JP4093249B2 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP4093249B2
JP4093249B2 JP2005079386A JP2005079386A JP4093249B2 JP 4093249 B2 JP4093249 B2 JP 4093249B2 JP 2005079386 A JP2005079386 A JP 2005079386A JP 2005079386 A JP2005079386 A JP 2005079386A JP 4093249 B2 JP4093249 B2 JP 4093249B2
Authority
JP
Japan
Prior art keywords
level
temperature
defect
image
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005079386A
Other languages
English (en)
Other versions
JP2006262286A (ja
Inventor
隆一 北岡
広明 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2005079386A priority Critical patent/JP4093249B2/ja
Priority to US11/237,206 priority patent/US20060209198A1/en
Publication of JP2006262286A publication Critical patent/JP2006262286A/ja
Application granted granted Critical
Publication of JP4093249B2 publication Critical patent/JP4093249B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/68Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、撮像装置に関する。
デジタルカメラに用いられるCCD撮像素子については、小型化および高画素化が進んでおり、それに伴い、画素欠陥も増加する傾向にある。
画素欠陥については、画素欠陥の番地データを記憶しておき、画素欠陥の場所を特定する技術が開示されている(例えば、特許文献1)。
ところで、CCD撮像素子の欠陥は、信号電荷を転送する垂直転送ラインにも発生してきており、その結果として、撮影画像においてライン性の高輝度の傷(Vライン傷)が生じる。このVライン傷による画質の劣化は、単なる画素欠陥によるものよりも遙かに大きい。このため、Vライン傷は確実に補正して画像を生成する必要がある。
このVライン傷の補正については、撮影画像について、Vライン傷が発生するエリアの各画素とその周辺画素との比較により画像上目立つと判定されたVライン傷に対して、同色の周辺4画素の平均値で置換する処理(補間処理)を施すことにより、Vライン傷を補正する技術が提案されている(例えば、特許文献2)。
但し、上記特許文献2で提案された技術では、補間処理によって撮影画像の画質が劣化してしまうため、高画質を確保するためには撮影時に適した補正量を求める必要がある。そして、Vライン傷の発生量およびレベルは温度依存性が高いため、通常は撮影終了直後にVライン傷の発生量およびレベルを検出して補正量を決定することで対応している。
このような技術に関する先行技術文献としては、以下のようなものがある。
特開平7−162757号公報 特開2004−23683号公報
しかしながら、Vライン傷の発生量およびレベルの検出には長時間を要するため、次の撮影動作等といった次の各種処理の妨げとなる。
本発明は、上記課題に鑑みてなされたものであり、Vライン傷のレベル検出を高速で行うことができる技術を提供することを目的とする。
上記の課題を解決するために、請求項1の発明は、撮像装置であって、(a)電荷転送ラインを含むCCDを有し、被写体に係る画像を取得する撮像手段と、(b)前記画像における線状傷の発生原因となる前記電荷転送ラインの欠陥の位置情報を記憶する記憶手段と、(c)前記電荷転送ラインにおいて、前記CCDの全画素に対応する信号電荷のうち、前記欠陥の位置に対応する信号電荷を通常転送する一方、前記欠陥の位置以外に対応する信号電荷を高速転送することで、前記線状傷のレベル検出用の信号電荷を読出す読出手段と、(d)前記読出手段によって読み出された前記レベル検出用の信号電荷に基づいて、前記線状傷を補正する補正手段とを備えることを特徴とする。
また、請求項2の発明は、請求項1に記載の撮像装置であって、(e)前記レベル検出用の信号電荷に基づいて、前記線状傷のレベルを検出する傷レベル検出手段を備え、前記補正手段が、前記傷レベル検出手段による検出結果に応じて、前記線状傷を補正することを特徴とする。
また、請求項3の発明は、請求項2に記載の撮像装置であって、前記補正手段が、前記傷レベル検出手段によって検出された前記線状傷のレベルを用いたオフセットを行うことで、前記線状傷を補正することを特徴とする。
また、請求項4の発明は、請求項2または請求項3に記載の撮像装置であって、前記記憶手段が、温度別の前記欠陥の位置を示す温度別位置情報を記憶し、前記撮像装置が、(f)前記CCDに係る温度を検出する温度検出手段と、(g)前記温度別位置情報を参照することにより、前記温度検出手段によって検出された温度に対応する欠陥の位置を認識する位置認識手段とを更に備え、前記読出手段が、前記位置認識手段によって認識された欠陥の位置に応じて、前記レベル検出用の信号電荷を読出すことを特徴とする。
また、請求項5の発明は、請求項2または請求項3に記載の撮像装置であって、前記記憶手段が、同一の電荷転送ライン上に前記画像における線状傷の発生原因となる第1及び第2の欠陥が少なくとも存在する場合には、少なくとも、前記第1及び第2の欠陥の位置情報を記憶するとともに、前記第1の欠陥に起因して前記画像において発生する線状傷のレベルと前記第1及び第2の欠陥の双方に起因して前記画像において発生する線状傷のレベルとの数値関係を示すレベル関係情報を記憶し、前記読出手段が、前記電荷転送ラインにおいて、前記CCDの全画素に対応する信号電荷のうち、前記第1の欠陥の位置に対応する信号電荷を通常転送する一方、前記第2の欠陥の位置に対応する信号電荷を高速転送することで、前記レベル検出用の信号電荷を読出し、前記傷レベル検出手段が、(e-1)前記レベル検出用の信号電荷に基づいて、前記第1の欠陥に起因して前記画像において発生する線状傷のレベルを検出する第1のレベル検出手段と、(e-2)前記第1のレベル検出手段によって検出された線状傷のレベルと、前記レベル関係情報とに基づいて、少なくとも前記第1および第2の欠陥の双方に起因して前記画像において発生する線状傷のレベルを検出する第2のレベル検出手段とを有することを特徴とする。
また、請求項6の発明は、請求項5に記載の撮像装置であって、前記記憶手段が、温度別の前記数値関係を示す温度別レベル関係情報を記憶し、前記撮像装置が、(f)前記CCDに係る温度を検出する温度検出手段と、(g)前記温度別レベル関係情報を参照することにより、前記温度検出手段によって検出された温度に対応する数値関係を認識する数値関係認識手段とを更に備え、前記第2のレベル検出手段が、前記数値関係認識手段によって認識された数値関係に基づいて、少なくとも前記第1および第2の欠陥の双方に起因して発生する線状傷のレベルを検出することを特徴とする。
また、請求項7の発明は、請求項2または請求項3に記載の撮像装置であって、前記記憶手段が、同一の電荷転送ライン上に前記画像における線状傷の発生原因となる第1及び第2の欠陥が少なくとも存在する場合には、少なくとも、前記第1及び第2の欠陥の位置情報を記憶するとともに、前記第1の欠陥に起因して前記画像において発生する線状傷のレベルと前記第2の欠陥に起因して前記画像において発生する線状傷のレベルとの数値関係を示すレベル関係情報を記憶し、前記読出手段が、前記電荷転送ラインにおいて、前記CCDの全画素に対応する信号電荷のうち、前記第1の欠陥の位置に対応する信号電荷を通常転送する一方、前記第2の欠陥の位置に対応する信号電荷を高速転送することで、前記レベル検出用の信号電荷を読出し、前記傷レベル検出手段が、(e-1)前記レベル検出用の信号電荷に基づいて、前記第1の欠陥に起因して前記画像において発生する線状傷のレベルを検出する第1のレベル検出手段と、(e-2)前記第1のレベル検出手段によって検出された線状傷のレベルと、前記レベル関係情報とに基づいて、少なくとも前記第1および第2の欠陥の双方に起因して前記画像において発生する線状傷のレベルを検出する第2のレベル検出手段とを有することを特徴とする。
また、請求項8の発明は、請求項7に記載の撮像装置であって、前記記憶手段が、温度別の前記数値関係を示す温度別レベル関係情報を記憶し、前記撮像装置が、(f)前記CCDに係る温度を検出する温度検出手段と、(g)前記温度別レベル関係情報を参照することにより、前記温度検出手段によって検出された温度に対応する数値関係を認識する数値関係認識手段とを更に備え、前記第2のレベル検出手段が、前記数値関係認識手段によって認識された数値関係に基づいて、少なくとも前記第1および第2の欠陥の双方に起因して発生する線状傷のレベルを検出することを特徴とする。
また、請求項9の発明は、請求項1から請求項8のいずれかに記載の撮像装置であって、前記読出手段が、前記被写体から前記撮像手段に至る光路を所定のシャッター機構によって遮断した状態で、所定期間だけ前記電荷転送ラインにおける信号電荷の転送を停止した後に、前記レベル検出用の信号電荷を読出すことを特徴とする。
請求項1または請求項2に記載のいずれの発明によっても、画像における線状傷の発生原因となる電荷転送ラインの欠陥の位置情報を記憶しておき、CCDの全画素に対応する信号電荷のうち、欠陥の位置に対応する信号電荷を通常転送する一方、欠陥の位置以外に対応する信号電荷を高速転送することで、線状傷のレベル検出用の信号電荷を読出すような構成とすることで、Vライン傷のレベル検出に不要な信号電荷の読出しに要していた時間を省くことができるため、Vライン傷のレベル検出を高速で行うことができる。
また、請求項3に記載の発明によれば、検出された線状傷のレベルを用いたオフセットを行うことで線状傷を補正するため、画質の劣化を抑制したVライン傷の補正が可能となる。
また、請求項4に記載の発明によれば、温度別の欠陥の位置を示す情報を記憶しておき、CCDに係る温度に対応する欠陥の位置に応じて、線状傷のレベル検出用の信号電荷を読出すような構成とすることで、温度の変化に応じたVライン傷のレベル検出を高速で行うことができる。
また、請求項5に記載の発明によれば、同一の電荷転送ライン上に第1および第2の欠陥が存在する場合には、第1の欠陥に起因した線状傷のレベルと、第1及び第2の欠陥の双方に起因した線状傷のレベルとの数値関係を示す情報を記憶しておき、CCDの全画素に対応する信号電荷のうち、第1の欠陥の位置に対応する信号電荷を通常転送する一方、第2の欠陥の位置に対応する信号電荷を高速転送することで、レベル検出用の信号電荷を読出し、当該レベル検出用の信号電荷に基づいて第1の欠陥に係る線状傷のレベルを検出するとともに、第1及び第2の欠陥の双方に起因して発生する線状傷のレベルについては、上記数値関係を用いて検出するため、Vライン傷のレベル検出を更に高速で行うことができる。
また、請求項6に記載の発明によれば、温度別の線状傷のレベルの数値関係を示した情報を記憶しておき、CCDに係る温度に対応する数値関係に基づいて、第1及び第2の欠陥の双方に起因して発生する線状傷のレベルを検出するような構成により、温度の変化に応じたVライン傷のレベル検出を高速で行うことができる。
また、請求項7に記載の発明によれば、請求項5に記載の発明と同様な効果を得ることができる。
また、請求項8に記載の発明によれば、請求項6に記載の発明と同様な効果を得ることができる。
また、請求項9に記載の発明によれば、被写体から撮像手段に至る光路をシャッター機構によって遮断した状態で、所定期間だけ電荷転送ラインにおける信号電荷の転送を停止した後に、線状傷のレベル検出用の信号電荷を読出すことで、欠陥に起因する信号電荷を強調して読出すことができるため、Vライン傷のレベル検出を高精度で行うことができる。
以下、本発明の実施形態を図面に基づいて説明する。
<(1)第1実施形態>
<撮像装置の要部構成>
図1は、本発明の第1実施形態に係る撮像装置1の要部構成を示す図である。ここで、図1(a)〜(c)は、それぞれ撮像装置1の正面図、背面図および上面図に相当している。
撮像装置1は、デジタルカメラとして構成されており、撮影レンズ10を備えている。
撮像装置1は、その上面にモード切替スイッチ12とシャッターボタン13とが設けられている。
モード切替スイッチ12は、被写体を撮像してその静止画を記録する静止画撮影モード(RECモード)と、動画撮影を行う動画モード(MOVEモード)と、メモリカード9(図2参照)に記録された画像を再生する再生モード(PLAYモード)とを切替えるためのスイッチである。
シャッターボタン13は、半押し状態(S1オン)と、さらに押し込まれた全押し状態(S2オン)とを検出可能な2段階スイッチになっている。上記の静止画撮影モードにおいてシャッターボタン13が半押しされると、ズーム・フォーカスモータドライバ47(図2参照)が駆動されて、合焦位置に撮影レンズ10を移動させる動作が行われる。一方、静止画撮影モードにおいてシャッターボタン13が全押しされると、本撮影動作、つまり記録用の撮影動作が行われる。
撮像装置1の背面には、撮影された画像などを表示するLCD(Liquid Crystal Display)モニタ42と、電子ビューファインダー(EVF)43と、コマ送り・ズームスイッチ15と、電源スイッチ5とが設けられている。
コマ送り・ズームスイッチ15は、4つのボタンで構成され、再生モードにおける記録画像のコマ送りや、撮影時のズーミングを指示するためのスイッチである。このコマ送り・ズームスイッチ15の操作により、ズーム・フォーカスモータドライバ47が駆動されて、撮影レンズ10に関する焦点距離を変更できる。
電源スイッチ5は、上下方向に操作することで、撮像装置1が起動された状態(電源ON状態)と起動されていない状態(電源OFF状態)とを切り替えるものである。
<撮像装置の機能構成>
図2は、撮像装置1の機能ブロックを示す図である。
撮像装置1は、撮像センサ16と、撮像センサ16にデータ伝送可能に接続する信号処理部2と、信号処理部2に接続する画像処理部3と、画像処理部3に接続するカメラ制御部40とを備えている。
撮像センサ16は、複数種類の色成分であるR(赤)、G(緑)、B(青)の原色透過フィルターがピクセル単位に市松状に配列(ベイヤー配列)されたエリアセンサ(CCD撮像素子、単に「CCD」とも略する)として構成されており、全画素読み出しタイプである。この撮像センサ16の温度については、撮像装置1の筐体内の温度を測定する温度センサ49により検出が可能となっている。
撮像センサ16において露光によって電荷の蓄積が完了すると、光電変換された信号電荷は、遮光された撮像センサ16内の垂直・水平転送路へとシフトされ、ここからバッファを介し画像信号として出力される。つまり、撮像センサ16は、被写体に係る画像信号(画像)を取得する撮像手段として機能する。
信号処理部2は、CDS21とAGC22とA/D変換部23とを有しており、いわゆるアナログフロントエンドとして機能する。
撮像センサ16から出力されたアナログ画像信号は、CDS21でサンプリングされノイズが除去された後、AGC22により撮影感度に相当するアナログゲインが乗算されて感度補正が行われる。
A/D変換部23は、例えば14ビットの変換器として構成されており、AGC22で正規化されたアナログ信号をデジタル化する。デジタル変換された画像信号は、画像処理部3で所定の画像処理が施されて画像ファイルが生成される。
画像処理部3は、点欠陥補正部51とVライン傷検出部52とVライン傷補正部53とを備えている。また、画像処理部3は、デジタル処理部3pと画像圧縮部36とビデオエンコーダ38とメモリカードドライバ39とを備えている。
画像処理部3に入力された画像データについては、まず点欠陥補正部51において予め記憶されている点欠陥アドレスに基づき欠陥が存在する画素データが補正データに置換される。
Vライン傷検出部52は、撮像センサ16の垂直転送ライン(垂直CCD)の欠陥箇所に起因して画像上で生じるライン性の傷(「線状傷」とも言い、以下では「Vライン傷」と称する)のレベル(画素値)を検出する。検出されたVライン傷のレベル(傷レベル)は、傷情報メモリ54に記憶される。
点欠陥補正部51から出力される画像データのうち、記録/再生用の画像データについては、Vライン傷補正部53において、Vライン傷検出部52で検出されたVライン傷のレベル(傷レベル)に応じて、Vライン傷の補正が行われる(後で詳述)。Vライン傷が補正された画像データは、デジタル処理部3pに入力される。一方、傷レベルを検出するための画像データについては、Vライン傷検出部52において、傷レベルの検出に供される。
なお、工場出荷前等の所定のタイミングにおいては、Vライン傷検出部52によってVライン傷のアドレス(すなわち垂直CCDにおける欠陥のアドレス)が検出され、傷情報メモリ54に格納される。Vライン傷を発生させる欠陥の数は、温度依存性があるため、この欠陥のアドレスは温度別に格納されて、温度別のアドレス情報(「温度別位置情報」とも称する)を形成している。
デジタル処理部3pは、画素補間部31とホワイトバランス制御部32とガンマ補正部33と輪郭強調部34と解像度変換部35とを有している。
デジタル処理部3pに入力される画像データは、撮像センサ16の読出しに同期し画像メモリ41に書込みまれる。以後は、この画像メモリ41に格納された画像データにアクセスし、デジタル処理部3pで各種の処理が行われる。
画像メモリ41内の画像データは、まずホワイトバランス制御部32によりRGB各画素が独立にゲイン補正され、RGBのホワイトバランス補正が行われる。このホワイトバランス補正では、撮影被写体から本来白色となる部分を輝度や彩度データ等から推測し、その部分のR、G、Bそれぞれの平均値とG/R比およびG/B比とを求め、これらの情報に基づいてRおよびBの補正ゲインを決定する。
ホワイトバランス補正された画像データは、画素補間部31でRGB各画素をそれぞれのフィルターパターンでマスキングした後、高帯域まで画素値を有するG画素については、注目画素に対する周辺12画素のコントラストパターンに基づき画素値の空間的な変化を推定し、周囲4画素のデータに基づき被写体のパターンに最適な画素値を算出して割り当てる。一方、R画素およびB画素に関しては、周囲の8画素の同色画素値に基づいて補間する。
画素補間された画像データは、ガンマ補正部33で各出力機器に合った非線形変換、具体的にはガンマ補正およびオフセット調整が行われ、画像メモリ41に格納される。
輪郭強調部34は、画像データに応じたハイパスフィルタ等によって輪郭を際立たせるエッジ強調処理を行う。
そして、画像メモリ41に格納された画像データは、解像度変換部35で設定された画素数に水平垂直の縮小または間引きが行われ、画像圧縮部36で圧縮処理を行った後、メモリカードドライバ39にセットされるメモリカード9に記録される。この画像記録時には、指定された解像度の撮影画像が記録される。
また、解像度変換部35では、画像表示時についても画素間引きを行って、LCDモニタ42やEVF43に表示するための低解像度画像を作成する。プレビュー時には、画像メモリ41から読出された640×240画素の低解像度画像がビデオエンコーダ38でNTSC/PALにエンコードされ、これをフィールド画像としてLCDモニタ42やEVF43で画像再生が行われる。
カメラ制御部40は、CPUおよびメモリを備え、撮像装置1の各部を統括的に制御する部位である。具体的には、上記のモード切替スイッチ12やシャッターボタン13やコマ送り・ズームスイッチ15や電源スイッチ5などを有するカメラ操作スイッチ50に対して撮影者が行う操作入力を処理する。
また、カメラ制御部40は、撮影者によるモード切替スイッチ12の操作により、被写体を撮像してその画像データを記録する静止画撮影モードや動画モード、再生モードへの切替えを行う。また、撮影者による電源スイッチ5の操作に応答して、電源ON/OFF状態とする。
更に、カメラ制御部40は、Vライン傷を検出するための画像データを撮像センサ16から読出す際には、傷情報メモリ54に格納される垂直CCDにおける欠陥のアドレスに基づいて、信号電荷の読出しを制御する。具体的な読出制御については後述する。
そして、撮像装置1では、本撮影前の撮影準備状態において被写体を動画的態様でLCDモニタ42に表示するプレビュー表示(ライブビュー表示)時には、絞り44の光学絞りがシャッター・絞りドライバ45によって開放固定となる。
また、シャッタースピード(SS)に相当する撮像センサ16の電荷蓄積時間(露光時間)に関しては、撮像センサ16で取得したライブビュー画像に基づき、カメラ制御部40が露出制御データを演算する。そして、算出された露出制御データに基づいて予め設定されたプログラム線図により、撮像センサ16の露光時間が適正となるようにタイミングジェネレータセンサドライバ46に対するフィードバック制御が行われる。
なお、本撮影時では、ライブビュー時に測光された光量データに基づいて予め設定されたプログラム線図によってシャッター・絞りドライバ45とタイミングジェネレータセンサドライバ46とで撮像センサ16への露光量が制御される。
以下、Vライン傷の発生、Vライン傷の検出、Vライン傷の温度依存性、及びVライン傷の補正について説明する。なお、Vライン傷の検出については、比較例として従来のVライン傷の検出方法についても説明する。
<Vライン傷の発生>
図3は、撮像センサ16の構成を示す図である。
撮像センサ16においては、各フォトダイオード161で光電変換され蓄積された電荷が各垂直転送ライン毎に設けられた垂直CCD(以下では「VCCD」ともいう)162に読み出され、1水平期間の周期で最下段の水平CCD163に転送される。そして、水平CCD163に転送された電荷は、画素クロックに基づき読み出されることで水平画素方向の読み出しが行われる。なお、VCCD162や水平CCD163などといった電荷を転送するラインを総称して「電荷転送ライン」とも言う。
このような撮像センサ16の動作により、2次元的に配列されたフォトダイオード161で取得した2次元画像に対して水平ライン毎にスキャン読み出しが行われることとなる。
ここで、フォトダイオード161に欠陥がある場合には、この欠陥によって発生する電荷が信号電荷に加算されるため、撮影画像において点欠陥として再現されることとなる。この点欠陥については、点欠陥補正部51において、欠陥に起因して発生する電荷に相当する画素レベルが減算される補正が行われる。
一方、垂直転送ラインの一部に同様の欠陥箇所(傷)Fpが存在する場合には、欠陥箇所Fpに電荷が読み出されるフォトダイオードとX方向のアドレスが等しいフォトダイオードからの電荷は、欠陥箇所Fpが存在する垂直CCD16fを通って撮像センサ16から出力されることとなる。このため、欠陥箇所Fpに対して電荷転送方向Haの上流から転送される信号電荷群Faに電荷が加算されることとなり、図4に示すように撮影画像G1おいて明度の高いライン性の傷(Vライン傷)Gaとして再現される。
上述した点欠陥の場合には撮影画像に与える劣化要因は少ないものの、図4に示すようなVライン傷Gaの場合には画質に対する影響が非常に大きくなるため、その検出が重要となるが、以下では、この検出方法を説明する。
<Vライン傷の検出方法>
図5および図6は、Vライン傷の検出原理を説明するための図である。
Vライン傷Ga(図4)は、上述したように図3に示す垂直CCD162の欠陥箇所Fpを通って読み出される信号電荷群Faに起因して画像上で生じるライン性の明度傷として発生する。
そこで、シャッターにより遮光後、図5に示すように垂直CCD162の転送を一定期間(例えば200水平期間)停止することにより欠陥箇所Fpで発生する電荷量を増大させた後に、画像読み出しを行うこととする。これにより、垂直CCD162上の欠陥箇所Fpに信号電荷が読み出されるフォトダイオードDpの画素データを強調して撮像センサ16から出力できることとなる。
このように欠陥箇所Fpが強調され撮像センサ16から出力された画像G2では、図6に示すように、Vライン傷Gaのうち欠陥箇所Fpに電荷が読み出されるフォトダイオードDp(図5)の位置に対応したB画素Gpの画素レベルが垂直CCD162の転送停止期間に正比例して強調されることとなる。
以上のような画像G2が読み出された後に、画像G2から明度の高い輝点となる画素Gpのアドレスを検出することで、Vライン傷の下端に対応する欠陥箇所の位置(アドレス)を検知できることとなる。
このようなVライン傷の検出動作は、例えば撮像装置の工場出荷前に複数の温度条件下で行われ、工場出荷時には、必要な情報がデフォルトのデータとして格納されている状態となる。
<Vライン傷の温度依存性>
撮像センサ16のVライン傷は、温度依存性を有しているが、この特性について、以下で説明する。
図7は、撮像センサ16におけるVライン傷の温度依存性を説明するための図である。図7(a)〜(c)は、センサー近傍の温度が常温時(例えば摂氏20度)、摂氏30度および摂氏40度の高温時における撮像センサ16の状態の一例と、撮像センサ16から出力された画像Gtとを表している。
常温時の撮像センサ16においては、図7(a)に示すように傷として認識される垂直CCDの欠陥箇所は1箇所Fp1のみであり、撮像センサ16から出力される画像Gtで生じるVライン傷も1本Ga1だけとなる。
摂氏30度の高温時の撮像センサ16においては、常温時に比べて顕在化されるVライン傷の箇所が温度に依存して1つ増加する。すなわち、図7(b)に示すように傷として認識される垂直CCDの欠陥箇所は2箇所Fp1、Fp2となり、撮像センサ16から出力される画像GtにおけるVライン傷も2本Ga1、Ga2となる。
摂氏40度の高温時の撮像センサ16においては、摂氏30度の高温時に比べて顕在化されるVライン傷が温度に依存してさらに1つ増加する。すなわち、図7(c)に示すように傷として認識される垂直CCDの欠陥箇所は3箇所Fp1〜Fp3となり、撮像センサ16から出力される画像GtにおけるVライン傷が3本Ga1〜Ga3となる。
このように、撮像センサ16の温度上昇に伴い、Vライン傷の量が増加する傾向にあるが、温度上昇に伴って、Vライン傷のレベルも増加する傾向にある。すなわち、撮像センサ16においては、Vライン傷が温度依存性を有している。このため、上述したVライン傷の検出は、各温度ごとに検出することが好ましい。
<Vライン傷の補正>
Vライン傷の補正としては、(1)オフセットによる補正と、(2)画素補間による補正といった2種類の補正方法が提案されている。これら2種類の補正方法について以下で説明する。
(1)オフセットによる補正:
図8は、オフセットによるVライン傷の補正を説明するための図である。
オフセットによるVライン傷の補正では、まず撮像センサ16から出力された画像G3においてVライン傷Gaに起因するオフセット成分Loを検出する。そして、このオフセット成分(Vライン傷のレベル)Loを画像G3におけるVライン傷Gaの画素レベルから減算することで、画像ノイズとしての傷が消去された補正画像G4を生成する。
このようなオフセットによる補正方法では、上述のように撮像装置1の工場出荷前に傷情報メモリ54に格納されるデフォルトのVライン傷に係るデータに基づき傷レベル(オフセット成分Lo)を推定して補正しても良いが、温度依存性が大きいVライン傷の特性を考慮すると、撮影時にリアルタイムでオフセット量(補正量)を求めるのが好ましい。
このオフセット量の検出については、従来、以下の2つの手法が提案されてきた。
(1−1)第1のオフセット量の検出手法:
オフセット量の検出は、本撮影の露光および信号電荷の読出終了後において、図5および図6を示して説明した工場出荷前におけるVライン傷の検出方法と同様な方法によって実現される。このとき、欠陥箇所Fpに係る信号電荷を1/200倍で正規化したレベルをVライン傷のレベルとして検出して、その傷レベルをオフセット量とすれば良い。
(1−2)第2のオフセット量の検出手法:
撮像センサ16は、図9に示すように黒レベルを検出するためのオプチカル・ブラック部(以下「OB部」という)16ba、16bbを有している。ここで、各OB部から垂直CCD162に読み出された電荷は、下段のOB部16baの方が先に水平CCD163に転送され、上段のOB部16bbの方が後で転送されることとなる。以下では、垂直CCD162に2つの欠陥箇所Fp1、Fp2が存在するケースについてのオフセット量の検出を説明する。
図10に示すように撮像センサ16から出力された画像G5においては、上段のOB部16bbから読み出され垂直CCD162の欠陥箇所Fp1を通過してその影響を受けた画素Gb2は、下段のOB部16baから読み出され欠陥箇所Fp1を通過せずその影響を受けていない画素Gb1より上記のオフセット量だけ画素レベルが大きくなっている。同様に、上段のOB部16bbから読み出され垂直CCD162の欠陥箇所Fp2を通過した画素Gb4は、欠陥箇所Fp2を通過しない画素Gb3より上記のオフセット量だけ画素レベルが増加している。
したがって、図10に示すVライン傷Ga1の傷レベル(オフセット量)は、画素Gb2のレベルから画素Gb1のレベルを減算することにより得られ、Vライン傷Ga2のオフセット量は、画素Gb4のレベルから画素Gb3のレベルを減算することにより得られる。
(2)画素補間による補正:
図11は、画素補間によるVライン傷の補正を説明するための図である。
画素補間によるVライン傷の補正では、Vライン傷の周辺に位置する画素ラインのデータに基づき置換データを作成し、この置換データでVライン傷の画素データを置換する処理を行う。
例えば、画像G6において、Vライン傷Gaの左右に配置される同色の画素ラインJ1、J2を検出し、これらの画素ラインJ1、J2に関する画素レベルの平均値でVライン傷Gaの画素データを置換する。これにより、傷が消去された補正画像G7が生成される。
このような画素補間による補正方法では、Vライン傷の箇所(アドレス)が既知である場合には、傷レベルの検出が不要となる。そして、画素補間による補正方法においては、Vライン傷の温度特性の考慮が基本的に不要である。
しかしながら、画素補間によるVライン傷の補正は、オフセットによるVライン傷の補正に比べて精度が低くなる。
したがって、撮影画像の品質の劣化を避けようとすれば、オフセットによるVライン傷の補正を採用することになるが、オフセット量の検出に長時間を要してしまう。
そこで、本発明の第1実施形態に係る撮像装置1では、画質の維持を図るためにオフセットによるVライン傷の補正を採用することを前提としつつ、オフセット量の検出時における撮像センサ16からの信号電荷の読出しを高速化することで、オフセット量の検出時間を短縮化している。
以下、撮像装置1の本撮影直後におけるオフセット量すなわちVライン傷のレベルの検出について説明する。
<Vライン傷のレベルの検出>
撮像装置1では、Vライン傷のレベルを検出するための画像データを得る際に、上述した第1のオフセット量の検出手法を基礎としつつ、電荷転送ラインにおける信号電荷の掃き出しを高速化している。
図12および図13は、Vライン傷のレベル検出用の信号電荷の高速読出しについて説明する図である。
図12は、傷情報メモリ54に格納されるVCCD162における欠陥のアドレスを図示したものであり、四角形の枠内がVCCD162の全アドレスを示し、図中の4つの黒四角印BSがある温度における欠陥箇所の位置(すなわちアドレス)を示している。また、図13は、CCDの全水平ラインのうち、後述する通常転送および高速転送を行う対象となる水平ラインを示している。
撮像センサ16では、欠陥箇所を含む水平ラインに係る信号電荷については、本撮影時における転送と同様な転送(「通常転送」とも称する)を行う。ここで言う通常転送は、CCDにおいて、水平CCD(HCCD)163の信号電荷を全て掃き出した後に、1つの水平ラインに係る信号電荷をVCCD162からHCCD163に転送して、VCCD162からHCCD163への信号電荷の転送を停止させた状態で、HCCD163から1つの水平ラインに係る信号電荷を全て読出す信号電荷の転送である。
一方で、欠陥箇所を含まない水平ラインに係る信号電荷については、本撮影時における転送よりも相対的に高速の転送(「高速転送」とも称する)を行う。ここで言う高速転送とは、CCDにおいて、HCCD163における電荷の掃き出しが終わる前にVCCD162からHCCD163への信号電荷の転送を時間順次に行う信号電荷の転送である。よって、高速転送では、各水平ラインに係る信号電荷をVCCD162からHCCD163へ転送する間隔(1水平期間)を短縮化することができる。
具体的には、傷情報メモリ54から、温度センサ49において検出される撮像センサ16の温度に応じた欠陥のアドレスを認識する。そして、例えば、欠陥箇所の位置が図12に示すようなものである場合、図13に示すように、4つの欠陥箇所をそれぞれ含む4つの水平ラインHLに係る信号電荷については通常転送を行い、その他の水平ライン(図中斜線部)に係る信号電荷については高速転送を行う。
図14および図15は、高速転送について説明するためのタイミングチャートである。図14は、従来のVライン傷のレベル検出における垂直同期信号および水平同期信号のタイミングチャートを示しており、図15は、撮像装置1のVライン傷のレベル検出における垂直同期信号および水平同期信号のタイミングチャートを示している。なお、実際には垂直同期信号が多数発せられるが、図14および図15では、図が複雑になり過ぎるのを避けるため、垂直同期信号の数を少なく示している。
図14および図15では、垂直同期信号がHigh(H状態)からLow(L状態)に移行する度に、1フレーム(又は1フィールド)分の信号電荷の読出しが開始される。また、水平同期信号がHigh(H状態)からLow(L状態)に移行する度に、1水平ライン分の信号電荷がVCCD162からHCCD163に転送される。
図14に示すように、従来では、シャッター(シャッター機構)を閉じた状態で、200水平期間PsだけVCCD162の転送を停止させた後に、CCDの全水平ラインの信号電荷について通常転送が行われる。そして、図14では、このVライン傷のレベル検出における信号電荷の読出し期間を期間P1として示している。
一方で、図15に示すように、撮像装置1では、シャッターを閉じた状態で、200水平期間PsだけVCCD162の転送を停止させた後に、欠陥箇所を含む水平ラインに係る信号電荷についてのみ通常転送が行われる(水平同期信号1a,2aに対応)。そして、その他の水平ラインに係る信号電荷について高速転送が行われる。つまり、欠陥箇所を含まない水平ラインに係る信号電荷がVCCD162からHCCD163に転送される際には、水平同期信号がL状態となる間隔、すなわち1水平期間が、通常転送よりも相対的に短くなる。その結果、Vライン傷のレベル検出における信号電荷の読出し期間P2が、期間P1よりも大幅に短縮化される。なお、図示の関係上、期間P2と期間P1との差が大きく示されていないが、条件によっては、期間P1よりも期間P2の方が数十分の1程度にすることが可能である。
このような垂直同期信号および水平同期信号による撮像センサ16の駆動制御は、カメラ制御部40およびタイミングジェネレータセンサドライバ46によって実現される。
なお、上記では、高速転送における1水平期間を短縮することで、信号電荷の読出し速度を高速化したが、この高速転送における1水平期間は、VCCD162における転送速度を速めると、更に短縮することができる。
このようにVライン傷のレベル検出を短縮化した撮像装置1における撮影動作は以下のように行われる。
<撮影動作>
図16は、撮像装置1における撮影動作フローを示すフローチャートである。本動作フローは、カメラ制御部40の制御により実現される。
ステップSP1では、レリーズして露光を行う。すなわち、撮影者によりシャッターボタン13が全押し(S2オン)されて、被写体を撮影する動作が行われる。
ステップSP2では、ステップSP1で撮像センサ16から読み出された画素データをキャプチャーする処理を行う。
ステップSP3では、キャプチャー処理が完了したかを判定する。ここで、キャプチャー処理が完了した場合には、ステップSP4に進み、完了していない場合には、ステップSP2とステップSP3の動作を繰り返す。
ステップSP4では、シャッターに相当する絞り44を閉じる。但し、キャプチャー時にシャッターが閉じている場合には、そのまま、シャッターが閉じている状態を保持する。
ステップSP5では、VCCD162において電荷の高速読み出しが設定される。
ステップSP6では、温度センサ49によって撮像センサ16の温度を検出する。
ステップSP7では、CCDの全水平ラインのうち欠陥箇所を含む水平ラインを、信号電荷を通常転送する水平ラインとして指定する。ここでは、傷情報メモリ54に格納された欠陥箇所の位置情報(温度別位置情報)を参照することにより、ステップSP6で検出された温度に対応する欠陥の位置を認識する。すなわち、温度別位置情報から温度に応じた欠陥の位置を認識する。そして、当該欠陥を含む水平ラインを信号電荷を通常転送する水平ラインとして指定する。
ステップSP8では、上述したように、VCCD162での転送を200水平転送期間停止する。これにより、VCCD162の欠陥箇所で電荷が増幅されることとなる。なお、実際には、ステップSP8の処理と並行して、ステップSP6の処理とステップSP7の処理とが行われる。
ステップSP9では、上述したように、ステップSP7で指定された水平ラインに係る信号電荷のみを通常転送する一方、その他の水平ラインに係る信号電荷を高速転送することで、画像データの読出しが実行される。
ステップSP10では、Vライン傷検出部52において、ステップSP9で読出された画像データに基づいて、Vライン傷のレベルを検出する。
ステップSP11では、ステップSP10で検出されたVライン傷のレベルに応じたオフセット量(レベル)を算出する。
ステップSP12では、ステップSP2,SP3においてキャプチャー処理された画像データに対して、ステップSP11で算出されたオフセット量を用いたVライン傷のオフセット補正を行う。
ステップSP13では、ステップSP12でオフセット補正が行われた画像データに対して、ホワイトバランス補正やガンマ補正等を含むその他の画像処理を行う。
ステップSP14では、ステップSP13で画像処理が行われた画像データをメモリカード9に記憶する記憶処理を行い、本動作フローを終了する。なお、ステップSP14では、適宜LCDモニタ42に画像データを可視的に出力する。
以上のように、本発明の第1実施形態に係る撮像装置1では、画像におけるVライン傷の発生原因となる電荷転送ラインの欠陥の位置情報を傷情報メモリ54に記憶しておく。そして、Vライン傷のレベル検出用の信号電荷を読出す際には、CCDの全画素に対応する信号電荷のうち、欠陥箇所を含む水平ラインに係る信号電荷を通常転送する。その一方で、欠陥箇所を含まない水平ラインに係る信号電荷を高速転送して捨てる。このような構成とすることで、従来ではVライン傷のレベル検出に不要な信号電荷の読出しに要していた時間を省くことができるため、Vライン傷のレベル検出を高速で行うことができる。
そして、検出されたVライン傷のレベルを用いたオフセットを行うことでVライン傷を補正する。その結果、CCDの温度変化に応じたVライン傷を精度良く補正することができるため、画質の劣化を抑制したVライン傷の補正が可能となる。
また、温度別の欠陥の位置を示す温度別位置情報を傷情報メモリ54に記憶しておき、温度センサ49によって検出されるCCDの温度に対応する欠陥の位置に応じて、Vライン傷のレベル検出用の信号電荷を読出す。このような構成とすることで、温度の変化に応じたVライン傷のレベル検出を高速で行うことができる。
更に、被写体から撮像センサ16に至る光路をシャッター機構によって遮断した状態で、所定期間(例えば、200水平期間)だけVCCD162における信号電荷の転送を停止した後に、レベル検出用の信号電荷を読出す。このような構成により、欠陥に起因する信号電荷を強調して読出すことができるため、Vライン傷のレベル検出を高精度で行うことができる。
<(2)第2実施形態>
図17は、1つのVCCD162に複数の欠陥を含む撮像センサ16の構成を示す図である。
図17に示すように、1つのVCCD162に複数の欠陥箇所(傷)Fp1,Fp2,Fp3が存在する場合には、まず、欠陥箇所Fp1において電荷転送方向Haの上流から転送される信号電荷群Fa1に電荷C1が加算される。また、欠陥箇所Fp2において電荷転送方向Haの上流から転送される信号電荷群Fa2に電荷C2が加算される。更に、欠陥箇所Fp3において電荷転送方向Haの上流から転送される信号電荷群Fa3に電荷C3が加算される。そして、図18に示すように撮影画像G2おいて明度の高いライン性の傷(Vライン傷)Gbとして再現される。
この撮影画像G2では、欠陥箇所Fp1と欠陥箇所Fp2との間に相当するエリアにおいて電荷C1に相当するレベルのVライン傷(すなわちエリアA1)が生じる。また、欠陥箇所Fp2と欠陥箇所Fp3との間に相当するエリアにおいて電荷(C1+C2)に相当するレベルのVライン傷(すなわちエリアA2)が生じる。更に、欠陥箇所Fp3の上流側に相当するエリアにおいて電荷(C1+C2+C3)に相当するレベルのVライン傷(すなわちエリアA3)が生じる。
つまり、1つのVCCD162に複数の欠陥箇所Fp1,Fp2,Fp3が存在する場合には、1つのVCCD162に対応する1つのVライン傷Gbであっても、エリアA1〜A3間でレベルが相互に異なる。よって、オフセット補正を行うためのオフセットレベルが均一なものとはならない。そこで、エリアA1〜A3に係るVライン傷のレベルを各々検出して、Vライン傷をオフセット補正する手法が考えられる。
しかしながら、各エリアごとにVライン傷のレベルを検出するために、第1実施形態に係る撮像装置1と同様な手法を用いると、3つの欠陥箇所Fp1,Fp2,Fp3をそれぞれ含む水平ラインに係る信号電荷を通常転送するのに長時間を要してしまう。すなわち、Vライン傷のレベル検出を高速で行うことに対して阻害要因となる。
そこで、Vライン傷のレベル検出をより高速で行うために、第2実施形態に係る撮像装置1Aでは、1つのVライン傷のうちに傷レベルが異なる複数のエリアが存在している場合には、各エリア間における傷レベルの数値関係を示す比(傷レベル比)を予め検出して、傷情報メモリ54に記憶しておく。そして、本撮影に際しては、1つのVライン傷を構成する複数のエリアのうちの1つのエリアに係る傷レベルのみを検出して、その他のエリアに係る傷レベルは、上記傷レベル比を用いて算出する。
この傷レベル比については、例えば、電荷C1が20mV、電荷C2が60mV、電荷C3が40mVであると検出された場合には、最も下流側のエリアA1の傷レベルを基準とすると、エリアA3は、3つの欠陥箇所Fp1,Fp2,Fp3の影響を受けるため、傷レベル比が6(=120mV/20mV)となる。エリアA2は、2つの欠陥箇所Fp1,Fp2の影響を受けるため、傷レベル比が4(=80mV/20mV)となる。エリアA1は、1つの欠陥箇所Fp1の影響を受けるため、傷レベル比が1(=20mV/20mV)となる。
以下、第2実施形態に係る撮像装置1Aについて具体的に説明する。なお、第2実施形態に係る撮像装置1Aは、第1実施形態に係る撮像装置1とは、Vライン傷のレベルを検出する際の信号電荷の読出し及びVライン傷のレベルの検出における制御および演算方法が異なるのみである。そこで、撮像装置1Aでは、撮像装置1と同じ構成については同じ符合を付して説明を省略する。
<傷レベル比>
図19は、傷情報メモリ54に記憶される傷レベル比を示す図である。
図19に示すように、傷レベル比が、CCDの温度別に欠陥画素のアドレスに対応付けられたテーブル(「傷レベル比テーブル」「傷レベル関係情報」とも称する)として傷情報メモリ54に記憶される。具体的には、図19に示す傷レベル比テーブルでは、例として、10℃、25℃、40℃、55℃、70℃といった5つの温度について、Vライン傷の発生原因となる欠陥箇所のアドレスと、当該アドレスに対応するVライン傷のレベル比とが示されている。なお、図19では、図が複雑になるのを避けるために5つの温度についてしか示さなかったが、実際には、更に細かい温度間隔で欠陥箇所のアドレスと傷レベル比とが、傷レベル比テーブルには格納される。
この傷レベル比は、例えば、撮像装置1Aが工場から出荷される前において、上述した第1実施形態に係る撮像装置1と同様な手法によって、複数の温度条件下でVライン傷のレベルを検出することで算出される。
図20は、各温度において傷レベル比を算出して傷レベル比テーブルに登録する際の動作フローを示すフローチャートである。本動作フローはカメラ制御部40の制御によって実現される。
ステップSP21では、温度センサ49によって撮像センサ16の温度を検出する。
ステップSP22では、欠陥箇所のアドレス及び傷レベルを検出する。ここでは、VCCD162の転送を一定期間停止することにより欠陥箇所で発生する電荷量を増大させた後に、画像読み出しを行うことで、VCCD162上の欠陥箇所に信号電荷が読み出されるフォトダイオードDpの画素データを強調して撮像センサ16から出力できる。このとき読み出される画像について、明度の高い輝点となる画素のアドレスを検出することで、Vライン傷のレベルが相互に異なる各エリアの下端に対応する欠陥箇所の位置(アドレス)を検知できる。また、強調された信号電荷を1/200倍で正規化したレベルに基づいてVライン傷のレベルを検出することができる。
ステップSP23では、1つのVCCD162に複数の欠陥があるか否かを判定する。ここで、1つのVCCD162に複数の欠陥がある場合にはステップSP24に進み、複数の欠陥がない場合にはステップSP26に進む。
ステップSP24では、ステップSP22で検出された傷レベルに基づいて傷レベル比を算出する。ここでは、1つのVCCD162に存在する複数の欠陥のうち最も下流側の欠陥に対応する傷レベルを基準として、傷レベル比が算出される。
ステップSP25では、欠陥のアドレスと傷レベル比とを対応付けて傷レベル比テーブルに記憶する。このとき、併せて、複数の欠陥があるVCCD162については、複数の欠陥のうち最も下流側の欠陥箇所を示す位置を通常転送する画素の位置(通常転送アドレス)として指定する。一方、1つしか欠陥がないVCCD162については、当該1つの欠陥箇所を示す位置を通常転送アドレスとして指定する。図示を省略するが、この通常転送アドレスについても傷情報メモリ54に記憶される。ここでは、図19に示すように、傷レベル比として1が付与されたアドレスが通常転送アドレスを示している。
ステップSP26では、ステップSP22で検出された欠陥箇所のアドレスを傷情報メモリ54に記憶する。このとき、全欠陥箇所を示す位置を通常転送アドレスとして指定し、この通常転送アドレスを傷情報メモリ54に記憶する。
このような動作を例えば、10℃、25℃、40℃、55℃、70℃といった各温度において行うことで、図19に示すような傷レベル比テーブルを生成することができる。
<撮影動作>
図21及び図22は、撮像装置1Aにおける撮影動作フローを示すフローチャートである。本動作フローは、カメラ制御部40の制御により実現される。
ステップSP31〜SP36では、図16のステップSP1〜SP6と同様な処理を行う。
ステップSP37では、傷情報メモリ54に格納された通常転送アドレスを参照することで、信号電荷を通常転送する水平ラインをステップSP36で検出された温度に応じて認識して指定する。
ステップSP38では、図16のステップSP8と同様な処理を行う。
ステップSP39では、上述したように、ステップSP37で指定された水平ラインに係る信号電荷のみを通常転送する一方、その他の水平ラインに係る信号電荷を高速転送することで、画像データの読出しを実行する。ここでは、複数の欠陥箇所が存在するVCCD162については、当該複数の欠陥箇所のうち通常転送アドレスに対応する信号電荷を通常転送する一方で、その他の欠陥箇所に対応する信号電荷は高速転送して捨てられる。例えば、図17に示すように、1つのVCCD162に複数の欠陥箇所Fp1,Fp2,Fp3が存在する場合には、欠陥箇所Fp1に対応する信号電荷が通常転送される。
ステップSP40では、Vライン傷検出部52において、ステップSP39で読出された画像データに基づいて、Vライン傷のレベルを検出する。ここでは、複数の欠陥箇所が存在するVCCD162については、当該複数の欠陥箇所のうち通常転送アドレスに対応する1つの欠陥箇所に起因して画像において発生するVライン傷のレベルを検出することになる。
ステップSP41では、ステップSP40で検出されたVライン傷のレベルに応じたオフセット量(レベル)を算出する。ここでは、具体的には、図22に示す動作フローが行われる。
ステップSP51では、撮像センサ16に配された1つのVCCD162を指定する。
ステップSP52では、ステップSP51または後述するステップSP57において指定されたVCCD162に複数の欠陥があるか否か判定する。ここでは、1つのVCCD162に複数の欠陥がある場合にはステップSP53に進み、複数の欠陥がない場合にはステップSP55に進む。
ステップSP53では、傷情報メモリ54に格納された傷レベル比テーブルを参照して、ステップSP36で検出された温度に対応する傷レベル比を認識して補正係数として決定する。
ステップSP54では、各欠陥箇所について、ステップSP40で直接検出された傷レベルとステップS52で決定された補正係数とを乗じることで、傷レベルをそれぞれ検出して、当該傷レベルをオフセットレベルとして算出する。
ステップSP55では、ステップSP40で検出された傷レベルをそのままオフセットレベルとして採用する。
ステップSP56では、撮像センサ16に配されたVCCD162を全て指定したか否か判定する。ここで、全てのVCCD162が指定されるまで、次のVCCD162を指定して(ステップSP57)、ステップSP52に戻り、全てのVCCD162が指定されれば、図22に示す動作フローが終了され、ステップSP42に進む。
ステップSP42〜SP44では、図16のステップSP12〜SP14と同様な処理を行う。
以上のように、本発明の第1実施形態に係る撮像装置1Aでは、同一のVCCD162に欠陥Fp1および欠陥Fp2を含む3つ(一般的には複数)の欠陥Fp1〜Fp3が存在する場合には、複数の欠陥に起因して画像において発生するVライン傷のレベルの比(傷レベル比)を傷情報メモリ54に記憶しておく。この状態で、本撮影に際して、CCDの全画素に対応する信号電荷のうち、欠陥Fp1の位置に対応する信号電荷を通常転送する一方、欠陥Fp2,Fp3の位置に対応する信号電荷を高速転送して捨てることで、Vライン傷のレベル検出用の信号電荷を読出す。そして、当該レベル検出用の信号電荷に基づいて欠陥Fp1に係るVライン傷のレベルを検出するとともに、欠陥Fp1,Fp2の双方に起因して発生するVライン傷のレベル、及び欠陥Fp1〜Fp3の全てに起因して発生するVライン傷のレベルについては、傷レベル比を用いた演算によって検出する。その結果、Vライン傷のレベル検出を更に高速で行うことができる。
また、傷情報メモリ54に温度別のVライン傷のレベル比を示した情報を記憶しておき、CCDに係る温度に対応する傷レベル比に基づいて、欠陥Fp1,Fp2の双方に起因して発生するVライン傷のレベル、及び欠陥Fp1〜Fp3の全てに起因して発生するVライン傷のレベルを演算によって検出する。このような構成により、温度の変化に応じたVライン傷のレベル検出を高速で行うことができる。
<(3)変形例>
以上、この発明の実施形態について説明したが、この発明は上記説明した内容のものに限定されるものではない。
◎例えば、上述した実施形態では、CCD撮像素子として、いわゆるインターライン型のCCDが用いられたが、これに限られず、例えば、いわゆるフレームトランスファー型のCCD等といった他のCCDであっても良い。
◎また、上述した実施形態では、Vライン傷の発生原因となる電荷転送ラインの欠陥の位置や傷レベルを工場出荷前に検出したが、これに限られず、例えば、撮像装置1,1Aの電源をOFFする際に検出するようにして、電荷転送ラインの欠陥位置や傷レベルを更新登録するようにしても良い。
◎また、上述した実施形態では、本撮影直後にVライン傷のレベルを検出したが、これに限られず、本撮影直前にVライン傷のレベルを検出しても、上述した実施形態と同様な効果を得ることができる。
◎また、上述した第2実施形態では、1つのVCCD162においてVライン傷の発生原因となる3つの欠陥が存在する場合を例にとって説明したが、これに限られず、1つのVCCD162においてVライン傷の発生原因となる2以上の複数の欠陥が存在する場合であれば、第2実施形態と同様な手法によって、第2実施形態と同様な効果を得ることができる。
◎また、上述した第2実施形態では、1つのVCCD162に複数の欠陥が存在する場合に、Vライン傷のレベルが異なるエリア間における傷レベル比を工場出荷前において傷情報メモリ54に記憶しておき、本撮影に際しては、1つの欠陥に係る傷レベルを検出するだけで、傷レベル比を用いて1つのVライン傷を構成する複数エリアの傷レベルを算出したが、これに限られず、例えば、複数の欠陥それぞれに起因して発生するVライン傷のレベルの比を傷レベル比として工場出荷前等において傷情報メモリ54に記憶しておき、本撮影に際しては、上記複数の欠陥のうちの1つの欠陥に係る傷レベルを検出して、まず、傷レベル比を用いて上記複数の欠陥のそれぞれに起因して発生する傷レベルを算出し、VCCD162の上流側になればなる程傷レベルが高くなるように、各傷レベルを加算していくことで、1つのVライン傷を構成する複数エリアの傷レベルを算出(検出)するようにしても良い。
具体的には、図17及び図18に示したように、1つのVCCD162に複数の欠陥箇所(傷)Fp1,Fp2,Fp3が存在し、かつ欠陥箇所Fp1,Fp2,Fp3によって生じる傷レベルの比(傷レベル比)が1:3:2である場合を想定すると、当該傷レベル比が工場出荷前に求められて傷情報メモリ54に記憶される。そして、撮影時には、欠陥箇所Fp1,Fp2,Fp3の何れか1つの欠陥に起因して生じる傷レベルが検出されれば、他の欠陥箇所に起因して生じる傷レベルが求まる。例えば、欠陥箇所Fp1に係る傷レベルが20mVと検出されると、上記傷レベル比(1:3:2)によって、欠陥箇所Fp2に係る傷レベルが60mV、欠陥箇所Fp3に係る傷レベルが40mVと検出される。そして、VCCD162で転送される信号電荷は通過する全欠陥箇所の影響を受けるため、欠陥箇所Fp1と欠陥箇所Fp2との間に相当するエリアA1に係る傷レベルを20mV、欠陥箇所Fp2と欠陥箇所Fp3との間に相当するエリアA2に係る傷レベルを80mV(=20mV+60mV)、欠陥箇所Fp3の上流側に相当するエリアA3に係る傷レベルを120mV(=20mV+60mV+40mV)と算出することができる。
このような構成としても、第2実施形態と同様な効果を得ることができる。
◎また、上述した実施形態では、全画素読出しタイプのCCDを用いたが、これに限られず、例えば、複数フィールド読出しタイプのCCDであっても良い。なお、このときの欠陥情報は、転送ライン情報となるので、いずれのフィールドも同じ補正を行うようにすると良い。
また、Vライン傷の検出については、画素信号を転送ラインにシフトしないので、全画素読出しタイプのCCDでも、複数フィールド読出しタイプのCCDでも同じである。
本発明の第1実施形態に係る撮像装置の外観構成を示す図である。 本発明の第1実施形態に係る撮像装置の機能ブロックを示す図である。 撮像センサの構成を示す図である。 Vライン傷が発生した撮影画像を例示する図である。 Vライン傷の検出原理を説明するための図である。 Vライン傷の検出原理を説明するための図である。 撮像センサのVライン傷の温度依存性について説明するための図である。 オフセットによるVライン傷の補正を説明するための図である。 オフセットによるVライン傷の補正を説明するための図である。 オフセットによるVライン傷の補正を説明するための図である。 画素補間によるVライン傷の補正を説明するための図である。 Vライン傷のレベル検出用の信号電荷の高速読出しについて説明する図である。 Vライン傷のレベル検出用の信号電荷の高速読出しについて説明する図である。 高速転送について説明するタイミングチャートである。 高速転送について説明するタイミングチャートである。 撮影動作フローを示すフローチャートである。 撮像センサの構成を示す図である。 Vライン傷が発生した撮影画像を例示する図である。 温度別の傷レベル比を示す図である。 欠陥箇所のアドレスと傷レベル比の登録を行う動作フローを示すフローチャートである。 撮影動作フローを示すフローチャートである。 撮影動作フローを示すフローチャートである。
符号の説明
1,1A 撮像装置
16 撮像センサ
40 カメラ制御部
49 温度センサ
52 Vライン傷検出部
53 Vライン傷補正部
54 傷情報メモリ

Claims (9)

  1. 撮像装置であって、
    (a)電荷転送ラインを含むCCDを有し、被写体に係る画像を取得する撮像手段と、
    (b)前記画像における線状傷の発生原因となる前記電荷転送ラインの欠陥の位置情報を記憶する記憶手段と、
    (c)前記電荷転送ラインにおいて、前記CCDの全画素に対応する信号電荷のうち、前記欠陥の位置に対応する信号電荷を通常転送する一方、前記欠陥の位置以外に対応する信号電荷を高速転送することで、前記線状傷のレベル検出用の信号電荷を読出す読出手段と、
    (d)前記読出手段によって読み出された前記レベル検出用の信号電荷に基づいて、前記線状傷を補正する補正手段と、
    を備えることを特徴とする撮像装置。
  2. 請求項1に記載の撮像装置であって、
    (e)前記レベル検出用の信号電荷に基づいて、前記線状傷のレベルを検出する傷レベル検出手段、
    を備え、
    前記補正手段が、
    前記傷レベル検出手段による検出結果に応じて、前記線状傷を補正することを特徴とする撮像装置。
  3. 請求項2に記載の撮像装置であって、
    前記補正手段が、
    前記傷レベル検出手段によって検出された前記線状傷のレベルを用いたオフセットを行うことで、前記線状傷を補正することを特徴とする撮像装置。
  4. 請求項2または請求項3に記載の撮像装置であって、
    前記記憶手段が、
    温度別の前記欠陥の位置を示す温度別位置情報を記憶し、
    前記撮像装置が、
    (f)前記CCDに係る温度を検出する温度検出手段と、
    (g)前記温度別位置情報を参照することにより、前記温度検出手段によって検出された温度に対応する欠陥の位置を認識する位置認識手段と、
    を更に備え、
    前記読出手段が、
    前記位置認識手段によって認識された欠陥の位置に応じて、前記レベル検出用の信号電荷を読出すことを特徴とする撮像装置。
  5. 請求項2または請求項3に記載の撮像装置であって、
    前記記憶手段が、
    同一の電荷転送ライン上に前記画像における線状傷の発生原因となる第1及び第2の欠陥が少なくとも存在する場合には、少なくとも、前記第1及び第2の欠陥の位置情報を記憶するとともに、前記第1の欠陥に起因して前記画像において発生する線状傷のレベルと前記第1及び第2の欠陥の双方に起因して前記画像において発生する線状傷のレベルとの数値関係を示すレベル関係情報を記憶し、
    前記読出手段が、
    前記電荷転送ラインにおいて、前記CCDの全画素に対応する信号電荷のうち、前記第1の欠陥の位置に対応する信号電荷を通常転送する一方、前記第2の欠陥の位置に対応する信号電荷を高速転送することで、前記レベル検出用の信号電荷を読出し、
    前記傷レベル検出手段が、
    (e-1)前記レベル検出用の信号電荷に基づいて、前記第1の欠陥に起因して前記画像において発生する線状傷のレベルを検出する第1のレベル検出手段と、
    (e-2)前記第1のレベル検出手段によって検出された線状傷のレベルと、前記レベル関係情報とに基づいて、少なくとも前記第1および第2の欠陥の双方に起因して前記画像において発生する線状傷のレベルを検出する第2のレベル検出手段と、
    を有することを特徴とする撮像装置。
  6. 請求項5に記載の撮像装置であって、
    前記記憶手段が、
    温度別の前記数値関係を示す温度別レベル関係情報を記憶し、
    前記撮像装置が、
    (f)前記CCDに係る温度を検出する温度検出手段と、
    (g)前記温度別レベル関係情報を参照することにより、前記温度検出手段によって検出された温度に対応する数値関係を認識する数値関係認識手段と、
    を更に備え、
    前記第2のレベル検出手段が、
    前記数値関係認識手段によって認識された数値関係に基づいて、少なくとも前記第1および第2の欠陥の双方に起因して発生する線状傷のレベルを検出することを特徴とする撮像装置。
  7. 請求項2または請求項3に記載の撮像装置であって、
    前記記憶手段が、
    同一の電荷転送ライン上に前記画像における線状傷の発生原因となる第1及び第2の欠陥が少なくとも存在する場合には、少なくとも、前記第1及び第2の欠陥の位置情報を記憶するとともに、前記第1の欠陥に起因して前記画像において発生する線状傷のレベルと前記第2の欠陥に起因して前記画像において発生する線状傷のレベルとの数値関係を示すレベル関係情報を記憶し、
    前記読出手段が、
    前記電荷転送ラインにおいて、前記CCDの全画素に対応する信号電荷のうち、前記第1の欠陥の位置に対応する信号電荷を通常転送する一方、前記第2の欠陥の位置に対応する信号電荷を高速転送することで、前記レベル検出用の信号電荷を読出し、
    前記傷レベル検出手段が、
    (e-1)前記レベル検出用の信号電荷に基づいて、前記第1の欠陥に起因して前記画像において発生する線状傷のレベルを検出する第1のレベル検出手段と、
    (e-2)前記第1のレベル検出手段によって検出された線状傷のレベルと、前記レベル関係情報とに基づいて、少なくとも前記第1および第2の欠陥の双方に起因して前記画像において発生する線状傷のレベルを検出する第2のレベル検出手段と、
    を有することを特徴とする撮像装置。
  8. 請求項7に記載の撮像装置であって、
    前記記憶手段が、
    温度別の前記数値関係を示す温度別レベル関係情報を記憶し、
    前記撮像装置が、
    (f)前記CCDに係る温度を検出する温度検出手段と、
    (g)前記温度別レベル関係情報を参照することにより、前記温度検出手段によって検出された温度に対応する数値関係を認識する数値関係認識手段と、
    を更に備え、
    前記第2のレベル検出手段が、
    前記数値関係認識手段によって認識された数値関係に基づいて、少なくとも前記第1および第2の欠陥の双方に起因して発生する線状傷のレベルを検出することを特徴とする撮像装置。
  9. 請求項1から請求項8のいずれかに記載の撮像装置であって、
    前記読出手段が、
    前記被写体から前記撮像手段に至る光路を所定のシャッター機構によって遮断した状態で、所定期間だけ前記電荷転送ラインにおける信号電荷の転送を停止した後に、前記レベル検出用の信号電荷を読出すことを特徴とする撮像装置。
JP2005079386A 2005-03-18 2005-03-18 撮像装置 Expired - Fee Related JP4093249B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005079386A JP4093249B2 (ja) 2005-03-18 2005-03-18 撮像装置
US11/237,206 US20060209198A1 (en) 2005-03-18 2005-09-28 Image capturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005079386A JP4093249B2 (ja) 2005-03-18 2005-03-18 撮像装置

Publications (2)

Publication Number Publication Date
JP2006262286A JP2006262286A (ja) 2006-09-28
JP4093249B2 true JP4093249B2 (ja) 2008-06-04

Family

ID=37009899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079386A Expired - Fee Related JP4093249B2 (ja) 2005-03-18 2005-03-18 撮像装置

Country Status (2)

Country Link
US (1) US20060209198A1 (ja)
JP (1) JP4093249B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542962B2 (ja) * 2005-07-21 2010-09-15 富士フイルム株式会社 デジタルカメラ
JP4859223B2 (ja) * 2006-10-24 2012-01-25 キヤノン株式会社 画像欠陥補正装置、画像欠陥補正方法、及びプログラム
JP5084366B2 (ja) * 2007-06-21 2012-11-28 キヤノン株式会社 撮像装置及び撮像装置の制御方法
JP5028371B2 (ja) * 2008-09-26 2012-09-19 富士フイルム株式会社 撮影装置
CN104137531B (zh) * 2012-03-02 2017-06-06 三菱电机株式会社 图像处理装置和方法
CN116863175B (zh) * 2023-08-31 2023-12-26 中江立江电子有限公司 一种直角连接器缺陷识别方法、装置、设备及介质

Also Published As

Publication number Publication date
JP2006262286A (ja) 2006-09-28
US20060209198A1 (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US9071781B2 (en) Image capturing apparatus and defective pixel detection method
JP2007300595A (ja) 静止画像撮影の手ブレ回避方法
JP4093249B2 (ja) 撮像装置
JP2006157882A (ja) 固体撮像装置
JP4062300B2 (ja) 撮像装置
JP2006245999A (ja) 撮像装置、およびプログラム
JP2005328421A (ja) 撮像装置および撮像方法
JP2011071709A (ja) 電子カメラ
JP4817529B2 (ja) 撮像装置及び画像処理方法
JP2005269130A (ja) 手振れ補正機能を有する撮像装置
JP5446955B2 (ja) 撮像装置
JP2014230121A (ja) 撮像装置および画素欠陥検出方法
JP3925914B2 (ja) 画素欠陥補正装置および画素欠陥補正方法
JP2006121165A (ja) 撮像装置、画像形成方法
JP4612848B2 (ja) 撮像装置及びその制御方法
JPH11224324A (ja) 画像信号処理方法及び装置
JP2006148439A (ja) 撮像装置
JP7329136B2 (ja) 撮像装置
JP2008219803A (ja) 画像信号の補正方法及び撮像装置
JP2013074368A (ja) 撮像装置及び撮像方法
WO2015182021A1 (ja) 撮像制御装置、撮像装置および撮像制御方法
JP2006148414A (ja) 撮像装置
JP2006148440A (ja) 撮像装置
JP2006148441A (ja) 撮像装置
JP2006262308A (ja) 撮像装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070827

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees