JP4095186B2 - 露光方法 - Google Patents

露光方法 Download PDF

Info

Publication number
JP4095186B2
JP4095186B2 JP33092198A JP33092198A JP4095186B2 JP 4095186 B2 JP4095186 B2 JP 4095186B2 JP 33092198 A JP33092198 A JP 33092198A JP 33092198 A JP33092198 A JP 33092198A JP 4095186 B2 JP4095186 B2 JP 4095186B2
Authority
JP
Japan
Prior art keywords
optical system
optical axis
projection
detection
reticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33092198A
Other languages
English (en)
Other versions
JP2000156337A (ja
Inventor
朝彦 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP33092198A priority Critical patent/JP4095186B2/ja
Priority to US09/442,149 priority patent/US6539326B1/en
Publication of JP2000156337A publication Critical patent/JP2000156337A/ja
Application granted granted Critical
Publication of JP4095186B2 publication Critical patent/JP4095186B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7034Leveling

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、投影露光装置及びそれを用いたデバイスの製造方法に関し、特に半導体素子(デバイス)の製造の分野において、半導体ウエハー表面にレチクルの回路パターンを繰り返し縮小投影露光する際の自動ピント調整機能、所謂オートフォーカス機能を有するステッパーと呼ばれる投影露光装置に好適なものである。
【0002】
【従来の技術】
近年、半導体素子、LSI素子、超LSI素子等のパターンの微細化、高度集積化の要求により、投影露光装置においては高い解像力を有した結像(投影)光学系が必要とされてきている。それに伴って、結像光学系の高NA化が進んで、その結果、結像光学系の焦点深度がより浅くなってきている。
【0003】
また、ウエハーには平面加工技術の点から、ある程度の厚さのばらつきと曲りがある。通常、ウエハーの曲り矯正については、サブミクロンのオーダーで平面度を保証する様に加工されたウエハーチャック上にウエハーを載せ、ウエハーの背面をバキューム吸着することにより平面矯正を行っている。しかしながら、ウエハー1枚の中での厚さのばらつきや吸着手法、さらには、プロセスが進むことによってウエハーが変形してくる。このため、レチクルパターンが縮小投影露光される画面領域内でウエハーは凹凸を持ち、実効的な光学系の焦点深度は、さらに浅くなってくる。
【0004】
従って、投影露光装置においては、ウエハー面を焦点面に(投影光学系の像面)に合致させるために有効な自動焦点合わせ方法が重要なテーマとなってくる。
【0005】
従来の投影露光装置のウエハー面位置検出方法としては、エアマイクロセンサーを用いる方法や、投影光学系を介さずにウエハー面に斜め方向から光束を入射させその反射光の位置ずれ量を検出する方法(光学方式)、投影光学系を通してそのピント面を検出する、スルーザレンズオートフォーカス(TTLAF)という方法などがある。
【0006】
図15は特開平1−286418号公報で開示されているオートフォーカス機能を有する投影露光装置の概略図である。図15において、107はレチクルであり、レチクルステージ170に保持されている。レチクル107上の回路パターンが縮小投影レンズ108によって、xyzステージ110上のウエハ109上に1/5に縮小されて結像し、露光が行われる。図15では、ウエハ109に隣接する位置に、ウエハ109の上面とミラー面がほぼ一致する基準平面ミラー117が配置されている。この基準平面ミラー117はフォーカスやアライメント等のために用いられている。また、xyzステージ110は投影レンズ108の光軸方向(z)及びこの方向に直交する面内(x,y)で移動可能であり、もちろん光軸のまわりに回転させることも出来る。レチクル107は、同図の要素101〜106で示される照明光学系によって、回路パターンの転写が行われる画面領域内を照明されている。
【0007】
露光用の光源である水銀ランプ101の発光部は楕円ミラー102の第一焦点に位置しており、水銀ランプ101より発光した光は、楕円ミラー102の第二焦点位置に集光している。楕円ミラー102の第二焦点位置にその光入射面を位置付けたオプティカルインテグレーター103が置かれており、オプティカルインテグレーター103の光出射面は二次光源を形成する。この二次光源をなすオプティカルインテグレーター103より発する光は、コンデンサーレンズ104を介し、ミラー105により光軸(光路)が90°折り曲げられる。このミラー105により反射された露光光は、フィールドレンズ106を介し、レチクル107上の、回路パターンの転写が行われる画面領域内を照明している。ミラー105は露光光を例えば5〜10%という様に部分的に透過する構成となっている。ミラー105を通過した光はレンズ152、露光波長を透過し光電検出に余分な光をカットするフィルター151を介して、光源101からの光量のゆらぎ等をモニターするための光検出器150に到達する。
【0008】
同図において要素111〜112は、公知のオフアクシスのオートフォーカス光学系を形成している。111は投光光学系であり、投光光学系111より発せられた非露光光である光束は、縮小投影レンズ108の光軸と交わる。基準平面ミラー117上の点(あるいはウエハ109の上面)に集光し反射されるものとする。この基準平面ミラー117で反射された光束は、検出光学系112に入射する。図示は略したが、検出光学系112内には位置検出用受光素子が配されており、位置検出用受光素子と基準平面ミラー117上の光束の反射点は、共役となる様配置されており、基準平面ミラー117の縮小投影レンズ108の光軸方向の位置ズレは、検出光学系112内の位置検出用受光素子上での入射光束の位置ズレとして計測される。この検出光学系112により計測された基準平面ミラー117の所定の基準面よりの位置ズレは、オートフォーカス制御系119に伝達される。オートフォーカス制御系119は、基準平面ミラー117が固設されたxyzステージ110を駆動する処の駆動系120にz方向への移動の指令を与える。また、TTLでフォーカス位置を検知する時、オートフォーカス制御系119は基準平面ミラー117を所定の基準位置の近傍で投影レンズ108の光軸方向(z方向)に対して上下に駆動を行うものとする。また、露光の際のウエハ109の位置制御(図15の基準平面ミラー117の位置にウエハ109が配置される)もオートフォーカス制御系119により行われる。
【0009】
縮小投影レンズ108のピント位置検出光学系について説明する。図13,図14において107はレチクル、121はレチクル107上に形成されたパターン部で遮光性をもつものとする。また、122はパターン部121に挟まれた透過部である。ここで、縮小投影レンズ108のピント位置(像面位置)の検出を行う時は、xyzステージ110は縮小投影レンズ108の光軸方向に移動する。基準平面ミラー117は縮小投影レンズ108の光軸上に位置しており、レチクル107は、図15の照明光学系101〜106により照明されているものとする。
【0010】
始めに、基準平面ミラー117が縮小投影レンズ108のピント面にある場合について図13を用いて説明する。レチクル107上の透過部122を通った露光光は、縮小投影レンズ108を介して、基準平面ミラー117上に集光し反射される。反射された露光光は、往路と同一の光路をたどり、縮小投影レンズ108を介しレチクル107に集光し、レチクル107上のパターン部121間の透過部122を通過する。このとき露光光は、レチクル107上のパターン部121にケラレることなく、全部の光束がパターン部122の透過部を通過する。
【0011】
次に、基準平面ミラー117が縮小投影レンズ108のピント面よりズレた位置にある場合について図14を用いて説明する。レチクル107上のパターン部122の透過部を通った露光光は、縮小投影レンズ108を介し基準平面ミラー117上に達するが、基準平面ミラー117は、縮小投影レンズ108のピント面にないので、露光光は広がった光束として基準平面ミラー117で反射される。すなわち、反射された露光光は往路と異なる光路をたどり、縮小投影レンズ108を通り、レチクル107上に集光することなく、基準平面ミラー117の縮小投影レンズ108のピント面からのズレ量に対応した広がりをもった光束となってレチクル107上に達する。この時露光光はレチクル107上のパターン部121によって一部の光束がケラレを生じ、全部の光束が透過部122を通過することはできない。すなわち、ピント面に合致した時とそうでない時ではレチクルを通しての反射光量に差が生じるのである。
【0012】
図13,図14において説明した、基準平面ミラー117で反射された露光光の光束がレチクル107を通過した後の光路を、図15を用いて説明する。レチクル107を透過した露光光は、フィールドレンズ106を通りミラー105に達する。ミラー105は前述の様に露光光に対して5〜10%程度の透過率をもっているので、ミラー105に達した露光光の一部はミラー105を通過し、結像レンズ113を介し視野絞り114の面上に集光する。この時、レチクル107のパターンの存在する面と視野絞り114とは、フィールドレンズ106と結像レンズ113を介し、共役な位置にある。視野絞り114の開口部を通過した露光光は、集光レンズ115によって受光素子116に入光する。受光素子116の前面には、必要な場合は露光光のみを選択的に透過するフィルター151を配置するものとし、入射した露光光の光量に応じた電気信号を出力する。
【0013】
以下に、この受光素子116の信号出力を用いて、縮小投影レンズ108のピント位置(像面位置)を検出する方法について説明する。駆動系120により基準平面ミラー117の載ったxyzステージ110を縮小投影レンズ108の光軸方向に、検出光学系112で予め設定される計測の零点を中心に駆動させるものとする。この時、各位置での検出光学系112が計測する基準平面ミラー117の光軸方向の位置信号(オートフォーカス計測値z)と、基準平面ミラー117で反射された露光光を受光素子116で受光し、電気信号に変換することにより焦点面(像面)検出系118から得られる出力の関係は、図11に示す様になる。この時、焦点面検出系118の信号は光源101のゆらぎの影響を除くため、ミラー105を通過した光源101からの光を光源光量モニター光学系(152,151)を介して光検出器150で検出して、基準光量検出系153で光源光量モニター信号を発生させる。そして、このモニター信号によって焦点面検出系118の信号を規格化することによって補正している。基準平面ミラー117が縮小投影レンズ108のピント面に位置した場合に焦点面検出系118の出力はピーク値を示す。この時のオートフォーカス計測値Z0をもってして、縮小投影レンズ108を用いて、ウエハ109に露光を行う際の縮小投影レンズ108のピント位置とする(または計測値Z0に基づいて予め設定しておいたピント位置を補正する)。
【0014】
この様にして決まった縮小投影レンズ108のピント位置にオフアクシスオートフォーカス光学系110,112,119の基準位置を設定する。実際のウエハの焼付最良位置は、この基準位置からウエハの塗布厚や段差量等の値を考慮した分だけオフセットを与えた値となる。例えば多層レジストプロセスを用いてウエハを露光する場合には、多層の一番上の部分だけを焼けばよいのでウエハのレジスト表面と基準位置はほぼ一致する。一方、単層レジストで露光光が基板に十分到達する様な場合、ウエハのピントはレジスト表面ではなく基板面に合致するので、この場合レジスト表面と基準位置の間に1μm以上のオフセットが存在することも稀ではない。こうしたオフセット量はプロセス固有のもので、投影露光装置とは別のオフセットとして与えられるものである。装置自体としては上述の方法で縮小投影レンズ108自体のピント位置を正確に求められれば充分であり、上記オフセット量は、必要な場合にのみオートフォーカス制御系119や駆動系120に対して投影露光装置の不図示のシステムコントローラを介して予め入力してやればよい。
【0015】
このピント位置Z0の検出は、焦点面検出系118の出力のピークをもって決定してもよいが、その他にも色々な手法が考えられる。例えばより検出の敏感度を上げるために、図11に示すように、ピーク出力に対してある割合のスライスレベルSLを設定し、このスライスレベルSLの出力を示す時のオートフォーカス計測値Z1,Z2を知ることによりピント位置を
【0016】
【外1】
Figure 0004095186
として決定してもよいし、また、ピーク位置を微分法を使って求める等の手法も考えられる。
【0017】
図15に示すTTLのオートフォーカスシステムの長所は、投影露光光学系の周囲の温度変化、大気圧変化、露光光線による投影光学系の温度上昇と、それに伴って生じるピントの経時変化を常時計測し補正をかけられるという点である。
【0018】
【発明が解決しようとする課題】
このような合焦検出系を用いて自動焦点合わせを行う方法(TTLAF方式)では、投影光学系の最適な像面位置を求めるために設けられた原板上の検出用マークの位置は、通常原板ごと異なる位置に配置されているのではなく、実素子領域外の所定像高のある箇所に固定されている。つまり、固定された像高位置で最適な像面位置の計測を行うので、位置検出系により計測される基準マークがある基準面(基準平面ミラー)のXY位置は、常に一定の場所である。そのため基準面の表面凹凸量や、傾きなどの形状状態は問題とならず、それらは初期の一定量のオフセットとして考慮すればよい。
【0019】
一般に投影レンズの転写特性は光軸上が最もよい。従って、実素子領域が狭い原板においては、最適な像面位置を検出するための原板上の検出用マークの位置は、実素子パターン領域により近い位置にあることが望ましい。
【0020】
そこで本発明では、面の合致検出を異なる位置で行うことが適切な場合(例えば、合焦検出系用として原板上に設けられた検出用マークが原板ごとに異なる位置に配置された状態)においても、面検出を適切に行うことができる位置検出方法、及び位置検出装置の提供を目的とする。
【0021】
さらに本発明では、任意の位置で面検出を行うことで生ずる検出値の誤差を決定することで、最適な面位置検出を安定して行い、高集積度のデバイスを容易に製造することができる投影露光方法、投影露光装置、及びデバイスの製造方法の提供を目的とする。
【0022】
【課題を解決するための手段】
上記の課題を解決するための、本発明の側面としての露光方法は、レチクルを照明し、投影光学系を介して前記レチクルのパターンの像を基板に投影する露光方法において、前記基板を移動させるステージ上の基準部材に形成された基準マークが前記投影光学系の光軸上の位置にある場合に、前記投影光学系の光軸上における前記光軸方向の前記基準部材の位置を測定する第1測定ステップと、前記レチクルに設けられた焦点検出用マークからの光が前記投影光学系により投影される前記光軸外の投影位置に前記基準マークがある場合に、前記光軸上における前記光軸方向の前記基準部材の位置を測定する第2測定ステップと、前記ステージを用いて、前記光軸上の位置から前記投影位置まで、又は、前記投影位置から前記光軸上の位置まで前記基準マークを移動させる移動ステップと、前記移動ステップにおける移動によって前記光軸と垂直な方向に前記ステージが移動した移動量を取得する取得ステップと、前記基準マークが前記投影位置にある状態において、前記ステージを用いて前記基準部材を前記光軸方向に移動させて、前記基準マークを前記投影光学系の焦点位置に位置決めする位置決めステップと、前記第1及び第2測定ステップにおいて測定された前記基準部材の位置と、前記取得ステップにおいて取得された前記移動量と、前記ステージの走り面に対する前記投影光学系の像面の傾きとに基づいて、前記光軸上における前記投影光学系の焦点位置を求めるステップと、該求められた焦点位置を用いて決定される位置に前記基板を移動して、前記基板を露光するステップとを有することを特徴とする。
【0047】
【発明の実施の形態】
<実施例1>
図8は、本発明の実施例1の要部概略図であり、可動ステージ(ここではxyzステージに対応)上の基準面(ここでは基準平面ミラーに対応)と合焦検出系による自動焦点合わせ方法(ここではTTLAF方式に対応)を備えた投影露光装置の概略構成を示している。
【0048】
同図において、6はレチクルでありレチクルステージ7に保持されている。レチクル6上の回路パターンが投影レンズ9によって、xyzステージ11上のウエハー12に1/5、または1/2に縮小され結像し露光が行われる。同図では、ウエハー12に隣接する位置にウエハー12の上面とミラー面がほぼ一致する基準平面ミラー13が配置されている。基準平面ミラー13には、図9に示すような基準マーク13aが設けられている。また、xyzステージ11は、投影レンズ9の光軸方向(z)、及びこの方向に直交する面内(x,y)で移動可能であり、光軸のまわりに回転させることもできる。
【0049】
レチクル6は、同図の要素1〜5で示される照明光学系によって、回路パターンの転写が行われる画面領域内で照明されている。露光用の光源である水銀ランプ1の発光部は、楕円ミラー2の第一焦点に位置しており、水銀ランプ1より発光した光は、楕円ミラー2の第二焦点位置にその光入射面を位置づけたオプティカルインテグレーター(ハエの目レンズ)3に入射する。オプティカルインテグレーター3の光出射面は二次光源を形成し、オプティカルインテグレーター3より発する光は照明用レンズ4とフィールドレンズ5を介してレチクル6を照射する。
【0050】
同図において要素10,13,14は、図15で述べたのと同様な位置検出系(ここではオフアクシスのオートフォーカス光学系)を形成している。10は投光光学系であり、投光光学系10より発せられた非露光光である光束は、基準平面ミラー13上の点(あるいはウエハー12の上面)に集光し反射される。この基準平面ミラー13で反射された光束は、フォーカス検出光学系14に入射する。図示は略したが、フォーカス検出光学系14内には位置検出用受光素子が配されており、位置検出用受光素子と基準平面ミラー13上の光束の反射点は共役となるよう配置されている。
【0051】
基準平面ミラー13の縮小投影レンズ9の光軸方向の位置ズレは、フォーカス検出光学系14内の位置検出用受光素子上での入射光束の位置ズレとして計測される。この検出光学系14により計測された基準平面ミラー13の所定の基準面からの位置ズレは、オートフォーカス制御系32に伝達される。オートフォーカス制御系32は、基準平面ミラー13が固設されたxyzステージ11を駆動する処の駆動系33にz方向への移動の命令を与える。また、後述する合焦検出系(ここでは焦点面検出光学系に対応)によりTTLで像面(フォーカス)位置を検知する時、オートフォーカス制御系32は、基準平面ミラー13を所定の基準位置の近傍で投影レンズ9の光軸方向(z方向)に上下に駆動を行う。また、露光の際のウエハー12の位置制御(図8の基準平面ミラー13の位置にウエハー12が配置される)もオートフォーカス制御系32により行っている。
【0052】
次に、本実施形態において、ウエハー12面のフォーカス状態を検知してその信号に基づいてxyzステージ11を駆動させて、投影レンズ9のフォーカス位置を検出するための構成要件について説明する。27はTTLAFの焦点面検出光学系であり、以下に述べる各要素23,24,26,40,41を有している。ファイバー40から射出した照明光束はハーフミラー41を通過し、対物レンズ24とミラー23を介してレチクル6近傍に集光する。レチクル6上には、図10に示すように、実素子領域外の任意の位置RWに所定の大きさの透光部(窓抜き部)8が設けられている。そこには、図12に示したようなレチクル6面に対するフォーカス検知用の検出用マークRWaが、所定の線幅の縦横方向のラインアンドスペースより成っている。検出用マークRWaは焦点面検出光学系27で観察したときに、基準マークの反射光が阻害されないような配置となっている。照明光束はこの窓抜き部8を通過した後に投影レンズ9を介して、基準平面ミラー13上に集光している。
【0053】
先に述べたように、基準平面ミラー13面上には、図9に示すような基準マーク13aが設けられている。基準平面ミラー13からの反射光は元の光路を戻り、順に投影レンズ9、窓抜き部8、ミラー23、対物レンズ24を介して、ハーフミラー41で反射して位置センサー26に入射している。この基準平面ミラー13は、ウエハー12と同じxyzステージ11上に配置されていて、ウエハー12とは概一致したフォーカス面上に固定されている。ウエハー面12aと基準マーク13a面の各々のフォーカス位置、ないしは、両面間のフォーカスオフセット量は、オートフォーカス制御系32によって管理されている。これにより、以降の手順に従って、基準平面ミラー13に対してフォーカシングして所定のオフセット量を与えるだけで、自動的に実ウエハー上のフォーカシングを行っている。
【0054】
図9に示すように、基準平面ミラー13上の基準マーク13aは、所定の線幅の縦横方向のラインアンドスペースより成っている。基準平面ミラー13上の基準マーク13aから発した光束は、往路を戻り(復路)、対物レンズ24まで到達する。対物レンズ24を通過した光束はハーフミラー41を今度は反射し、位置センサー26のセンサー面26a上に結像する。この位置センサー26は、一次元アレーセンサーであっても、CCDに代表される二次元アレーセンサーであってもよい。例えば、基準マーク13a(図9)と対応して、一方向パターンだけ(縦線または横線)のフォーカス検出でよいならば一次元アレーセンサーで十分であるし、二方向パターン(縦線と横線同時)のフォーカス検出が必要であるならば二次元アレーセンサーを用いる。基準平面ミラー13を投影レンズ9の光軸方向に振ると、位置センサー26上では、これと対応して基準マーク13a(図9)のフォーカス状態が変化した情報が得られる。これらから最適フォーカス位置を求めることができる。
【0055】
発明が解決しようとする課題において述べたように、一般に投影レンズの転写特性は光軸上が最もよく、最適な像面位置を検出するためのレチクル上の検出用マークの位置は、実素子パターン領域により近い位置にあることが望ましい。そこで本実施例では、検出用マークが任意の位置にある場合においても像面位置を検出できるように、焦点面検出光学系27が駆動できるようにしている。
【0056】
また、レチクル6に描かれている回路パターン領域に応じて、オートフォーカス計測に使用されるレチクル6面上の検出用マークRWaが、レチクル6ごとに任意の場所に配置された場合について考えてみると、フォーカス検出光学系14が計測する基準平面ミラー13の位置が異なってきてしまう。その結果、基準平面ミラー13の形状状態や、xyzステージ11を駆動させたときの走り面の傾き、投影光学系9の像面の場所による違いの影響が、オートフォーカス計測値に反映されてしまい、計測誤差が生じてしまう。そこで、基準平面ミラー13の形状状態、xyzステージ11の走り面の傾き、投影光学系9の像面の傾きにより生ずるTTLオートフォーカス検出値の誤差を決定し、最適なフォーカス位置を求めることにする。以下に方法を述べる。
【0057】
図1は、本発明のオートフォーカス検出の概要図であり、図2は、本発明のオートフォーカス検出のシーケンスを示すフローチャートである。
【0058】
図1において、まず、焦点面検出光学系27をレチクル6面上に設けられた検出用マーク位置RWa、つまり計測像高位置へ駆動させる(s202)。レチクル面6にファイバー40からの光を照明し反射光を位置センサー26で検出しながらフォーカス調整を行い、光量、またはコントラスト最大位置を見つけることにより、焦点面検出光学系27のフォーカスを検出用マークRWaに合わせる(s203,s204)。これは、焦点面検出光学系27が駆動することによる駆動系のヨタリやレチクルのタワミなどの計測誤差要因を防ぐために行う。
【0059】
次に、基準平面ミラー13の形状状態変位量を計測するために、基準マーク13aとフォーカス計測位置での基準平面ミラー13の高さ計測と、像面に対する基準平面ミラー13の傾き計測を行う。まず、基準マーク13a自体の高さと、像面に対する基準平面ミラー13の傾きを計測するために、基準マーク13aを投影レンズ9中心直下の位置(X1,Y1)、つまりフォーカス検出光学系14の計測領域にxyzステージ11を駆動させ(s205)、フォーカス検出光学系14により、その基準マーク13aの高さZ1を計測する。同時に、フォーカス検出光学系14にて、像面に対する基準平面ミラー13の傾きを計測する(s206)。投光光学系11は5つの光線を射出することができ、基準平面ミラー13上の5ヶ所それぞれにおけるフォーカス検出光学系14の検出値を比較することにより、基準平面ミラー13の傾きが計測できる。
【0060】
次に、レチクル6面上に設けられた検出用マークRWaを通して焦点面検出光学系27が観察できる位置(X2,Y2)に、基準マーク13aをXYスライド駆動させ(s207)、その時にフォーカス検出光学系14が計測する基準平面ミラー13の高さZ2を計測する(s208)。
【0061】
こうして、基準の高さとなる基準マーク13a自体の高さZ1計測点と、計測像高の変化に伴い常に変化する基準平面ミラー13の高さZ2計測点の2点の高さから、基準マーク13aがXYスライドすることによる基準平面ミラー13の高さの差Z3が算出できる(s209)。
【0062】
Z3 = Z2 − Z1
次に、ステージ走り面52に対する基準平面ミラー13の傾きによる光軸方向への変位量Z4を求める。xyzステージ11の走り面52に対する像面51の傾き量(TX,TY)は、あらかじめ計測され装置に記憶されているので、xyzステージ11がXY方向にスライド駆動した駆動量
X3 = X2 − X1
Y3 = Y2 − Y1
を用いると、その時にxyzステージ11が光軸方向に変位した量Z4が求まる(s210)。
【0063】
Z4 = TX × X3 + TY × Y3
同様に、先に求めた像面に対する基準平面ミラー13の傾きと、xyzステージ11がXY方向にスライド駆動した駆動量X3,Y3から、像面に対する基準平面ミラー13の傾きによる光軸方向への変位量Z10が求まる(s211)。
【0064】
上記から得られたZ4とZ10の値を用いて、ステージ走り面に対する基準平面ミラー13の傾きによる光軸方向への変位量Z11が算出できる。
【0065】
Z11 = Z4 − Z10
上記から得られたZ3とZ11の値を用いて、基準平面ミラー13の形状状態変位量Z12が算出できる(s211)。
【0066】
Z12 = Z3 + Z11
このようにして、予めオートフォーカス検出するに先立って、計測像高における基準平面ミラー13の形状状態変位量Z12を求めておく。
【0067】
その後、前述のTTLオートフォーカス計測(s213)を行い、得られた計測値Z6に、TTL計測時の像面に対する基準平面ミラー13の傾きによる光軸方向への変位量Z10と、計測像高における基準平面ミラー13の形状状態変位量Z12を反映させ、最適フォーカス値Z7を求める(s214,s215)。
【0068】
Z7 = Z6 + Z10 + Z12
実際の露光時には、このようにして決定された最適フォーカス位置にウエハの塗布厚や段差量等の値を考慮したオフセットを与えた位置に、フォーカス検出光学系14による計測のみによってウエハを合わせるようにステージを駆動させ(s216)、回路パターンの露光を行う(s217)。
【0069】
上記方法によれば、検出用マークRWaが、レチクルによって任意の位置に配置される場合においても、その計測結果が基準平面ミラー13の形状状態、xyzステージ11の走り面の傾き、投影光学系9の像面の傾きの影響を受けることなく、正確なオートフォーカス計測を行うことが可能となる。
【0070】
この方法を用いて実プロセスウエハーの露光時には、何枚目かの実ウエハー露光の間に、定期的にもしくは所定のタイミングで、基準マーク13aを送り込んで、そのフォーカスを変えながら、先と同様にフォーカス検出光学系14と焦点面検出光学系27でフォーカス計測を繰り返し、最適フォーカス面を自動決定する(s215)。決定された位置へxyzステージ11をZ方向に駆動し、ウエハー12面を投影レンズ9の最適フォーカス面にもっていき(s216)、回路パターンの露光を行う(s217)。以上のシーケンスを実行することで、回路パターンの最適な焼きが可能となる。
【0071】
また、本実施例の方法において、他の値を用いても最適フォーカス値Z7を求めることができる。図3にフローチャートを示す。基準マーク13aがXYスライドすることによる基準平面ミラー13の高さの差Z3(s309)と、ステージ走り面52に対する基準平面ミラー13の傾きによる光軸方向への変位量Z4(s310)とを求めるまでは、ほぼ前述の手順と同じである。前述の手順で行った、フォーカス検出光学系14による像面に対する基準平面ミラー13の傾きの計測は、この場合必要はない。その後、TTLオートフォーカス計測(s311)を行い、得られた計測値Z6にZ3とZ4を加算すれば(s312)、最適フォーカス値Z7が求まる(s313)。
【0072】
Z7 = Z6 + Z3 + Z4
【0073】
<実施例2>
実施例1では、TTLオートフォーカス計測のたびに、レチクル6面へのフォーカス合わせ(s203)と、基準平面ミラー13の形状状態に関する計測を行い、TTLオートフォーカス計測により、最終的な計測値を求めていた。実施例2では図4に示すように、 TTLオートフォーカス計測と同時に実行される基準平面ミラー13の形状状態変位計測処理(s220)を、実プロセスウエハーの露光時には、初回オートフォーカス計測実行時のみ実行すればよい例である。
【0074】
まず、1回目の露光においては、実施例1と同じように、基準平面ミラー13の形状状態変位量Z12、基準平面ミラー13の像面に対する傾きZ10、TTLオートフォーカス計測により得られた計測値Z6から、最適フォーカス位置Z7を求める(s403〜s410)。ここで途中、基準平面ミラー13の形状状態変位量Z12を装置のメモリーに格納しておく(不図示)。2回目以降は、基準平面ミラー13の像面に対する傾きZ10とTTLオートフォーカス計測により得られた計測値Z6のみ求め、基準平面ミラー13の形状状態変位量Z12はメモリー中の値を使用し、最適フォーカス値Z7を求める(s403,s404,s407〜s410)。
【0075】
この場合においても実施例1と同様の効果が得られ、しかも実プロセスウエハー露光中は、基準平面ミラー13の形状状態変位計測処理が1回しか行われないため、スループットが向上するという利点がある。
【0076】
<実施例3>
さらに実施例3では図5に示すように、レチクル6すなわち検出用マークRWaによって任意の値をとる基準平面ミラー13の形状状態の変位量を、全てのレチクルに対して、予めその像高ごとに計測しておく。その情報を装置のメモリーに記憶させることで、実プロセスウエハーの露光時には、基準平面ミラー13の形状状態変位計測処理(s220)をする必要がなくなるという例である。
【0077】
まず第一工程で、使用される全てのレチクルに対して、予めレチクル6すなわち検出用マークRWaによって任意の値をとる基準平面ミラー13の形状状態変位量Z12を計測する(s502)。その値をレチクルごとのデータとして、装置のメモリーに記憶させる(s503)。第二工程の実プロセスウエハーの露光時には、基準平面ミラー13の像面に対する傾きZ10とTTLオートフォーカス計測により得られた計測値Z6のみ求め、基準平面ミラー13の形状状態変位量Z12は、同じ計測像高に相当する変位量Z12をメモリーから読み出して使用し、最適フォーカス値Z7を求める(s513〜s517)。
【0078】
上記方法によれば、その装置で1回だけ予め基準平面ミラー13の形状状態変位量Z12を計測すれば、実プロセスウエハーの露光時には基準平面ミラー13の計測動作をする必要がなくなり、さらにスループットが向上できる利点がある。
【0079】
<実施例4>
図6は他のオートフォーカス検出の実施例であり、図7はそのフローチャートである。まず、焦点面検出光学系のフォーカス位置を検出用マークRWaに合わせ(s701〜s704)、基準平面ミラー13上の基準マーク13aをTTLオートフォーカス位置(X2,Y2)に駆動させる(s705)。TTLオートフォーカス計測を実行したあと(s706)、基準マーク13aが光軸上(X1,Y1)になるように、基準マーク13aをXY方向にスライド駆動させる(s707)、このときの基準マーク13aの高さZ1をフォーカス検出光学系14で計測する(s708)。また実施例1と同様に、ステージ走り面52に対する基準平面ミラー13の傾きによる光軸方向への変位量Z4を、あらかじめ計測されているxyzステージ11の走り面52に対する像面51の傾き量(TX,TY)と、xyzステージ11がXY方向にスライド駆動した駆動量(X3,Y3)とを用いて求める(s709)。その結果、最適フォーカス位置Z7は
Z7 = Z1 + Z4
と、求められる(s710〜s711)。
【0080】
【発明の効果】
本発明によれば、面の合致検出を異なる位置で行うのが適切な場合、(例えば、合焦検出系用として原板上に設けられた検出用マークが原板ごとに異なる位置に配置された状態)でも、適切に面検出を行うことができる。
【0081】
さらに、任意の位置で面検出を行うことで生ずる検出値の誤差を決定することによって、最適面位置検出を安定して行うことが可能となる。
【0082】
この結果、投影光学系の像面位置を常に高精度に位置させることができ、高精度のデバイスを容易に製造することができる。
【図面の簡単な説明】
【図1】本発明の実施例1のオートフォーカス検出の概要図
【図2】本発明の実施例1のオートフォーカス検出のシーケンスを示すフローチャート
【図3】本発明の実施例1の他のオートフォーカス検出のシーケンスを示すフローチャート
【図4】本発明の実施例2のオートフォーカス検出のシーケンスを示すフローチャート
【図5】本発明の実施例3のオートフォーカス検出のシーケンスを示すフローチャート
【図6】本発明の実施例4のオートフォーカス検出の概要図
【図7】本発明の実施例4のオートフォーカス検出のシーケンスを示すフローチャート
【図8】本発明の実施形態1の要部概略図
【図9】基準マークの説明図
【図10】図8のレチクルの説明図
【図11】オートフォーカス信号波形の説明図
【図12】レチクル上の検出用マークの説明図
【図13】図15の一部の拡大説明図
【図14】図15の一部の拡大説明図
【図15】従来の投影露光装置の要部概略図
【符号の説明】
6 レチクル
7 レチクルステージ
8 窓抜き部
9 投影レンズ
10 投影光学系
11 xyzステージ
12 ウエハ(感光基板)
13 基準平面ミラー
13a 基準マーク
14 フォーカス検出光学系
27 焦点面検出光学系
32 オートフォーカス検出系
33 駆動系
RWa レチクルのフォーカス検出用マーク

Claims (4)

  1. レチクルを照明し、投影光学系を介して前記レチクルのパターンの像を基板に投影する露光方法において、
    前記基板を移動させるステージ上の基準部材に形成された基準マークが前記投影光学系の光軸上の位置にある場合に、前記投影光学系の光軸上における前記光軸方向の前記基準部材の位置を測定する第1測定ステップと、
    前記レチクルに設けられた焦点検出用マークからの光が前記投影光学系により投影される前記光軸外の投影位置に前記基準マークがある場合に、前記光軸上における前記光軸方向の前記基準部材の位置を測定する第2測定ステップと、
    前記ステージを用いて、前記光軸上の位置から前記投影位置まで、又は、前記投影位置から前記光軸上の位置まで前記基準マークを移動させる移動ステップと、
    前記移動ステップにおける移動によって前記光軸と垂直な方向に前記ステージが移動した移動量を取得する取得ステップと、
    前記基準マークが前記投影位置にある状態において、前記ステージを用いて前記基準部材を前記光軸方向に移動させて、前記基準マークを前記投影光学系の焦点位置に位置決めする位置決めステップと、
    前記第1及び第2測定ステップにおいて測定された前記基準部材の位置と、前記取得ステップにおいて取得された前記移動量と、前記ステージの走り面に対する前記投影光学系の像面の傾きとに基づいて、前記光軸上における前記投影光学系の焦点位置を求めるステップと、
    該求められた焦点位置を用いて決定される位置に前記基板を移動して、前記基板を露光するステップとを有することを特徴とする露光方法。
  2. 前記投影光学系の像面に対する前記光軸上の前記基準部材の傾きを測定する第3測定ステップとを有し、
    前記光軸上における前記投影光学系の焦点位置は、さらに、該測定された前記基準部材の傾きに基づいて求められることを特徴とする請求項1に記載の露光方法。
  3. 前記第1及び第2測定ステップにおいて測定された前記基準部材の位置と、前記移動量と、前記投影光学系の像面の傾きと、前記第3測定ステップにおいて測定された前記基準部材の傾きとに基づいて前記基準部材の形状状態変位量を求め、前記基準部材の形状状態変位量を用いて前記光軸上における前記投影光学系の焦点位置を求めることを特徴とする請求項2に記載の露光方法。
  4. 前記レチクルに設けられた焦点検出用マークの位置に対応する前記基準部材の形状状態変位量を記憶媒体に記憶するステップと、
    該記憶された前記基準部材の形状状態変位量を前記記憶媒体から読み出すステップとを有することを特徴とする請求項3に記載の露光方法。
JP33092198A 1998-11-20 1998-11-20 露光方法 Expired - Fee Related JP4095186B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33092198A JP4095186B2 (ja) 1998-11-20 1998-11-20 露光方法
US09/442,149 US6539326B1 (en) 1998-11-20 1999-11-18 Position detecting system for projection exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33092198A JP4095186B2 (ja) 1998-11-20 1998-11-20 露光方法

Publications (2)

Publication Number Publication Date
JP2000156337A JP2000156337A (ja) 2000-06-06
JP4095186B2 true JP4095186B2 (ja) 2008-06-04

Family

ID=18237957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33092198A Expired - Fee Related JP4095186B2 (ja) 1998-11-20 1998-11-20 露光方法

Country Status (2)

Country Link
US (1) US6539326B1 (ja)
JP (1) JP4095186B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359533A (zh) * 1999-06-29 2002-07-17 株式会社尼康 标记探测法及其装置、曝光法及其设备和器件制造方法及其器件
JP2004022655A (ja) * 2002-06-13 2004-01-22 Canon Inc 半導体露光装置及びその制御方法、並びに半導体デバイスの製造方法
JP2005166785A (ja) * 2003-12-01 2005-06-23 Canon Inc 位置検出装置及び方法、並びに、露光装置
TW200704146A (en) * 2005-02-21 2007-01-16 Fuji Photo Film Co Ltd Plotting method, plotting device, plotting system and correction method
JP2006344739A (ja) * 2005-06-08 2006-12-21 Canon Inc 位置計測装置及びその方法
US7925075B2 (en) * 2007-05-07 2011-04-12 General Electric Company Inspection system and methods with autocompensation for edge break gauging orientation
TWI681166B (zh) * 2018-12-05 2020-01-01 晶睿通訊股份有限公司 資訊量測方法及資訊量測系統

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130707A (en) * 1980-03-18 1981-10-13 Canon Inc Photo-printing device
JPS58179834A (ja) * 1982-04-14 1983-10-21 Canon Inc 投影露光装置及び方法
US4650983A (en) * 1983-11-07 1987-03-17 Nippon Kogaku K. K. Focusing apparatus for projection optical system
JPS6119129A (ja) * 1984-07-05 1986-01-28 Nippon Kogaku Kk <Nikon> 投影光学装置
JPS6134941A (ja) * 1984-07-26 1986-02-19 Canon Inc 合焦検知装置
JPH0782981B2 (ja) * 1986-02-07 1995-09-06 株式会社ニコン 投影露光方法及び装置
JPH0821531B2 (ja) * 1986-08-29 1996-03-04 株式会社ニコン 投影光学装置
US4874954A (en) * 1987-02-02 1989-10-17 Canon Kabushiki Kaisha Projection exposure apparatus
JPS63220521A (ja) * 1987-03-10 1988-09-13 Canon Inc 焦点合せ装置
JPH0652706B2 (ja) 1988-05-13 1994-07-06 キヤノン株式会社 投影露光装置
US5117254A (en) * 1988-05-13 1992-05-26 Canon Kabushiki Kaisha Projection exposure apparatus
US5602399A (en) * 1993-06-23 1997-02-11 Nikon Corporation Surface position detecting apparatus and method
JP3376179B2 (ja) * 1995-08-03 2003-02-10 キヤノン株式会社 面位置検出方法
JPH09210629A (ja) * 1996-02-02 1997-08-12 Canon Inc 面位置検出装置及びそれを用いたデバイスの製造方法

Also Published As

Publication number Publication date
US6539326B1 (en) 2003-03-25
JP2000156337A (ja) 2000-06-06

Similar Documents

Publication Publication Date Title
JP3376179B2 (ja) 面位置検出方法
US7426017B2 (en) Focus test mask, focus measurement method and exposure apparatus
JP3997068B2 (ja) リトグラフ投影装置の較正方法およびそのような方法を適用できる装置
US7158233B2 (en) Alignment mark, alignment apparatus and method, exposure apparatus, and device manufacturing method
EP0342061B1 (en) Projection exposure apparatus
US9915878B2 (en) Exposure apparatus, exposure method, and device manufacturing method
TWI282115B (en) Exposure apparatus and method
US5262822A (en) Exposure method and apparatus
JP2000260704A (ja) 露光装置およびデバイス製造方法
GB2131167A (en) Alignment of mask and semiconductor wafer in exposure apparatus
TW519687B (en) Alignment apparatus, alignment method, exposure apparatus and exposure method
JP4095186B2 (ja) 露光方法
JPH0743245B2 (ja) アライメント装置
JP2006242722A (ja) 位置計測方法、この位置計測方法を実施する位置計測装置、この位置計測方法を使用するデバイス製造方法、及びこの位置計測装置を装備する露光装置
US8077290B2 (en) Exposure apparatus, and device manufacturing method
JP3428825B2 (ja) 面位置検出方法および面位置検出装置
KR100391345B1 (ko) 노광방법및스테퍼
JPH1064808A (ja) マスクの位置合わせ方法及び投影露光方法
JPH09260269A (ja) 投影露光方法及びそれを用いたデバイスの製造方法
JPH01286418A (ja) 投影露光装置
JP2771136B2 (ja) 投影露光装置
US20050112481A1 (en) Exposure method and apparatus
JP2667965B2 (ja) 投影露光方法
JP2771138B2 (ja) 投影露光装置
JP2821148B2 (ja) 投影露光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees