the transparent substrate (arrow). A ′). The light (arrow B) emitted from the second LED 11b is reflected by the reflecting plate 15 installed on the first main surface of the insulating substrate 13, and the reflected light (arrow C) passes through the transparent substrate 14. It passes through and is emitted to the outside from the second main surface of the transparent substrate (arrow C ′).

従って、第1及び第2のLED11a、11bから出射された光は、共に透明基板14を通過して外部に出射されるので、LED照明光源の出射面(平行に配置された両基板の垂直方向)から出射光を見れば、あたかも、一つの基板に格子状に配列された複数のLEDから出射された格好になる。すなわち、一つの基板に実装されたLEDと実質的に同一の平面実装密度をもったLED照明光源となる。   Therefore, since the light emitted from the first and second LEDs 11a and 11b passes through the transparent substrate 14 and is emitted to the outside, the emission surface of the LED illumination light source (the vertical direction of the two substrates arranged in parallel) ) From the plurality of LEDs arranged in a lattice pattern on one substrate. That is, an LED illumination light source having substantially the same plane mounting density as the LEDs mounted on one substrate.

以上のような構成のLED照明光源10は、2つの異なる基板に実装されたLEDから発生した熱は、それぞれが実装された基板から放熱されるので、同一基板に同密度で実装されたLED照明光源に比べ、約2倍の放熱効果が得られる。また、一つの基板に実装されるLEDの実装密度は、逆に2分の1になるので、LEDからの発熱源が2つの基板に分散され、より効果的に放熱することができる。また、2つの基板間に、気流パスが生じるので、放熱効果は一層高まる。このことは、LEDの実装密度を維持しつつ、2倍の放熱効率をもったLED照明光源が実現されることを意味する。   In the LED illumination light source 10 configured as described above, the heat generated from the LEDs mounted on two different substrates is dissipated from the substrates on which they are mounted, so that the LED illumination mounted on the same substrate with the same density. Compared to a light source, a heat dissipation effect that is approximately twice as large is obtained. Moreover, since the mounting density of the LEDs mounted on one substrate is halved, the heat source from the LEDs is dispersed on the two substrates, and heat can be radiated more effectively. In addition, since an air flow path is generated between the two substrates, the heat dissipation effect is further enhanced. This means that an LED illumination light source having double heat dissipation efficiency can be realized while maintaining the LED mounting density.

なお、ここで用いるLEDは、表面実装タイプの面発光型LEDで、図1に示すように、第1のLED11aは、絶縁基板13の第1の主面上にバンプ電極12aを介してフリップチップ実装され、同様に、第2のLED11bは、透明基板14の第1の主面上にバンプ電極12bを介してフリップチップ実装される。   The LED used here is a surface-mount type surface-emitting LED. As shown in FIG. 1, the first LED 11a is flip-chip on the first main surface of the insulating substrate 13 via the bump electrode 12a. Similarly, the second LED 11b is flip-chip mounted on the first main surface of the transparent substrate 14 via the bump electrode 12b.

また、図1に示すように、第1のLED11aと第2のLED11bを、空間部16の水平方向(平行して配置された両基板13、14と平行な方向)において、互いに重ならずに交互に配列することにより、各LEDから発生する熱を、各基板内で均一に分散させることができ、これによって、LEDからの発熱を効率よく放熱させることができる。また、透明基板14に実装された第2のLED11bから出射された光は、反射板15からの反射光が透明基板14を通過する際、第2のLED11bで遮蔽される分、出射効率が落ちる。しかしながら、このような欠点も、第1のLED11aと第2のLED11bを交互に配列することにより、照明光の輝度ムラを低減することができる。もちろん、第2のLED11bの出射効率の低下分を、予め第2のLED11bの発光輝度を高めに設定しておくことによって、照明光の輝度ムラを低減することも可能である。   Further, as shown in FIG. 1, the first LED 11a and the second LED 11b are not overlapped with each other in the horizontal direction of the space portion 16 (direction parallel to both the boards 13 and 14 arranged in parallel). By alternately arranging, the heat generated from each LED can be uniformly dispersed in each substrate, and thereby, the heat generated from the LED can be efficiently dissipated. Further, the light emitted from the second LED 11b mounted on the transparent substrate 14 has a lower emission efficiency because the light reflected from the reflecting plate 15 is shielded by the second LED 11b when passing through the transparent substrate 14. . However, such a drawback can also reduce luminance unevenness of illumination light by alternately arranging the first LED 11a and the second LED 11b. Of course, it is also possible to reduce the luminance unevenness of the illumination light by setting the decrease in the emission efficiency of the second LED 11b in advance to increase the emission luminance of the second LED 11b.

ここで、絶縁基板13は、アルミナ粉末と熱硬化樹脂を用いたコンポジット基板を用い、透明基板14は、熱伝導性の良い透明セラミック基板を用いている。   Here, the insulating substrate 13 is a composite substrate using alumina powder and a thermosetting resin, and the transparent substrate 14 is a transparent ceramic substrate having good thermal conductivity.

次に、図2を参照しながら、絶縁基板13上に、第1のLED11aを配列する仕方について説明する。   Next, a method of arranging the first LEDs 11a on the insulating substrate 13 will be described with reference to FIG.

図2に示すように、複数の第1のLED11aは、絶縁基板13の第1の主面上の格子点の位置に、ひとつおきに実装されている。第1のLED11aが配置されない格子点の位置には、絶縁基板13に対向して配置された透明基板14に実装された第2のLED11bが配置される。   As shown in FIG. 2, the plurality of first LEDs 11 a are mounted at every other lattice point on the first main surface of the insulating substrate 13. At the position of the lattice point where the first LED 11a is not disposed, the second LED 11b mounted on the transparent substrate 14 disposed to face the insulating substrate 13 is disposed.

各第1のLED11aは、絶縁基板13表面に形成された接続配線20によって、隣接するLED11aに直列に接続されて1回路を構成しており、回路の両端部に位置するLED11aは、外部より正電源、負電源がそれぞれ供給されている。なお、透明基板14面への第2のLED11bの配列の仕方も、図2に示す配列と同様であるが、透明基板14表面に形成される接続配線は、ITO(インジウム‐スズ酸化物)からなる透明電極が用いられている。   Each first LED 11a is connected in series to the adjacent LED 11a by a connection wiring 20 formed on the surface of the insulating substrate 13 to form one circuit, and the LEDs 11a located at both ends of the circuit are connected from the outside. Power supply and negative power supply are supplied respectively. The arrangement of the second LEDs 11b on the surface of the transparent substrate 14 is the same as that shown in FIG. 2, but the connection wiring formed on the surface of the transparent substrate 14 is made of ITO (indium-tin oxide). A transparent electrode is used.

次に、反射板15を絶縁基板13上に設置する仕方について、図3(a)、(b)を参照しながら説明する。   Next, a method of installing the reflecting plate 15 on the insulating substrate 13 will be described with reference to FIGS. 3 (a) and 3 (b).

図3(a)は、反射板15の平面図を示し、図3(b)は、反射板15を絶縁基板13に設置した状態での断面図(図3(a)に示した点線X‐Yに沿った断面)を示す。反射板15は、一体成型されており、第1のLED11aが配置されるところは開口され、第2のLED11bに対向する位置には、図3(b)に示すような凹部形状に加工されている。このように、反射板15を一体成型により形成しておけば、絶縁基板13への設置が一括で容易にできる。   3A is a plan view of the reflecting plate 15, and FIG. 3B is a cross-sectional view of the reflecting plate 15 installed on the insulating substrate 13 (dotted line X− shown in FIG. 3A). (Cross section along Y). The reflector 15 is integrally molded, and is opened where the first LED 11a is disposed, and is processed into a concave shape as shown in FIG. 3B at a position facing the second LED 11b. Yes. Thus, if the reflecting plate 15 is formed by integral molding, installation on the insulating substrate 13 can be easily performed collectively.

次に、図4(a)〜(d)を参照しながら、LED照明光源10の製造方法について説明する。   Next, a method for manufacturing the LED illumination light source 10 will be described with reference to FIGS.

まず、図4(a)に示すように、絶縁基板13に、第1のLED11aを、バンプ電極12を介してフリップチップ実装する。なお、LED11aは、面発光型のLEDを用い、絶縁基板13と反対側から光が出射される。その後、図4(b)に示すように、絶縁基板13上に、反射板15を設置する。反射板15は、図3(a)で示した一体成型のものを用いる。   First, as shown in FIG. 4A, the first LED 11 a is flip-chip mounted on the insulating substrate 13 via the bump electrode 12. The LED 11a is a surface-emitting LED, and light is emitted from the side opposite to the insulating substrate 13. Thereafter, as shown in FIG. 4B, the reflecting plate 15 is installed on the insulating substrate 13. As the reflecting plate 15, the integrally molded one shown in FIG.

次に、図(c)に示すように、透明基板14上に第2のLED11bを実装した後、絶縁基板13と透明基板14を、第1及び第2のLED11a、11bが実装された面が互いに対向するように、空間部を挟んで配置させる。最後に、図4(d)に示すように、絶縁基板13と透明基板14を、空間部を挟んで配置した状態で、筐体31により固定して、LED照明光源10を完成させる。   Next, as shown in FIG. 2C, after mounting the second LED 11b on the transparent substrate 14, the surface on which the first and second LEDs 11a and 11b are mounted is formed on the insulating substrate 13 and the transparent substrate 14. It arrange | positions on both sides of a space part so that it may mutually oppose. Finally, as shown in FIG. 4D, the insulating substrate 13 and the transparent substrate 14 are fixed by the casing 31 in a state where the space portion is interposed therebetween, and the LED illumination light source 10 is completed.

図5及び図6は、本発明のLED照明光源10を、LED照明装置30に組み込んだ例を示した図である。   5 and 6 are diagrams showing an example in which the LED illumination light source 10 of the present invention is incorporated in the LED illumination device 30. FIG.

図5に示すように、LED照明装置30は、筐体31に固定されたLED照明光源10と、筐体31の内部空間(絶縁基板13の裏面)に搭載された点灯回路33と、LED照明光源10の透明基板14側に被せられた透明プラスチックカバ−42で構成されている。点灯回路33は、LED照明光源10の各LED11a、11bの点灯を制御する。また、絶縁基板13及び透明基板14を保持する筐体31の一部に開口部32を設けておけば、絶縁基板13と透明基板14の間に気流パスが生じるので、基板から放熱された熱を外部に逃がすことができ、これにより、放熱効率を一層高めることができる。   As shown in FIG. 5, the LED illumination device 30 includes an LED illumination light source 10 fixed to the housing 31, a lighting circuit 33 mounted in the internal space of the housing 31 (the back surface of the insulating substrate 13), and LED illumination. It is composed of a transparent plastic cover 42 that covers the light source 10 on the transparent substrate 14 side. The lighting circuit 33 controls lighting of the LEDs 11 a and 11 b of the LED illumination light source 10. Further, if the opening 32 is provided in a part of the casing 31 that holds the insulating substrate 13 and the transparent substrate 14, an air flow path is generated between the insulating substrate 13 and the transparent substrate 14. Can be released to the outside, whereby the heat radiation efficiency can be further enhanced.

図6は、図5に示したLED照明装置30を、室内の天井に設置した状態を模式的に示した図で、従来の放熱板を用いたLED照明装置に比べて、非常に薄型化された照明装置して利用することができ、インテリアとしての価値も高い。   FIG. 6 is a diagram schematically showing a state in which the LED lighting device 30 shown in FIG. 5 is installed on the ceiling in the room, which is much thinner than a conventional LED lighting device using a heat sink. It can also be used as a lighting device, and is highly valuable as an interior.

(実施形態2)
図1に示した本発明の実施形態1におけるLED照明光源10では、第1及び第2のLED11a、11bは、絶縁基板13及び透明基板14にフリップチップ法により面実装されていたが、面実装タイプでないLEDについても、同様の効果を得ることができる。
(Embodiment 2)
In the LED illumination light source 10 according to the first embodiment of the present invention shown in FIG. 1, the first and second LEDs 11a and 11b are surface mounted on the insulating substrate 13 and the transparent substrate 14 by the flip chip method. Similar effects can be obtained for non-type LEDs.

図7〜図9は、面実装タイプでないLEDにおける絶縁基板13及び透明基板14への実装方法を説明する図である。   7-9 is a figure explaining the mounting method to the insulated substrate 13 and the transparent substrate 14 in LED which is not a surface mounting type.

図7に示す実装方法は、第1のLED11aの第1の電極端子40aは、絶縁基板13表面に形成された第1の電極42aにワイヤ−ボンディングされ、第1のLED11aの第2の電極端子41aは、絶縁基板13a表面に形成された第2の電極43aに直接フリップチップボンディングされている。同様に、第2のLED11bの第1の電極端子40bは、透明基板14表面に形成された第1の電極42bにワイヤ−ボンディングされ、第2のLED11bの第2の電極端子41bは、透明基板14表面に形成された第2の電極43bに直接フリップチップボンディングされている。   In the mounting method shown in FIG. 7, the first electrode terminal 40a of the first LED 11a is wire-bonded to the first electrode 42a formed on the surface of the insulating substrate 13, and the second electrode terminal of the first LED 11a. 41a is directly flip-chip bonded to the second electrode 43a formed on the surface of the insulating substrate 13a. Similarly, the first electrode terminal 40b of the second LED 11b is wire-bonded to the first electrode 42b formed on the surface of the transparent substrate 14, and the second electrode terminal 41b of the second LED 11b is transparent substrate 14 is directly flip-chip bonded to the second electrode 43b formed on the surface.

第1及び第2のLED11a、11bは、第1の電極端子40a、40bが形成されたLEDチップ面が出射面をなしているので、第1のLED11aから出射された光は、透明基板14を通過して外部に出射され、第2のLED11bから出射された光は、絶縁基板13に形成された反射板15で反射された後、透明基板14を通過して外部に出射される。   In the first and second LEDs 11a and 11b, the LED chip surface on which the first electrode terminals 40a and 40b are formed forms an emission surface, so that the light emitted from the first LED 11a passes through the transparent substrate 14. The light that passes through and is emitted to the outside and is emitted from the second LED 11 b is reflected by the reflecting plate 15 formed on the insulating substrate 13, and then passes through the transparent substrate 14 and is emitted to the outside.

図8に示す実装方法は、図7で示した第2のLED11bの透明基板14への実装の向きを反対にしたものである。すなわち、第2のLED11bの第1の電極端子40bは、透明基板14表面に形成された第1の電極42bに直接フリップチップボンディングされ、第2の電極端子41bは、透明基板14表面に形成された第2の電極43bにワイヤ−ボンディングされている。この場合、第2のLED11bから出射された光は、透明基板14を通過して外部に出射されるので、絶縁基板に反射板15を設けることは要しない。   In the mounting method shown in FIG. 8, the mounting direction of the second LED 11b shown in FIG. 7 on the transparent substrate 14 is reversed. That is, the first electrode terminal 40b of the second LED 11b is directly flip-chip bonded to the first electrode 42b formed on the surface of the transparent substrate 14, and the second electrode terminal 41b is formed on the surface of the transparent substrate 14. The second electrode 43b is wire-bonded. In this case, since the light emitted from the second LED 11b passes through the transparent substrate 14 and is emitted to the outside, it is not necessary to provide the reflecting plate 15 on the insulating substrate.

図9に示す実装方法は、LED11が絶縁基板13と透明基板14との間に配置され、LED11の出射面と反対面に形成された第1の電極端子41は、絶縁基板13の主面上に形成された第1の電極43にフリップチップ実装により接続され、LED11の出射面に形成された第2の電極端子40は、透明基板14の第1の主面上に形成された第2の電極42にフリップチップ実装に接続されている。   In the mounting method shown in FIG. 9, the LED 11 is disposed between the insulating substrate 13 and the transparent substrate 14, and the first electrode terminal 41 formed on the surface opposite to the emission surface of the LED 11 is on the main surface of the insulating substrate 13. The second electrode terminal 40 connected to the first electrode 43 formed by the flip chip mounting and formed on the emission surface of the LED 11 is a second electrode formed on the first main surface of the transparent substrate 14. The electrode 42 is connected to the flip chip mounting.

図7及び図8に示した実装方法においては、第1のLED11aで発生した熱は絶縁基板13から放熱され、第2のLED11bで発生した熱は透明基板から放熱されるのに対し、図9に示した実装方法においては、LED11で発生した熱は、絶縁基板13及び透明基板14から分散されて放熱される点が異なるが、両者ともLEDの実装密度は同じなので、放熱効率の点にいては同じある。   7 and 8, the heat generated in the first LED 11a is radiated from the insulating substrate 13 and the heat generated in the second LED 11b is radiated from the transparent substrate. In the mounting method shown in FIG. 4, the heat generated in the LED 11 is different from the insulating substrate 13 and the transparent substrate 14 in that it is dissipated, but both have the same LED mounting density, so that the heat dissipation efficiency is high. Are the same.

(実施形態3)
本願発明者は、上述したように、放熱フィンの作用をなす基板から放射された熱を、効率よく外部に放出するやめには、基板間の隙間は、ある程度の空間を確保しておく必要があることに着目して、本発明を着想するに至った。
(Embodiment 3)
As described above, the inventor of the present application needs to secure a certain amount of space between the substrates in order to efficiently release the heat radiated from the substrates acting as the radiation fins to the outside. Focusing on a certain point, the present invention was conceived.

すなわち、本発明は、異なる基板に放熱フィンとしての作用をもたせつつ、異なる基板間に複数のLEDを互いに重ならずに配置させることによって、複数のLEDを異なる基板に振り分けて実装した点に、その本質的特徴をなす。   That is, in the present invention, the plurality of LEDs are distributed and mounted on different substrates by arranging the plurality of LEDs without overlapping each other between the different substrates while having the effect as the heat radiation fins on different substrates. Its essential features.

かかる観点からすれば、本発明は、実施形態1、2において説明したような、2つの異なる基板に対して複数のLEDを振り分けて実装する場合に限らず、3つ以上の基板に対しても、同様な方法でLEDを振り分けすることができる。   From this point of view, the present invention is not limited to the case where a plurality of LEDs are distributed and mounted on two different substrates as described in the first and second embodiments, but also on three or more substrates. The LEDs can be sorted in a similar manner.

図10及び図11は、3つの基板に対して複数のLEDを振り分けした例を示す図である。   10 and 11 are diagrams illustrating an example in which a plurality of LEDs are distributed to three substrates.

図10に示すように、絶縁基板13、第1の透明基板14、及び第2の透明基板17が所定の間隔をもって互いに平行に配置されている。第1のLED11aは、絶縁基板13にフリップチップ実装されており、第2のLED11bは、第1の透明基板14にフリップチップ実装され、第3のLED11cは、第2の透明基板17にフリップチップ実装されている。そして、第1及び第2のLED11a、11bは、絶縁基板13と透明基板14の間の空間部において重ならず配置され、第3のLED11cは、第1及び第2の透明基板14、16の間の空間部に配置されている。なお、第3のLED11cは、基板に対して垂直方向(紙面の下から上方向)から見た場合に、第1及び第2のLED11a、11bと重ならない位置に配置されている。   As shown in FIG. 10, the insulating substrate 13, the first transparent substrate 14, and the second transparent substrate 17 are arranged in parallel with each other at a predetermined interval. The first LED 11 a is flip-chip mounted on the insulating substrate 13, the second LED 11 b is flip-chip mounted on the first transparent substrate 14, and the third LED 11 c is flip-chip mounted on the second transparent substrate 17. Has been implemented. The first and second LEDs 11a and 11b are arranged so as not to overlap in the space between the insulating substrate 13 and the transparent substrate 14, and the third LED 11c is arranged on the first and second transparent substrates 14 and 16. It is arranged in the space part between. Note that the third LED 11c is disposed at a position that does not overlap the first and second LEDs 11a and 11b when viewed from the direction perpendicular to the substrate (from the bottom to the top of the page).

第1のLED11aから出射された光は、透明基板14、16を通過して外部に出射される。そして、第2のLED11bから出射された光は、絶縁基板13に形成された反射板15で反射した後、透明基板14、16を通過して外部に出射され、第3のLED11cから出射された光は、透明基板14に形成された反射板15で反射した後、透明基板17を通過して外部に出射される。こうして、第1、第2及び第3のLED11a、11b、11cから出射された光は、透明基板17を通過して、同じ方向に出射される。   The light emitted from the first LED 11a passes through the transparent substrates 14 and 16 and is emitted to the outside. The light emitted from the second LED 11b is reflected by the reflecting plate 15 formed on the insulating substrate 13, passes through the transparent substrates 14 and 16, is emitted to the outside, and is emitted from the third LED 11c. The light is reflected by the reflecting plate 15 formed on the transparent substrate 14, then passes through the transparent substrate 17 and is emitted to the outside. Thus, the light emitted from the first, second, and third LEDs 11a, 11b, and 11c passes through the transparent substrate 17 and is emitted in the same direction.

本実施形態3において、3つの異なる基板13、14、16に互いに位置的に重ならずに配列されて実装されたLED11a、11b、11cから発生した熱は、それぞれが実装された基板から放熱されるので、同一基板に同密度で実装されたLED照明光源に比べ、約3倍の放熱効果が得られる。また、一つの基板に実装されるLEDの実装密度は、逆に3分の1になるので、LEDからの発熱源が3つの基板に分散され、より効果的に放熱することができる。さらに、各基板間に、気流パスが生じるので、放熱効果は一層高まる。   In the third embodiment, the heat generated from the LEDs 11a, 11b, and 11c that are mounted on the three different substrates 13, 14, and 16 without being superimposed on each other is dissipated from the substrate on which each is mounted. Therefore, the heat radiation effect is about three times that of the LED illumination light source mounted on the same substrate at the same density. Moreover, since the mounting density of the LEDs mounted on one substrate is one third, the heat source from the LEDs is dispersed on the three substrates, and heat can be radiated more effectively. Furthermore, since an airflow path is generated between the substrates, the heat dissipation effect is further enhanced.

図11に示す例は、図10で示したように、第2のLED11bを絶縁基板13と第1の透明基板14の間の空間部に第1のLED11aと重ならずに配置する替わりに、第1の透明基板14と第2の透明基板17の間の空間部に第3のLED11cと重ならずに配置したものである。この場合、第2のLED11bから出射された光は、透明基板14を通過して外部に出射されるので、絶縁基板に反射板15を設けることは要しない。   In the example shown in FIG. 11, as shown in FIG. 10, instead of arranging the second LED 11 b in the space between the insulating substrate 13 and the first transparent substrate 14 without overlapping the first LED 11 a, The third LED 11c is arranged in the space between the first transparent substrate 14 and the second transparent substrate 17 without overlapping. In this case, since the light emitted from the second LED 11b passes through the transparent substrate 14 and is emitted to the outside, it is not necessary to provide the reflecting plate 15 on the insulating substrate.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible.

例えば、本発明の実施形態においては、基板に実装するLEDとして、面発光型のLEDを用いたが、端面発光型のLED(全光束の1/2以上の光量が端面(側面)から出射されるものも含む)を用いることも可能である。その場合、端面発光型のLEDを基板に実装する際、面発光型のLEDと同じ方向の出射光を得るために、図12に示すような構成を取ればよい。すなわち、端面発光型のLED11は基板13にフリップチップ実装され、LED11の側面側に反射面を有する反射部50が設置され、LED11の端面から出射された光は、反射面で反射されて、矢印52の方向に出射される。また、この場合、LED11と反射部50との空間を蛍光剤で充填しておけば、LED11として青色LEDを用いれば、白色光を得ることも可能である。   For example, in the embodiment of the present invention, a surface-emitting LED is used as an LED mounted on a substrate, but an edge-emitting LED (a light quantity more than ½ of the total luminous flux is emitted from the end surface (side surface). Can be used). In that case, when an edge-emitting LED is mounted on a substrate, in order to obtain emitted light in the same direction as the surface-emitting LED, a configuration as shown in FIG. In other words, the edge-emitting LED 11 is flip-chip mounted on the substrate 13, the reflecting portion 50 having a reflecting surface is installed on the side surface side of the LED 11, and the light emitted from the end surface of the LED 11 is reflected by the reflecting surface, It is emitted in the direction of 52. In this case, if the space between the LED 11 and the reflecting portion 50 is filled with a fluorescent agent, white light can be obtained by using a blue LED as the LED 11.

また、本発明の実施形態においては、実装するLEDは特に限定しなかったが、例えば、図10または図11において、第1〜第3のLED11a、11b、11cとして、赤色、緑色、青色のLEDを用いることによって、赤、緑、青色が混色された白色光のLED照明光源を得ることも可能である。この場合、緑色のLEDは発光効率が低いため、第3のLED11cとして透明基板17に実装することが好適である。同様の考えで、赤色のLEDは発光効率が高いため、第1のLED11aとして、絶縁基板13に実装することが好適である。また、色ムラを低減させる場合には、各基板毎に実装するLEDの種類を限定するのではなく、例えば、透明基板17には赤色、緑色、青色のLEDを適切な位置に実装してもよいし、有彩色(赤色、緑色、青色)のLEDだけでなく、白色LEDや蛍光体を塗布したLEDを用いても構わない。   In the embodiment of the present invention, the LED to be mounted is not particularly limited. For example, in FIG. 10 or FIG. 11, red, green, and blue LEDs are used as the first to third LEDs 11a, 11b, and 11c. It is also possible to obtain a white LED lighting source in which red, green and blue are mixed. In this case, since the green LED has low light emission efficiency, it is preferable to mount the green LED on the transparent substrate 17 as the third LED 11c. Based on the same idea, since the red LED has high luminous efficiency, it is preferable to mount it on the insulating substrate 13 as the first LED 11a. In order to reduce color unevenness, the type of LED mounted on each substrate is not limited. For example, red, green, and blue LEDs may be mounted on the transparent substrate 17 at appropriate positions. It is also possible to use not only chromatic (red, green, blue) LEDs but also white LEDs or LEDs coated with phosphors.

さらに、本発明の実施形態においては、LEDをバンプを介して基板に実装する例を説明したが、図13に示すように、LED11を基板13上に形成された電極42にバンプレス実装してもよいし、図14に示すように、LED11を予めサブマンウント60に実装したものを基板13に実装しても構わない。   Furthermore, in the embodiment of the present invention, the example in which the LED is mounted on the substrate via the bump has been described. However, as shown in FIG. 13, the LED 11 is bump-mounted on the electrode 42 formed on the substrate 13. Alternatively, as shown in FIG. 14, the LED 11 previously mounted on the submount 60 may be mounted on the substrate 13.

本発明によれば、LEDの高密度化を図りつつ、放熱効率の高い小型のLED照明光源を提供することができる。   According to the present invention, it is possible to provide a small LED illumination light source with high heat dissipation efficiency while increasing the density of LEDs.

本発明の実施形態1に係るLED照明光源10の構成を示す断面図Sectional drawing which shows the structure of the LED illumination light source 10 which concerns on Embodiment 1 of this invention. 本発明の実施形態1における第1のLED11aの配置を示す平面図The top view which shows arrangement | positioning of 1st LED11a in Embodiment 1 of this invention. (a)は、本発明の実施形態1における反射板15の平面図、(b)は、反射板15を絶縁基板13に設置した状態の断面図(A) is a top view of the reflecting plate 15 in Embodiment 1 of this invention, (b) is sectional drawing of the state which installed the reflecting plate 15 in the insulated substrate 13 (a)〜(d)は、本発明の実施形態1に係るLED照明光源の製造方法を示す工程図(A)-(d) is process drawing which shows the manufacturing method of the LED illumination light source which concerns on Embodiment 1 of this invention. 本発明の実施形態1におけるLED照明装置30の構成を示す断面図Sectional drawing which shows the structure of the LED lighting apparatus 30 in Embodiment 1 of this invention. 本発明の実施形態1にいけるLED照明装置30を天井に設置した状態を示す図The figure which shows the state which installed the LED lighting apparatus 30 in Embodiment 1 of this invention in the ceiling 本発明の実施形態2におけるLEDの実装方法を示す断面図Sectional drawing which shows the mounting method of LED in Embodiment 2 of this invention 本発明の実施形態2における他のLEDの実装方法を示す断面図Sectional drawing which shows the mounting method of the other LED in Embodiment 2 of this invention. 本発明の実施形態2における他のLEDの実施方法を示す断面図Sectional drawing which shows the implementation method of the other LED in Embodiment 2 of this invention 本発明の実施形態3におけるLEDの実装方法を示す断面図Sectional drawing which shows the mounting method of LED in Embodiment 3 of this invention 本発明の実施形態3における他のLEDの実装方法を示す断面図Sectional drawing which shows the mounting method of the other LED in Embodiment 3 of this invention. 本発明の端面発光型LEDの実装方法を示す断面図Sectional drawing which shows the mounting method of edge-emitting LED of this invention 本発明におけるLEDの他の実装方法を示す断面図Sectional drawing which shows the other mounting method of LED in this invention 本発明におけるLEDの他の実装方法を示す断面図Sectional drawing which shows the other mounting method of LED in this invention 従来のLED照明光源100の構成を示す断面図Sectional drawing which shows the structure of the conventional LED illumination light source 100 従来のLED照明光源100’の構成を示す断面図Sectional drawing which shows the structure of the conventional LED illumination light source 100 '

符号の説明Explanation of symbols

10 LED照明光源
11a 第1のLED
11b 第2のLED
11c 第3のLED
12a,12b バンプ電極
13 絶縁基板
14,17 透明基板
15 反射板
16 空間部
20 接続配線
30 LED照明装置
31 筐体
32 開口部
33 点灯回路
40a,40b,41a,41b 電極端子
42a,42b,43a,43b 電極
50 反射部
51 蛍光剤
60 サブマウント
100 LED照明光源
101 LEDチップ
102 基板
103 放熱板
10 LED illumination light source 11a 1st LED
11b Second LED
11c 3rd LED
12a, 12b Bump electrode 13 Insulating substrate 14, 17 Transparent substrate 15 Reflector 16 Spacer 20 Connection wiring 30 LED lighting device 31 Housing 32 Opening 33 Lighting circuit 40a, 40b, 41a, 41b Electrode terminal 42a, 42b, 43a, 43b Electrode 50 Reflector 51 Fluorescent agent 60 Submount 100 LED illumination light source 101 LED chip 102 Substrate 103 Heat sink

Claims (10)

絶縁基板と、
前記絶縁基板に対向して配置された透明基板と、
前記絶縁基板の第1の主面上に実装された複数の第1のLEDと、
前記透明基板の第1の主面上に実装された複数の第2のLEDと
を備えたLED照明光源であって、
前記絶縁基板の第1の主面と前記透明基板の第1の主面は、空間部を挟んで互いに対向して配置されており、
前記第1のLEDと前記第2のLEDは、前記空間部において、互いに重ならずに配列されていることを特徴とするLED照明光源。
An insulating substrate;
A transparent substrate disposed opposite the insulating substrate;
A plurality of first LEDs mounted on a first main surface of the insulating substrate;
An LED illumination light source comprising a plurality of second LEDs mounted on the first main surface of the transparent substrate,
The first main surface of the insulating substrate and the first main surface of the transparent substrate are arranged to face each other with a space portion interposed therebetween,
The LED illumination light source, wherein the first LED and the second LED are arranged without overlapping each other in the space portion.
前記第1のLEDと前記第2のLEDは、前記空間部において、互いに重ならずに交互に配列されていることを特徴とする請求項1に記載のLED照明光源。 2. The LED illumination light source according to claim 1, wherein the first LED and the second LED are alternately arranged in the space portion without overlapping each other. 前記第1のLEDは、前記絶縁基板の第1の主面上にフリップチップ実装され、
前記第2のLEDは、前記透明基板の第1の主面上にフリップチップ実装されていることを特徴とする請求項1に記載のLED照明光源。
The first LED is flip-chip mounted on the first main surface of the insulating substrate,
The LED illumination light source according to claim 1, wherein the second LED is flip-chip mounted on the first main surface of the transparent substrate.
前記絶縁基板の第1の主面上に実装された各第1のLED間に、複数の反射板が設置されていることを特徴とする請求項1に記載のLED照明光源。 2. The LED illumination light source according to claim 1, wherein a plurality of reflecting plates are installed between the first LEDs mounted on the first main surface of the insulating substrate. 前記複数の反射板は、前記透明基板の第1の主面上に実装された第2のLEDに対向する位置に設置されていることを特徴とする請求項4に記載のLED照明光源。 5. The LED illumination light source according to claim 4, wherein the plurality of reflection plates are installed at positions facing the second LEDs mounted on the first main surface of the transparent substrate. 前記第1のLEDから出射された光は、前記透明基板を通過して該透明基板の第2の主面から外部に出射され、
前記第2のLEDから出射された光は、前記絶縁基板の第1の主面上に設置された反射板で反射され、該反射光が前記透明基板を通過して該透明基板の第2の主面から外部に出射されることを特徴とする請求項4または5に記載のLED照明光源。
The light emitted from the first LED passes through the transparent substrate and is emitted to the outside from the second main surface of the transparent substrate,
The light emitted from the second LED is reflected by a reflecting plate installed on the first main surface of the insulating substrate, and the reflected light passes through the transparent substrate and the second light of the transparent substrate. 6. The LED illumination light source according to claim 4, wherein the LED illumination light source is emitted from the main surface to the outside.
前記透明基板は、セラミック基板からなることを特徴とする請求項1に記載のLED照明光源。 The LED illumination light source according to claim 1, wherein the transparent substrate is made of a ceramic substrate. 前記複数の第2のLEDは、前記透明基板の第1の主面上に形成された透明電極で互いに電気的に接続されていることを特徴とする請求項1に記載のLED照明光源。 2. The LED illumination light source according to claim 1, wherein the plurality of second LEDs are electrically connected to each other through a transparent electrode formed on the first main surface of the transparent substrate. 絶縁基板と、
前記絶縁基板の主面上に配置された複数のLEDと、
前記絶縁基板の主面に対向して配置された透明基板と、
を備えたLED照明光源であって、
前記LEDの出射面と反対面に形成された第1の電極端子は、前記絶縁基板の主面上に形成された第1の電極に接続され、
前記LEDの出射面に形成された第2の電極端子は、前記透明基板の第1の主面上に形成された第2の電極に接続されていることを特徴とするLED照明光源。
An insulating substrate;
A plurality of LEDs disposed on the main surface of the insulating substrate;
A transparent substrate disposed to face the main surface of the insulating substrate;
An LED illumination light source comprising:
The first electrode terminal formed on the surface opposite to the LED emission surface is connected to the first electrode formed on the main surface of the insulating substrate,
The LED illumination light source, wherein the second electrode terminal formed on the emission surface of the LED is connected to the second electrode formed on the first main surface of the transparent substrate.
前記複数のLEDから出射された光は、前記透明基板を通過して、該透明基板の第2の主面から出射されることを特徴とする請求項9に記載のLED照明光源。 10. The LED illumination light source according to claim 9, wherein the light emitted from the plurality of LEDs passes through the transparent substrate and is emitted from a second main surface of the transparent substrate.
JP2004226480A 2004-08-03 2004-08-03 LED lighting source Expired - Fee Related JP4096927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004226480A JP4096927B2 (en) 2004-08-03 2004-08-03 LED lighting source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004226480A JP4096927B2 (en) 2004-08-03 2004-08-03 LED lighting source

Publications (2)

Publication Number Publication Date
JP2006049026A JP2006049026A (en) 2006-02-16
JP4096927B2 true JP4096927B2 (en) 2008-06-04

Family

ID=36027347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004226480A Expired - Fee Related JP4096927B2 (en) 2004-08-03 2004-08-03 LED lighting source

Country Status (1)

Country Link
JP (1) JP4096927B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575890B2 (en) * 2006-03-06 2010-11-04 オスラム・メルコ株式会社 Fish lamp
US7482632B2 (en) 2006-07-12 2009-01-27 Hong Kong Applied Science And Technology Research Institute Co., Ltd. LED assembly and use thereof
JP2008052939A (en) * 2006-08-22 2008-03-06 Yoshihiro Hasegawa Led illumination unit and lighting system
JP2008139279A (en) * 2006-11-02 2008-06-19 Kyoto Denkiki Kk Illuminating apparatus
US7701055B2 (en) 2006-11-24 2010-04-20 Hong Applied Science And Technology Research Institute Company Limited Light emitter assembly
JP4798500B2 (en) * 2006-12-28 2011-10-19 東芝ライテック株式会社 lighting equipment
EP2240964B1 (en) * 2008-01-31 2012-01-18 Koninklijke Philips Electronics N.V. A light emitting device
DE102010046254A1 (en) 2010-09-22 2012-04-19 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component
JP2012078197A (en) * 2010-10-01 2012-04-19 Toyota Motor Kyushu Inc Painted surface inspection device of painted object and painted surface inspection method of painted object
CN103597283B (en) * 2011-06-10 2016-10-12 马田专业公司 There is the illuminator of multi-layer heat dissipation device
KR101255747B1 (en) 2011-10-10 2013-04-17 한국광기술원 Light emitting device module and lightening apparatus therewith
KR101188748B1 (en) * 2012-07-18 2012-10-09 지스마트 주식회사 Transparent display board and manucfacturing method
JP6250687B2 (en) 2012-10-26 2017-12-20 フィリップス ライティング ホールディング ビー ヴィ Lighting device and lighting system
JP2018049981A (en) 2016-09-23 2018-03-29 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method of the same
CN109681808B (en) * 2016-12-27 2020-12-15 浙江雷士灯具有限公司 LED spot lamp with glass lamp cup capable of emitting light on two sides
CN107910413B (en) * 2017-11-21 2019-07-12 福州大学 A kind of the flood tide transfer device and transfer method of MicroLED
CN108010994B (en) * 2017-12-15 2019-10-18 惠州雷通光电器件有限公司 Micro- light emitting diode transfer method
JP7355474B2 (en) * 2018-08-24 2023-10-03 スタンレー電気株式会社 Vehicle lights

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263672A (en) * 1988-04-15 1989-10-20 Nec Corp Electrophotographic printer
JP2945195B2 (en) * 1991-10-31 1999-09-06 ティーディーケイ株式会社 Organic thin film electroluminescent device
JP2503502Y2 (en) * 1992-09-02 1996-07-03 スタンレー電気株式会社 LED lamp
JPH08202288A (en) * 1995-01-31 1996-08-09 Mitsubishi Cable Ind Ltd Arrangement structure for semiconductor light emitting element, display device constituted of using it and its manufacture
JPH09116187A (en) * 1995-10-16 1997-05-02 Stanley Electric Co Ltd Completely coaxial composite optical element
JP2000031546A (en) * 1998-07-08 2000-01-28 Mitsubishi Electric Corp Led aggregate module
JP3965929B2 (en) * 2001-04-02 2007-08-29 日亜化学工業株式会社 LED lighting device
JP2002304902A (en) * 2001-04-04 2002-10-18 Matsushita Electric Works Ltd Light source device
JP2002351359A (en) * 2001-05-22 2002-12-06 Matsushita Electric Ind Co Ltd Led array and led display device
JP3989794B2 (en) * 2001-08-09 2007-10-10 松下電器産業株式会社 LED illumination device and LED illumination light source

Also Published As

Publication number Publication date
JP2006049026A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4096927B2 (en) LED lighting source
JP4492486B2 (en) Lighting equipment using LED
JP5101578B2 (en) Light emitting diode lighting device
TWI333533B (en) Led lamp structure and system with high-efficiency heat-dissipating function
US7794121B2 (en) Two-dimensional luminaire
EP2541140B1 (en) Lighting device
US8604679B2 (en) LED light source lamp having drive circuit arranged in outer periphery of led light source
JP2010003674A (en) Light source unit, and lighting apparatus
WO2010117027A1 (en) Light emitting module and lighting apparatus
JP2013531367A (en) LED light source and manufacturing method thereof
JP2006295085A (en) Light emitting diode light source unit
JP2009129809A (en) Lighting system
JP2010198919A (en) Led lamp
JP4683013B2 (en) Light emitting device
JP6138816B2 (en) LED lighting device
JP5958805B2 (en) Light source device and illumination device
JP2011222150A (en) Lighting system
JP2012146552A (en) Lighting device
JP2012069396A (en) Lighting unit and lighting system
JP2006147214A (en) Lighting system
JP2011181252A (en) Lighting fixture
JP5569759B2 (en) Light source unit
JP2020038764A (en) Illuminating device
KR100646638B1 (en) Lighting apparatus using light emitting diode and method for producing the same
JP2014103093A (en) Light source unit and lighting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R151 Written notification of patent or utility model registration

Ref document number: 4096927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees