JP4086938B2 - 超音波計測装置 - Google Patents

超音波計測装置 Download PDF

Info

Publication number
JP4086938B2
JP4086938B2 JP27665697A JP27665697A JP4086938B2 JP 4086938 B2 JP4086938 B2 JP 4086938B2 JP 27665697 A JP27665697 A JP 27665697A JP 27665697 A JP27665697 A JP 27665697A JP 4086938 B2 JP4086938 B2 JP 4086938B2
Authority
JP
Japan
Prior art keywords
ultrasonic
measurement
ultrasonic wave
transmission
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27665697A
Other languages
English (en)
Other versions
JPH11101632A (ja
Inventor
誠 落合
政彦 大槻
隆 仏円
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP27665697A priority Critical patent/JP4086938B2/ja
Publication of JPH11101632A publication Critical patent/JPH11101632A/ja
Application granted granted Critical
Publication of JP4086938B2 publication Critical patent/JP4086938B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波を用いて、計測対象の媒質の厚さ、深さ方向の相変化の境界位置、深さ方向の組成状態を計測する超音波計測装置に関する。
【0002】
【従来の技術】
一般に、計測対象の深さ方向の情報を計測する計測手法としては、図15に示すような超音波エコー法が知られている。この超音波エコー法では、以下のようにして計測対象の深さ方向の情報が計測される。簡単のためここでは計測対象1が固体である場合について説明する。
【0003】
まず、計測対象1に対してカプラント2を介して超音波探触子3を接触させる。この状態で送信器4から電気信号を超音波探触子3に印加し、超音波探触子3から計測対象1中に超音波5を送信する。送信された超音波5は計測対象1中を伝播し、裏面で反射されて再び超音波探触子3の近傍に反射してくる。この反射波は超音波探触子3で受信され、送信の逆作用によって電気信号に変換されて信号検出器6に入力される。信号検出器6には送信器4からの送信信号も入力されており、信号検出器6における送信信号の受信時刻と受信信号の受信時刻との時間差Δt、つまり計測対象1中を超音波5が伝播した時間が計測される。
【0004】
ここで、信号検出器6には予め計測対象1中を伝わる超音波の伝播速度vsが入力されており、計測した時間差Δtと超音波の伝播速度vsとから、計測対象1の厚さdが(1)式の関係から算出される。
【0005】
d=vs・Δt/2 …(1)
図15の例では、計測対象1は一様な固相であることを仮定したが、計測対象1の一部が融解し液相7を呈している場合には、図16に示すように、固相8と液相7との境界領域で発生する反射波9と、液相表面すなわち計測対象1の裏面で発生する反射波10との双方について計測することになる。
【0006】
一方、非接触の超音波送信手法としては、例えばレーザー光を用いた技術がある。これは短パルス高エネルギーのレーザー光をある制御対象1に照射すると、照射点付近にレーザーエネルギーの吸収による熱応力あるいは気化(アブレーション)圧縮力が発生し、その作用による歪みが超音波となって対象中を伝播するという手法である。この手法はJ.D.Aussel("Generation Acoustic Waves by Laser: Theoretical and Experimental Study of the Emission Source," Ultrasonics, vol.24(1988), 246-255)らによって理論的かつ実験的に明らかにされている。
【0007】
また、レーザー光によって発生した超音波の伝播方向(指向性)を制御する手法としては、例えば光ファイバーを用いる方法がJ.Jarzynski("The Use of Optical Fibers to Enhance the Laser Generation of Ultrasonic Waves," Journal of the Acoustical Society of America, Vol.85(1989), 158-162)らによって、またブラッグ回折を用いる方法がR.F.Ing("Focusing and Beamsteering of Laser Generated Ultrasound," IEEE-1989 Ultrasonics Symposium, 539-544)らによって明らかにされている。
【0008】
また、非接触の超音波受信手段としても、例えばレーザー光を用いた技術がある。これは超音波が計測対象のある面に到達すると発生する微小振動を、レーザー光の進行方向の変化(偏向)や反射光の位相差、周波数遷移量などから計測するものであり、例えば山脇("レーザ超音波と非接触材料評価," 溶接学会誌, 第64巻(1995), 104-108)によって解説されている。また、計測対象1内部の組成状態、例えば、固体試料中の粒界寸法の分布状況などは、現在では試料を破壊し、その断面をエッチング処理して顕微観察している。
【0009】
【発明が解決しようとする課題】
ところが、上記の超音波探触子3を用いた計測手法は、簡便な深さ方向の情報計測手段であり通常の計測対象に対しては有効であるが、超音波探触子3を設置する際にはカプラントの塗布が必要であり、これは作業工程の増加につながる。また、計測対象1が小型であったり狭隘部にある場合には、超音波探触子3を設置することが困難である。
【0010】
さらに、計測対象1が溶接中の金属など高温の場合には、カプラント2の蒸発や超音波探触子3の温度による損傷を防止する特殊な機構が必要となる上、媒質の温度あるいは温度勾配によって超音波の伝播速度が変化し、正確な測定が困難になる。また、上記の破壊法による計測対象1内部の組成状態計測手法は、手法上、使用中の機器に対しては実施することができない。
【0011】
本発明の目的は、計測対象が小型であったり狭隘部にある場合や溶接中の金属など高温の場合であっても、計測対象の厚さ、相変化の位置、組成変化の状態を精度良く計測できる超音波計測装置を提供することである。
【0028】
【課題を解決するための手段】
請求項1の発明に係わる超音波計測装置は、片面が固相から成り、裏面の少なくとも一部が液相から成る板状の計測対象のある部分に非接触でレーザー光を用いて超音波を励起する超音波送信手段と、前記計測対象中を伝播した前記超音波が伝播経路上の固相と液相の界面で反射または散乱または回折または透過された第1の超音波および前記液相の裏面表面で反射または散乱または回折または透過された第2の超音波を非接触で検出する超音波受信手段と、前記超音波送信手段で前記超音波を送信した送信時刻と前記第1および第2の超音波を受信した受信時刻との時間差から前記超音波の伝播時間を測定する伝播時間計測手段と、前記計測対象の前記片面および前記液相の裏面表面の温度を測定する温度測定手段と、前記温度測定手段で測定した温度前記伝播時間計測手段で計測した伝播時間と計測対象の厚さデータとから前記計測対象内部の前記超音波の伝播経路に沿った温度分布状態を推定する温度分布推定手段とを具備し、前記温度分布状態に基づいて固相と液相の界面の位置を計測するものである。
【0029】
請求項の発明に係わる超音波計測装置では、計測対象のある部分に非接触で超音波送信手段から超音波を励起し、計測対象中を伝播した超音波が伝播経路上の音響特性変化領域で反射または散乱または回折または透過された超音波を非接触で超音波受信手段により検出する。伝播時間計測手段では、超音波送信手段で超音波を送信した送信時刻と超音波受信手段が反射波を受信した受信時刻との時間差から超音波の伝播時間を測定し、温度分布推定手段では、温度測定手段で測定した計測対象の温度または温度分布と伝播時間計測手段で計測した伝播時間とから計測対象内部の超音波の伝播経路に沿った温度分布状態を推定する。
【0030】
請求項の発明に係わる超音波計測装置は、請求項に記載の超音波計測装置において、計測対象に対して超音波送信手段で超音波を励起する位置または超音波の進行方向を任意に駆動するための送信位置走査手段と、計測対象中を伝播した超音波の超音波受信手段によるその検出位置を任意に駆動するための受信位置走査手段と、送信位置走査手段と受信位置走査手段とからその位置情報を入力され各々の位置関係における温度分布推定手段の出力情報を位置情報と対応づけて記録する記録手段と、記録手段に記録された情報を数表またはグラフまたは画像として表示する表示手段とを具備したものである。
【0031】
請求項の発明に係わる超音波計測装置では、請求項に記載の超音波計測装置の作用に加え、送信位置走査手段は、計測対象に対して超音波送信手段で超音波を励起する位置または超音波の進行方向を任意に駆動し、受信位置走査手段は、計測対象中を伝播した超音波の超音波受信手段によるその検出位置を任意に駆動する。記録手段は、送信位置走査手段と受信位置走査手段とからその位置情報を入力し各々の位置関係における温度分布推定手段の出力情報を位置情報と対応づけて記録する。また、表示手段は、記録手段に記録された情報を数表またはグラフまたは画像として表示する。
【0032】
請求項の発明に係わる超音波計測装置は、請求項に記載の超音波計測装置において、計測対象の超音波送信手段および超音波受信手段に対する位置を駆動するための計測対象位置走査手段と、計測対象位置走査手段からその位置情報を入力され各々の位置関係における温度分布推定手段の出力情報を位置情報と対応づけて記録する記録手段と、記録手段に記録された情報を数表またはグラフまたは画像として表示する表示手段とを具備したものである。
【0033】
請求項の発明に係わる超音波計測装置では、請求項に記載の超音波計測装置の作用に加え、計測対象位置走査手段は、計測対象の超音波送信手段および超音波受信手段に対する位置を駆動し、記録手段は、計測対象位置走査手段からその位置情報を入力し各々の位置関係における温度分布推定手段の出力情報を位置情報と対応づけて記録する。また、表示手段は、記録手段に記録された情報を数表またはグラフまたは画像として表示する。
【0036】
請求項の発明に係わる超音波計測装置は、請求項1乃至請求項に記載の超音波計測装置において、超音波送信手段は、時間的に間欠的または変調波的なレーザー光であって、計測対象表面に熱歪みまたはアブレーションを発生させるのに必要かつ十分なエネルギー密度まで空間的に点状または円状または楕円状または線状または同心円状または点線状または格子状に集光されたレーザー光を用いるようにしたものである。
【0037】
請求項の発明に係わる超音波計測装置では、請求項1乃至請求項に記載の超音波計測装置の作用に加え、超音波送信手段からは、時間的に間欠的または変調波的なレーザー光が送信される。また、このレーザー光は、計測対象表面に熱歪みまたはアブレーションを発生させるのに必要かつ十分なエネルギー密度を有し、空間的に点状または円状または楕円状または線状または同心円状または点線状または格子状に集光されて照射される。
【0038】
請求項の発明に係わる超音波計測装置は、請求項に記載の超音波計測装置において、超音波送信手段として使われるレーザー光は、光ファイバーによって光源から計測対象上の照射位置近傍まで導かれるようにしたものである。
【0039】
請求項の発明に係わる超音波計測装置では、請求項に記載の超音波計測装置の作用に加え、超音波送信手段からのレーザー光は、光ファイバーによって光源から計測対象上の照射位置近傍まで導かれる。
【0040】
請求項の発明に係わる超音波計測装置は、請求項1乃至請求項に記載の超音波計測装置において、超音波受信手段における超音波の検出は、レーザー光の干渉現象または偏向現象を用いるようにしたものである。
【0041】
請求項の発明に係わる超音波計測装置では、請求項1乃至請求項に記載の超音波計測装置の作用に加え、超音波受信手段は、レーザー光の干渉現象または偏向現象を用いて超音波の検出を行う。
【0042】
請求項の発明に係わる超音波計測装置は、請求項に記載の超音波計測装置において、超音波受信手段として使われるレーザー光は、光ファイバーによって光源から計測対象上の検出照射位置近傍まで導かれ、かつその反射光が同一または別の光ファイバーによって干渉機構または偏向検知機構まで導かれるようにしたものである。
【0043】
請求項の発明に係わる超音波計測装置では、請求項に記載の超音波計測装置の作用に加え、超音波受信手段で使われるレーザー光は、光ファイバーによって光源から計測対象上の検出照射位置近傍まで導かれ、かつその反射光が同一または別の光ファイバーによって干渉機構または偏向検知機構まで導かれる。
【0044】
請求項の発明に係わる超音波計測装置は、請求項乃至請求項に記載の超音波計測装置において、超音波送信手段のレーザー光による超音波送信点と、超音波受信手段のレーザー光による超音波受信点との間に遮蔽板を設けたものである。
【0045】
請求項の発明に係わる超音波計測装置では、請求項乃至請求項に記載の超音波計測装置の作用に加え、遮蔽板により計測対象の表面で発生する反射光や散乱光による外乱を防止できる。
【0046】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。図1は本発明の第1の実施の形態に係わる超音波計測装置の構成図である。
【0047】
第1の実施の形態に係わる超音波計測装置は、計測対象1のある面に非接触で超音波5を励起する超音波送信手段11と、計測対象1中を伝播した超音波5が伝播経路上の音響特性変化領域で反射されて発生する反射波9、10を非接触で検出する超音波受信手段12と、超音波送信手段11で超音波5を送信した送信時刻t0と、超音波受信手段12が反射波9および10を受信した受信時刻trの差から超音波5の伝播時間Δtを測定する伝播時間計測手段13と、計測対象1の超音波励起面またはその裏面の温度、あるいはその両方の温度を測定する温度測定手段14と、温度測定手段14で測定した温度Tから測定対象1中の超音波の伝播速度vs(T)を校正する速度校正手段15と、伝播時間計測手段13で計測した伝播時間Δtと速度校正手段15で求められる伝播速度vs(T)から超音波5の伝播経路長out1を算出する伝播経路長測定手段16とから構成されている。
【0048】
図1において、計測対象1に対して超音波送信手段11から非接触で、しかも計測対象1の深さ方向に指向性を持って超音波5は送信される。送信された超音波5は計測対象1中を伝播し、計測対象1中の固相8と液相7との境界領域、および液相表面すなわち計測対象1の裏面で反射され、各々の位置から反射波9および反射波10が発生する。これらの反射波9、10は、超音波検出手段12によって非接触で検出される。
【0049】
ここで、超音波送信手段11からは、時間的に間欠的または変調波的に照射されるレーザー光が出力される。そして、計測対象1の表面に熱歪みまたはアブレーションを発生させるのに必要かつ十分なエネルギー密度まで、空間的に点状または円状または楕円状または線状または同心円状または点線状または格子状に集光されたレーザー光が出力される。また、超音波受信手段12における超音波の検出には、レーザー光の干渉現象を用いたり、レーザー光の偏向現象を用いて行う。
【0050】
非接触の超音波送信手段11および超音波受信手段12にレーザー光を用いた場合の検出波形の1例を図2に示す。図2において、時刻t0は送信用レーザー光の発振時刻、時刻tr9は固相8と液相7との境界から反射されてきた超音波9の受信時刻、時刻tr10は計測対象裏面から反射されてきた超音波10の受信時刻である。
【0051】
超音波送受信がレーザー光を用いて行われた場合、光の伝播速度は超音波の伝播速度に比べて極めて早いことから、超音波送信手段11内でレーザー光が発振した時刻t0がすなわち超音波5が計測対象1表面に励起された時刻、超音波受信手段12内のレーザー干渉計またはレーザー偏向計が超音波を検出した時刻trがすなわち反射波9および10が計測対象1の表面に到達した時刻と扱うことができる。
【0052】
伝播時間計測手段13では時刻t0と時刻tr9および時刻tr10の時間差Δt9および時刻Δt10が計測される。ここで、固相8を伝わる超音波の伝播速度vsおよび液相7伝播速度vLが既知であれば、(1)式の関係を用いて計測対象1中の固相8の厚さdsおよび液相7の厚さdLを各々求めることができる。ここで、伝播時間計測手段13は、予め用意した反射された基本超音波波形を各々の反射波9、10に関して発生時刻の特定が可能な任意の信号波形に変換する信号変換機能と、この信号変換機能によって超音波受信手段12の受信信号が反射波の数だけの発生時刻の特定が可能な任意の信号波形に変換された変換信号から各々の反射波の受信時刻を測定する受信時刻測定機能と、送信時刻t0と受信時刻tr9、tr10との時間差を検出する時間差検出機能とを備えている。これらの機能により伝播時間を求める。
【0053】
次に、媒質中の超音波の速度は、その媒質の温度に依存することが知られている。1例としてアームコ鉄中の超音波の伝播速度の温度依存性を示したグラフを図3に示す。図3に示した通り、超音波の音速vsおよび音速vLは媒質の温度によって大きく変わり、これを考慮しないと厚み測定上の誤差となって測定精度が劣化する。そこで計測対象1の表面および裏面の温度を温度測定手段14で測定し、予め図3のごとく求めておいた温度―伝播速度の関係から伝播速度を校正することで、厚み測定精度を向上させる。
【0054】
なお、超音波送信手段11による超音波の送信位置peと、超音波受信手段12による超音波の受信位置prとの間の距離Lが、計測対象1の厚さdに比べて十分小さい場合には、厚さdは音速の温度依存性を考慮した(1)式で求められるが、Lがdに比べて無視できない場合には、図4に示す通り、下記の(2)式によって厚さdを求める。
【0055】
【数1】
Figure 0004086938
【0056】
このような場合には、超音波送信手段11内において、従来の技術で述べたように光ファイバーやブラッグ回折効果を用いて送信する超音波5に所望の角度θの伝播指向性を付け、また超音波受信手段12内に検出できる超音波レベルが最大となる計測地点を探索する機能を設けると、より信号検出が簡単になる。
【0057】
また、図5に示すように、液相7と固相8など相変化がない場合(単純な計測対象1の厚さを計測する場合)には、超音波送信手段11と超音波受信手段12とを互いに逆面に配置し、透過超音波5を計測することになる。
【0058】
以上述べたように、第1の実施の形態によれば、レーザー光などを用いた非接触の超音波送信手段11および超音波受信手段12を設け、作業工程の短縮と計測媒質の寸法や配置に依らない計測を可能とするとともに、温度測定手段14からの媒質の温度または温度分布情報から速度校正手段15で媒質中の超音波の伝播速度を校正し、測定値の精度を向上させることが可能となる。
【0059】
ここで、以上の説明では、計測対象1中を伝播した超音波5または液相7や液相と固相8との相変化の境界箇所で反射した反射波9、10を非接触で検出しそれらの厚さを検出するようにしているが、計測対象1中を伝播した超音波が伝播経路上の音響特性変化領域で反射されて発生する反射波を非接触で検出し、計測対象1の厚さ(音響特性変化領域)を検出するようにしても良い。
【0060】
すなわち、溶接中あるいは溶接後の金属では、溶解に伴う金属結晶粒の大きさの変化などが発生し、音響インピーダンスなど音響特性が変化することが知られているので、このような音響特性変化領域を非接触で検出しそれらの厚さを検出する。この場合も、第1の実施の形態と同様の効果が得られる。
【0061】
次に、本発明の第2の実施の形態を説明する。図6は本発明の第2の実施の形態に係わる超音波計測装置の構成図である。この第2の実施の形態は、図1に示した第1の実施の形態に対し、計測対象1に対する超音波送信手段11で超音波5を励起する深さ方向を含まない2次元的な位置または超音波5の進行方向を任意に駆動するための送信位置走査手段17と、計測対象1中を伝播した超音波5または反射波9、10の超音波受信手段12によるその深さ方向を含まない2次元的な検出位置を任意に駆動するための受信位置走査手段18と、送信位置走査手段17と受信位置走査手段18とからその位置情報out2を入力され各々の位置関係における伝播経路長測定手段16の出力信号out1を位置情報out2と対応づけて記録する記録手段19と、記録手段19に記録された情報を数表またはグラフまたは画像として表示する表示手段20とを追加して設けたものである。これにより、液相7の分布形状を測定する。
【0062】
また、送信位置走査手段17および受信位置走査手段18における超音波の送信位置および受信位置は固定のまま、計測対象1をその深さ方向を含まない2次元的に走査する機構、すなわち計測対象位置走査手段を設けることでも、同様に液相7の分布形状を測定できる。
【0063】
図6において、送信位置走査手段17を設け超音波送信手段11による超音波5の送信位置peを任意に決定可能とし、受信位置走査手段18を設け超音波受信送信手段12による超音波5の受信位置prを任意に決定可能としている。これにより、各々の位置における厚さ情報dsおよびdLを求める。従って、固相8と液相7との境界位置の2次元的な分布、あるいは固相8および液相7の各々の3次元的な形状を計測することが可能となる。これにより、液相7や固相8の厚さが一様でない場合に、その液相7や固相8の厚さの分布形状の計測が可能となる。
【0064】
以上述べたように、第2の実施の形態によれば、非接触の超音波送信手段11および超音波受信手段12を用い、また送信位置走査手段17および受信位置走査手段18を用いることで、計測対象1の媒質に対する相対的な超音波の送信位置あるいは送信方向、超音波の受信位置、その両方を2次元的に走査するので、媒質あるいは相変化領域の形状を3次元的に再構成できる。
【0065】
次に、本発明の第3の実施の形態を説明する。図7は本発明の第3の実施の形態に係わる超音波計測装置の構成図である。この第3の実施の形態は、超音波の伝播経路上の音響特性変化領域21の状態、例えば、溶解や熱影響の発生部位の厚さ、その程度を計測できるようにしたものである。
【0066】
第3の実施の形態に係わる超音波計測装置は、計測対象1のある面に非接触で超音波5を励起する超音波送信手段11と、計測対象1中を伝播した超音波5および超音波5が伝播経路上の音響特性変化領域21で反射、散乱、回折、透過した超音波22、23を非接触で検出する超音波受信手段12と、計測対象1の温度を測定する温度測定手段14と、温度測定手段14で測定した温度Tから測定対象1中の超音波の伝播速度vs(T)を校正する速度校正手段15と、超音波受信手段12で受信した信号を速度校正手段15で求められる伝播速度を考慮して予めデータベース24に用意したリファレンス信号と比較する信号波形評価手段25と、信号波形評価手段25の評価結果から超音波の伝播経路の状態out3を診断する伝播経路診断手段26とから構成される。これにより、伝播経路上の音響特性変化領域21の状態を計測する。
【0067】
図7において、計測対象1に対して超音波送信手段11から非接触で、しかも計測対象1の深さ方向に指向性を持って超音波が送信される。送信された超音波5は計測対象1中を伝播し、計測対象1中の音響特性変化領域21に到達する。例えば、溶接中あるいは溶接後の金属では、溶解に伴う金属結晶粒の大きさの変化などが発生し、音響インピーダンスなど音響特性が変化することが知られている。この領域における超音波5の振舞いは以下のようになる。
【0068】
すなわち、溶接前金属のように、結晶粒のスケールが超音波5の波長に比べ十分小さい(音響特性に変化がない)場合には、超音波5と結晶粒は相互作用せず、超音波5は直進透過する。一方、結晶粒のスケールが超音波5の波長に比べ無視できない(音響特性に変化がある)場合には、超音波5と結晶粒は相互作用し、超音波5の反射、散乱、回折などの現象が生じる。前者の場合、送信した超音波はほぼその波形形状をとどめたまま伝播し、検出されるのに対し、後者の場合には伝播経路各点の粒界面における微小反射、金属粒界による小角度散乱や回折などにより、送信超音波はその伝播経路上でレベルの減衰、パルス幅の増加、位相の遅れ、周波数スペクトルのブロード化、伝播時間の増加などの影響を受け、異なる波形形状で検出される。
【0069】
これらの超音波22、23は、超音波検出手段12によって非接触で時系列信号の変化として検出される。また、試料の表面および裏面の温度を温度測定手段14で測定し、その伝播速度を校正した計測波形は信号波形評価手段25に入力される。信号波形評価手段25では、測定波形と予め記録されている波形データ(リファレンス信号)とが比較され、溶解または熱影響の発生部位の厚さやその程度に関する情報として伝播経路診断手段26から出力される。
【0070】
ここで、音響特性変化領域21を通過していない波形データは予めデータベース24に記録されている。この波形データは、例えば、溶接前の同じ試料に対して同じ装置で予め測定を行って採取しておくことも可能であるし、また溶接中あるいは溶接後に、溶接による熱影響や溶解が発生しない部分で同じあるいは別の装置を用いて採取してもよい。または送信波形そのものを何らかの手法で波形データとして記録しておいてもよい。つまり、データベース24には、信号のレベル、周波数スペクトル、位相、パルス幅、伝播時間、減衰率、あるいはそれら物理量の複数個の組み合わせのリファレンス信号が記憶されている。
【0071】
以上述べたように、第3の実施の形態によれば、ある媒質の深さ方向の組成状態を、その領域を伝播した超音波の時系列信号の変化から計測することで、非破壊で媒質内部の組成状態を評価できる。
【0072】
次に、本発明の第4の実施の形態を説明する。図8は本発明の第4の実施の形態に係わる超音波計測装置の構成図である。この第4の実施の形態は、図7に示した第3の実施の形態に対し、音響特性変化領域21の分布形状を測定するようにしたものである。
【0073】
すなわち、計測対象1に対する超音波送信手段11で超音波5を励起する深さ方向を含まない2次元的な位置または超音波5の進行方向を任意に駆動するための送信位置走査手段17と、計測対象1中を伝播した超音波5、22、23の超音波受信手段12によるその深さ方向を含まない2次元的な検出位置を任意に駆動するための受信位置走査手段18と、送信位置走査手段17と受信位置走査手段18からその位置情報out2を入力され各々の位置関係における伝播経路診断手段26の出力信号out3を位置情報out2と対応づけて記録する記録手段19と、記録手段19に記録された情報を数表またはグラフまたは画像として表示する表示手段20とを追加して設けたものである。これにより、音響特性変化領域21の分布形状を測定する。つまり、音響特性変化領域21の厚さが一様でない場合に、その音響特性変化領域21の厚さの分布形状の計測が可能となる。
【0074】
また、送信位置走査手段17および受信位置走査手段18における超音波の送信位置および受信位置は固定のまま、計測対象1をその深さ方向を含まない2次元的に走査する計測対象位置走査手段を設けることでも、同様に音響特性変化領域21の分布形状を測定できる。
【0075】
図8において、送信位置走査手段17を設け超音波送信手段11による超音波5の送信位置peを任意に決定可能とし、受信位置走査手段18を設け超音波受信送信手段12による超音波5の受信位置prを任意に決定可能としている。これにより、各々の位置における伝播経路の情報を求める。従って、音響特性変化領域21の2次元的な分布、あるいは3次元的な形状を計測することが可能となり、音響特性変化領域21の厚さが一様でない場合に、その音響特性変化領域21の厚さの分布形状の計測が可能となる。
【0076】
以上述べたように、第4の実施の形態によれば、非接触の超音波送信手段11および超音波受信手段12を用い、また送信位置走査手段17および受信位置走査手段18を用いることで、計測対象1の媒質に対する相対的な超音波の送信位置あるいは送信方向、超音波の受信位置、その両方を2次元的に走査するので、媒質内部の組成状態を3次元的に再構成できる。
【0077】
次に、本発明の第5の実施の形態を説明する。図9は本発明の第9の実施の形態に係わる超音波計測装置の説明図である。この第5の実施の形態は、計測対象1中の相変化7(あるいは音響特性変化領域21)に関する厚さ方向の情報をその温度分布から計測するようにしたものである。
【0078】
図9において、計測対象1のある面に非接触で超音波5を励起する超音波送信手段11と、計測対象1中を伝播した超音波5が伝播経路上の液相7(あるいは音響特性変化領域21)で反射された超音波9、10、または散乱、回折、透過された超音波22、23を非接触で検出する超音波受信手段12と、超音波送信手段11で超音波5を送信した送信時刻t0と超音波受信手段12が反射波9、10(あるいは超音波22、23)を受信した受信時刻trとの時間差から超音波の伝播時間Δtを測定する伝播時間計測手段13と、計測対象1の温度を測定する温度測定手段14と、温度測定手段14で測定した温度と伝播時間計測手段13で計測した伝播時間Δtと予めデータベース27に用意した計測対象1の厚さデータとから計測対象1内部の超音波5の伝播経路に沿った温度分布状態out4を推定する温度分布推定手段28とから構成される。これにより、計測対象1中の相変化7(あるいは音響特性変化領域21)に関する厚さ方向の情報を、その温度分布から計測する。
【0079】
計測対象1のある面に超音波送信手段11によって非接触で超音波5を励起すると、超音波5は計測対象1中を伝播し、伝播経路上の液相7(あるいは音響特性変化領域21)で反射(または散乱、回折、透過)される。ここでは簡単のため、伝播経路上に液相7が存在するとする。反射された超音波9、10は、超音波受信手段12によって非接触で検出される。
【0080】
ここで、伝播時間計測手段13において、超音波送信手段11で超音波5を送信した送信時刻t0と、超音波受信手段12が反射波9、10を受信した受信時刻trの差から、超音波の伝播時間Δtが測定される。一方、計測対象1の表面および裏面の温度は温度測定手段14によって計測される。
【0081】
すなわち、伝播時間計測手段13は、予め用意した反射または散乱または回折または透過された基本超音波波形を各々の反射波に関して発生時刻の特定が可能な任意の信号波形に変換する信号変換機能と、超音波受信手段の受信信号が信号変換機能によって超音波受信手段12からの受信信号に含まれる反射または散乱または回折または透過された超音波の数だけの発生時刻の特定が可能な任意の信号波形に、信号変換機能によって変換された変換信号から各々の反射波の受信時刻を測定する受信時刻測定機能と、送信時刻t0と受信時刻tr9、tr10(tr22、tr23)との時間差を検出する時間差検出機能とを備えている。
【0082】
いま、図10(a)に示すように、固相8の厚さをds、液相7の厚さをdLとし、超音波の励起検出面の温度をTs、裏面の温度をTr、固相8と液相7の境界面の温度をTbとする。ここで、温度Tsと温度Trは温度測定手段14によって測定される量であり、温度Tbは計測対象1の融点であるから、計測対象の物性値として既知である。従って、この3個所の温度と計測対象1の固相8と液相7における熱伝導率がわかれば、図10(b)に示すように、測定すべき量ds、dLを未知数として超音波5の伝播経路に沿った温度分布を仮定することができる。
【0083】
ここで、計測対象1の厚さdを予め測定しておき、液相7の発生による膨張が、dに比べて十分小さいとすると、厚さdは下記(3)式で示される。そこで、計測対象1の厚さdを予めデータベース27に用意しておけば未知数をdsまたはdLのどちらかいずれか1つに減らすことができる。
【0084】
d=ds+dL …(3)
次に、未知数dsまたはdLのいずれかが含まれる温度分布T(x)の温度場を、厚さd(往復の場合2d)だけ超音波が伝播する際に要する時間として、伝播時間計測手段13においてΔtが求められているから、これらの量から、温度分布推定手段28において未知数dsまたはdLが求められる。
【0085】
このように、第5の実施の形態では、超音波の伝播情報と媒質の温度または温度分布情報から媒質内部の温度分布状態を推定し、媒質の厚さあるいは深さ方向の相変化の境界位置あるいは深さ方向の組成状態を計測する。
【0086】
次に、本発明の第6の実施の形態を説明する。図11は本発明の第6の実施の形態に係わる超音波計測装置の構成図である。この第6の実施の形態は、図9に示した第5の実施の形態に対し、計測対象1に対する超音波送信手段11で超音波5を励起する深さ方向を含まない2次元的な位置または超音波5の進行方向を任意に駆動するための送信位置走査手段17と、計測対象1中を伝播した超音波5または反射波9、10(または超音波21、22)の超音波受信手段12によるその深さ方向を含まない2次元的な検出位置を任意に駆動するための受信位置走査手段18と、送信位置走査手段17と受信位置走査手段18とからその位置情報out2を入力され各々の位置関係における温度分布推定手段28の出力信号out4を位置情報out2と対応づけて記録する記録手段19と、記録手段19に記録された情報を数表またはグラフまたは画像として表示する表示手段20とを追加して設けたものである。これにより、液相7(または音響特性変化領域21)の分布形状を測定する。
【0087】
また、送信位置走査手段17および受信位置走査手段18における超音波の送信位置および受信位置は固定のまま、計測対象1をその深さ方向を含まない2次元的に走査する計測対象位置走査手段を設けることでも、同様に液相7(または音響特性変化領域21)の分布形状を測定できる。
【0088】
送信位置走査手段17を設け超音波送信手段11による超音波5の送信位置peを任意に決定可能とし、受信位置走査手段18を設け超音波受信送信手段12による超音波5の受信位置prを任意に決定可能としている。これにより、各々の位置における伝播経路の温度分布を求める。従って、相変化位置あるいは音響特性変化領域の2次元的な分布、あるいは3次元的な形状を計測することが可能となる。
【0089】
このように、第6の実施の形態では、非接触の超音波送信手段11および超音波受信手段12を用いることで、計測対象1の媒質に対する相対的な超音波の送信位置あるいは送信方向、超音波の受信位置、その両方を2次元的に走査し、媒質、あるいは相変化領域、あるいは組成状態分布を3次元的に再構成する。
【0090】
【実施例】
以下、本発明の実施例を説明する。図12は、本発明の第1の実施例の構成図であり、図1に示した第1の実施の形態に関する実施例である。超音波送信手段11は、Nd:YAGレーザー光源31、照射用光学系32、アナログ・デジタル変換器40bで構成され、超音波受信手段12は、He-Neレーザー光源35、マイケルソン干渉計36、シグナルアベレージャ37、信号増幅器38、バンドパスフィルター39、アナログ・デジタル変換器40aで構成され、温度測定手段14aは、熱電対42a、アナログ・デジタル変換器40cで構成され、温度測定手段4bは、熱電対42b、アナログ・デジタル変換器40dで構成される。そして、デジタル計算機41は、伝播時間計測手段13、速度校正手段15、伝播経路長測定手段16を達成する機能を有している。
【0091】
図12において、まず計測対象1は、角度φで既知の寸法を持つ開先形状であり、その斜面がトーチ29によって添加材30ともども溶解される系である。計測対象1の上面のある点peに、QスイッチNd:YAGレーザー光源31から短パルス高エネルギーのレーザー光を照射用光学系32を介して照射する。このようにすると、照射点peを音源とした超音波5が計測対象1の内部に伝播する。
【0092】
ここで、超音波5の指向性をある角度θに決める手法は種々あるが、この機構は照射用光学系32に含まれており、今超音波5の伝播指向性はφ<θの関係になっているとする。またレーザー光源はNd:YAGを媒質としたもの以外、赤外域で発振するCO2レーザー、紫外域で発振するエキシマレーザー、小型な半導体レーザーなども使用可能である。
【0093】
また、計測対象1の寸法形状から適切に選んだ照射点peから指向角度θで入射された超音波5は、計測対象1中を伝播して計測対象1斜面の母材金属33と溶融金属34の境界面に到達する。境界面に到達した超音波5は反射の法則で決定される方位に反射され、幾何学的に決まる計測対象上面のある点prに到達する。この点prには、He-Neレーザー光源35からマイケルソン干渉計36を介してレーザー光が照射されている。点prにおいて反射された照射レーザー光は、再びマイケルソン干渉計36へと戻るが、この際、もし点prが超音波の到達によって微小振動すると、戻り光の位相に時間的な差が生じ、マイケルソン干渉計36の出力信号に時間変化として現れる。
【0094】
ここで、計測用のレーザー光源は半導体レーザーや半導体励起固体レーザーなども使用可能であり、また微小振動の計測は、偏向方位検出計(ナイフエッジ法)、時間差干渉計、ヘテロダイン干渉計、透過型あるいは反射型のファブリペロー干渉計などでも代替可能である。マイケルソン干渉計36にて検出された超音波信号は、シグナルアベレージャ37にてNd:YAGレーザー光源31の発振タイミングを基準時間として平均化処理され、信号増幅器38、バンドパスフィルター39アナログ・デジタル変換器40aを介してデジタル計算機41に入力される。
【0095】
デジタル計算機41には、同様にアナログ・デジタル変換器40bを介してNd:YAGレーザー光源31の発振タイミング信号も入力されている。また、計測対象1の表面および裏面には熱電対42a、42bが設置され、各々の設置点の温度を計測している。これらの測定値もアナログ・デジタル変換器40c、40dを介してデジタル計算機41に入力されている。計測対象1の温度測定器としては、放射温度計や赤外線カメラなど非接触の温度計も使用可能である。
【0096】
さて、デジタル計算機41は3つの機能を有している。すなわち、入力されたNd:YAGレーザー光源31の発振タイミング信号と検出された超音波信号の時間差Δtを求める伝播時間計測機能(伝播時間計測手段13)と、入力された温度測定値と予め用意されていた計測対象1の厚さや熱伝導率などのデータから温度分布を推定し、これも予め用意されていた温度―音速関係を示すデータから音速を校正する速度校正機能(速度校正手段15)と、伝播時間計測機能と速度校正機能の出力信号から伝播経路長を算出し、予め用意されていた計測対象1の寸法形状データと比較して、母材金属33と溶解金属34の境界面、すなわち溶解金属の溶け込み深さを計測する伝播経路長測定機能(伝播経路長測定手段16)である。従って、従来、高温・高電気ノイズなどの影響で測定が困難であった溶接施工中の溶融金属の溶け込み深さを計測することが可能となる。
【0097】
次に、図13は、本発明の第2の実施例の構成図であり、図6に示した第2の実施の形態に関する実施例である。この本発明の第2の実施例は、図12に示した第1の実施例に対し、送信位置走査手段17として、2次元ガルバノミラー45、センサ47a、アナログ・デジタル変換器40eを追加して設け、受信位置走査手段18として、2次元ガルバノミラー46、センサ47b、アナログ・デジタル変換器40fを追加して設けたものである。これにより、溶融金属の溶け込み深さを分布として測定可能としたものである。
【0098】
図13において、計測対象1の上面のQスイッチNd:YAGレーザー光源31から短パルス高エネルギーのレーザー光が照射用光学系32を介して照射される点peを走査するための2次元ガルバノミラー45が設置される。また、それに伴って、He-Neレーザー光源35からマイケルソン干渉計36を介してレーザー光が照射される点prを走査するための2次元ガルバノミラー46が設置される。
【0099】
これら2次元ガルバノミラー45、46は、2次元ポリゴンミラー、2次元音響光学偏向子などでも代替可能であり、また2次元ガルバノミラー45に関しては、照射点peの走査でなく、照射点は同位置とし、入射する超音波5の指向角度θを走査することでも置き換えることができる。これら2次元ガルバノミラー45、46には、その照射点あるいは照射角度を検出するセンサ47a、47bが設置されており、これらの計測結果はアナログ・デジタル変換器40e、40fを介してデジタル計算機41に入力される。
【0100】
デジタル計算機41は第1の実施例で示した3つの機能、すなわち伝播時間計測機能(伝播時間計測手段13)、速度校正機能(速度校正手段15)、伝播経路長測定機能(伝播経路長測定手段16)に加え、伝播経路長測定機能(伝播経路長測定手段16)で計測した測定データをセンサ47a、47bの測定データに対応させて記憶するメモリー機能(記録手段19)と、その結果を数表あるいはグラフあるいは画像として表示装置49に表示する表示機能(表示手段20)を有している。従って、溶接施工中の溶融金属の溶け込み深さを、3次元的に再構成することが可能となる。
【0101】
次に、図14は、本発明の第3の実施例の構成図であり、図6に示した第2の実施の形態に関する実施例である。この本発明の第3の実施例は、図13に示した第2の実施例に対し、2次元ガルバノミラー45、センサ47aに代えて、光ファイバ50、駆動機構52、センサ47cを設け、2次元ガルバノミラー46、センサ47bに代えて、光ファイバー51、駆動機構53、センサ47dを設けたものである。
【0102】
図14において、QスイッチNd:YAGレーザー光源31から発振した短パルス高エネルギーのレーザー光は、光ファイバー50を介して照射用光学系32に入射される。またHe-Neレーザー光源35からマイケルソン干渉計36を介して射出されるレーザー光は光ファイバー51を介して照射点prに照射される。
【0103】
照射点peおよび照射点prの走査は、光ファイバー50、51を機械的に駆動走査するモーター、レール、ギアなどから構成される駆動機構52、53によって行われる。駆動機構52、53には各々その照射点を知るためのセンサ47c、47dが取り付けられており、それらの出力信号から溶接施工中の溶融金属の溶け込み深さを、3次元的に再構成することが可能となるのは第2の実施例と同様の作用である。このようにすれば、例えば狭隘部にある測定対象など、レーザー光の取り回しが困難な部位でも測定が可能となる。
【0104】
ここで、計測対象1の表面で発生する反射光や散乱光による外乱を防止するために、超音波送信手段11のレーザー光による超音波送信点と、超音波受信手段12のレーザー光による超音波受信点との間に遮蔽板を設けるようにしても良い。
【0105】
レーザー光を用いて超音波を送信する場合には、比較的高エネルギーのレーザー光を計測対象1に照射する必要があるため、その反射光や散乱光、あるいは計測対象表面が気化した場合に発する発光、疎密波、粉塵などが、超音波受信側のレーザー装置(超音波受信手段12)に外乱を与えることがある。そこで、超音波の送信点と受信点との間に遮蔽板を設けることで、その影響を避けることができる。
【0106】
【発明の効果】
以上述べたように、本発明によれば、計測対象が溶接中金属など高温の場合でも、超音波の伝播情報と媒質の温度または温度分布情報から媒質内部の温度分布状態を推定し、媒質の厚さあるいは深さ方向の相変化の境界位置あるいは深さ方向の組成状態を計測することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係わる超音波測定装置の構成図。
【図2】本発明の第1の実施の形態における超音波受信手段で計測される信号波形の説明図。
【図3】本発明の第1の実施の形態における速度校正手段で校正される温度と伝播速度(音速)との関係を示す特性図。
【図4】本発明の第1の実施の形態における超音波送信手段による超音波の送信位置と超音波受信手段による超音波の受信位置との間の距離を考慮して計測データの補正を行う場合の説明図。
【図5】本発明の第1の実施の形態における計測対象が液相と固相など相変化がない場合の超音波計測装置の説明図。
【図6】本発明の第2の実施の形態に係わる超音波計測装置の説明図。
【図7】本発明の第3の実施の形態に係わる超音波計測装置の説明図。
【図8】本発明の第4の実施の形態に係わる超音波計測装置の説明図。
【図9】本発明の第5の実施の形態に係わる超音波計測装置の説明図。
【図10】本発明の第5の実施の形態において温度分布の推定方法の説明図。
【図11】本発明の第6の実施の形態に係わる超音波計測装置の説明図。
【図12】本発明の第1の実施例の構成図。
【図13】本発明の第2の実施例の構成図。
【図14】本発明の第3の実施例の構成図。
【図15】計測対象が固相である場合の従来の超音波計測装置の説明図。
【図16】計測対象が固相と液相とを含む場合の従来の超音波計測装置の説明図。
【符号の説明】
1 計測対象
2 カプラント
3 超音波探触子
4 送信器
5 超音波
6 信号検出器
7 液相
8 固相
9、10 反射波
11 超音波送信手段
12 超音波受信手段
13 伝播時間計測手段
14 温度測定手段
15 速度校正手段
16 伝播経路長測定手段
17 送信位置走査手段
18 受信位置走査手段
19 記録手段
20 表示手段
21 音響特性変化領域
22、23 超音波
24 データベース
25 信号波形評価手段
26 伝播経路診断手段
27 データベース
28 温度分布推定手段
29 トーチ
30 添加材
31 Nd:YAGレーザー光源
32 照射用光学系
33 母材金属
34 溶融金属
35 He-Neレーザー光源
36 マイケルソン干渉計
37 シグナルアベレージャ
38 信号増幅器
39 バンドパスフィルター
40 アナログ・デジタル変換器
41 デジタル計算機
42 熱電対
45、46 2次元ガルバノミラー
47 センサ
49 表示装置
50、51 光ファイバー
52、53 駆動機構

Claims (8)

  1. 片面が固相から成り、裏面の少なくとも一部が液相から成る板状の計測対象のある部分に非接触でレーザー光を用いて超音波を励起する超音波送信手段と、
    前記計測対象中を伝播した前記超音波が伝播経路上の固相と液相の界面で反射または散乱または回折または透過された第1の超音波および前記液相の裏面表面で反射または散乱または回折または透過された第2の超音波を非接触で検出する超音波受信手段と、
    前記超音波送信手段で前記超音波を送信した送信時刻と前記第1および第2の超音波を受信した受信時刻との時間差から前記超音波の伝播時間を測定する伝播時間計測手段と、
    前記計測対象の前記片面および前記液相の裏面表面の温度を測定する温度測定手段と、
    前記温度測定手段で測定した温度と前記伝播時間計測手段で計測した伝播時間と計測対象の厚さデータとから前記計測対象内部の前記超音波の伝播経路に沿った温度分布状態を推定する温度分布推定手段と
    を具備し
    前記温度分布状態に基づいて固相と液相の界面の位置を計測することを特徴とする超音波計測装置。
  2. 請求項1に記載の超音波計測装置において、前記計測対象に対して前記超音波送信手段で超音波を励起する位置または超音波の進行方向を任意に駆動するための送信位置走査手段と、前記計測対象中を伝播した前記超音波の前記超音波受信手段によるその検出位置を任意に駆動するための受信位置走査手段と、前記送信位置走査手段と前記受信位置走査手段とからその位置情報を入力され各々の位置関係における前記温度分布推定手段の出力情報を前記位置情報と対応づけて記録する記録手段と、前記記録手段に記録された情報を数表またはグラフまたは画像として表示する表示手段とを具備したことを特徴とする超音波計測装置。
  3. 請求項1に記載の超音波計測装置において、前記計測対象の前記超音波送信手段および前記超音波受信手段に対する位置を駆動するための計測対象位置走査手段と、前記計測対象位置走査手段からその位置情報を入力され各々の位置関係における前記温度分布推定手段の出力情報を前記位置情報と対応づけて記録する記録手段と、前記記録手段に記録された情報を数表またはグラフまたは画像として表示する表示手段とを具備したことを特徴とする超音波計測装置。
  4. 請求項1乃至請求項3に記載の超音波計測装置において、前記超音波送信手段は、時間的に間欠的または変調波的なレーザー光であって、前記計測対象表面に熱歪みまたはアブレーションを発生させるのに必要かつ十分なエネルギー密度まで空間的に点状または円状または楕円状または線状または同心円状または点線状または格子状に集光されたレーザー光を用いるようにしたことを特徴とする超音波計測装置。
  5. 請求項4に記載の超音波計測装置において、前記超音波送信手段として使われるレーザー光は、光ファイバーによって光源から前記計測対象上の照射位置近傍まで導かれることを特徴とする超音波計測装置。
  6. 請求項1乃至請求項3に記載の超音波計測装置において、前記超音波受信手段における超音波の検出は、レーザー光の干渉現象または偏向現象を用いるようにしたことを特徴とする超音波計測装置。
  7. 請求項6に記載の超音波計測装置において、前記超音波受信手段として使われるレーザー光は、光ファイバーによって光源から前記計測対象上の検出照射位置近傍まで導かれ、かつその反射光が同一または別の光ファイバーによって干渉機構または偏向検知機構まで 導かれるようにしたことを特徴とする超音波計測装置。
  8. 請求項4乃至請求項7に記載の超音波計測装置において、前記超音波送信手段のレーザー光による超音波送信点と、前記超音波受信手段のレーザー光による超音波受信点との間に遮蔽板を設けたことを特徴とする超音波計測装置。
JP27665697A 1997-09-25 1997-09-25 超音波計測装置 Expired - Lifetime JP4086938B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27665697A JP4086938B2 (ja) 1997-09-25 1997-09-25 超音波計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27665697A JP4086938B2 (ja) 1997-09-25 1997-09-25 超音波計測装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008009219A Division JP2008102160A (ja) 2008-01-18 2008-01-18 超音波計測装置

Publications (2)

Publication Number Publication Date
JPH11101632A JPH11101632A (ja) 1999-04-13
JP4086938B2 true JP4086938B2 (ja) 2008-05-14

Family

ID=17572501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27665697A Expired - Lifetime JP4086938B2 (ja) 1997-09-25 1997-09-25 超音波計測装置

Country Status (1)

Country Link
JP (1) JP4086938B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008102160A (ja) * 2008-01-18 2008-05-01 Toshiba Corp 超音波計測装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5104833B2 (ja) * 2009-09-09 2012-12-19 株式会社豊田中央研究所 構造物内部状態計測システム及び構造物内部状態計測方法
JP5570451B2 (ja) * 2010-02-16 2014-08-13 パナソニック株式会社 レーザ溶接装置およびレーザ溶接方法
JP5240218B2 (ja) * 2010-02-22 2013-07-17 新日鐵住金株式会社 結晶粒径計測装置、方法及びプログラム
US20110284508A1 (en) * 2010-05-21 2011-11-24 Kabushiki Kaisha Toshiba Welding system and welding method
US9217731B2 (en) * 2010-05-21 2015-12-22 Kabushiki Kaisha Toshiba Welding inspection method and apparatus thereof
JP5705770B2 (ja) * 2011-03-28 2015-04-22 トヨタ自動車株式会社 超音波計測方法、及び超音波計測装置
US20130167647A1 (en) * 2011-12-30 2013-07-04 General Electric Company Concurrent Multiple Characteristic Ultrasonic Inspection
CN106556363B (zh) * 2015-09-28 2019-05-28 宝山钢铁股份有限公司 连铸坯壳厚度在线检测方法与装置
JP6959598B2 (ja) * 2017-01-23 2021-11-02 株式会社東芝 超音波映像化方法
CN113267149B (zh) * 2021-06-30 2023-05-05 广东电网有限责任公司 一种等值覆冰厚度测量系统及方法
CN113664053B (zh) * 2021-08-13 2023-05-16 太原理工大学 双金属波纹复合板界面结合率无损检测装置、系统及方法
CN113990539B (zh) * 2021-10-26 2023-05-23 四川大学 核反应堆主管道热段冷却剂温度分布的超声测量重构方法
CN116295147B (zh) * 2023-05-24 2023-08-01 山东珞珈计量检测有限公司 一种防水卷材测量数据误差智能处理方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008102160A (ja) * 2008-01-18 2008-05-01 Toshiba Corp 超音波計測装置

Also Published As

Publication number Publication date
JPH11101632A (ja) 1999-04-13

Similar Documents

Publication Publication Date Title
JP2008102160A (ja) 超音波計測装置
JP4086938B2 (ja) 超音波計測装置
US6837109B2 (en) Material thickness measurement method and apparatus
KR101134431B1 (ko) 초음파 탐상 장치 및 방법
JP4783263B2 (ja) 超音波多重エコー計測装置
JP5104833B2 (ja) 構造物内部状態計測システム及び構造物内部状態計測方法
JP4621781B2 (ja) レーザ超音波検査装置
JP2000180418A (ja) 表面検査装置
Hayashi et al. Generation of narrowband elastic waves with a fiber laser and its application to the imaging of defects in a plate
JP2005147813A (ja) レーザ超音波による材料非破壊検査方法及び装置
JP2002213936A (ja) 材料厚さの非接触測定方法及び装置
JP4595117B2 (ja) 超音波伝搬の映像化方法および装置
Setiawan et al. Surface crack detection with low-cost photoacoustic imaging system
KR20100012759A (ko) 레이저 초음파 측정장치 및 레이저 초음파 측정방법
JP2002257793A (ja) レーザ超音波検査装置
Noui et al. Two quantitative optical detection techniques for photoacoustic Lamb waves
JP4471714B2 (ja) 結晶粒径分布測定方法および装置
JPS5831872B2 (ja) 非接触超音波探傷法
CA2188705A1 (en) Method and apparatus for exciting bulk acoustic wave
JP3459491B2 (ja) 内部温度測定装置
JP5446008B2 (ja) 超音波を用いた温度測定方法
JPS6228869B2 (ja)
Nishino et al. Optical probe detection of high-frequency surface acoustic waves generated by phase velocity scanning of laser interference fringes
GB2172106A (en) Ultrasonic microstructural monitoring
JPH09257755A (ja) レーザー超音波検査装置及びレーザー超音波検査方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

EXPY Cancellation because of completion of term