JP4083914B2 - 終端回路 - Google Patents

終端回路 Download PDF

Info

Publication number
JP4083914B2
JP4083914B2 JP06216699A JP6216699A JP4083914B2 JP 4083914 B2 JP4083914 B2 JP 4083914B2 JP 06216699 A JP06216699 A JP 06216699A JP 6216699 A JP6216699 A JP 6216699A JP 4083914 B2 JP4083914 B2 JP 4083914B2
Authority
JP
Japan
Prior art keywords
circuit
signal
output terminal
input terminal
termination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06216699A
Other languages
English (en)
Other versions
JP2000261508A (ja
Inventor
浩 渡辺
Original Assignee
日本テキサス・インスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本テキサス・インスツルメンツ株式会社 filed Critical 日本テキサス・インスツルメンツ株式会社
Priority to JP06216699A priority Critical patent/JP4083914B2/ja
Publication of JP2000261508A publication Critical patent/JP2000261508A/ja
Application granted granted Critical
Publication of JP4083914B2 publication Critical patent/JP4083914B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Reversible Transmitting Devices (AREA)
  • Logic Circuits (AREA)
  • Networks Using Active Elements (AREA)
  • Dc Digital Transmission (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、信号線の終端に接続され、信号線に対してインピーダンスの整合を行うことにより信号線における反射を抑制する終端回路に関するものである。
【0002】
【従来の技術】
近年、ディジタルシステムの高速化により信号伝送線における信号の反射がシステムの品質の低下を及ぼすようになってきている。
図8は、一般的なディジタルシステムの信号伝送線(以下、単に信号線という)のモデルを示している。図示のように、ドライバ(駆動回路)10の出力信号は、信号線20を通してレシーバ(受信回路)30に伝送される。ここで、ドライバ10の出力インピーダンスをZS とし、信号線の特性インピーダンスをZO とし、レシーバ30の入力インピーダンスをZL とする。また、信号線20の伝搬遅延をTd とする。
【0003】
図8に示す信号伝送システムおいて、ドライバ10の出力インピーダンスZS と信号線20の特性インピーダンスZO の不整合によりドライバ10の出力端Aにおいて信号の反射が発生する。同様に、レシーバ30の入力インピーダンスZL と信号線20の特性インピーダンスZO の不整合によって、レシーバ30の入力端、即ち、信号線20の終端Bにおいて信号の反射が発生する。信号の反射が生じた場合に、例えば、レシーバ30の入力端Bにおいて信号波形に歪みが生じ、システムの誤動作の原因になる。典型的な例として、CMOSトランジスタにより構成されたドライバ10により、信号線20に信号を出力し、CMOSトランジスタで構成されたレシーバ30で受信する場合、レシーバ30において終端を適宜に行わない場合、当該レシーバ30の入力インピーダンスZL はほぼ無限大(即ち、ZL =∞)となる。このため、信号線20の終端Bにおいて信号の反射が発生し、伝送された信号の波形に歪みが生じる。
【0004】
図9は、ドライバ10から方形波の信号を出力した場合の信号線20の終端における信号波形の一例を示している。図示のように、ドライバ10から図9(A)に示すような方形波の信号を出力しても、信号線20の終端Bにおいて適宜に終端が行われていない場合、B点において信号の反射が発生し、同図(b)に示すように、信号の立ち上がりおよび立ち下がりに伴い、大きなうねりが生じ、信号波形に歪みが生じてしまう。このような歪んだ信号でレシーバ30の出力側に接続されている回路を駆動する場合、誤動作が発生するおそれがある。
【0005】
信号の反射を抑制できるもっとも単純な方法は、図8に示すように、信号線20の終端Bと基準電位線(接地線)との間に、インピーダンスZL を持つ抵抗素子32を接続することである。当該抵抗素子32のインピーダンス(抵抗値)ZL を信号線の特性インピーダンスZO と一致するように設定することにより、即ち、(ZL =ZO )にすることにより、信号線20の終端Bにおける反射を完全に抑制できる。
【0006】
【発明が解決しようとする課題】
ところで、上述した抵抗素子による終端方法では、レシーバ30にハイレベルの信号が入力されている間に終端用の抵抗素子に大きな電流が流れ続け、システムの消費電力が非常に大きくなってしまうという不利益がある。
【0007】
本発明は、かかる事情に鑑みてなされたものであり、その目的は、消費電力を増大させることなく、信号線における反射を抑制でき、誤動作を防止できる終端回路を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明の第1の終端回路は、信号が伝送される信号線に入力端子が接続される第1の反転回路と、上記第1の反転回路の出力端子に現われる信号を積分し、当該積分信号の反転信号を出力する積分信号生成回路と、上記積分信号生成回路の出力端子と上記第1の反転回路の入力端子との間に接続され、上記信号線の特性インピーダンスに応じて抵抗値が規定されている第1の抵抗素子とを有する。
この第1の終端回路は、好適には、上記積分信号生成回路は、上記第1の反転回路の出力端子と当該積分信号生成回路の出力端子との間に直列に接続されている第2の抵抗素子及び容量素子と、反転入力端子が上記第2の抵抗素子と上記容量素子との接続中点に接続され、非反転入力端子が基準電位に接続され、出力端子が当該積分信号生成回路の出力端子に接続されている演算増幅回路とを含む。
【0009】
また、本発明の第2の終端回路は、信号が伝送される信号線に入力端子が接続されるバッファ回路と、上記バッファ回路の出力端子に現われる信号を積分した積分信号を出力する積分信号生成回路と、上記積分信号生成回路の出力端子と上記バッファ回路の入力端子との間に接続され、上記信号線の特性インピーダンスに応じて抵抗値が規定されている第1の抵抗素子とを有する。
この第2の終端回路は、好適には、上記積分信号生成回路は、上記バッファ回路の出力端子と基準電位との間に直列に接続されている第2の抵抗素子及び容量素子と、非反転入力端子が上記第2の抵抗素子と上記容量素子との接続中点に接続され、反転入力端子と出力端子とが当該積分信号生成回路の出力端子に接続されている演算増幅回路とを含む。
【0010】
また、本発明の第3の終端回路は、信号が伝送される信号線に入力端子が接続される第1の反転回路と、上記第1の反転回路の出力端子に一端が接続される第1の抵抗素子と、上記第1の抵抗素子の他端に入力端子が接続される第2の反転回路と、上記第2の反転回路の入力端子と出力端子との間に接続される容量素子と、上記第2の反転回路の出力端子と上記第1の反転回路の入力端子との間に接続され、上記信号線の特性インピーダンスに応じて抵抗値が規定されている第2の抵抗素子とを有する。
この第3の終端回路は、好適には、上記第1の反転回路及び第2の反転回路を電源から電気的に切り離すためのスイッチ回路を有し、上記スイッチ回路により上記第1及び第2の反転回路を電源から切り離すことにより当該終端回路の入力端子及び出力端子をハイインピーダンス状態にする。
【0011】
【発明の実施の形態】
第1実施形態
図1は本発明に係る終端回路の第1の実施形態を示す回路図である。
図示のように、本実施形態の終端回路は、インバータINV1,INV2と抵抗素子RL により構成されている。本実施形態の終端回路は、図8に示す終端用抵抗素子32の代わりに、信号線20の終端Bに接続される。
【0012】
インバータINV1の入力端子は、図8に示す信号線20の終端Bに接続され、インバータINV2の入力端子はインバータINV1の出力端子に接続されている。抵抗素子RL は終端BとインバータINV2の出力端子との間に接続されている。なお、当該抵抗素子RL の抵抗値ZL は、インバータINV2の出力インピーダンスを含めて、信号線20の特性インピーダンスZO に応じて設定される。例えば、ZL =ZO とする。
【0013】
以下、本実施形態の終端回路の動作について説明する。
ここで、まず、図8に示す信号伝送システムにおいて、ドライバ10の出力信号レベルは、出力電流がゼロのとき、ローレベルを接地電位GNDとし、ハイレベルを電源電圧VCCとする。ドライバ10の出力インピーダンスをZS とし、また、信号線20の特性インピーダンスをZO 、遅延時間をtd とする。図1に示すインバータINV1,INV2は電源電圧VCCで動作し、その出力はハイレベルを電源電圧VCC、ローレベルを接地電位GNDとする。
【0014】
図1に示す終端回路において、信号線20の終端Bの信号レベルに応じて、インバータINV1そしてインバータINV2の出力端子の信号レベルが設定される。例えば、終端Bの信号がローレベルからハイレベルに切り換わると、インバータINV1とINV2の遅延時間を経過したあと、インバータINV2の出力端子もハイレベルに切り換わる。同様に、終端Bの信号がハイレベルからローレベルに切り換わると、インバータINV1とINV2の遅延時間を経過したあと、インバータINV2の出力端子もローレベルに切り換わる。
【0015】
本実施形態の終端回路において、図8に示すドライバ10とレシーバ30の電源電圧が等しい場合、ドライバ10の出力信号レベルが変化したとき、伝送線20の遅延時間および終端回路の遅延時間を経過したあと、信号線20の両端がほぼ同電位に保持され、伝送線20が平衡状態に達する。このとき、抵抗素子RL の両端もほぼ同電位に保持されるので、従来の抵抗素子のみによる終端に比べて、抵抗素子RL に流れる定常的な電流を低減でき、終端回路による消費電力を低減できる。
【0016】
図4(b)は、本実施形態の終端回路を用いた場合信号線20の終端Bにおける信号の波形を示している。同図(a)は、例えば、ドライバ10が出力する方形波信号である。
【0017】
図4(b)に示すように、信号線20の終端Bにおいて、図9(b)に比べると、2回目以降の反射は取り除かれたが、一回目の反射は残されている。これは、ドライバ10の出力信号のレベルがハイレベルからローレベルまたはローレベルからハイレベルに切り換わった瞬間にレシーバ30の入力側の信号レベルはまだ変化していないので、ドライバ10の出力端Aとレシーバ30の入力端Bとの間に電位差が生じて、それに応じた電流がドライバ10から信号線20に出力される。しかし、ドライバ10の信号がレシーバ30に到達すると、図1に示す終端回路においてインバータINV1およびINV2の状態が代わり、レシーバ30の入力端Bの電位は高速に変化し、ドライバ10の出力端Aの電位と等しくなる。これによって、ドライバ10の出力電流が一定の値からゼロへと急激に変化するので、反射が引き起こされる。この信号到達時に発生する反射は、この終端回路では回避できず、図4(b)に示すようにオバーシュートとアンダシュートが発生するが、図9に比べると、反射によって生じた信号の歪みは大幅に低減されている。
【0018】
第2実施形態
図2は本発明に係る終端回路の第2の実施形態を示す回路図である。
図示のように、本実施形態の終端回路は、インバータINV3、演算増幅回路(オペアンプ)OPA1、キャパシタCt 、抵抗素子Rt およびRL により構成されている。
【0019】
インバータINV3の入力端子は、例えば、図8に示す信号線20の終端Bに接続されている。オペアンプOPA1の反転入力端子(−)は抵抗素子Rt を介してインバータINV3の出力端子に接続され、非反転入力端子(+)は接地されている。キャパシタCt はオペアンプOPA1の反転入力端子(−)と出力端子との間に接続されている。さらに、抵抗素子RL は、信号線の終端BとオペアンプOPA1の出力端子との間に接続されている。
【0020】
インバータINV3は、入力端子に入力される信号の論理反転信号を出力する。ここで、便利のためインバータINV3の出力信号レベルは、ハイレベルのとき電源電圧VCCに等しく、ローレベルのとき接地電位GNDに等しいとする。
抵抗素子Rt 、キャパシタCt およびオペアンプOPA1によって、積分回路が構成されている。当該積分回路は、インバータINV3の出力信号を積分し、そして、当該積分信号の反転信号を出力する。ここで、オペアンプOPA1の出力信号レベルはもっとも低いとき接地電位GNDに等しく、もっとも高いとき電源電圧VCCに等しいとする。
抵抗素子RL の抵抗値ZL は、信号線20の特性インピーダンスZO に応じて設定される。通常、ZL はオペアンプOPA1の出力インピーダンスを含めて信号線の特性インピーダンスZO と等しく設定されている。
【0021】
以下、本実施形態の終端回路の動作について説明する。
図2に示すように、オペアンプOPA1の反転入力端子(−)をノードN、その出力端子をノードYとする。
ドライバ10の出力信号が信号線20の遅延時間td を経過したあと、信号線20の終端Bに到達し、レシーバ30に伝送される。例えば、ドライバ10の出力信号がローレベルからハイレベルに変化したとき、信号線20の遅延時間td を経過したあと、終端Bの信号レベルもローレベルからハイレベルに変化する。このとき、オペアンプOPA1の出力端子Yの電位はまだローレベルのままであるので、時間t=td の瞬間信号線の終端Bから見て、インピーダンスZL で接地電位GNDに終端した場合と同じ効果が得られる。
【0022】
このとき、ZL =ZO で、且つドライバ10の出力信号レベルがVCCであるので、レシーバ30の入力端Bの電位VBHは、次式によって求められる。
【0023】
【数1】
BH=VCC・ZO /(ZS +ZO ) …(1)
【0024】
このとき、レシーバ30の入力端、即ち、信号線20の終端Bにおいてインピーダンスの整合が取れているので、ドライバ側への信号の反射は発生しない。その後、インバータINV3の出力端子が終端Bのレベル変化に応じてハイレベルからローレベルに切り換わり、インバータINV3の出力信号の積分反転信号がオペアンプOPA1の出力端子Yに出力される。即ち、キャパシタCt でオペアンプOPA1の出力信号をその反転入力端子Nにフィードバックしているので、オペアンプOPA1の出力端子Yの信号レベルは緩やかに上昇する。通常、当該出力端子Yの電位の変化は、ドライバ10の出力電流の変化を引き起し、これを原因に信号の反射が発生するが、本実施形態の終端回路においては、出力端子Yの電位変化は緩やかであるため、見かけ上信号の反射は発生しない。即ち、出力端子Yの信号変化の速度が信号線20における遅延時間td より遅ければ、反射は無視できる。
【0025】
終端回路の出力端子Yの信号レベルの変化速度は、キャパシタCt と抵抗素子Rt の各々の値によって決定されるので、これらの値を調整することにより、出力端子Yの信号変化速度を制御できる。これによって、終端回路の出力端子Yの信号レベルの上昇に従って信号線20の終端Bのレベルも上昇して、最終的に電源電圧VCCに到達して平衡状態に達する。ドライバ10の出力端Aと信号線20の終端Bの信号電圧VA ,VB がともに電源電圧VCCに等しくなったとき、信号線20に流れる電流はゼロとなる。
【0026】
本実施形態の終端回路を信号線20の終端Bに接続した状態で、当該終端Bは式(1)に示す電圧VBHに瞬時に達するので、当該電圧レベルVBHが終端回路の入力スレッショルドレベル、即ち、インバータINV3の論理しきい値電圧より高くなるようにドライバ10の出力インピーダンスZS を適宜に設定すれば、レシーバ30の動作速度に影響を与えない。
【0027】
ドライバ10の出力信号がハイレベルからローレベルに切り換わるときも上記とほぼ同様で、ドライバ10の出力信号レベルが変化したあと、信号線20の遅延時間td を経過したあと、信号線20の終端Bの信号レベルが変化する。この瞬間、終端回路の出力端子Yの電位はハイレベル、即ち、VCCのままなので、信号線20の終端Bの電圧VBLは次式により求められる。
【0028】
【数2】
BL=VCC−VCC・ZO /(ZS +ZO )…(2)
【0029】
このとき反射は発生しない。その後、終端回路の出力端子Yの信号電圧は緩やかに降下して最後に接地電位GNDに達し、平衡状態となる。式(2)に示す電圧VBLが終端回路のスレッショルドレベル、即ち、インバータINV3の論理しきい値電圧より低くなるようにドライバ10の出力インピーダンスZS を適宜に設定すれば、レシーバの動作速度に影響を与えない。
【0030】
図4(c)は本実施形態の終端回路を用いた場合の信号線終端Bにおける信号電圧VB の波形を示している。図示のように、本実施形態の終端回路を用いることにより、信号線の終端Bにおける反射が完全に除去されるため、信号波形にオーバーシュートとアンダシュートが発生せず、波形歪みがほとんどない状態で信号の伝送を実現できる。
【0031】
以上説明したように、本実施形態によれば、インバータINV3と当該インバータの出力信号の積分反転信号を生成する積分回路、さらに、信号線の特性インピーダンスZO に応じて抵抗値ZL が規定される抵抗素子RL により終端回路を構成し、信号線の終端Bの信号レベルの変化に応じて、当該終端回路の出力信号レベルを緩やかに変化させることによって、終端Bにおける信号の反射を防止でき、反射による信号の歪みを抑制し、誤動作の発生を防止できる終端回路を実現できる。
【0032】
第3実施形態
図3は本発明に係る終端回路の第3の実施形態を示す回路図である。
図示のように、本実施形態の終端回路は、バッファBUF1、抵抗素子Rt 、キャパシタCt 、オペアンプOPA2および抵抗素子RL により構成されている。
【0033】
バッファBUF1の入力端子は、例えば、図8に示す信号線20の終端Bに接続されている。
抵抗素子Rt の一方の端子はバッファBUF1の出力端子に接続され、キャパシタCt は抵抗素子Rt の他方の端子と接地線との間に接続されている。即ち、抵抗素子Rt とキャパシタCt により積分回路が構成されている。当該積分回路は、バッファBUF1の出力信号を積分し、積分信号を出力する。
【0034】
オペアンプOPA2の非反転入力端子(+)は、積分回路の出力端子に接続され、反転入力端子(−)その出力端子Yに接続されている。即ち、オペアンプOPA2はボルテージフォロワを構成し、これによって積分回路からの積分信号がオペアンプOPA2の出力端子Yに出力される。
【0035】
抵抗素子RL は、信号線の終端BとオペアンプOPA2の出力端子Yとの間に接続されている。抵抗素子RL の抵抗値ZL は、オペアンプOPA2の出力インピーダンスを含めて、信号線の特性インピーダンスZO と等しく設定されている。
【0036】
本実施形態の終端回路は、図2に示す第2の実施形態の終端回路とほぼ同じように、終端回路に積分回路を設けることにより、信号線20の終端Bにおける信号レベルの変化に応じて終端回路の出力端子の信号レベルを緩やかに変化させる。これによって信号線の終端Bにおける反射の発生を防止する。
【0037】
例えば、図8に示す信号伝送システムにおいて、ドライバ10の出力端Aがローレベルからハイレベルに変化したとき、信号線20の遅延時間td を経過したとき終端Bの電位がローレベルからハイレベルに切り換わる。これに応じて、バッファBUF1の出力端子がローレベルからハイレベルに切り換わる。バッファBUF1の出力信号は抵抗素子Rt とキャパシタCt で構成された積分回路により積分されるので、積分回路の出力端子Pの電圧は接地電位GNDから緩やかに上昇する。これに応じて、オペアンプOPA2からなるボルテージフォロワの出力端子Yの信号レベルが接地電位GNDから緩やかに上昇し、最後に電源電圧VCCに達する。
【0038】
ドライバ10の出力信号がハイレベルからローレベルに切り換わったときも上記とほぼ同じように、終端Bの信号レベル変化に応じてまずバッファBUF1の出力信号がハイレベルからローレベルに切り換わり、そして抵抗素子Rt とキャパシタCt からなる積分回路により、その出力端子Pから緩やかに降下する積分信号が出力されるので、オペアンプOPA2の出力端子Yは、電源電圧VCCから緩やかに降下し、最後に接地電位GNDに達し、平衡状態となる。平衡状態に達したあと信号線20に電流が流れなくなる。
【0039】
本実施形態の終端回路を用いることにより、信号線の終端Bにおける信号の反射を防止でき、伝送される信号の波形歪みを抑制でき、波形歪みによる誤動作の発生を防止できる。さらに、本実施形態の終端回路では、上述した第2の実施形態の終端回路とは異なり、出力電圧の制御はキャパシタによるフィードバックではなく、抵抗素子Rt とキャパシタCt により構成された単純な積分回路およびオペアンプOPA2からなるボルテージフォロワにより実現できる。
【0040】
なお、本実施形態の終端回路を用いた場合の信号終端Bにおける信号波形は、図4(c)に示す通りである。即ち、本実施形態の終端回路を用いることで、上述した第3の実施形態の終端回路とほぼ同じ効果が得られ、信号線の終端Bにおける反射を抑制でき、伝送信号の歪みを抑制できる。
【0041】
第4実施形態
図5は本発明に係る終端回路の第4の実施形態を示す回路図である。
図示のように、本実施形態の終端回路は、pMOSトランジスタQ1,Q3、nMOSトランジスタQ2,Q4、キャパシタCt 、抵抗素子Rt およびRL により構成されている。
【0042】
トランジスタQ1とQ2によりインバータINV01が構成されている。トランジスタQ1とQ2は電源電圧VCCの供給線と接地線との間に直列接続されている。これらのトランジスタのゲートが共通に接続され、その接続点はインバータINV01の入力端子を構成し、トランジスタQ1とQ2のドレイン同士の接続点は当該インバータの出力端子を構成している。
【0043】
トランジスタQ3とQ4によりインバータINV02が構成されている。トランジスタQ3とQ4は電源電圧VCCの供給線と接地線との間に直列接続されている。これらのトランジスタのゲートが共通に接続され、その接続点はインバータINV02の入力端子を構成し、トランジスタQ3とQ4のドレイン同士の接続点は当該インバータの出力端子を構成している。
【0044】
インバータINV01の入力端子は、例えば、図8に示す信号線20の終端Bに接続され、インバータINV02の入力端子は抵抗素子Rt を介してインバータINV01の出力端子に接続されている。キャパシタCt はインバータINV02の入力端子と出力端子との間に接続されている。
なお、抵抗素子Rt 、キャパシタCt およびインバータINV02は、積分反転回路を構成している。当該積分反転回路は、図2に示す第2の実施形態における抵抗素子Rt 、キャパシタCt およびオペアンプOPA1からなる積分反転回路とほぼ同じように機能する。
抵抗素子RL は、信号線の終端BとインバータINV02の出力端子との間に接続されている。当該抵抗素子RL の抵抗値ZL は、インバータINV02の出力インピーダンスを含めて、信号線20の特性インピーダンスに等しく設定されている。
【0045】
以下、本実施形態の終端回路の動作について説明する。
インバータINV01は、信号線20の終端Bの信号レベルを反転して出力する。例えば、終端Bの信号レベルがハイレベルからローレベルへ変化したとき、インバータINV01の出力端子の信号レベルはローレベルからハイレベルに切り換わる。逆に、終端Bの信号レベルがローレベルからハイレベルへ変化したとき、インバータINV01の出力端子の信号レベルはハイレベルからローレベルに切り換わる。
【0046】
インバータINV01の出力端子の信号レベルの変化に応じて、インバータINV02の出力信号レベルが変化する。例えば、インバータINV01の出力端子がローレベルからハイレベルに変化し、インバータINV02の論理しきい値電圧を越えたとき、インバータINV02の状態が変化する。このとき、キャパシタCt によりインバータINV02の出力端子の信号変化がその入力端子にフィードバックされるので、インバータINV02の出力端子の電圧レベルは急激に変化することなく、電源電圧VCCのレベルから緩やかに降下し、最後に接地電位GNDに達し、平衡状態になる。このとき、信号線20に電流が流れなくなる。同様に、インバータINV01の出力端子がハイレベルからローレベルに変化し、インバータINV02の論理しきい値電圧より低くなったとき、インバータINV02の状態が変化する。キャパシタCt によるフィードバックの制御で、インバータINV02の出力端子の信号レベルは緩やかに変化し、接地電位GNDから上昇し、最後に電源電圧VCCのレベルに達し、平衡状態に達するので、信号線に電流が流れなくなる。
【0047】
以上説明したように、本実施形態によれば、MOSトランジスタによりインバータINV01とINV02をそれぞれ構成し、インバータINV01の入力端子を信号線の終端Bに接続し、インバータINV02の入力端子を抵抗素子Rt を介してインバータINV01の出力端子に接続し、入力端子と出力端子間に接続されているキャパシタCt とともに積分反転回路を構成し、インバータINV01の出力信号を積分し、積分信号の反転信号を出力するので、終端Bの信号レベルの変化に応じてインバータINV02の出力信号レベルを緩やかに変化させ、終端Bにおける反射を防止できる。平衡時に信号線の終端Bをドライバの出力端子とほぼ同じレベルに保持することによって、信号線を流れる電流を低減でき、消費電力の低減を実現できる。
【0048】
また、上述した第2および第3の実施形態の終端回路に比べると、本実施形態の終端回路は、CMOS構造の2つのインバータINV01,INV02、抵抗素子Rt ,RL およびキャパシタCt により構成され、回路構成が簡単である。さらに、抵抗素子Rt の抵抗値は、例えば数kΩで、抵抗素子RL の抵抗値は、数十Ω〜百Ω程度であり、キャパシタCt の容量値は数pf程度なので、何れもICチップに内蔵できるものである。このため、外付け素子の数を低減でき、チップの小型化を実現できる。このように、本実施形態の終端回路を用いれば、簡単な回路構成で信号線における反射を防止でき、信号線の電流を抑制でき、消費電力を低減できる。さらに、オペアンプを用いていないため、オペアンプの周波数特性の影響を受けることなく、高周波の信号伝送に適している。
【0049】
図6は、本実施形態の終端回路を用いた信号線で50MHzの周波数を持つ方形波を伝送する場合の信号線終端Bにおける信号の波形を示している。ここで、電源電圧VCCは3.0Vとする。図示のように、本実施形態の終端回路を用いることにより、信号の反射が完全に除去され、信号線の終端Bの信号にはオーバーシュートとアンダシュートはなく、波形の歪みはほとんど発生しない。
【0050】
第5実施形態
図7は本発明に係る終端回路の第5の実施形態を示す回路図である。
本実施形態の終端回路は、図5に示す第4の実施形態の終端回路にイネーブル機能を付加したものである。図示のように、トランジスタQ1のソースと電源電圧VCCの供給線との間にpMOSトランジスタQ5が接続され、トランジスタQ3のソースと電源電圧VCCの供給線との間にpMOSトランジスタQ7が接続されている。さらに、トランジスタQ2のソースと接地線との間にnMOSトランジスタQ6接続され、トランジスタQ4のソースと接地線との間にnMOSトランジスタQ8接続されている。トランジスタQ5とQ7のゲートに禁止信号DSBが印加され、トランジスタQ6とQ8のゲートに当該禁止信号DSBの反転信号が印加される。
【0051】
このように構成された終端回路は、禁止信号DSBがローレベルにあるとき、トランジスタQ5〜Q8がともにオン状態にあり、図5に示す第4の実施形態の終端回路とほぼ等価である。この場合、本実施形態の終端回路は、上述した第4の実施形態の終端回路と同じように動作する。
一方、禁止信号DSBがハイレベルにあるとき、トランジスタQ5〜Q8がともにオフ状態にある。この場合、当該終端回路の入出力端子はハイインピーダンス状態となり、終端回路としての機能を有しない。
【0052】
このように動作/禁止状態を外部からの禁止信号DSBにより設定できる終端回路は、多ビットのバスレシーバ回路などに有用である。例えば、16ビットのバスレシーバとしてすべてのビットのレシーバに本実施形態の終端回路を内蔵させることにより、信号線が長くなって、反射がシステムの品質に影響を与える場合には、禁止信号DSBをローレベルに設定することにより、各終端回路を動作状態に設定し、信号線の終端における反射を抑制する。一方、信号線が短く反射の影響を無視できる場合に、禁止信号DSBをハイレベルに設定することにより、各終端回路を非動作状態(ハイインピーダンス状態)に設定し、信号線の終端処理を行わない。このように、本実施形態の終端回路を用いた場合、信号線の状態に応じて終端処理を適宜に行うことができ、信号伝送における波形の歪みを抑制することで誤動作を回避でき、且つ消費電力の低減を実現できる。
【0053】
【発明の効果】
以上説明したように、本発明の終端回路によれば、信号伝送線の終端における反射を抑制でき、信号波形の歪みを低減でき、誤動作を防止できる。
特に本発明の終端回路によれば、少数の回路素子で終端回路を簡単に構成でき、インピーダンスの整合を実現でき、信号線の終端における反射を防止できるほか、平衡時に信号線における電流の発生を抑制し、消費電力の低減を実現できる利点がある。
【図面の簡単な説明】
【図1】本発明に係る終端回路の第1の実施形態を示す回路図である。
【図2】本発明に係る終端回路の第2の実施形態を示す回路図である。
【図3】本発明に係る終端回路の第3の実施形態を示す回路図である。
【図4】第1および第2の実施形態の終端回路を用いた場合の信号線の終端における信号の波形を示す波形図である。
【図5】本発明に係る終端回路の第4の実施形態を示す回路図である。
【図6】第4の実施形態の終端回路を用いた場合の信号線の終端における信号の波形を示す波形図である。
【図7】本発明に係る終端回路の第5の実施形態を示す回路図である。
【図8】ドライバ、信号線およびレシーバを含む信号伝送システムの一構成例を示す回路図である。
【図9】インピーダンスが不整合の場合の信号線の終端における信号歪みの発生を示す波形図である。
【符号の説明】
10…ドライバ、20…信号線、30…レシーバ、INV1,INV2,INV3…インバータ、BUF1…バッファ、OPA1,OPA2…オペアンプ、Rt ,RL …抵抗素子、Ct …キャパシタ、Q1,Q3,Q5,Q7…pMOSトランジスタ、Q2,Q4,Q6,Q8…nMOSトランジスタ、VCC…電源電圧、GND…接地電位。

Claims (6)

  1. 信号が伝送される信号線に入力端子が接続される第1の反転回路と、
    上記第1の反転回路の出力端子に現われる信号を積分し、当該積分信号の反転信号を出力する積分信号生成回路と、
    上記積分信号生成回路の出力端子と上記第1の反転回路の入力端子との間に接続され、上記信号線の特性インピーダンスに応じて抵抗値が規定されている第1の抵抗素子と
    を有する終端回路。
  2. 上記積分信号生成回路は、上記第1の反転回路の出力端子と当該積分信号生成回路の出力端子との間に直列に接続されている第2の抵抗素子及び容量素子と、反転入力端子が上記第2の抵抗素子と上記容量素子との接続中点に接続され、非反転入力端子が基準電位に接続され、出力端子が当該積分信号生成回路の出力端子に接続されている演算増幅回路とを含む請求項1に記載の終端回路。
  3. 信号が伝送される信号線に入力端子が接続されるバッファ回路と、
    上記バッファ回路の出力端子に現われる信号を積分した積分信号を出力する積分信号生成回路と、
    上記積分信号生成回路の出力端子と上記バッファ回路の入力端子との間に接続され、上記信号線の特性インピーダンスに応じて抵抗値が規定されている第1の抵抗素子と、
    を有する終端回路。
  4. 上記積分信号生成回路は、上記バッファ回路の出力端子と基準電位との間に直列に接続されている第2の抵抗素子及び容量素子と、非反転入力端子が上記第2の抵抗素子と上記容量素子との接続中点に接続され、反転入力端子と出力端子とが当該積分信号生成回路の出力端子に接続されている演算増幅回路とを含む請求項3に記載の終端回路。
  5. 信号が伝送される信号線に入力端子が接続される第1の反転回路と、
    上記第1の反転回路の出力端子に一端が接続される第1の抵抗素子と、
    上記第1の抵抗素子の他端に入力端子が接続される第2の反転回路と、
    上記第2の反転回路の入力端子と出力端子との間に接続される容量素子と、
    上記第2の反転回路の出力端子と上記第1の反転回路の入力端子との間に接続され、上記信号線の特性インピーダンスに応じて抵抗値が規定されている第2の抵抗素子と
    を有する終端回路。
  6. 上記第1の反転回路及び第2の反転回路を電源から電気的に切り離すためのスイッチ回路を有し、上記スイッチ回路により上記第1及び第2の反転回路を電源から切り離すことにより当該終端回路の入力端子及び出力端子をハイインピーダンス状態にする請求項5に記載の終端回路。
JP06216699A 1999-03-09 1999-03-09 終端回路 Expired - Fee Related JP4083914B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06216699A JP4083914B2 (ja) 1999-03-09 1999-03-09 終端回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06216699A JP4083914B2 (ja) 1999-03-09 1999-03-09 終端回路

Publications (2)

Publication Number Publication Date
JP2000261508A JP2000261508A (ja) 2000-09-22
JP4083914B2 true JP4083914B2 (ja) 2008-04-30

Family

ID=13192279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06216699A Expired - Fee Related JP4083914B2 (ja) 1999-03-09 1999-03-09 終端回路

Country Status (1)

Country Link
JP (1) JP4083914B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662472B2 (en) 2006-03-31 2010-02-16 Daido Metal Co., Ltd. Plain bearing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130975B2 (ja) 2008-03-19 2013-01-30 富士通株式会社 光スイッチ駆動回路
JP5151695B2 (ja) 2008-05-29 2013-02-27 富士通株式会社 駆動回路および光スイッチ
JP2017228920A (ja) * 2016-06-22 2017-12-28 株式会社デンソー リンギング抑制回路
CN113794361B (zh) * 2021-08-31 2023-08-18 上海威固信息技术股份有限公司 一种输入高电平自适应的输入驱动电路
JP2023102112A (ja) * 2022-01-11 2023-07-24 ソニーセミコンダクタソリューションズ株式会社 終端回路および半導体回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662472B2 (en) 2006-03-31 2010-02-16 Daido Metal Co., Ltd. Plain bearing

Also Published As

Publication number Publication date
JP2000261508A (ja) 2000-09-22

Similar Documents

Publication Publication Date Title
EP1011196A1 (en) Input-circuit, output-circuit, input-output circuit and method of processing input signals
US7109759B2 (en) Voltage mode current-assisted pre-emphasis driver
JPH03171849A (ja) 信号伝送方法および回路
JP3821982B2 (ja) 受信装置及び通信装置の伝送ライン終端回路
US20080150583A1 (en) Buffer circuit
JP4097149B2 (ja) 差動駆動回路およびそれを内蔵する電子機器
JP4083914B2 (ja) 終端回路
JP3047869B2 (ja) 出力振幅調整回路
JP4237402B2 (ja) 対称送信ライン駆動用出力バッファ
US6417708B1 (en) Resistively-loaded current-mode output buffer with slew rate control
US6850100B2 (en) Output buffer circuit
US7157931B2 (en) Termination circuits having pull-down and pull-up circuits and related methods
JP6524981B2 (ja) リンギング抑制回路
JP4005086B2 (ja) 半導体集積回路
JPH09130218A (ja) 演算増幅器およびディジタル信号伝達回路
JP3062225B2 (ja) 信号伝送方法及び回路
US20010024137A1 (en) Driver circuit
JP2665184B2 (ja) 出力バッファ回路及びこの出力バッファ回路を用いた伝送装置
JPH10215270A (ja) 車両用通信装置
JPH088978A (ja) 信号伝送回路
JPH06268456A (ja) 差動増幅器
JP2002299973A (ja) 増幅回路、増幅システム及びミュート方法
JP3249368B2 (ja) アラーム音出力回路
JP2938589B2 (ja) 半導体集積回路
CN116073796A (zh) 一种具有两输入与非门逻辑的施密特触发器电路、方法及芯片

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees