JP4094885B2 - 車両のシミュレーション方法 - Google Patents

車両のシミュレーション方法 Download PDF

Info

Publication number
JP4094885B2
JP4094885B2 JP2002133005A JP2002133005A JP4094885B2 JP 4094885 B2 JP4094885 B2 JP 4094885B2 JP 2002133005 A JP2002133005 A JP 2002133005A JP 2002133005 A JP2002133005 A JP 2002133005A JP 4094885 B2 JP4094885 B2 JP 4094885B2
Authority
JP
Japan
Prior art keywords
model
vehicle
vehicle body
suspension
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002133005A
Other languages
English (en)
Other versions
JP2003330997A (ja
Inventor
直明 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2002133005A priority Critical patent/JP4094885B2/ja
Publication of JP2003330997A publication Critical patent/JP2003330997A/ja
Application granted granted Critical
Publication of JP4094885B2 publication Critical patent/JP4094885B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両の走行性能を精度良く解析しうる車両のシミュレーション方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、特定の車両に適したタイヤを開発する場合、実際にタイヤを試作し、これを前記車両に装着して該車両を走行させ、官能あるいは計測等の種々の評価がなされている。また試作されたタイヤは、例えば実験室などにおいてドラム試験機を用いてコーナリング特性などが調べられ、その結果からさらに試作モデルに改良を加えて、再び車両に装着して実車評価を繰り返すことが行われていた。
【0003】
このような、従来の開発手法では、先ず実車評価を行うため実際にタイヤの試作が必要となる他、実車試験に用いる車両、該車両の走行場所や必要な計測機器、計測者、テストドライバーなどを必要とするなど、多くの手間と労力さらには時間が必要となり、開発コストと開発期間の増加を招いていた。
【0004】
このような実状に鑑み、近年では、タイヤ、サスペンション、車体本体などをそれぞれ有限個の要素でモデル化してコンピュータ上に車両モデルを設定し、これを用いて数値解析による走行シミュレーションを行うことが提案されている。この方法によれば、タイヤや車両を実際に製造しなくとも、それらの大凡の性能を把握することが可能となり、開発期間ないしコストの短縮化が期待されている。
【0005】
ところで、前記提案では、サスペンションが取り付けられるいわゆるボディと称される車体本体は、外力が作用しても変形しないいわゆる剛体要素としてモデル化されている。このような車両モデルは、前後左右のサスペンションの車体本体への取り付け位置が、相対的に変化しないことになる(なお、サスペンション自体は緩衝機能を有しておりタイヤを上下等に変位させることはできる)。
【0006】
しかしながら、現実の車体本体は、旋回時の遠心力、制動力、駆動力といった種々の外力が作用すると僅かではあるが、伸び、縮み或いはねじれ等の歪が単一ないし複合的に生じる。このため、前後左右のサスペンションの車体本体への取り付け位置は、相対的に変化することが経験的にも良く知られていることである。従って、従来のシミュレーション方法では、このような車体本体の剛性に由来する走行中のサスペンション取り付け位置の変化が取り込まれていないため、シミュレーション精度の向上という点では未だ改善の余地がある。
【0007】
一方、このような欠点を解消してシミュレーションの精度を高めるためには、車体本体についても、剛体ではなく実際の使用材料に応じた物理特性を定義した細かな要素で詳細にモデル化すれば、外力に基づく微小な変形までもシミュレーションすることができる。しかしながら、この方法では要素数ないしこれに伴う計算量が大幅に増加するため計算時間が著しく増大する。例えば、車体本体を剛体として取り扱った場合でも、この種のシミュレーションには、スーパーコンピュータを使用して数十〜数百時間の計算時間が必要である。従って、これにさらに車体本体の計算時間が加わると、計算時間が圧倒的に増加し実用化を困難とする。
【0008】
本発明は、以上のような問題点に鑑み案出なされたもので、車体本体モデルを、剛体からなりかつ夫々少なくとも一つのサスペンションモデルが取り付けられた第1の部分、第2の部分と、該第1の部分と第2の部分とを相対移動可能に継ぐ継手モデルとを含んで構成することを基本として、簡易な構成で車体本体の変形をシミュレーション上に取り込むことにより、計算時間の著しい増加を防止しつつ解析精度を高め得る車両のシミュレーション方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明のうち請求項1記載の発明は、タイヤと、このタイヤを支承する前、後各2つのサスペンション部材と、このサスペンション部材が取り付く車体本体とをそれぞれ数値解析が可能な要素でモデル化したタイヤモデル、サスペンションモデル、及び車体本体モデルを有する車両モデルを設定する段階と、予め設定された境界条件に基づいて前記車両モデルを仮想路面上で走行させて走行性能を得る段階とを含む車両のシミュレーション方法であって、前記車体本体モデルは、剛体からなりかつ少なくとも一つのサスペンションモデルが取り付けられた第1の部分と、剛体からなりかつ少なくとも他の一つのサスペンションモデルが取り付けられるとともに前記第1の部分とは車体の幅方向に離間した第2の部分と、前記第1の部分と第2の部分とを相対移動可能に継ぐ継手部とを含み、前記継手部は、車体の前後方向の軸線に沿うY軸、車体の幅方向に沿うX軸及び車体の上下方向に沿うZ軸に沿ってそれぞれ伸び縮み可能かつ各X、Y、Z軸回りにねじり変形が可能な可撓性が定義され、しかも前記可撓性に、解析対象の車体本体から計算される各X、Y、Z軸方向の弾性率及びねじり剛性の値を定めたことを特徴としている。
【0010】
また請求項2記載の発明は、前記第1の部分は、前後各1つのサスペンションモデルが取り付けられた左部分をなし、かつ前記第2の部分は、前後各1つのサスペンションモデルが取り付けられた右部分をなすことを特徴とする請求項1記載の車両のシミュレーション方法である。
【0011】
また請求項3記載の発明は、前記継手部は、弾性体を有限個の要素でモデル化した継手モデルで構成されることを特徴とする請求項1又は2記載の車両のシミュレーション方法である。
【0014】
【発明の実施の形態】
以下本発明の実施の一形態を図面に基づき説明する。
図1は、本実施形態で用いる車両モデルの斜視図、図2はその分解図、図3は車両モデルの側面図、図4はその平面図をそれぞれ示している。本発明の一実施形態では、図1ないし4に示すような車両モデル1を用いてコンピュータ上で数値解析を行ない走行性能をシミュレーションする車両のシミュレーション方法である。
【0015】
車両モデル1は、タイヤと、このタイヤを支承する前後各2つのサスペンション部材と、このサスペンション部材が取り付く車体本体とを含む車両の前記各部(いずれも図示省略)をそれぞれ数値解析が可能な要素を用いてモデル化したタイヤモデル2、サスペンションモデル3、及び車体本体モデル4を少なくとも具えている。
【0016】
前記タイヤモデル2は、前輪をなす前のタイヤモデル2Fa、2Fbと、後輪をなす後のタイヤモデル2Ra、2Rbとを含んでいる。各タイヤモデル2は、図5に拡大して示すように、コンピュータによって数値解析が可能な微小かつ有限個の要素2a、2b、2c…を用いてモデル化されている。即ち連続したタイヤを有限個の微小な要素の集合体へと置き換えることでコンピュータ上で力学計算が可能な状態とする。
【0017】
特に好ましくは、カーカスプライ、ベルトプライ、及びビードコアといったタイヤの内部構造部材や、トレッド面に形成されるタイヤ周方向溝、及びこのタイヤ周方向溝と交わる向きにのびる横溝を含むトレッドパターンなどについても忠実にモデル化することが特に好ましい。前記要素2a、2b…としては、図示しないが2次元要素では四辺形要素、3次元要素としては、四ないし六面体ソリッド要素などが挙げられ、プライなどについては例えば膜要素とソリッド要素との複合体でモデル化しうる。なお各要素には、その材料特性に応じて弾性率、曲げ剛性、比重などがそれぞれ定義される。またタイヤモデル2は、例えばタイヤモデル2のビード部分をリム巾に等しく強制的に変位させて拘束するとともにタイヤ内腔面に内圧に応じた等分布荷重を負荷することにより、リム組みされかつ内圧が充填され状態をシミュレーション上で作り出すことができる。
【0018】
前記サスペンションモデル3は、前のサスペンションモデル3Fa、3Fbと、後のサスペンションモデル3Ra、3Rbとを含む。各サスペンションモデル3は、コンピュータによって数値解析が可能な有限個の要素を用いてモデル化されている。
【0019】
図6(A)にはモデル化の対象となる前部サスペンション装置SP1の模式図を示し、図6(B)にはそれをモデル化したサスペンションモデル3Fa、3Fbを例示している。本例の前部サスペンション装置SP1は、一端が車体本体に枢支された上下のアッパーアーム21、ロアアーム22と、これらの各アームの他端で枢支されたナックル23と、該ナックル23に回転可能に固着されかつタイヤ25を装着するハブ部24と、前記ナックル23と車体本体との間に介在するバネ付きダンパ27とを含むものを例示している。なおナックル23には、一端が該ナックル23に固着されかつ他端が車体本体に固着される捻り剛性を高めるスタビライザー26が固着されている。このようなサスペンション装置SP1は、ナックル23をキングピン軸KCの回りに傾動させることでタイヤにスリップ角を与えることができる。
【0020】
また図6(B)のサスペンションモデル3Fa、3Fbは、前記アッパアーム21、ロアアーム22をモデル化したアッパーアームモデル21m、ロアアームモデル22mと、前記ナックル23をモデル化したナックルモデル23mと、前記ハブ部24をモデル化したハブモデル24mと、前記バネ付きダンパ27をモデル化したバネ付きダンパモデル27mと、前記スタビライザー26をモデル化したスタビライザーモデル26mとを含むものを例示している。
【0021】
また図7(A)にはモデル化の対象となる後部サスペンション装置SP2の模式図を示し、図7(B)にはそれをモデル化した後のサスペンションモデル3Ra、3Rbを例示している。後部サスペンション装置SP2は、一端部が車体本体に枢着されかつ他端部に車輪を装着する可回転のハブ30を具える一対のトレーリングアーム31、31と、前記一対のトレーリングアーム31、31間を継ぐトーションビーム32と、該トーションビーム32と車体本体(図示省略)との間に配されたバネ付きダンパ33とを含むものを例示する。
【0022】
そして、この後部サスペンション装置SP2は、図7(B)の如く、前記ハブ30をモデル化したハブモデル30mと、前記トレーリングアーム31をモデル化したトレーリングアームモデル31mと、前記トーションビーム32をモデル化したトーションビームモデル32mと、前記バネ付きダンパ33をモデル化したバネ付きダンパモデル33mとを含む後のサスペンションモデル3Ra、3Rbにモデル化されたものを示す。
【0023】
前記各サスペンションモデル3については、その機械的な運動を表現できるようにモデル化されている。例えば、前記バネ付きダンパモデル27m、33mは、線形若しくは非線形のバネ要素が用いられ、軸方向に伸縮が可能に定義される。またハブモデル24m、30mや各アームモデル21m、22m、31mは、それぞれ外力が加えられても変形しない剛体要素として定義される。さらにスタビライザーモデル26mやトーションビームモデル32mは、ねじれが作用した際に微小のねじれ角を生じるとともに、そのねじれ角に応じた反力が生じうるようねじれのビーム要素としてモデル化できる。
【0024】
また各サスペンションモデル3には、車体本体モデル4に固定される連結点Pf、Prが定義される。前のサスペンションモデル3Fa、3Fbの連結点Pfは、後述する車体本体4の前部分4Fに固着され、互いの相対位置が変化せずかつ前部分4Fに対しても位置が変わらない固定点として定義される。同様に、後のサスペンションモデル3Ra、3Rbの連結点Prは、後述の車体本体4の後部分4Rに固着され、互いの相対位置が変化せずかつ該後部分4Rに対しても位置が変わらない固定点として定義される。
【0025】
また各要素は、それぞれ、重量、重心の位置、重心回りの慣性モーメントなどが定義される。またバネ要素については、バネ定数、ダンパー減衰定数が定義される。さらにビーム要素については曲げ剛性、ねじれ剛性が定義される。また各要素間の結合部(節点)については、各々の連結部の状態に基づき、例えば移動不能に固定する剛結合、軸方向に移動可能なスライド結合、回転できかつ多軸に周りに揺動可能なジョイント結合又は1軸に関して揺動可能な回転ジョイント結合などが適宜定義される。
【0026】
このような各サスペンションモデル3Fa、3Fbは、実際のサスペンション装置SP1と同様、荷重負荷時や旋回走行時などの横力作用時の変形をコンピュータ上で再現することができる。また前のサスペンションモデル3Fa、3Fbについては、ナックルモデル23mを傾動させることでタイヤモデル2にスリップ角を与えることができる。
【0027】
前記タイヤモデル2は、その仮想の回転軸を前記サスペンションモデル3のハブモデル24m、30mの車軸部に軸心を揃えて移動不能に固着されるよう定義することで、サスペンションモデル3に取り付けた状態をモデル化できる。また図示しないリムをモデル化したリムモデルを介してタイヤモデル2を取り付けるように定めても良い。
【0028】
前記車体本体モデル4は、図1〜図4に示す如く、剛体からなりかつ少なくとも一つのサスペンションモデルが取り付けられた第1の部分fと、剛体からなりかつ少なくとも他の一つのサスペンションモデルが取り付けられた第2の部分rと、前記第1の部分fと第2の部分rとを相対移動可能に継ぐ継手部jとを含んで構成される。なお本実施形態では、第1の部分fは、前2つのサスペンションモデル3Fa、3Fbが取り付けられた前部分4Fをなし、かつ前記第2の部分rは、後2つのサスペンションモデル3Ra、3Rbが取り付けられた後部分4Rをなし、しかも前記継手部jは、前部分4Fと後部分4Rとを継ぐ態様を例示しており、以下この態様に基づき説明する。
【0029】
前記前部分4Fは、車体本体4の前端から後方へのびるととともに、本例ではほぼ前席部と後席部との間で終端したものを示している。また本例の後部分4Rは、前部分4Fの後端から小距離を隔てた位置から車体後端までを構成している。また前部分4F、後部分4Rは、本例では図2に示す如く外装部材Wと、サスペンションモデル3を取り付けるための下部フレームFといった基本的な骨格部分を含むが、車両の運動性能に実質的に関与しない例えば内装材やその他細部についてはモデル化せず省略している。また前部分4F及び後部分4R自体は、いずれも外力が作用した場合でも変形しない剛体として定義されているため、各々自体の変形計算を不要とし解析時間の短縮化に役立つ。さらに前部分4F、後部分4Rは、それぞれ、重量、重心の座標、この重心を通る垂直軸、及びそれに直交する2本の水平軸回りの慣性モーメントなどが定義される。なお前部分4F、後部分4Rの形状は、例示の形態に特に限定されるものではなく、種々の形状が採用できる。これについては後述する。
【0030】
前記継手部jは、本例では図8に拡大して示すように、長さa、幅b、高さcの立方体形状の弾性体を、複数個かつ同一形状の小さな六面体のソリッド要素4jaでモデル化した継手モデル4Jからなるものを例示している。分割数は特に限定されないが、例えば要素数で5以上、好ましくは10〜100程度、特に好ましくは10〜30程度が計算時間の増大を防ぐ点で好ましい。また継手モデル4Jは、その前端部4JFが車体本体モデル4の前部分4Fへ、また後端部4JRは車体モデル4の後部分4Rにそれぞれ固着されるよう(接触面の相対位置が変化しないように)定義される。
【0031】
また継手モデル4Jは、車体の前後方向の軸線に沿うY軸、車体の幅方向に沿うX軸及び車体の上下方向に沿うZ軸に沿ってそれぞれ伸び縮み可能な可撓性が定義されるとともに、各X、Y、Z軸回りにねじり変形が可能に定義されたものを示す。このため、継手モデル4Jを構成する各ソリッド要素4Jaには、少なくとも前記X、Y、Z軸に沿う方向の弾性率と、各X、Y、Z軸回りのねじり剛性とが定義されている。前記弾性率やねじり剛性は、例えば予め実際の車体本体から計算される各X、Y、Z軸方向の弾性率、ねじり剛性の値とほぼ同一に定めることができる。これにより、実際の車体本体の変形状態などを、この継手モデル4Jで代表させるという簡単な構造でシミュレーション上に取り込むことができる。
【0032】
また継手モデル4Jは、図9(A)、(B)に誇張して示すように、実際の車両Mの車体本体40における平面曲げの中立線CL1を通る垂直面上でかつ前後軸ねじりの中心軸CL2の高さに位置するよう定義される。図9(A)の平面曲げは、水平面内における車体の曲げを意味する。また前後軸ねじりの中心軸CL2は車体本体のロール軸を意味している。
【0033】
前記車両モデル1を仮想走行させる路面モデルは、例えば剛表面を有する剛体要素で定義することができ、平坦路面ないし凹凸路面など種々の形状でモデル化できる。この路面モデルとタイヤモデル2とは、互いに接触の可能性が定義される。時間を追うシミュレーションの中では、両者が互いに接触しているかどうかが常に判定される。また、タイヤモデル2の表面と路面モデルとの間には摩擦係数が定義され、接触が生じている場合、この摩擦係数に基づき発生する摩擦力が計算されかつこれをタイヤモデル2に作用させる。なおこの摩擦係数の設定により、例えば氷路面などを容易に設定することができる
【0034】
以上のように構成された車両モデル1は、予め設定された境界条件に基づいて仮想路面上を走行する走行シミュレーションが行われる。前記境界条件としては、例えばタイヤモデル2についてのリムサイズ、内圧、走行速度、スリップ角、路面モデルとの間の摩擦係数などが挙げられる。車両モデル1に速度を与えるには、例えば車体本体モデル4に加速度を与えて動かすか或いはタイヤモデル2に駆動トルクを定義して仮想路面との間の摩擦力で走行させる。また。スリップ角は、タイヤモデル2をキングピン(図示せず)回りに所定角度回転させることにより再現できる。車両モデル1の走行シミュレーションは、下記の運動方程式を時間積分することにより行われる。
【0035】
【数1】
Figure 0004094885
【0036】
車両モデル1の各要素に対して、上記の方程式が作成され、微小時間ステップを追って積分する事で時々刻々の車両モデル1の状態がシミュレーションできる。このときの時間ステップは、使用されている個々の要素を応力波が伝わる最小の時間より小さく設定する。従って、要素の大きさにも依存するが、この時間ステップは、概ね10-5〜10-6sec 程度とするのが好ましい。また路面モデル6とタイヤモデル2との間の様に接触現象が起こる部分では、接触を考慮する様に定義されている。すなわち、前記微小時間ステップの中で、路面モデル6とタイヤモデル2との接触が検知されると、接触がないものとして路面モデル内に食い込んだタイヤモデル2に該部分を押し戻す反力を与えることにより、前記接触状態を表現しうる。このような過程で行われるシミュレーションにより、各部の変形(歪)、速度、加速度、力(圧力)などが逐次計算され、かつ出力される。このような具体的には計算には、米国リバモア・ソフトウエア・テクノロジー(LSTC)社製のアプリケーションソフト「LS−DYNA」などを用いて行いうる。
【0037】
本実施形態で用いる車両モデル1は、車体本体モデル4が前部分4Fと後部分4Rと、この前部分4Fと後部分4Rとを相対移動可能に継ぐ継手モデル4Jとを含んでいる。従って、図10(A)〜(C)に示したように、実際の旋回、駆動、制動の各走行状態に応じ、路面モデルからの反力や車体本体モデルに生じる遠心力等によって前部分4F、後部分4Rの各重心Gf、Grに大きさ、方向、向きが異なる外力が生じた場合、継手モデル4Jを弾性変形させることにより、車体本体4のねじれ、縮み、伸びといった変形を擬似的に作り出すことができる。これにより、前部分4Fと後部分4Rとの間に相対的な変位を作り出すことができ、これはシミュレーション上に取り込まれる。とりわけ、図10(A)に示すように、旋回時には車体本体モデル4に垂直軸回りのねじれが生じ、実際のスリップ角が変化する。従って、本発明ではスリップ角に起因した物理量、例えばタイヤモデル2で生じるコーナリングフォースなどをより精度良く求めることができる。
【0038】
このように、本発明は、従来のように車体本体を単一の剛体でモデル化したものに比して車両の走行性能をより精度良くシミュレーションしうる。なお、車体本体モデル4の前部分4F及び後部分4Rがいずれも剛体からなるため、このような車体本体モデル4の変形計算に際して該前部分4F、後部分4R自体の変形計算は不要となり、継手モデル4Jだけの変形計算で足りる。従って、計算時間の大幅な増大も防止できる。
【0039】
また本実施形態のように、継手モデル4Jを、可撓性が定義された弾性体を有限個の要素でモデル化して構成することにより、有限要素法等を適用して継手モデル4Jの変形についても正確に計算することができる。従って、より精度の良い走行シミュレーションを行うことができる。
【0040】
図11には、本発明の他の実施形態を示す。
この形態では、継手部jに、仮想継手4JVを用いたものを示す。前記弾性体をモデル化した継手モデル4Jでは、分割された各ソリッド要素4Jaについて、変形と応力との計算を行い、その結果として、継手モデル4J全体の変位等が計算でき、これが車体本体モデルの前部分4Fと後部分4Rの変位となる。これに対して、前部分4Fと後部分4Rとの間に、両部分の拘束状態を定義した仮想的な継手を設定しうる。本明細書ではこれを仮想継手と言う。この仮想継手には、例えば、計算上、所定のバネ定数を持つように設定することもできる。例えば図11(A)に示すように、前部分4Fに属する節点S1と、後部分4Rに属する節点S2(図ではずらして記載しているが節点S1と同一座標とする。)とに仮想継手4JVを定義する。仮想継手4JVは、前部分4Fと後部分4Rとを図11(B)に示すように、紙面を貫く軸線回りに回動可能に拘束することができる。また回動方向に抵抗力又はバネ定数などを定義することで、回動量などを実際の車体剛性と近似させて調節できる。なおこの例では、紙面を貫く軸線回りで回動可能な仮想継手を示しているが、これに限定されるわけではなく、種々の方向、例えばX、Y及びZの3軸回りの回動や、各軸方向に沿った伸縮などを適宜組み合わせて設定することができる。このようにう継手部jに、仮想継手4JVを用いた場合でも、弾性体をモデル化した継手モデル4Jと同様に、外力に応じた前部分4Fと後部分4Rとの相対変位を計算して生じさせることができ、しかも前記継手モデル4Jのように該継手モデル4J自体の変形計算(構造解析)が不要となるため、より計算コストを低減しうる点で好ましい。
【0041】
なお、車体本体モデル4は、図1〜4に示した車の形状をなしている必要は無い。即ち図12に示すように、前記車体本体モデル4の前部分4F、後部分4Rは、計算上の重量と、重心Gf、Grの位置(図示せず)、さらには慣性モーメントが定義されるとともに、各サスペンションモデル3の固定点Pf、Prを拘束するものであれば、外装材などを一切省略して簡単な骨組みだけで設定することができる。さらに換言すれば、前記重量、重心位置等の定義が可能であれば骨組みなども一切省略することもできる。
【0042】
また本発明において、車体本体モデル4は、図13(A)に示すように、巾方向で2分された第1の部分jと、第2の部分rとが設けられる。また図13(B)のように、第1ないし第4の部分j1、j2、r1、r2に区分しても良い。このように本発明は種々の態様で実施しうる。
【0043】
【実施例】
参考までに、図1に示した車両モデルを用いて走行シミュレーションを行なった。タイヤは、195/65R15であり、コーナリングフォースによって変化しうる車両の回頭率(ヨーレート)を出力した。仮想路面は平坦な剛表面としてモデル化するとともにタイヤモデルと路面の摩擦係数は、静動摩擦とともに1.0とした。路面の移動速度は時速20km/hとした。本シミュレーションでは、操舵角を4deg を設定してシミュレーションを行った。シミュレーション開始後、定常状態となる4秒後の回頭率を出力した。なお参考例1として、継手部が弾性体を有限個の要素でモデル化した継手モデルからなるもの、参考例2は継手部が仮想継手として定義されたものとした。また比較のために、ドラム試験器を用いた実車データ、さらに車体本体モデルが単一の剛体からなる車両モデル(比較例)についても同一の条件でシミュレーションを行い、性能を比較した。この結果を表1に示す。
【0044】
【表1】
Figure 0004094885
【0045】
テストの結果、参考例1、2のものは比較例に比べると、計算精度が大幅に向上していることが分かる。また計算時間についても大幅な増加が抑えられており、良好な結果が得られている。
【0046】
【発明の効果】
上述したように、本発明では、コンピュータ上において、車体本体モデルとタイヤモデルとを組み合わせた車両モデルから走行性能を評価することができるため、開発効率を大幅に向上し開発期間の短縮化、開発コストの低減化に役立つ。また車体本体モデルは、剛体からなりかつ少なくとも一つのサスペンションモデルが取り付けられた第1の部分と、剛体からなりかつ少なくとも他の一つのサスペンションモデルが取り付けられた第2の部分と、前記第1の部分と第2の部分とを相対移動可能に継ぐ継手部とを含むことによって、実際の走行中に生じる車体本体の微小な変形をシミュレーション上に的確に取り込むことができる。従って、サスペンションと車体との取り付け位置の変化を再現しうる結果、車両の走行性能をより実車に近い状態で精度良くシミュレーションしうる。なお車体本体モデルの第1、第2の部分自体は、それぞれ剛体からなることにより変形計算は不要となり、計算時間の著しい増加をも防止できる。
【0047】
また請求項2記載の発明のように、前記第1の部分を、前2つのサスペンションモデルが取り付けられた前部分とし、かつ前記第2の部分を後2つのサスペンションモデルが取り付けられた後部分とするとともに、前記継手部で前部分と後部分とを継ぐときには、車体本体の前後のねじれ、伸び縮みといった走行中に生じる変形をより効果的にシミュレーション上に取り込むことができる。
【0048】
また請求項3記載の発明のように、前記継手部は、弾性体を有限個の要素でモデル化した継手モデルとして構成することにより、車体本体モデルの前部分と後部分とを変位させることが容易に行えかつ有限要素法等を適用することによりこの継手モデルの変形についても正確に計算することができる。従って、より精度の良い走行シミュレーションを行うことができる。
【0049】
また請求項4記載の発明のように、前記継手部は、可撓方向とその方向の剛性が定義した場合や、請求項4記載の発明のようにねじり変形が可能な方向とその方向のねじり剛性とを定義することができる。この場合、各剛性を実際の車体本体の剛性に合わせて定義することで、走行中の遠心力、制動力、駆動力等によってに車体本体モデルに生じる変形をより簡単な方法でより正確にシミュレーションに取り込むことができる。
【図面の簡単な説明】
【図1】本発明で用いる車両モデルの一例を示す斜視図である。
【図2】その分解斜視図である。
【図3】本発明で用いる車両モデルの側面図である。
【図4】本発明で用いる車両モデルの平面図である。
【図5】タイヤモデルを例示する斜視図である。
【図6】(A)は前部サスペンション装置を例示する斜視図、(B)はそれをモデル化した前のサスペンションモデルの一例を示す斜視図である。
【図7】(A)は後部サスペンション装置を例示する斜視図、(B)はそれをモデル化した後のサスペンションモデルの一例を示す斜視図である。
【図8】継手モデルの拡大斜視図である。
【図9】(A)は、車体本体の平面曲げを誇張して示す平面図、(B)は前後軸のねじりの中心軸を例示する側面図である。
【図10】(A)は旋回走行中の車両モデルの平面図、(B)は制動時の側面面図、(C)は発進時の側面図の各一例を示す。
【図11】継手モデルの他の形態を示す模式図である。
【図12】車両モデルの他の実施形態を示す斜視図である。
【図13】車体本体モデルの他の実施形態を示す斜視図である。
【符号の説明】
1 車両モデル
2 タイヤモデル
3 サスペンションモデル
3Fa、3Fb 前のサスペンションモデル
3Ra、3Rb 後のサスペンションモデル
4 車体本体モデル
4F 車体本体モデルの前部分
4R 車体本体モデルの後部分
4J 継手モデル
j 継手部
f 第1の部分
r 第2の部分

Claims (3)

  1. タイヤと、このタイヤを支承する前、後各2つのサスペンション部材と、このサスペンション部材が取り付く車体本体とをそれぞれ数値解析が可能な要素でモデル化したタイヤモデル、サスペンションモデル、及び車体本体モデルを有する車両モデルを設定する段階と、
    予め設定された境界条件に基づいて前記車両モデルを仮想路面上で走行させて走行性能を得る段階とを含む車両のシミュレーション方法であって、
    前記車体本体モデルは、剛体からなりかつ少なくとも一つのサスペンションモデルが取り付けられた第1の部分と、
    剛体からなりかつ少なくとも他の一つのサスペンションモデルが取り付けられるとともに前記第1の部分とは車体の幅方向に離間した第2の部分と、
    前記第1の部分と第2の部分とを相対移動可能に継ぐ継手部とを含み、
    前記継手部は、車体の前後方向の軸線に沿うY軸、車体の幅方向に沿うX軸及び車体の上下方向に沿うZ軸に沿ってそれぞれ伸び縮み可能かつ各X、Y、Z軸回りにねじり変形が可能な可撓性が定義され、しかも
    前記可撓性に、解析対象の車体本体から計算される各X、Y、Z軸方向の弾性率及びねじり剛性の値を定めたことを特徴とする車両のシミュレーション方法。
  2. 前記第1の部分は、前後各1つのサスペンションモデルが取り付けられた左部分をなし、
    かつ前記第2の部分は、前後各1つのサスペンションモデルが取り付けられた右部分をなすことを特徴とする請求項1記載の車両のシミュレーション方法。
  3. 前記継手部は、弾性体を有限個の要素でモデル化した継手モデルで構成されることを特徴とする請求項1又は2記載の車両のシミュレーション方法。
JP2002133005A 2002-05-08 2002-05-08 車両のシミュレーション方法 Expired - Fee Related JP4094885B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002133005A JP4094885B2 (ja) 2002-05-08 2002-05-08 車両のシミュレーション方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002133005A JP4094885B2 (ja) 2002-05-08 2002-05-08 車両のシミュレーション方法

Publications (2)

Publication Number Publication Date
JP2003330997A JP2003330997A (ja) 2003-11-21
JP4094885B2 true JP4094885B2 (ja) 2008-06-04

Family

ID=29696247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133005A Expired - Fee Related JP4094885B2 (ja) 2002-05-08 2002-05-08 車両のシミュレーション方法

Country Status (1)

Country Link
JP (1) JP4094885B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130409A (ja) * 1994-10-28 1996-05-21 Nec Aerospace Syst Ltd アンテナ

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529562B2 (ja) * 2004-07-06 2010-08-25 横浜ゴム株式会社 接触特性の評価方法及び接触状態の評価用コンピュータプログラム
JP4533056B2 (ja) * 2004-09-08 2010-08-25 株式会社ブリヂストン タイヤモデル、車体モデル、タイヤの挙動解析方法、プログラム及び記録媒体
JP4486105B2 (ja) * 2007-03-30 2010-06-23 株式会社ブリヂストン タイヤ性能予測方法、地盤シミュレーション方法、タイヤ設計方法、記録媒体及びタイヤ性能予測プログラム
JP4830977B2 (ja) * 2007-05-30 2011-12-07 トヨタ自動車株式会社 サスペンション設計支援装置およびサスペンション設計方法
ATE534538T1 (de) * 2008-02-14 2011-12-15 Sumitomo Rubber Ind Verfahren zur parameterbestimmung, das beim luftdruckabnahme-erkennungsverfahren verwendet wird
JP5289995B2 (ja) * 2009-02-16 2013-09-11 日野自動車株式会社 車両用アクティブサスペンションの制御方法及び装置
CN102254064B (zh) * 2011-06-26 2013-02-13 北京理工大学 微面汽车底盘传动轴优化与后驱动桥动力学分析平台
JP6098699B1 (ja) * 2015-12-08 2017-03-22 Jfeスチール株式会社 車両の走行解析方法
JP6590009B2 (ja) * 2018-02-09 2019-10-16 Jfeスチール株式会社 車体の接着位置の最適化解析方法及び装置
JP7385130B2 (ja) 2020-04-02 2023-11-22 日本製鉄株式会社 走行解析方法及び走行解析装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130409A (ja) * 1994-10-28 1996-05-21 Nec Aerospace Syst Ltd アンテナ

Also Published As

Publication number Publication date
JP2003330997A (ja) 2003-11-21

Similar Documents

Publication Publication Date Title
US6725168B2 (en) Vehicle/tire performance simulating method
JP4005618B2 (ja) タイヤの制動特性試験装置
US20080275682A1 (en) Method and system for axle evaluation and tuning with loading system and vehicle model
JP4094885B2 (ja) 車両のシミュレーション方法
WO2006040855A1 (ja) タイヤhilシミュレータ
JP3253952B1 (ja) 車両・タイヤ性能のシミュレーション方法
Mántaras et al. Virtual test rig to improve the design and optimisation process of the vehicle steering and suspension systems
CN112131672A (zh) 耐久载荷谱仿真方法、设备、存储介质及装置
JP4976069B2 (ja) タイヤ性能シミュレーション方法、装置、及び記録媒体
JP2002103930A (ja) 車両・タイヤ性能のシミュレーション方法
CN117010077A (zh) 车辆的悬架中驱动轴极限夹角的校核方法和装置
Rao et al. Developing an adams® model of an automobile using test data
JP2003156413A (ja) 車体振動のシミュレーション方法
Shiraishi et al. Making FEM tire model and applying it for durability simulation
WO2017098784A1 (ja) 車両の走行解析方法
KR100370275B1 (ko) 유연 다물체 동력학 시뮬레이션에 의한 차량구조물의동응력 해석방법
Ionica et al. Study on a test bench of a vehicle rear axle fatigue behavior
CN114861335B (zh) 一种汽车动力学计算模型的标定方法及相关设备
JP6354452B2 (ja) サスペンションの振動解析装置,プログラム及び方法
Totu et al. Dynamic analysis of a multi-link suspension mechanism with compliant joints
JP2022037666A (ja) タイヤのシミュレーション方法
Choi et al. Vehicle Dynamic simulation using a non-linear finite element simulation program (LS-Dyna)
Awati et al. Modal and stress analysis of lower wishbone arm along with topology
Sacristan Rueda Analysis of the impact of bushings rigidity in a real car suspension
Didenbäck Multibody simulations of vibrations in a truck’s steering system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees