JP4089944B2 - 電解還元装置および方法 - Google Patents

電解還元装置および方法 Download PDF

Info

Publication number
JP4089944B2
JP4089944B2 JP2001366421A JP2001366421A JP4089944B2 JP 4089944 B2 JP4089944 B2 JP 4089944B2 JP 2001366421 A JP2001366421 A JP 2001366421A JP 2001366421 A JP2001366421 A JP 2001366421A JP 4089944 B2 JP4089944 B2 JP 4089944B2
Authority
JP
Japan
Prior art keywords
oxide
molten salt
anode
reduced
electrolytic reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001366421A
Other languages
English (en)
Other versions
JP2003166094A (ja
Inventor
剛 宇佐見
正 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2001366421A priority Critical patent/JP4089944B2/ja
Publication of JP2003166094A publication Critical patent/JP2003166094A/ja
Application granted granted Critical
Publication of JP4089944B2 publication Critical patent/JP4089944B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶融塩に浸した陽極と還元対象である酸化物を保持する陰極とに電流を通電して酸化物を還元する電解還元装置および方法に関する。さらに詳述すると、本発明は原子力発電所の使用済み酸化物燃料や鉱物の金属への還元に適した電解還元装置および方法に関する。
【0002】
【従来の技術】
原子力発電所の使用済み酸化物燃料を金属に還元する方法として、化学還元方法と電解還元方法とが知られている。
【0003】
化学還元方法としては、例えば塩化リチウムまたは塩化リチウムおよび塩化カリウムから成る溶融塩に還元剤としてリチウムを添加し、使用済酸化物燃料を化学的に還元する方法が開発されている(特開平8−54493号)。
【0004】
ところが、この化学還元方法では、化学的に活性な還元剤のリチウムを使用しているので、還元剤自体の劣化や容器等の腐食を生じ易く、長時間に亘る還元処理は困難である。また、還元剤が塩化カリウムを還元してしまうので、カリウムの蒸気が発生してしまい、これが発火する虞がある。さらに、還元剤が反応して生成する酸化リチウムの濃度を少なくとも飽和溶解度以下に抑えなくてはならないので、これを満たす量の塩化リチウムを必要としてしまう。このため、使用済酸化物燃料の約27倍もの体積の溶融塩が必要になってしまい、装置が大型化してしまう。
【0005】
これに対し、電解還元方法としては、陰極に保持される還元対象である酸化チタンと陽極とを例えば塩化カルシウムから成る溶融塩に浸し、陰極および陽極に電流を通電して酸化チタンを還元する方法が開発されている(NATURE,VOL.407,21/SEP/2000,P361-364)。
【0006】
この電解還元方法によれば、還元剤自体の劣化は生じ難いので長時間に亘る還元処理が十分可能になる。また、カリウムの蒸気の発生は無く、これに起因する発火の虞が無い。さらに、酸化リチウムの濃度の制限が無いため必要な物量を減らして装置の小型化を図れる。
【0007】
【発明が解決しようとする課題】
しかしながら、上述した電解還元方法では、塩化カルシウムの融点が774℃であるため操業温度は800℃以上になってしまい、エネルギの大量消費や容器材料の腐食等の問題を生ずることがある。また、塩化カルシウムを溶融塩として原子力発電所の使用済酸化物燃料を金属に還元するようにすると、還元後の使用済酸化物燃料の電解精製工程での溶融塩が塩化リチウム−塩化カリウム共晶塩であることから、使用済酸化物燃料から塩化カルシウムを一旦洗浄しなければならず、処理が煩雑であると共に電解精製工程との間での廃棄物量の増大を招いてしまう。
【0008】
そこで、本発明は、操業温度を下げられると共に使用済酸化物燃料を還元する場合には後段の電解精製工程との間での廃棄物発生量を少なくできる電解還元装置および方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
かかる目的を達成するため、請求項1記載の発明は、還元対象である酸化物を保持する陰極と、陽極と、酸化物および陽極が浸される溶融塩と、該溶融塩を収容する容器と、陰極および陽極に電流を通電して酸化物を還元する直流電源とを備える電解還元装置において、溶融塩は塩化リチウム−塩化カリウム共晶塩であるようにしている。また、請求項7記載の発明は、陰極に保持される還元対象である酸化物と陽極とを溶融塩に浸し、陰極および陽極に電流を通電して酸化物を還元する電解還元方法において、溶融塩は塩化リチウム−塩化カリウム共晶塩であるようにしている。
【0010】
塩化リチウム−塩化カリウム共晶塩の融点は、塩化リチウムと塩化カリウムの比率によって変わり純粋な塩化カリウムの場合に最高で770℃程度である。このため、適切な比であれば従来使用していた塩化カルシウムの融点(774℃)よりも低いので、従来の800℃〜1000℃よりも低い操業温度で電解還元を実現できるようになり、エネルギの消費量を低減できると共に容器材料の腐食を抑制することができる。
【0011】
ここで、操業温度を例えば650℃以下にするためには、塩化リチウム−塩化カリウム共晶塩の融点を610℃以下にする必要がある。このため、塩化リチウム:塩化カリウム=Xモル%:100−Xモル%としたときに、35≦X≦100であるようにすることが望ましい。特に塩化リチウム:塩化カリウム=48モル%:52モル%であるときに融点は350℃で最も低くなる。このときは操業温度を500℃程度に抑えることができる。
【0012】
また、酸化物として使用済酸化物燃料を還元する場合には還元時の溶融塩と還元後の電解精製処理での溶融塩とがいずれも塩化リチウム−塩化カリウム共晶塩であるので、還元処理から電解精製処理への移行時に洗浄が不要になり作業性が良くなると共に、還元工程と電解精製工程との間での廃棄物発生量を少なくすることができる。
【0013】
しかも、化学還元反応を利用して使用済酸化物燃料を還元する場合に比べると、使用済酸化物燃料の約5倍程度の体積の溶融塩で足りるようになるので、装置の小型化を図ることができる。また、化学還元反応を利用する場合より酸化リチウムの濃度が常に低いので、より多くの種類の酸化物を還元できる可能性がある。多くの種類の元素を還元できると共に酸化リチウム濃度が常に低いので、後段の電解精製工程に持ち込まれる酸素量が減少し、ここで発生する酸化物の処理の手間を軽減できる。また、塩化カリウムを使用してもカリウムの蒸気の発生は無く、これに起因する発火の虞が無い。
【0017】
また、請求項記載の発明は、還元対象である酸化物を保持する陰極と、陽極と、酸化物および陽極が浸される溶融塩と、該溶融塩を収容する容器と、陰極および陽極に電流を通電して酸化物を還元する直流電源とを備える電解還元装置において、溶融塩は塩化カリウムであるようにしている。また、請求項記載の発明は、陰極に保持される還元対象である酸化物と陽極とを溶融塩に浸し、陰極および陽極に電流を通電して酸化物を還元する電解還元方法において、溶融塩は塩化カリウムであるようにしている。しかも、化学還元反応を利用して使用済酸化物燃料を還元する場合に比べても、使用済酸化物燃料の約5倍程度の体積の溶融塩で足りるようになるので、装置の小型化を図ることができる。
【0018】
したがって、酸化物として使用済酸化物燃料を還元する場合に、還元時の溶融塩が塩化カリウムであり還元後の電解精製処理での溶融塩が塩化リチウム−塩化カリウム共晶塩であるので、還元処理から電解精製処理への移行時に洗浄が不要になり作業性が良くなると共に、還元工程と電解精製工程との間での廃棄物発生量を少なくすることができる。
【0019】
しかも、化学還元反応を利用して使用済酸化物燃料を還元する場合に比べると、使用済酸化物燃料の約5倍程度の体積の溶融塩で足りるようになるので、装置の小型化を図ることができる。また、化学還元反応を利用する場合より酸化リチウムの濃度が常に低いので、より多くの種類の酸化物を還元できる可能性がある。多くの種類の元素を還元できると共に酸化リチウム濃度が常に低いので、後段の電解精製工程に持ち込まれる酸素量が減少し、ここで発生する酸化物の処理の手間を軽減できる。また、塩化カリウムを使用してもカリウムの蒸気の発生は無く、これに起因する発火の虞が無い。
【0020】
一方、請求項記載の発明は、請求項1または2に記載の電解還元装置において、溶融塩には酸素供給源が添加されているようにしている。また、請求項4に記載の発明は、還元対象である酸化物を保持する陰極と、陽極と、酸化物および陽極が浸される溶融塩と、該溶融塩を収容する容器と、陰極および陽極に電流を通電して酸化物を還元する直流電源とを備える電解還元装置において、溶融塩は塩化リチウムであるようにしており、溶融塩には酸素供給源が添加されているようにしている。
【0021】
したがって、請求項3に記載の発明によると、酸化物から放出された酸素が酸素供給源によって陽極に移送される。このため、陽極と陰極との間で十分な電流が流れるようになるので、処理の高速化を実現することができる。また、陽極から発生する気体が酸素や二酸化炭素になるので、酸素供給源を用いずに陽極から腐食性のある塩素ガスが発生することを避けることができる。また、請求項4に記載の発明によると、塩化リチウムの融点は606℃である。このため、従来使用していた塩化カルシウムの融点(774℃)よりも低いので、従来の800℃〜1000℃よりも低い650℃程度の操業温度で電解還元を実現できるようになり、エネルギの消費量を低減できると共に容器材料の腐食を抑制することができる。また、酸化物として使用済酸化物燃料を還元する場合には、還元時の溶融塩が塩化リチウムであり還元後の電解精製処理での溶融塩が塩化リチウム−塩化カリウム共晶塩であるので、還元処理から電解精製処理への移行時に洗浄が不要になり作業性が良くなると共に、還元工程と電解精製工程との間での廃棄物発生量を少なくすることができる。しかも、化学還元反応を利用して使用済酸化物燃料を還元する場合に比べると、使用済酸化物燃料の約5倍程度の体積の溶融塩で足りるようになるので、装置の小型化を図ることができる。また、化学還元反応を利用する場合より酸化リチウムの濃度が常に低いので、より多くの種類の酸化物を還元できる可能性がある。多くの種類の元素を還元できると共に酸化リチウム濃度が常に低いので、後段の電解精製工程に持ち込まれる酸素量が減少し、ここで発生する酸化物の処理の手間を軽減できる。さらに、酸化物から放出された酸素が酸素供給源によって陽極に移送される。このため、陽極と陰極との間で十分な電流が流れるようになるので、処理の高速化を実現することができる。また、陽極から発生する気体が酸素や二酸化炭素になるので、酸素供給源を用いずに陽極から腐食性のある塩素ガスが発生することを避けることができる。請求項3及び請求項4における酸素供給源としては、酸化リチウムあるいは酸化カルシウムを使用することができる。
【0022】
【発明の実施の形態】
以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。図1に本発明の電解還元装置1の実施形態を示す。この電解還元装置1は、還元対象である酸化物2を保持する陰極3と、陽極4と、酸化物2および陽極4が浸される溶融塩5と、該溶融塩5を収容する容器6と、陰極3および陽極4に電流を通電して酸化物2を還元する直流電源7とを備えるものとしている。そして、溶融塩5は塩化リチウム−塩化カリウム共晶塩であるようにしている。このため、従来よりも低い操業温度で電解還元を実現できるようになるので、エネルギの消費量を低減できると共に容器6の腐食を抑制することができる。
【0023】
本実施形態では塩化リチウム−塩化カリウム共晶塩は、塩化リチウム:塩化カリウム=48モル%:52モル%であるようにしている。このため、融点が350℃になるので、操業温度を500℃程度にまで下げることができる。
【0024】
還元対象である酸化物2としては、原子力発電所の使用済酸化物燃料を用いている。すなわち、使用済酸化物燃料に含まれる酸化ウランやウラン分裂物の酸化物を還元するようにしている。このため、還元時の溶融塩5と還元後の電解精製処理での溶融塩とがいずれも塩化リチウム−塩化カリウム共晶塩であるので、還元処理から電解精製処理への移行時に洗浄が不要になり作業性が良くなると共に、還元工程と電解精製工程との間での廃棄物発生量を少なくすることができる。
【0025】
また、溶融塩5には酸素供給源が添加されている。このため、酸化物2から放出された酸素が酸素供給源によって陽極4に移送される。よって、陽極4と陰極3との間で十分な電流が流れるようになるので、高速処理を実現することができる。さらに、陽極4から発生する気体が酸素や二酸化炭素になるので、酸素供給源を用いずに陽極4から腐食性のある塩素ガスが発生することを避けることができる。酸素供給源としては酸化リチウムを使用している。
【0026】
この溶融塩5を入れる容器5はステンレス製とされている。そして、陰極3はステンレス製のバスケット8を有している。このバスケット8の内部に酸化物2が収容される。そして、バスケット8ごと溶融塩5に漬けられることにより、酸化物2が溶融塩5に漬けられる。陽極4は炭素製の本体9と白金製のリード10とを有している。
【0027】
上述した電解還元装置1により酸化物2を電解還元する手順を以下に説明する。
【0028】
塩化リチウム:塩化カリウム=48モル%:52モル%とした塩化リチウム−塩化カリウム共晶塩に0.1wt%の酸化リチウムが溶解した溶融塩5を容器6に入れて500℃で溶融させる。そして、陰極3のバスケット8に酸化物2を収容して溶融塩5に浸す。また、陽極4も溶融塩5に浸す。陽極4と陰極3に直流電源7を接続してXボルトの電圧を印加する。陽極4から酸素を発生する場合にはXは約2.5〜2.8、二酸化炭素を発生する場合にはXは約1.5〜1.8である。
【0029】
これにより、酸化物2中の酸素はイオンになって溶融塩5中を移行する。この移行は酸素供給源により促進される。酸素イオンは陽極4の本体9の表面で反応して二酸化炭素になる。この二酸化炭素は気泡11になって気相中に排出される。なお陽極4の本体9は消耗するので定期的に交換するようにする。
【0030】
酸化物2は還元されて最終的には金属になる。そして、この金属は、バスケット8の引き上げにより溶融塩5から取り出されて電解精製槽に輸送され、アクチニド元素を取り出して新たな金属製の核燃料の原料になる。
【0031】
上述したように本実施形態の電解還元装置1によれば、還元時の溶融塩5と還元後の電解精製処理での溶融塩とがいずれも塩化リチウム−塩化カリウム共晶塩であるので、還元処理から電解精製処理への移行時に洗浄が不要になり作業性が良くなると共に、還元工程と電解精製工程との間での廃棄物発生量を少なくすることができる。
【0032】
しかも、化学還元反応を利用して使用済酸化物燃料を還元する場合に比べると、使用済酸化物燃料の約5倍程度の体積の溶融塩で足りるようになるので、装置1の小型化を図ることができる。また、化学還元反応を利用する場合より酸化リチウムの濃度が常に低いので、より多くの種類の酸化物を還元できる可能性がある。多くの種類の元素を還元できると共に酸化リチウム濃度が常に低いので、後段の電解精製工程に持ち込まれる酸素量が減少し、ここで発生する酸化物の処理の手間を軽減できる。また、塩化カリウムを使用してもカリウムの蒸気の発生は無く、これに起因する発火の虞が無い。
【0033】
なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、本実施形態では、溶融塩5に酸素供給源として酸化リチウムを添加しているが、これには限られず酸化カルシウムなどの溶融塩5に可溶で安定な酸化物を使用することができる。また、本実施形態では溶融塩5に酸素供給源を添加しているが、これには限られず添加しなくても良い。この場合、陽極4からは塩素ガスが気相中に排出されるようになる。塩素ガスによる腐食を考慮する必要の無い場合には、酸素供給源の省略により作業工程を少なくできると共に処理コストを下げることができるようになる。
【0034】
また、本実施形態では溶融塩5として塩化リチウム−塩化カリウム共晶塩を使用しているが、これには限られず塩化リチウムのみを使用するようにしても良い。この場合、塩化リチウムの融点は606℃であるので、従来よりも低い650℃程度の操業温度で電解還元を実現できるようになり、エネルギの消費量を低減できると共に容器6の腐食を抑制することができる。あるいは溶融塩5として塩化カリウムのみを使用するようにしても良い。いずれの場合も酸化物2として使用済酸化物燃料を還元する場合に、還元時の溶融塩5の成分が還元後の電解精製処理での溶融塩の成分に含まれるものなので、還元処理から電解精製処理への移行時に洗浄が不要になり作業性が良くなると共に、還元工程と電解精製工程との間での廃棄物発生量を少なくすることができる。
【0035】
さらに、本実施形態では陽極4の本体9を炭素製にしているが、これには限られず白金製としても良い。この場合、陽極4からは酸素が発生するようになる。
【0036】
また、本実施形態では還元対象の酸化物として原子力発電所の使用済酸化物燃料を用いているが、これには限られず例えば鉱石などとしても良い。
【0037】
【発明の効果】
以上の説明より明らかなように、請求項1または2に記載の電解還元装置および請求項7または8に記載の電解還元方法によれば、従来の800℃〜1000℃よりも低い操業温度で電解還元を実現できるようになり、エネルギの消費量を低減できると共に容器材料の腐食を抑制することができる。
【0038】
また、酸化物として使用済酸化物燃料を還元する場合には、還元時の溶融塩の成分が還元後の電解精製処理での溶融塩の成分と同一または含まれるものなので、還元処理から電解精製処理への移行時に洗浄が不要になり作業性が良くなると共に、還元工程と電解精製工程との間での廃棄物発生量を少なくすることができる。
【0039】
しかも、化学還元反応を利用して使用済酸化物燃料を還元する場合に比べると、使用済酸化物燃料の約5倍程度の体積の溶融塩で足りるようになるので、装置の小型化および廃棄物発生量の低減を図ることができる。また、化学還元反応を利用する場合よりも多くの種類の元素を還元できると共に酸化リチウム濃度が常に低いので、後段の電解精製工程に持ち込まれる酸素量が減少し、ここで発生する酸化物の処理の手間を軽減できる。また、塩化カリウムを使用する場合でもカリウムの蒸気の発生は無く、これに起因する発火の虞が無い。
【0040】
一方、請求項3または4に記載の電解還元装置によれば、溶融塩には酸素供給源が添加されているので、陽極と陰極との間で十分な電流が流れるようになって、処理の高速化を実現することができる。また、陽極から発生する気体が酸素や二酸化炭素になるので、酸素供給源を用いずに陽極から腐食性のある塩素ガスが発生することを避けることができる。ここでの酸素供給源としては、酸化リチウムあるいは酸化カルシウムを使用することができる。
【図面の簡単な説明】
【図1】本発明の電解還元装置の一実施形態を示す概略図である。
【符号の説明】
1 電解還元装置
2 酸化物
3 陰極
4 陽極
5 溶融塩
6 容器
7 直流電源

Claims (8)

  1. 還元対象である酸化物を保持する陰極と、陽極と、前記酸化物および前記陽極が浸される溶融塩と、該溶融塩を収容する容器と、前記陰極および前記陽極に電流を通電して前記酸化物を還元する直流電源とを備える電解還元装置において、前記溶融塩は塩化リチウム−塩化カリウム共晶塩であることを特徴とする電解還元装置。
  2. 還元対象である酸化物を保持する陰極と、陽極と、前記酸化物および前記陽極が浸される溶融塩と、該溶融塩を収容する容器と、前記陰極および前記陽極に電流を通電して前記酸化物を還元する直流電源とを備える電解還元装置において、前記溶融塩は塩化カリウムであることを特徴とする電解還元装置。
  3. 前記溶融塩には酸素供給源が添加されていることを特徴とする請求項1または2に記載の電解還元装置。
  4. 還元対象である酸化物を保持する陰極と、陽極と、前記酸化物および前記陽極が浸される溶融塩と、該溶融塩を収容する容器と、前記陰極および前記陽極に電流を通電して前記酸化物を還元する直流電源とを備える電解還元装置において、前記溶融塩は塩化リチウムであり、前記溶融塩には酸素供給源が添加されていることを特徴とする電解還元装置。
  5. 前記酸素供給源は酸化リチウムであることを特徴とする請求項3または4記載の電解還元装置。
  6. 前記酸素供給源は酸化カルシウムであることを特徴とする請求項3または4記載の電解還元装置。
  7. 陰極に保持される還元対象である酸化物と陽極とを溶融塩に浸し、前記陰極および前記陽極に電流を通電して前記酸化物を還元する電解還元方法において、前記溶融塩は塩化リチウム−塩化カリウム共晶塩であることを特徴とする電解還元方法。
  8. 陰極に保持される還元対象である酸化物と陽極とを溶融塩に浸し、前記陰極および前記陽極に電流を通電して前記酸化物を還元する電解還元方法において、前記溶融塩は塩化カリウムであることを特徴とする電解還元方法。
JP2001366421A 2001-11-30 2001-11-30 電解還元装置および方法 Expired - Fee Related JP4089944B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001366421A JP4089944B2 (ja) 2001-11-30 2001-11-30 電解還元装置および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001366421A JP4089944B2 (ja) 2001-11-30 2001-11-30 電解還元装置および方法

Publications (2)

Publication Number Publication Date
JP2003166094A JP2003166094A (ja) 2003-06-13
JP4089944B2 true JP4089944B2 (ja) 2008-05-28

Family

ID=19176320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001366421A Expired - Fee Related JP4089944B2 (ja) 2001-11-30 2001-11-30 電解還元装置および方法

Country Status (1)

Country Link
JP (1) JP4089944B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103514968A (zh) * 2012-06-15 2014-01-15 株式会社东芝 核燃料物质的回收方法
KR101397935B1 (ko) 2012-11-29 2014-05-23 한국수력원자력 주식회사 다중회로를 구비하는 전해환원장치 및 이의 구동방법
RU2776895C1 (ru) * 2021-11-29 2022-07-28 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ электролитического рафинирования металлического ядерного топлива

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPS117002A0 (en) * 2002-03-13 2002-04-18 Bhp Billiton Innovation Pty Ltd Minimising carbon transfer in an electrolytic cell
JP4802323B2 (ja) * 2005-09-22 2011-10-26 国立大学法人京都大学 溶融塩中における酸素発生装置および酸素発生方法
US9562296B2 (en) * 2010-11-02 2017-02-07 I'msep Co., Ltd. Production method for silicon nanoparticles
US8900439B2 (en) 2010-12-23 2014-12-02 Ge-Hitachi Nuclear Energy Americas Llc Modular cathode assemblies and methods of using the same for electrochemical reduction
JP5787580B2 (ja) * 2011-04-06 2015-09-30 株式会社東芝 電解還元装置
JP5823902B2 (ja) * 2012-03-28 2015-11-25 日立Geニュークリア・エナジー株式会社 原子力発電プラントの使用済み燃料輸送方法
US8968547B2 (en) * 2012-04-23 2015-03-03 Ge-Hitachi Nuclear Energy Americas Llc Method for corium and used nuclear fuel stabilization processing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103514968A (zh) * 2012-06-15 2014-01-15 株式会社东芝 核燃料物质的回收方法
CN103514968B (zh) * 2012-06-15 2016-08-10 株式会社东芝 核燃料物质的回收方法
US9845542B2 (en) 2012-06-15 2017-12-19 Kabushiki Kaisha Toshiba Method of recovering nuclear fuel material
US10323330B2 (en) 2012-06-15 2019-06-18 Kabushiki Kaisha Toshiba Method of recovering nuclear fuel material
KR101397935B1 (ko) 2012-11-29 2014-05-23 한국수력원자력 주식회사 다중회로를 구비하는 전해환원장치 및 이의 구동방법
RU2776895C1 (ru) * 2021-11-29 2022-07-28 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ электролитического рафинирования металлического ядерного топлива

Also Published As

Publication number Publication date
JP2003166094A (ja) 2003-06-13

Similar Documents

Publication Publication Date Title
US7879219B2 (en) Electrochemical processing of solid materials in fused salt
JP2008531854A (ja) 化合物又は金属から酸素を除去するための方法及び装置
JP4089944B2 (ja) 電解還元装置および方法
JP2008134096A (ja) 使用済み酸化物原子燃料の還元装置及びリチウム再生電解装置
JP3718691B2 (ja) チタンの製造方法、純金属の製造方法、及び純金属の製造装置
US20050139474A1 (en) Electrochemical cell for metal production
JP2012136766A (ja) 電気分解による金属の製造方法
CN113603059A (zh) 一种熔盐及熔盐的电化学净化方法、电化学装置
JP2002198104A (ja) 水素吸蔵合金のリサイクル方法
KR20200008307A (ko) 금속산화물의 전해환원장치 및 이를 이용한 금속산화물의 전해환원방법
AU2004225794B8 (en) Process for the electrolysis of aluminiumsulfide
US6221234B1 (en) Method for pickling products of a metal alloy in absence of nitric acid and for recovering exhausted pickling solutions and apparatus therefore
JP4679070B2 (ja) 使用済み酸化物燃料の再処理方法
KR20220134575A (ko) 고체 야금 폐기물로부터 금속 아연을 회수하는 방법
JP2005213638A (ja) 電気分解方法とこれを利用したリチウム再生電解方法及び使用済酸化物原子燃料の還元方法
JP2009133671A (ja) 使用済燃料の再処理方法
US6866766B2 (en) Methods and apparatus for reducing sulfur impurities and improving current efficiencies of inert anode aluminum production cells
JP2006063359A (ja) 金属の製造方法および装置
WO2003063178A1 (fr) Procede de reduction electrolytique
WO2004013380A1 (en) Methods and apparatus for reducing sulfur impurities and improving current efficiencies of inert anode aluminum production cells
JP2003147566A (ja) スクラップからの有価金属の回収方法及び装置
RU2299931C2 (ru) Способ и устройство для снижения содержания сернистых примесей и улучшения кпд тока электролизера с инертным анодом для производства алюминия
KR20200008308A (ko) 순환 반응을 이용한 방사성 금속 산화물의 환원 장치 및 방법
JPH09281279A (ja) 使用済核燃料の再処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees