JP4079857B2 - Manufacturing method of connection device - Google Patents

Manufacturing method of connection device Download PDF

Info

Publication number
JP4079857B2
JP4079857B2 JP2003316878A JP2003316878A JP4079857B2 JP 4079857 B2 JP4079857 B2 JP 4079857B2 JP 2003316878 A JP2003316878 A JP 2003316878A JP 2003316878 A JP2003316878 A JP 2003316878A JP 4079857 B2 JP4079857 B2 JP 4079857B2
Authority
JP
Japan
Prior art keywords
spiral
heat treatment
base
contact
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003316878A
Other languages
Japanese (ja)
Other versions
JP2005085616A (en
Inventor
一義 佐々木
▲縉▼平 吉田
賢治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Systems Japan Inc
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Advanced Systems Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd, Advanced Systems Japan Inc filed Critical Alps Electric Co Ltd
Priority to JP2003316878A priority Critical patent/JP4079857B2/en
Priority to CN 200410076851 priority patent/CN1595735A/en
Publication of JP2005085616A publication Critical patent/JP2005085616A/en
Application granted granted Critical
Publication of JP4079857B2 publication Critical patent/JP4079857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Connecting Device With Holders (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Description

本発明は、例えばIC(集積回路)等が装着されるICソケットである接続装置の製造方法に係わり、特に、前記接続装置内に搭載されるスパイラル接触子を所定高さを有する立体形状に適切に成形できるとともに、スパイラル接触子のへたり率を低減できる接続装置の製造方法に関する。   The present invention relates to a method of manufacturing a connection device that is an IC socket to which, for example, an IC (integrated circuit) or the like is mounted. In particular, the spiral contact mounted in the connection device is suitable for a three-dimensional shape having a predetermined height. It is related with the manufacturing method of the connection apparatus which can be shape | molded and can reduce the settling rate of a spiral contactor.

特許文献1に記載されている半導体検査装置は、半導体を外部の回路基板などに電気的に仮接続させるものである。半導体の背面側には格子状またはマトリックス状に配置された多数の球状接触子が設けられており、これに対向する絶縁基板上には多数の凹部が設けられ、この凹部内にスパイラル接触子が対向配置されている。   The semiconductor inspection apparatus described in Patent Document 1 electrically temporarily connects a semiconductor to an external circuit board or the like. A large number of spherical contacts arranged in a lattice shape or a matrix shape are provided on the back side of the semiconductor, and a large number of concave portions are provided on an insulating substrate opposite to the spherical contacts, and spiral contacts are provided in the concave portions. Opposed.

前記半導体の背面側を前記絶縁基板に向けて押圧すると、前記球状接触子の外表面に前記スパイラル接触子が螺旋状に巻き付くように接触するため、個々の球状接触子と個々のスパイラル接触子との間の電気的接続が確実に行われるようになっている。
特開2002−175859号公報 特願2002−167999号
When the back side of the semiconductor is pressed toward the insulating substrate, the spiral contact contacts the outer surface of the spherical contact so that the spiral contact wraps spirally. The electrical connection between the two is ensured.
JP 2002-175859 A Japanese Patent Application No. 2002-167999

ところでこの特許文献1におけるスパイラル状接触子2は、平面的な形態であり、立体フォーミングは施されていない。   By the way, the spiral contact 2 in this patent document 1 is a planar form, and solid forming is not given.

しかし、前記スパイラル状接触子をある程度、立体フォーミングしておいた方が、前記球状接触子との電気的接続を良好且つ確実なものにできて好ましい。   However, it is preferable that the spiral contact is three-dimensionally formed to some extent, because the electrical connection with the spherical contact can be made good and reliable.

例えば前記立体フォーミングは以下の方法によって実現することが可能である。
図16は、スパイラル接触子50の平面図である。図17に示すように、前記スパイラル接触子50は、まず平面的に形成され、前記スパイラル接触子50の基部50bが、接着剤51を介して基台52に接合される。なお前記基台52には前記スパイラル接触子50と対向する位置に穴部52aが設けられている。
For example, the three-dimensional forming can be realized by the following method.
FIG. 16 is a plan view of the spiral contact 50. As shown in FIG. 17, the spiral contact 50 is first formed in a planar manner, and a base 50 b of the spiral contact 50 is joined to a base 52 via an adhesive 51. The base 52 is provided with a hole 52 a at a position facing the spiral contact 50.

図17に示すように、前記スパイラル接触子50の下方から前記穴部52a内に突出調整部材70を通し、前記突出調整部材70を前記スパイラル接触子50の各ターン毎の接触子片50aに当接させて上方に押し上げ、図18に示すように、各接触子片50aを上方に突き出す。そして前記突出調整部材70を取り除く。   As shown in FIG. 17, a protrusion adjusting member 70 is passed through the hole 52 a from below the spiral contact 50, and the protrusion adjusting member 70 contacts the contact piece 50 a for each turn of the spiral contact 50. As shown in FIG. 18, each contact piece 50a protrudes upward. Then, the protrusion adjusting member 70 is removed.

しかしながら、図17ないし図18に示す立体フォーミング工程を施したスパイラル接触子20には、以下のような問題点が発生した。   However, the following problems occur in the spiral contactor 20 subjected to the three-dimensional forming process shown in FIGS.

まず、前記スパイラル接触子50は、通常、接続装置に一個ではなく複数個設けられている。図17ないし図18に示す立体フォーミング方法では、個別に前記スパイラル接触子50を立体成形していくため、各スパイラル接触子50の高さ寸法にばらつきが生じやすくなっていた。   First, the spiral contact 50 is usually provided in a plurality of connection devices instead of one. In the three-dimensional forming method shown in FIGS. 17 to 18, the spiral contacts 50 are individually three-dimensionally formed, so that the height dimension of each spiral contact 50 tends to vary.

次に、図18工程のときに、前記スパイラル接触子50の高さ寸法H1を、前記突出調整部材70により所定高さに調整しても、前記突出調整部材70を取り除くと、スプリングバックにより、前記スパイラル接触子50の高さ寸法がH1からH2に小さくなってしまう(図19)。   Next, even when the height dimension H1 of the spiral contactor 50 is adjusted to a predetermined height by the protrusion adjusting member 70 in the step of FIG. 18, if the protrusion adjusting member 70 is removed, The height of the spiral contact 50 is reduced from H1 to H2 (FIG. 19).

このため図18の段階で、後のスプリングバック量を計算に入れながら必要以上に前記スパイラル接触子50の高さ寸法H1を高くしなければならない。しかしこの際、前記スパイラル接触子50に強い応力がかかって、前記スパイラル接触子50の各接触子片50aが折れたりするなどの不具合を生じやすくなっていた。   Therefore, at the stage of FIG. 18, the height dimension H1 of the spiral contact 50 must be increased more than necessary while taking into account the later springback amount. However, at this time, a strong stress is applied to the spiral contact 50, and the contact pieces 50a of the spiral contact 50 are easily broken.

また、上記したスプリングバックのために、何度も前記突出調整部材70を用いてスパイラル接触子50の高さ調整をしないと、前記突出調整部材70を除去した後で、前記スパイラル接触子50の高さ寸法H2を必要な高さに維持できず、スパイラル接触子50の立体フォーミング工程に時間がかかり作業が煩雑化していた。   Further, due to the spring back described above, if the height of the spiral contact 50 is not adjusted many times by using the protrusion adjusting member 70, after the protrusion adjusting member 70 is removed, The height dimension H2 could not be maintained at a required height, and the three-dimensional forming process of the spiral contactor 50 took time and the work was complicated.

また特許文献1に記載されている半導体検査装置は、例えばバーンイン試験と呼ばれる高温動作確認等の試験に使用されるものであるが、かかる場合、高い加熱温度により、立体成形されていたスパイラル接触子50がへたってしまい、図17に示す平面的な形状に近い状態にまで戻りやすかった。   Further, the semiconductor inspection apparatus described in Patent Document 1 is used for a test such as a high-temperature operation confirmation called a burn-in test, for example. In such a case, the spiral contactor that has been three-dimensionally molded at a high heating temperature. 50 sag, and it was easy to return to a state close to the planar shape shown in FIG.

そこで本発明は上記従来の課題を解決するためのものであり、特にスパイラル接触子を立体成形した後、熱処理を施すことで、所定高さの立体形状に形成できるとともに、へたり率を低減できる接続装置の製造方法を提供することを目的としている。   Accordingly, the present invention is to solve the above-described conventional problems, and in particular, by performing heat treatment after three-dimensionally forming a spiral contact, it is possible to form a three-dimensional shape with a predetermined height and reduce the sag rate. It aims at providing the manufacturing method of a connection device.

本発明は、基台と、前記基台に設けられた複数のスパイラル形状の弾性接触子とを有し、電子部品に設けられた複数の外部接続部が、スパイラル形状の弾性接触子にそれぞれ接触する接続装置の製造方法において、
平面形状でスパイラル形状の弾性接触子の基部が前記基台に接合し前記弾性接触子の先部が前記基台に形成された貫通孔に対向するように、前記基台と前記弾性接触子とが重ねられた構造を形成する工程と、
前記弾性接触子が設けられているのと逆側から前記基台の前記貫通孔内に治具を通し前記弾性接触子を押圧して、前記弾性接触子をその先部が前記基台から離れる立体形状とする工程と、
記治具による押圧を維持したまま前記弾性接触子を加熱して立体形状の前記弾性接触子の応力を緩和する熱処理を施す工程とを有し、
前記熱処理後に前記治具を取り除いたときに、前記弾性接触子が、その先部が基台から所定高さ離れた立体形状を維持し、且つ弾性変形可能とされることを特徴とするものである。
本発明では、先端部側から後端部側に向けて徐々に幅寸法が広がる突出部を備えた前記治具を用い、前記治具の先端部で前記弾性接触子を押圧する。
また本発明では、前記治具により、前記スパイラル形状の弾性接触子の前記先部を押圧することが好ましい。これにより前記弾性接触子を、その中心付近が最も高い位置に突き出す山型形状に適切に形成できる。
The present invention includes a base and a plurality of spiral-shaped elastic contacts provided on the base, and a plurality of external connection portions provided on the electronic component are in contact with the spiral-shaped elastic contacts, respectively. In the manufacturing method of the connecting device,
The base, the elastic contact, and the base of the spiral elastic contact in a planar shape are joined to the base and the tip of the elastic contact is opposed to a through hole formed in the base. Forming a stacked structure, and
A jig is passed through the through hole of the base from the side opposite to where the elastic contact is provided to press the elastic contact, and the tip of the elastic contact is separated from the base. A step of forming a three-dimensional shape;
And a step of performing heat treatment to relieve the stress of the elastic contacts of the three-dimensional shape by heating the resilient contacts while maintaining the press by pre Kichi tool,
When the jig is removed after the heat treatment, the elastic contact maintains its three-dimensional shape with its tip portion separated from the base by a predetermined height and is elastically deformable. is there.
In the present invention, the elastic contactor is pressed at the front end portion of the jig using the jig provided with the protruding portion whose width gradually increases from the front end side toward the rear end side.
Moreover, in this invention, it is preferable to press the said front part of the said spiral shaped elastic contactor with the said jig | tool. Thereby, the said elastic contact can be appropriately formed in the mountain shape which protrudes in the position where the center vicinity is the highest.

本発明では前記処理工程により、前記弾性接触子を構成する金属元素の結晶状態が変化し、立体形状を維持したまま結晶状態が安定化し、また応力も緩和されるため、前記弾性接触子を所定高さの立体形状に適切に形成できるとともに、前記接続装置の繰返し使用によっても前記弾性接触子のへたり率を従来より低減できる。 By the heat treatment step in the present invention, since the crystalline state changes in the metal elements constituting the elastic contact piece, the crystal state is stabilized while maintaining the three-dimensional shape, the stress is also alleviated, the elastic contact piece While being able to form appropriately in the solid | 3D shape of predetermined height, the sag rate of the said elastic contactor can be reduced conventionally also by the repeated use of the said connection apparatus.

発明では、前記弾性接触子を治具を用いて立体成形し、前記処理工程を施した後に、前記治具を取り外すすなわち前記治具を設置した状態のまま前記処理を施す。治具によって立体成形された弾性接触子はその状態のまま前記処理が施されて力の緩和が図られるから、治具によって立体成形されたときの高さ寸法から、あまりへたること無く、所定高さ寸法を有する立体形状に形成できる。 In the present invention, three-dimensionally shaped by using a jig with the elastic contacts, after performing the heat treatment step, removing the jig. That subjected to the heat treatment in the state that installing the jig. Since the elastic contact which is three-dimensionally shaped by jig relaxation remains the heat treatment is performed by stress of the condition is achieved, the height when it is three-dimensionally shaped by a jig, without upcoming fart too , A three-dimensional shape having a predetermined height can be formed.

また本発明では、前記処理工程を施した後、前記処理工程よりも高い加熱温度で且つ長い加熱時間の第2の熱処理工程を施すことが、記接続装置の繰返し使用によっても前記弾性接触子のへたり率を従来より効果的に低減できる。 In the present invention, after performing the heat treatment step, applying a second heat treatment step and long heating time at a higher heating temperature than the thermal processing step, the elastic by repeated use of the pre-Symbol connecting device The rate of contact sag can be reduced more effectively than before.

また本発明では、前記2の熱処理工程を、前記治具を取り外した後に施してもよい。 In the present invention, the second heat treatment step may be performed after the jig is removed.

また本発明では、前記第2の熱処理工程の加熱温度、前記接続装置の実使用の環境温度よりも高い温度に設定することが好ましい。これにより接続装置の実使用の環境温度にさらされても、前記弾性接触子のへたり量を適切に抑制でき、前記弾性接触子を所定高さ寸法を有する立体形状に長期間、維持できる。また本発明では、前記第2の熱処理工程の加熱温度を、バーンイン試験での加熱温度よりも高い温度に設定することが好ましい。 Moreover, in this invention, it is preferable to set the heating temperature of a said 2nd heat processing process to a temperature higher than the environmental temperature of the actual use of the said connection apparatus. Thus even when exposed to the environmental temperature of actual use of the connection device, the amount of sag of the elastic contact piece can appropriately suppress a long period of time the resilient contacts in the three-dimensional shape having a predetermined height dimension can be maintained. In the present invention, it is preferable to set the heating temperature in the second heat treatment step to a temperature higher than the heating temperature in the burn-in test.

なお本発明では、前記第2の熱処理工程の加熱温度を、170℃〜200℃の間、加熱時間を20時間〜200時間の間とすることが好ましい。   In the present invention, it is preferable that the heating temperature of the second heat treatment step is 170 to 200 ° C. and the heating time is 20 to 200 hours.

また本発明では、前記処理工程の加熱温度を、100〜200℃の間で、加熱時間を30分〜12時間の間とすることが好ましい。
また本発明では、前記熱処理工程の加熱温度を、前記接続装置の実使用の環境温度よりも高い温度に設定することが好ましい。また、前記熱処理工程の加熱温度を、バーンイン試験での加熱温度よりも高い温度に設定することが好ましい。また、前記熱処理工程の加熱温度を、170℃〜200℃の間、加熱時間を20時間〜200時間の間とすることが好ましい。
In the present invention, the heating temperature of the heat treatment step, between 100 to 200 ° C., it is preferable to set the heating time and for 30 minutes to 12 hours.
Moreover, in this invention, it is preferable to set the heating temperature of the said heat processing process to the temperature higher than the environmental temperature of the actual use of the said connection apparatus. Moreover, it is preferable to set the heating temperature of the heat treatment step to a temperature higher than the heating temperature in the burn-in test. Moreover, it is preferable that the heating temperature of the said heat processing process shall be between 170 degreeC-200 degreeC, and heating time shall be between 20 hours-200 hours.

また本発明では、各弾性接触子を、前記治具を用いて同時に立体成形することが、各弾性接触子の高さ寸法にばらつきが発生するのを抑制できて好ましい。 Further, in the present invention, it is preferable that the respective elastic contacts are simultaneously three-dimensionally formed using the jig because variation in the height dimension of each elastic contact can be suppressed.

なお本発明では、前記弾性接触子を箔体あるいはメッキ、または箔体とメッキ層との積層構造で形成した場合に、特に効果がある。メッキや箔体で形成された弾性接触子は非常に小さい構造のため、前記弾性接触子を立体成形するための治具のみで高さ調整をすることが非常に難しいこと、熱処理を施さないと、メッキや箔体による弾性接触子は非晶質状態、あるいは部分的な結晶化状態のため、立体成形されても実使用の環境下での様々な要因により結晶状態が流動的に変化しやすく、塑性変形が生じやすいこと、などによる。 The present invention is particularly effective when the elastic contactor is formed by a foil body or plating, or a laminated structure of a foil body and a plating layer. The elastic contact formed by plating or foil is a very small structure, so it is very difficult to adjust the height with only a jig for three-dimensional molding of the elastic contact. The elastic contact made of plated or foil body is in an amorphous state or partially crystallized state, so even if it is three-dimensionally molded, the crystal state is likely to change fluidly due to various factors in the actual use environment. This is because plastic deformation is likely to occur.

本発明ではスパイラル接触子を立体成形した後、熱処理工程を施すことにより、前記スパイラル接触子を構成する金属元素の結晶状態が変化し、立体形状を維持したまま結晶状態が安定化し、また応力も緩和されるため、前記スパイラル接触子を所定高さの立体形状に適切に形成できるとともに、前記接続装置の繰返し使用によっても前記スパイラル接触子のへたり率を従来より低減できる。   In the present invention, after the spiral contact is three-dimensionally formed, a heat treatment process is performed, so that the crystal state of the metal element constituting the spiral contact changes, the crystal state is stabilized while maintaining the three-dimensional shape, and the stress is also reduced. Therefore, the spiral contact can be appropriately formed into a three-dimensional shape having a predetermined height, and the rate of sag of the spiral contact can be reduced by repeated use of the connecting device.

図1は電子部品の動作を確認するための試験に用いられる検査装置を示す斜視図、図2は図1の2−2線における断面図を示し、電子部品が装着された状態の断面図である。   1 is a perspective view showing an inspection apparatus used in a test for confirming the operation of an electronic component, and FIG. 2 is a sectional view taken along line 2-2 of FIG. is there.

図1に示すように、検査装置10は基台11と、この基台11の一方の縁部に設けられたひんじ部13を介して回動自在に支持された蓋体12とで構成されている。前記基台11および蓋体12は絶縁性の樹脂材料などで形成されており、前記基台11の中心部には図示Z2方向に凹となる装填領域11Aが形成されている。そして、前記装填領域11A内に半導体などの電子部品1が装着できるようになっている。また基台11の他方の縁部には、被ロック部14が形成されている。   As shown in FIG. 1, the inspection apparatus 10 includes a base 11 and a lid 12 that is rotatably supported via a hinge 13 provided on one edge of the base 11. ing. The base 11 and the lid body 12 are formed of an insulating resin material or the like, and a loading region 11A that is concave in the Z2 direction is formed at the center of the base 11. An electronic component 1 such as a semiconductor can be mounted in the loading area 11A. A locked portion 14 is formed on the other edge of the base 11.

図2に示すように、この検査装置10は、電子部品1の下面に多数の球状接触子(外部接続部)1aがマトリックス状(格子状または碁盤の目状)に配置されたものを検査対象とするものである。   As shown in FIG. 2, this inspection apparatus 10 is an inspection object in which a large number of spherical contacts (external connection parts) 1a are arranged in a matrix (lattice or grid) on the lower surface of the electronic component 1. It is what.

図2に示すように、前記装填領域11Aには所定の径寸法からなり、装填領域11Aの表面から基台11の裏面に貫通する複数の凹部(スルーホール)11aが、前記電子部品1の球状接触子1aに対応して設けられている。   As shown in FIG. 2, the loading area 11 </ b> A has a predetermined diameter, and a plurality of recesses (through holes) 11 a penetrating from the front surface of the loading area 11 </ b> A to the back surface of the base 11 have a spherical shape of the electronic component 1. It is provided corresponding to the contact 1a.

前記凹部11aの上面(装填領域11Aの表面)には、接触子が渦巻き状に形成された複数のスパイラル接触子20が設けられている。   A plurality of spiral contacts 20 in which contacts are formed in a spiral shape are provided on the upper surface of the recess 11a (the surface of the loading region 11A).

図3は前記スパイラル接触子20の斜視図である。図3に示すように、前記スパイラル接触子20は基台11に、図示X方向及びY方向に所定間隔を空けて複数形成されている。   FIG. 3 is a perspective view of the spiral contact 20. As shown in FIG. 3, a plurality of the spiral contacts 20 are formed on the base 11 with predetermined intervals in the X direction and the Y direction shown in the figure.

前記各スパイラル接触子20は、図3のように、前記凹部11aの上方の開口端の縁部に固定された基部21を有し、スパイラル接触子20の巻き始端22が前記基部21側に設けられている。そして、この巻き始端22から渦巻き状に延びる巻き終端23が前記凹部11aの中心に位置するようになっている。   As shown in FIG. 3, each spiral contact 20 has a base 21 fixed to the edge of the open end above the recess 11a, and the winding start end 22 of the spiral contact 20 is provided on the base 21 side. It has been. A winding end 23 extending spirally from the winding start end 22 is positioned at the center of the recess 11a.

前記凹部11aの内壁面には図示しない導通部が形成されており、導通部の上端と前記スパイラル接触子20の前記基部21とが導電性接着材などで接続されている。また凹部11aの下方の開口端は前記導通部に接続された接続端子18で塞がれている。   A conductive portion (not shown) is formed on the inner wall surface of the concave portion 11a, and the upper end of the conductive portion and the base portion 21 of the spiral contactor 20 are connected by a conductive adhesive or the like. The opening end below the recess 11a is closed by a connection terminal 18 connected to the conducting portion.

図2に示すように、前記基台11の下方には複数の配線パターンやその他の回路部品を有するプリント基板29が設けられており、前記基台11はこのプリント基板29上に固定されている。前記プリント基板29の表面には前記基台11の底面に設けられた接続端子18に対向する対向電極28が設けられており、前記各接続端子18が各対向電極28にそれぞれ接触することにより、電子部品1とプリント基板29とが検査装置10を介して電気的に接続される。   As shown in FIG. 2, a printed circuit board 29 having a plurality of wiring patterns and other circuit components is provided below the base 11, and the base 11 is fixed on the printed board 29. . The surface of the printed circuit board 29 is provided with a counter electrode 28 facing the connection terminal 18 provided on the bottom surface of the base 11, and the connection terminals 18 come into contact with the counter electrodes 28, respectively. The electronic component 1 and the printed circuit board 29 are electrically connected via the inspection apparatus 10.

一方、検査装置10の蓋体12の内面の中央の位置には、電子部品1を図示下方に押し付ける凸形状の押圧部12aが前記装填領域11Aに対向して設けられている。また前記ひんじ部13と逆側となる位置にはロック部15が形成されている。   On the other hand, at the center position of the inner surface of the lid 12 of the inspection apparatus 10, a convex pressing portion 12a that presses the electronic component 1 downward in the figure is provided so as to face the loading area 11A. Further, a lock portion 15 is formed at a position on the opposite side to the hinge portion 13.

前記蓋体12の内面と押圧部12aとの間には前記押圧部12aを蓋体12の内面から遠ざかる方向に付勢するコイルスプリングなどからなる付勢部材が設けられている(図示せず)。従って、電子部品1を前記凹部11a内に装着して蓋体12を閉じてロックすると、電子部品1を装填領域11Aの表面に接近する方向(Z2方向)に弾性的に押し付けることが可能となっている。   Between the inner surface of the lid body 12 and the pressing portion 12a, a biasing member made of a coil spring or the like that biases the pressing portion 12a away from the inner surface of the lid body 12 is provided (not shown). . Accordingly, when the electronic component 1 is mounted in the recess 11a and the lid 12 is closed and locked, the electronic component 1 can be elastically pressed in the direction approaching the surface of the loading region 11A (Z2 direction). ing.

前記基台11の装填領域11Aの大きさは、前記電子部品1の外形とほぼ同じ大きさであり、電子部品1を前記装填領域11Aに装着して蓋体12をロックすると、電子部品1側の各球状接触子1aと検査装置10側の各スパイラル接触子20とが正確に対応して位置決めできるようになっている。   The size of the loading area 11A of the base 11 is substantially the same as the outer shape of the electronic component 1, and when the electronic component 1 is mounted on the loading area 11A and the lid 12 is locked, the electronic component 1 side Each spherical contact 1a and each spiral contact 20 on the inspection apparatus 10 side can be positioned accurately in correspondence with each other.

蓋体12のロック部15が基台11の被ロック部14にロックされると、電子部品1が前記押圧部12aによって図示下方に押し付けられるため、前記各球状接触子1aが各スパイラル接触子20を凹部11aの内部方向(図示下方)に押し下げる。同時に、スパイラル接触子20の外形は、前記巻き終端23から巻き始端22方向(渦巻きの中心から外方向)に押し広げられるように変形し、前記球状接触子1aの外表面を抱き込むように巻き付き、各球状接触子1aと各スパイラル接触子20とが接続される。   When the lock part 15 of the lid 12 is locked to the locked part 14 of the base 11, the electronic component 1 is pressed downward in the figure by the pressing part 12 a, so that each spherical contact 1 a becomes each spiral contact 20. Is pushed downward in the recess 11a (downward in the figure). At the same time, the outer shape of the spiral contact 20 is deformed so as to be expanded from the winding end 23 toward the winding start end 22 (outward from the center of the spiral), and is wound so as to embrace the outer surface of the spherical contact 1a. Each spherical contact 1a and each spiral contact 20 are connected.

図3に示す各スパイラル接触子20は、その巻き終端23付近が最も高く突き出すように山型形状に立体成形されたものである。   Each spiral contact 20 shown in FIG. 3 is three-dimensionally formed into a mountain shape so that the vicinity of the winding end 23 protrudes highest.

本発明におけるスパイラル接触子20は、次のような方法によって製造される。図4ないし図9は本発明におけるスパイラル接触子20の製造方法(第1の製造方法)を示す一工程図である。   The spiral contact 20 in the present invention is manufactured by the following method. FIG. 4 to FIG. 9 are process diagrams showing a manufacturing method (first manufacturing method) of the spiral contact 20 according to the present invention.

図4に示す符号30は、基板であり、前記基板30は絶縁基板でも導電基板でもどちらでもよい。   Reference numeral 30 shown in FIG. 4 is a substrate, and the substrate 30 may be either an insulating substrate or a conductive substrate.

図4に示す工程では、前記基板30上にレジスト層31を例えばスピンコートなどで塗布し、露光現像により、図6に示すスパイラル接触子20の形状のパターン31aを形成する。   In the step shown in FIG. 4, a resist layer 31 is applied on the substrate 30 by, for example, spin coating, and a pattern 31a having the shape of the spiral contact 20 shown in FIG. 6 is formed by exposure and development.

次に前記パターン31a内にスパイラル接触子20を構成する各接触子片20a及び基部21をメッキ形成する。   Next, the contact pieces 20a and the base 21 constituting the spiral contact 20 are formed by plating in the pattern 31a.

ここで前記接触子片20a及び基部21を単層でメッキ形成しても、材質の異なる複数の層を積層してメッキ形成してもどちらでもよい。例えば前記接触子片20a及び基部21を、CuとNi、あるいはNiとAuなどを積層メッキ形成する。   Here, the contact piece 20a and the base portion 21 may be formed by plating with a single layer, or a plurality of layers made of different materials may be stacked and formed by plating. For example, the contact piece 20a and the base portion 21 are formed by multilayer plating of Cu and Ni or Ni and Au.

なお図4工程で、基板30に絶縁基板を用いた場合には、前記レジスト層31を塗布する前に前記基板30上にメッキ下地層をスパッタ法などで形成しておく必要があるが、前記基板30に導電基板を用いた場合には、前記メッキ下地層の形成は必要ない。   4, when an insulating substrate is used as the substrate 30, it is necessary to form a plating base layer on the substrate 30 by a sputtering method or the like before applying the resist layer 31. When a conductive substrate is used as the substrate 30, it is not necessary to form the plating base layer.

次に図5に示す工程では、まず前記レジスト層31を薬品により除去する。次に、各スパイラル接触子20の基部21間を接合部材32によって繋ぐ。前記接合部材32には、ちょうど前記スパイラル接触子20よりも一回り大きい穴部32aが設けられており、この穴部32aとスパイラル接触子20とを位置合わせし、前記スパイラル接触子20の基部21上に前記接合部材32を貼り付ける。前記接合部材32は例えばポリイミド等で形成される。そして前記基板30を除去する。   Next, in the step shown in FIG. 5, the resist layer 31 is first removed with a chemical. Next, the base portions 21 of the spiral contacts 20 are connected by the joining member 32. The joining member 32 is provided with a hole 32 a that is slightly larger than the spiral contact 20. The hole 32 a is aligned with the spiral contact 20, and the base 21 of the spiral contact 20 is aligned. The joining member 32 is stuck on the top. The joining member 32 is made of, for example, polyimide. Then, the substrate 30 is removed.

図5の時点において、各スパイラル接触子20を真上から見ると図6に示す形状になっている。図4、図5に示す工程で形成された前記スパイラル接触子20は平面的に形成され、前記スパイラル接触子20を構成する各接触子片20aは全てほぼ同じ高さとなっている。   When each spiral contact 20 is viewed from directly above at the time of FIG. 5, the shape is as shown in FIG. The spiral contact 20 formed in the steps shown in FIGS. 4 and 5 is formed in a plane, and all the contact pieces 20a constituting the spiral contact 20 have substantially the same height.

次に図7に示す工程で、接合部材32によって繋げられた各スパイラル接触子20を、異方性導電接着剤33を介して基台11に接合する。なお前記基台11には前記スパイラル接触子20と対向する位置に凹部11aが設けられ、前記スパイラル接触子20と前記凹部11aとの位置を合わせて、各スパイラル接触子20を前記基台11に接合する。   Next, in the step shown in FIG. 7, the spiral contacts 20 connected by the joining member 32 are joined to the base 11 via the anisotropic conductive adhesive 33. The base 11 is provided with a concave portion 11 a at a position facing the spiral contact 20, and the spiral contact 20 and the concave portion 11 a are aligned so that each spiral contact 20 is attached to the base 11. Join.

図8工程では、各スパイラル接触子20の基部21間を繋げている接合部材32上に固定部材35を設け、この工程で行われる前記スパイラル接触子20の立体成形の際に、前記基台11ががたつかないように、前記固定部材35により前記基台11を固定する。   In the process of FIG. 8, the fixing member 35 is provided on the joining member 32 that connects the bases 21 of the spiral contacts 20, and the base 11 is formed during the three-dimensional molding of the spiral contact 20 performed in this process. The base 11 is fixed by the fixing member 35 so as not to rattle.

この固定部材35には、ちょうどスパイラル接触子20が形成されている位置に穴部35aが設けられており、前記スパイラル接触子20の立体成形の際に、前記固定部材35が邪魔にならないようになっている。   The fixing member 35 is provided with a hole 35a at a position where the spiral contact 20 is formed, so that the fixing member 35 does not get in the way when the spiral contact 20 is three-dimensionally formed. It has become.

前記固定部材35は、少なくとも前記スパイラル接触子20を構成する各接触子片20a上に設けられていなければ、前記接合部材32上ではなく他の位置に設けられていてもよい。   As long as the fixing member 35 is not provided at least on each contact piece 20a constituting the spiral contact 20, it may be provided at a position other than the joining member 32.

次に図8に示すように、前記基台11に設けられた凹部11aに突出調整部材36を通し、前記突出調整部材36を上方に向けて押し上げる。   Next, as shown in FIG. 8, the protrusion adjusting member 36 is passed through the recess 11 a provided in the base 11, and the protrusion adjusting member 36 is pushed upward.

ところで本発明における前記突出調整部材36は、土台36aと、前記土台36aから上方に向けて突き出す突出部36bとで構成され、図8では前記突出部36bを高さ方向から切断したとき、その断面は二等辺三角形の形状となっている。すなわち前記突出部36bの両側部36b1,36b1は、下方に向けて徐々に前記突出部36bの断面の幅が広がるように傾斜している。   By the way, the protrusion adjusting member 36 according to the present invention is composed of a base 36a and a protrusion 36b protruding upward from the base 36a. In FIG. 8, when the protrusion 36b is cut from the height direction, a cross section thereof is obtained. Is in the shape of an isosceles triangle. That is, both side portions 36b1 and 36b1 of the protruding portion 36b are inclined so that the width of the cross section of the protruding portion 36b gradually increases downward.

本発明では前記突出部36bの頂点部36cを、例えば図6に示すスパイラル接触子20の各接触子片20a間の空間部のうち、ちょうど前記巻き終端2の脇に存在し行き止まりとなっている空間部Aに位置合わせし、この空間部Aに前記突出部36bの頂点部36cを通して、前記スパイラル接触子20を上方に突き上げる。 The apex portion 36c of the protruding portion 36b in the present invention, for example, of the space between each contact child piece 20a of the spiral contact 20 shown in FIG. 6, just there to become a dead end on the side of the winding end 2 3 The spiral contact 20 is pushed upward through the apex 36c of the protrusion 36b.

前記突出部36bの両側部36b1,36b1は、下方に向けて前記突出部36bの幅寸法が徐々に広がるように傾斜しているため、前記突出部36bを上方に突き上げて前記スパイラル接触子20を立体成形すると、前記スパイラル接触子20の各接触子片20aは、その巻き終端22から巻き終端23に向うほど徐々に高さ位置が高くなるように突き上げられやすく、所定の山型形状に前記スパイラル接触子20を立体成形しやすい。   Since both side portions 36b1 and 36b1 of the projecting portion 36b are inclined so that the width dimension of the projecting portion 36b gradually expands downward, the projecting portion 36b is pushed up to raise the spiral contactor 20. When the three-dimensional molding is performed, each contact piece 20a of the spiral contact 20 is easily pushed up so that the height position gradually increases from the winding end 22 toward the winding end 23, and the spiral contact 20 is formed into a predetermined mountain shape. It is easy to form the contact 20 three-dimensionally.

前記突出部36bの断面形状は図8のものに限らないが、図10のように、少なくとも突出部40の先端部40aの両側部40a1,40a1が、下方に向けて徐々に前記突出部40の断面の幅が広がるように湾曲、あるいは傾斜する形態であることが好ましい。   The cross-sectional shape of the protrusion 36b is not limited to that of FIG. 8, but at least both side portions 40a1 and 40a1 of the tip 40a of the protrusion 40 are gradually lowered downward as shown in FIG. A shape that is curved or inclined so that the width of the cross section is widened is preferable.

図11のように、突出部41の断面が略矩形状であり、前記突出部41の上面41aが平面形状で広く形成されていると、特に前記スパイラル接触子20との位置合わせが正確に行われていないと、全体的にバランスよく立体成形されず、ある一部位に強いストレスが加わって、その部位が折れたり損傷したりするなどの不具合が生じやすい。   As shown in FIG. 11, when the cross section of the protruding portion 41 is substantially rectangular and the upper surface 41a of the protruding portion 41 is widely formed in a planar shape, the alignment with the spiral contact 20 is particularly accurately performed. Otherwise, solid molding is not performed in a well-balanced manner overall, and a strong stress is applied to a certain part, and problems such as breakage or damage of the part are likely to occur.

また図8に示す突出調整部材36は、図12に示すように、土台26a上に複数の突出部36b(図12には2つの突出部のみに符号が付されている)が設けられた形態であることが好ましい。   Further, as shown in FIG. 12, the protrusion adjusting member 36 shown in FIG. 8 has a configuration in which a plurality of protrusions 36b (only two protrusions are marked in FIG. 12) are provided on the base 26a. It is preferable that

図12に示す突出部36bは円錐形である。各突出部36bは、各スパイラル接触子20と対向する位置に設けられており、図12に示すように、土台36aのX方向及びY方向に所定間隔を有して規則的に設けられている。   The protrusion 36b shown in FIG. 12 has a conical shape. Each protrusion 36b is provided at a position facing each spiral contact 20, and is regularly provided with a predetermined interval in the X and Y directions of the base 36a as shown in FIG. .

図12に示すような突出調整部材36を用いれば、複数あるスパイラル接触子20を同時に立体成形でき、各スパイラル接触子20の高さ寸法のばらつきを抑制できる。   If the protrusion adjusting member 36 as shown in FIG. 12 is used, a plurality of spiral contacts 20 can be three-dimensionally formed at the same time, and variations in the height dimension of each spiral contact 20 can be suppressed.

本発明では、上記のように図8工程で前記スパイラル接触子20を立体成形するが、前記立体成形した後に、第1の熱処理を施す点に特徴がある。   In the present invention, the spiral contactor 20 is three-dimensionally formed in the process of FIG. 8 as described above, but is characterized in that a first heat treatment is performed after the three-dimensional formation.

前記第1の熱処理を施すことで、前記スパイラル接触子20を構成する金属元素の結晶状態を変化させ、立体形状を維持したまま結晶状態を安定化させることができるとともに、また応力も緩和できるため、前記スパイラル接触子を所定高さの立体形状に適切に形成できる。   By performing the first heat treatment, the crystal state of the metal element constituting the spiral contactor 20 can be changed, the crystal state can be stabilized while maintaining the three-dimensional shape, and the stress can be relaxed. The spiral contact can be appropriately formed into a three-dimensional shape having a predetermined height.

このため前記突出調整部材36を取り除いても、前記スパイラル接触子20のスプリングバック量を小さくでき、よって図8工程でのスパイラル接触子20を立体成形した際の高さ寸法H3を必要以上に高くする必要がなくなる。この結果、従来のように、将来の大きなスプリングバックを見込んで、立体成形の際に必要以上にスパイラル接触子20を上方に突き上げ、前記スパイラル接触子20の各接触子片20aに多大な応力が加えられて生じた折れなどの損傷を未然に防止することができる。   For this reason, even if the protrusion adjusting member 36 is removed, the amount of spring back of the spiral contactor 20 can be reduced, so that the height dimension H3 when the spiral contactor 20 is three-dimensionally formed in the process of FIG. There is no need to do it. As a result, in anticipation of a large future spring back as in the prior art, the spiral contact 20 is pushed up more than necessary during three-dimensional molding, and a large amount of stress is applied to each contact piece 20a of the spiral contact 20. It is possible to prevent damage such as breakage caused by the addition.

上記した前記第1の熱処理は、図8に示すようにスパイラル接触子20を突出調整部材36を用いて立体成形した後、前記突出調整部材36を取り外さないで行うことが好ましい。第1の熱処理を行う前に前記突出調整部材36を取り外してしまうと、スプリングバックにより、前記スパイラル接触子20が図7に示す平面的な形状に近い状態にまで戻ってしまうからである。   The first heat treatment described above is preferably performed without removing the protrusion adjusting member 36 after the spiral contact 20 is three-dimensionally formed using the protrusion adjusting member 36 as shown in FIG. This is because if the protrusion adjusting member 36 is removed before the first heat treatment, the spiral contact 20 returns to a state close to the planar shape shown in FIG.

よって図8のように突出調整部材36がスパイラル接触子20を上方に突き上げている状態で第1の熱処理を行う。   Therefore, the first heat treatment is performed in a state where the protrusion adjusting member 36 pushes the spiral contact 20 upward as shown in FIG.

この第1の熱処理条件は、加熱温度が100℃〜200℃の間で、加熱時間が30分〜12時間の間であることが好ましい。前記加熱温度は、これよりも低い温度であったり加熱時間が短すぎると、力緩和が適切になされず、前記第1の熱処理工程後に前記突出調整部材36を取り除いたときに、スプリングバックが大きくいものとなってしまう。 As for this 1st heat processing conditions, it is preferable that heating temperature is between 100 degreeC-200 degreeC, and heating time is between 30 minutes-12 hours. The heating temperature is the temperature at a or the heating time less than this is too short, not done properly the stress relaxation, when removing the protrusion adjustment member 36 after the first heat treatment step, springback It will be big.

次に図9に示す工程では前記突出調整部材36及び固定部材35を取り除く。このとき、スプリングバックにより若干、前記スパイラル接触子20の高さ寸法H4は図8の突出調整部材36を取り除く前に比べて低くなるが、既に第1の熱処理を施しているため、スプリングバック量は小さく、前記スプリング接触子20の高さ寸法H4を許容範囲内に維持できる。   Next, in the step shown in FIG. 9, the protrusion adjusting member 36 and the fixing member 35 are removed. At this time, the height H4 of the spiral contact 20 is slightly lower due to the spring back than before the protrusion adjusting member 36 of FIG. 8 is removed, but since the first heat treatment has already been performed, the amount of spring back The height dimension H4 of the spring contact 20 can be maintained within an allowable range.

なお図8及び図9では、前記スプリング接触子20の高さ寸法H3,H4を、ちょうど各スパイラル接触子20間を繋ぐ接合部材32の上面から最も高く突き出した接触子片20aの上面までの高さで規定しているが、高さ寸法をどの範囲として規定するかは自由である。   In FIGS. 8 and 9, the height dimensions H3 and H4 of the spring contact 20 are set to the height from the upper surface of the joining member 32 that connects the spiral contacts 20 to the upper surface of the contact piece 20a that protrudes highest. However, the range in which the height dimension is specified is free.

ところで図9工程で、スパイラル接触子20の製造を終了してもよいが、この次に以下の第2の熱処理を施すことが好ましい。   By the way, although the manufacturing of the spiral contact 20 may be finished in the step of FIG. 9, it is preferable to perform the following second heat treatment next.

前記第2の熱処理工程は、前記第1の熱処理工程よりも高い加熱温度で且つ長い加熱時間であることが好ましい。   The second heat treatment step preferably has a higher heating temperature and a longer heating time than the first heat treatment step.

この第2の熱処理工程は、突出調整部材36及び固定部材35を取り除いた後、必要に応じて施される。前記突出調整部材36を取り除き、前記スパイラル接触子20に対し無荷重な状態で前記第2の熱処理を施すことが、応力のさらなる緩和促進させることができて好ましいし、また突出調整部材36を取りに除いてもスプリングバック量は小さいから、元の平面的な形状に近いスパイラル接触子20に戻ることはなく、よって突出調整部材36を取りに除いた後に、第2の熱処理工程を施すことにした方が、どのタイミングで第2の熱処理工程を施すかの選択性を高められる。 This second heat treatment step is performed as necessary after removing the protrusion adjusting member 36 and the fixing member 35. It is preferable to remove the protrusion adjusting member 36 and to apply the second heat treatment to the spiral contactor 20 with no load because it can promote further relaxation of the stress. Even if it is removed, the amount of spring back is small, so that it does not return to the spiral contact 20 close to the original planar shape. Therefore, after removing the protrusion adjusting member 36, a second heat treatment step is performed. In this case, the selectivity for performing the second heat treatment process at which timing can be improved.

この第2の熱処理工程の加熱温度は、前記第1の熱処理工程の加熱温度よりも高いことが必要であるが、前記スパイラル接触子20が設けられている図1に示す検査装置10の実使用の環境温度より高いことがより好ましい。   Although the heating temperature of the second heat treatment step needs to be higher than the heating temperature of the first heat treatment step, the actual use of the inspection apparatus 10 shown in FIG. It is more preferable that the temperature is higher than the ambient temperature.

既に述べたように図1に示す検査装置10は、半導体などの電子部品1の動作を確認するための試験に用いられるもので、前記検査装置10を、ある所定の温度に加熱して試験を行う場合がある。例えばバーンイン試験(高温動作確認のための試験等)がそれに該当し、加熱温度は例えば125℃で加熱時間は24時間である。   As described above, the inspection apparatus 10 shown in FIG. 1 is used for a test for confirming the operation of the electronic component 1 such as a semiconductor. The inspection apparatus 10 is heated to a predetermined temperature to perform the test. May do. For example, a burn-in test (such as a test for confirming high-temperature operation) corresponds to this, and the heating temperature is, for example, 125 ° C. and the heating time is 24 hours.

このような高温の加熱下において、検査装置10を構成するスパイラル接触子20がへたってしまっては、電子部品1に対する試験を適切に行うことができない。そのため、前記スパイラル接触子20は、検査装置10の実使用の環境温度によってもへたること無く、所定の立体形状を保っていることが必要である。   Under such high temperature heating, if the spiral contact 20 constituting the inspection apparatus 10 is stuck, the test for the electronic component 1 cannot be performed appropriately. For this reason, the spiral contact 20 needs to maintain a predetermined three-dimensional shape without sagging due to the actual use environment temperature of the inspection apparatus 10.

そこで本発明では、前記スパイラル接触子20を、検査装置10の実使用の環境温度より高い加熱温度で、第2の熱処理工程を施すこととした。   Therefore, in the present invention, the spiral contact 20 is subjected to the second heat treatment step at a heating temperature higher than the actual use environment temperature of the inspection apparatus 10.

この再加熱処理により、前記スパイラル接触子20を構成するNiやAu、Cuなどの金属あるいは合金属の再結晶化が促され、より熱的に安定したスパイラル接触子20を形成できる。   By this reheating treatment, recrystallization of a metal such as Ni, Au, or Cu or a mixed metal constituting the spiral contact 20 is promoted, and a more thermally stable spiral contact 20 can be formed.

具体的に、前記第2の熱処理工程での加熱温度を170℃〜200℃の間、加熱時間を20時間〜200時間の間とすることが好ましい。   Specifically, it is preferable that the heating temperature in the second heat treatment step is 170 ° C. to 200 ° C., and the heating time is 20 hours to 200 hours.

本発明では、次のような方法(第2の製造方法)によりスパイラル接触子20を立体形成してもよい。   In the present invention, the spiral contact 20 may be three-dimensionally formed by the following method (second manufacturing method).

すなわち図4から図7工程まで施した後、図8工程での突出調整部材36より前記スパイラル接触子20を立体形状に突き上げた後に、上記した第1の熱処理工程を施さず、即座に、前記検査装置10の実使用の環境温度より高い加熱温度を有する熱処理工程(以下では、この熱処理を「第3の熱処理」と称す、なお以下において単に「熱処理」と表現するときは、上記した第1、第2及び第3の熱処理を全て含む表現である)を施しても良い。   That is, after the steps from FIG. 4 to FIG. 7 are performed, the spiral contact 20 is pushed up into a three-dimensional shape from the protrusion adjusting member 36 in the step of FIG. A heat treatment step having a heating temperature higher than the environmental temperature of actual use of the inspection apparatus 10 (hereinafter, this heat treatment will be referred to as “third heat treatment”. , An expression including all of the second and third heat treatments).

具体的には、前記第3の熱処理工程の加熱温度を170℃〜200℃の間、加熱時間を20時間〜200時間の間とすることが好ましい。   Specifically, it is preferable that the heating temperature of the third heat treatment step is 170 ° C. to 200 ° C., and the heating time is 20 hours to 200 hours.

上記したスパイラル接触子20の製造方法によれば、力緩和の効果的な促進を実現でき、特に検査装置10の実使用の環境温度下においても、へたり率の低いスパイラル接触子20を立体成形することが可能である。 According to the manufacturing method of the spiral contact 20 described above, it can achieve effective promotion of stress relaxation, especially in an environment temperature of actual use of the inspection apparatus 10, the three-dimensional and low fatigue rate spiral contacts 20 It is possible to mold.

また本発明では、図8に示す突出調整部材36により前記スパイラル接触子20を立体成形し、上記した第3の熱処理工程を施した後に、前記突出調整部材36を取り外すことが好ましい。これにより、前記突出調整部材36を取り外した後における前記スパイラル接触子20の高さ寸法のへたり率をより効果的に低減できる。   In the present invention, it is preferable that the spiral contactor 20 is three-dimensionally formed by the protrusion adjusting member 36 shown in FIG. 8 and the protrusion adjusting member 36 is removed after the third heat treatment step is performed. Thereby, the sag ratio of the height dimension of the spiral contactor 20 after the protrusion adjusting member 36 is removed can be more effectively reduced.

なお前記第3の熱処理工程のときにも、図8や図10に示す形状の突出部を有する突出調整部材36を用いることが好ましく、また図12に示す複数の突出部36bを有する突出調整部材36により、複数のスパイラル接触子20を同時に立体成形することが好ましい。   Also in the third heat treatment step, it is preferable to use the protrusion adjusting member 36 having the protrusions having the shapes shown in FIGS. 8 and 10, and the protrusion adjusting member having a plurality of protrusions 36b shown in FIG. According to 36, it is preferable to form a plurality of spiral contacts 20 simultaneously.

また図4ないし図5に示すスパイラル接触子20はメッキで形成されていたが、前記スパイラル接触子20を箔体で、あるいは箔体とメッキ層との積層構造で形成してもよい。前記スパイラル接触子20をメッキや箔体で形成する本発明では、メッキや箔体で形成されたスパイラル接触子は非常に小さい構造のため、前記スパイラル接触子を立体成形するための治具のみで高さ調整をすることが非常に難しいこと、熱処理を施さないと、メッキや箔体によるスパイラル接触子は非晶質状態、あるいは部分的な結晶化状態のため、立体成形されても実使用の環境下での様々な要因により結晶状態が流動的に変化しやすく、塑性変形が生じやすいこと、などにより、上記した熱処理工程を施すことはスパイラル接触子20を所定の立体形状に長時間維持する点で非常に効果的である。   4 to 5, the spiral contact 20 is formed by plating. However, the spiral contact 20 may be formed by a foil body or a laminated structure of a foil body and a plating layer. In the present invention in which the spiral contact 20 is formed by plating or a foil, the spiral contact formed by plating or foil is a very small structure, and therefore only a jig for three-dimensionally forming the spiral contact is used. It is very difficult to adjust the height. Without heat treatment, the spiral contact made of plating or foil is in an amorphous state or a partially crystallized state. Applying the above heat treatment process maintains the spiral contact 20 in a predetermined three-dimensional shape for a long time because the crystal state is likely to change fluidly due to various factors in the environment and plastic deformation is likely to occur. Very effective in terms.

また上記製造方法では、スパイラル接触子20を山型形状に立体成形していたが、谷型形状に立体成形してもかまわない。   Further, in the above manufacturing method, the spiral contact 20 is three-dimensionally formed into a mountain shape, but may be three-dimensionally formed into a valley shape.

図13は、実際に図6に示すスパイラル接触子20を形成し、このスパイラル接触子20を図8に示す突出調整部材36を用いて立体成形し(段階(A))、第1の熱処理工程を施して前記突出調整部材36を取り除いた後(段階(B))、第2の熱処理を施さず、前記スパイラル接触子20を実使用の環境下においた後(段階(C))、あるいは第2の熱処理を施した後(段階(D))、前記第2の熱処理して前記スパイラル接触子20を実使用の環境下においた後(段階(E))の、各段階でのへたり率を求めた。   13 actually forms the spiral contact 20 shown in FIG. 6 and three-dimensionally forms the spiral contact 20 using the protrusion adjusting member 36 shown in FIG. 8 (step (A)), and the first heat treatment step. After removing the protrusion adjusting member 36 (step (B)), the second heat treatment is not performed and the spiral contactor 20 is placed in an actual use environment (step (C)), or After the heat treatment of step 2 (step (D)), the rate of sag at each step after the second heat treatment and placing the spiral contactor 20 in an actual use environment (step (E)) Asked.

具体的な各段階での主条件及び高さ寸法について説明すると、図8に示す突出調整部材36を用いて立体成形した時の段階(A)での、スパイラル接触子20の高さ寸法をH5とし、前記スパイラル接触子20に対し120℃で2時間の第1の熱処理工程を施して、上記段階(B)でのスパイラル接触子20の高さ寸法をH6とし、図1に示す検査装置10内に、前記スパイラル接触子20を設置するとともに、LGAあるいはBGAタイプのICを前記検査装置10内に組み込み、前記検査装置10をバーンイン試験(高温動作確認など)環境にさらした後(加熱温度は150℃で加熱時間は12時間)、前記ICを取り除いた後のスパイラル接触子20の高さ寸法H7を上記段階(C)での高さ寸法とした。   The specific main conditions and height dimensions at each stage will be described. The height dimension of the spiral contact 20 at the stage (A) when the three-dimensional molding is performed using the protrusion adjusting member 36 shown in FIG. The spiral contactor 20 is subjected to a first heat treatment step at 120 ° C. for 2 hours, and the height dimension of the spiral contactor 20 in the step (B) is set to H6, and the inspection apparatus 10 shown in FIG. The spiral contactor 20 is installed therein, and an LGA or BGA type IC is incorporated in the inspection apparatus 10 and the inspection apparatus 10 is exposed to a burn-in test (high temperature operation confirmation, etc.) environment (heating temperature is At 150 ° C., the heating time was 12 hours), and the height dimension H7 of the spiral contactor 20 after removing the IC was taken as the height dimension in the above step (C).

一方、上記段階(B)の後、スパイラル接触子20に対し、第2の熱処理工程を施して(加熱温度を200℃で加熱時間を96時間)、測定したスパイラル接触子20の高さ寸法H8を上記段階(D)での高さ寸法とし、さらに前記スパイラル接触子20を図1に示す検査装置10に設置するとともに、LGAあるいはBGAタイプのICを前記検査装置10内に組み込み、前記検査装置10をバーンイン試験環境にさらした後(加熱温度は150℃で加熱時間は12時間)、前記ICを取り除いた後のスパイラル接触子20の高さ寸法H9を上記段階(E)での高さ寸法とした。   On the other hand, after the step (B), the spiral contact 20 is subjected to a second heat treatment step (heating temperature is 200 ° C. and heating time is 96 hours), and the measured height H8 of the spiral contact 20 is measured. And the spiral contact 20 is installed in the inspection apparatus 10 shown in FIG. 1, and an LGA or BGA type IC is incorporated in the inspection apparatus 10, and the inspection apparatus 10 is exposed to the burn-in test environment (heating temperature is 150 ° C. and heating time is 12 hours), and the height dimension H9 of the spiral contact 20 after removing the IC is the height dimension in the above step (E). It was.

図13に示すように、第1の熱処理後の段階(B)でのスパイラル接触子20の高さ寸法H6は、段階(A)でのスパイラル接触子20の高さ寸法H5に比べて若干、低くなるものの、第2の熱処理を施さず、いきなりスパイラル接触子20をバーンイン試験環境下においた段階(C)では、スパイラル接触子20の高さ寸法H7は、段階(B)での高さ寸法H6に比べて約50〜80%程度、へたってしまうことがわかった。   As shown in FIG. 13, the height dimension H6 of the spiral contactor 20 in the stage (B) after the first heat treatment is slightly larger than the height dimension H5 of the spiral contactor 20 in the stage (A). In the stage (C) where the spiral contact 20 is suddenly placed in the burn-in test environment without performing the second heat treatment, the height H7 of the spiral contact 20 is the height in the stage (B). It was found that the thickness was reduced by about 50 to 80% compared to H6.

一方、第1の熱処理を施した後、さらに第2の熱処理を施し(段階(D))、その後、スパイラル接触子をバーンイン試験環境下においた段階(E)では、スパイラル接触子20の高さ寸法H9を、段階(D)での高さ寸法H8に比べて約20%以下程度にまでへたり率を減少させることができることがわかった。   On the other hand, after the first heat treatment is performed, the second heat treatment is further performed (step (D)), and then in the step (E) where the spiral contactor is placed in a burn-in test environment, the height of the spiral contactor 20 is increased. It has been found that the ratio of the dimension H9 can be reduced to about 20% or less as compared with the height dimension H8 in the step (D).

図14では、図13で説明した段階(A)→段階(B)→段階(D)→段階(E)と同じ工程順で、スパイラル接触子20に対し、第1の熱処理工程(120℃で2時間)→第2の熱処理工程(200℃で96時間)を施した後、前記スパイラル接触子20に加えられる応力を変化させながらバーンイン試験環境下(150℃で12時間)に放置し、前記応力を除去した後の前記スパイラル接触子20のへたり率(第2の熱処理工程後におけるスパイラル接触子20の高さに対する)を測定した。   In FIG. 14, the first heat treatment process (at 120 ° C.) is performed on the spiral contact 20 in the same process order as the stage (A) → the stage (B) → the stage (D) → the stage (E) described in FIG. 13. 2 hours) → After the second heat treatment step (96 hours at 200 ° C.), the sample was left in a burn-in test environment (12 hours at 150 ° C.) while changing the stress applied to the spiral contact 20. The sag rate of the spiral contact 20 after removing the stress (relative to the height of the spiral contact 20 after the second heat treatment step) was measured.

一方、図15では、図13で説明した段階(A)→段階(B)→段階(C)と同じ工程順で、スパイラル接触子20に対し、第1の熱処理工程(120℃で2時間)を施した後、前記スパイラル接触子20に加えられる応力を変化させながらバーンイン試験環境下(150℃で12時間)に放置し、前記応力を除去した後の前記スパイラル接触子20のへたり率(第1の熱処理工程後におけるスパイラル接触子20の高さに対する)を測定した。   On the other hand, in FIG. 15, the first heat treatment process (at 120 ° C. for 2 hours) is performed on the spiral contact 20 in the same process order as the stage (A) → the stage (B) → the stage (C) described in FIG. 13. After being applied, the stress applied to the spiral contact 20 is left in a burn-in test environment (12 hours at 150 ° C.) while changing the stress, and the sag rate of the spiral contact 20 after removing the stress ( (With respect to the height of the spiral contact 20 after the first heat treatment step) was measured.

図14及び図15に示すように、第2の熱処理を施した図14の実験結果及び第2の熱処理を施さなかった図15の実験結果ともに、応力が大きくなると、それにつれてスパイラル接触子20のへたり率も大きくなるが、図14では、応力を500(MPa)程度まで大きくしても、スパイラル接触子20のへたり率は20%以下であるのに対し、図15では、応力を約200(MPa)以上にすると、スパイラル接触子20のへたり率は20%を越え、さらに応力を約700(MPa)程度まで大きくすると、スパイラル接触子20のへたり率は80%程度まで大きくなってしまうことがわかった。   As shown in FIGS. 14 and 15, both the experimental results of FIG. 14 with the second heat treatment and the experimental results of FIG. 15 without the second heat treatment increase the stress of the spiral contactor 20 as the stress increases. Although the sag rate also increases, in FIG. 14, even if the stress is increased to about 500 (MPa), the sag rate of the spiral contact 20 is 20% or less, whereas in FIG. When the pressure is 200 (MPa) or more, the sag rate of the spiral contact 20 exceeds 20%, and when the stress is further increased to about 700 (MPa), the sag rate of the spiral contact 20 is increased to about 80%. I understood that.

図13ないし図15に示す実験結果から、スパイラル接触子20に対し第1の熱処理工程を施した後、前記第1の熱処理工程よりも高い加熱温度で且つ長い加熱時間、好ましくは検査装置10の実使用の環境温度より高い加熱温度下で第2の熱処理工程を施すことが、前記スパイラル接触子20のへたり率を低減でき、所定の立体形状を効果的に維持できることがわかった。   From the experimental results shown in FIG. 13 to FIG. 15, after the first heat treatment step is performed on the spiral contact 20, the heating temperature is higher than that of the first heat treatment step, and the heating time is preferably long. It has been found that applying the second heat treatment step at a heating temperature higher than the environmental temperature of actual use can reduce the settling rate of the spiral contact 20 and can effectively maintain a predetermined three-dimensional shape.

電子部品の動作を確認するための試験に用いられる検査装置を示す斜視図、The perspective view which shows the test | inspection apparatus used for the test for confirming operation | movement of an electronic component, 図1の2−2線における断面図を示し、電子部品が装着された状態の断面図、1 is a cross-sectional view taken along line 2-2 of FIG. 本発明におけるスパイラル接触子の形状を示す拡大斜視図、An enlarged perspective view showing the shape of the spiral contact in the present invention, 本発明におけるスパイラル接触子の製造方法を示す一工程図、1 process figure which shows the manufacturing method of the spiral contactor in this invention, 図4の次に行われる一工程図、FIG. 4 is a process diagram performed next to FIG. スパイラル接触子の平面図、Top view of spiral contact, 図6の次に行われる一工程図、FIG. 6 is a process diagram performed next to FIG. 図7の次に行われる一工程図、FIG. 7 is a process diagram to be performed next to 図8の次に行われる一工程図、FIG. 8 is a process diagram performed next to FIG. 本発明の突出調整部材を構成する突出部の断面図、Sectional drawing of the protrusion part which comprises the protrusion adjustment member of this invention, 好ましくない突出部の断面図、A cross-sectional view of an undesirable protrusion, 本発明の突出調整部材の斜視図、The perspective view of the protrusion adjustment member of the present invention, 段階(A)ないし段階(E)の各段階におけるスパイラル接触子の高さ及びその変化を示すグラフ、A graph showing the height of the spiral contact and its change in each of the stages (A) to (E); 第1の熱処理、第2の熱処理工程を施した後、バーンイン試験においてスパイラル接触子に種々異なる応力を加え、その応力の大きさと、前記応力を取り除いた後のスパイラル接触子のへたり率との関係を示すグラフ、After performing the first heat treatment and the second heat treatment step, various stresses are applied to the spiral contact in the burn-in test, and the magnitude of the stress and the sag rate of the spiral contact after the stress is removed. A graph showing the relationship, 第2の熱処理工程を施さないで、第1の熱処理後に、バーンイン試験においてスパイラル接触子に種々異なる応力を加え、その応力の大きさと、前記応力を取り除いた後のスパイラル接触子のへたり率との関係を示すグラフ、Without performing the second heat treatment step, after the first heat treatment, various stresses are applied to the spiral contact in the burn-in test, the magnitude of the stress, and the sag rate of the spiral contact after the stress is removed. A graph showing the relationship between 従来におけるスパイラル接触子の平面図、Plan view of a conventional spiral contact, 従来におけるスパイラル接触子の立体成形の方法を説明するための一工程図、One process diagram for explaining a conventional method of three-dimensional forming of a spiral contact, 図16の次に行われる一工程図、FIG. 16 is a process diagram performed next to FIG. 図18の次に行われる一工程図、FIG. 18 is a process diagram performed next to FIG.

符号の説明Explanation of symbols

1 電子部品
1a 球状接触子(外部接続部)
10 検査装置
11 基台
20 スパイラル接触子
20a 接触子片
21 基部
22 巻き始端
23 巻き終端
30 基板
31 レジスト層
31a パターン
32 接合部材
36 突出調整部材
36b、40、41 突出部
1 Electronic component 1a Spherical contact (external connection)
DESCRIPTION OF SYMBOLS 10 Inspection apparatus 11 Base 20 Spiral contact 20a Contact piece 21 Base 22 Winding start end 23 Winding end 30 Substrate 31 Resist layer 31a Pattern 32 Joining member 36 Projection adjustment members 36b, 40, 41 Projection

Claims (9)

基台と、前記基台に設けられた複数のスパイラル形状の弾性接触子とを有し、電子部品に設けられた複数の外部接続部が、スパイラル形状の弾性接触子にそれぞれ接触する接続装置の製造方法において、
平面形状でスパイラル形状の弾性接触子の基部が前記基台に接合し前記弾性接触子の先部が前記基台に形成された貫通孔に対向するように、前記基台と前記弾性接触子とが重ねられた構造を形成する工程と、
前記弾性接触子が設けられているのと逆側から前記基台の前記貫通孔内に治具を通し前記弾性接触子を押圧して、前記弾性接触子をその先部が前記基台から離れる立体形状とする工程と、
記治具による押圧を維持したまま前記弾性接触子を加熱して立体形状の前記弾性接触子の応力を緩和する熱処理を施す工程とを有し、
前記熱処理後に前記治具を取り除いたときに、前記弾性接触子が、その先部が基台から所定高さ離れた立体形状を維持し、且つ弾性変形可能とされることを特徴とする接続装置の製造方法。
A connecting device having a base and a plurality of spiral-shaped elastic contacts provided on the base, wherein a plurality of external connection portions provided on the electronic component respectively contact the spiral-shaped elastic contacts; In the manufacturing method,
The base, the elastic contact, and the base of the spiral elastic contact in a planar shape are joined to the base and the tip of the elastic contact is opposed to a through hole formed in the base. Forming a stacked structure, and
A jig is passed through the through hole of the base from the side opposite to where the elastic contact is provided to press the elastic contact, and the tip of the elastic contact is separated from the base. A step of forming a three-dimensional shape;
And a step of performing heat treatment to relieve the stress of the elastic contacts of the three-dimensional shape by heating the resilient contacts while maintaining the press by pre Kichi tool,
When the jig is removed after the heat treatment, the elastic contactor maintains its three-dimensional shape with its tip portion separated from the base by a predetermined height and is elastically deformable. Manufacturing method.
先端部側から後端部側に向けて徐々に幅寸法が広がる突出部を備えた前記治具を用い、前記治具の先端部で前記弾性接触子を押圧する請求項1記載の接続装置の製造方法。   2. The connection device according to claim 1, wherein the jig is provided with a protruding portion whose width gradually increases from the front end side toward the rear end side, and the elastic contactor is pressed by the front end portion of the jig. Production method. 前記治具により、前記スパイラル形状の弾性接触子の前記先部を押圧する請求項1または2に記載の接続装置の製造方法。   The method of manufacturing a connection device according to claim 1, wherein the tip portion of the spiral-shaped elastic contact is pressed by the jig. 前記熱処理工程を、100℃〜200℃で、加熱時間を30分〜12時間で行なう請求項1ないし3のいずれかに記載の接続装置の製造方法。   The method for manufacturing a connection device according to claim 1, wherein the heat treatment step is performed at 100 ° C. to 200 ° C. and for a heating time of 30 minutes to 12 hours. 前記熱処理を施した後に、前記熱処理よりも高い加熱温度で且つ長い加熱時間の第2の熱処理工程を施す請求項1ないし4のいずれかに記載の接続装置の製造方法。   5. The method for manufacturing a connection device according to claim 1, wherein after the heat treatment, a second heat treatment step is performed at a higher heating temperature and a longer heating time than the heat treatment. 前記治具を前記基台の裏面側から取り除いた後に、前記第2の熱処理工程を施す請求項5記載の接続装置の製造方法。   The method of manufacturing a connection device according to claim 5, wherein the second heat treatment step is performed after the jig is removed from the back side of the base. 前記第2の熱処理工程を、170℃〜200℃で、加熱時間を20時間〜200時間で行なう請求項6記載の接続装置の製造方法。   The method for manufacturing a connection device according to claim 6, wherein the second heat treatment step is performed at 170 ° C. to 200 ° C. and for a heating time of 20 hours to 200 hours. 複数の各弾性接触子を、前記治具を用いて同時に立体形状に押圧する請求項1ないし7のいずれかに記載の接続装置の製造方法。   The manufacturing method of the connection apparatus in any one of Claim 1 thru | or 7 which presses each some elastic contactor to a solid | 3D shape simultaneously using the said jig | tool. 前記弾性接触子を、箔体あるいはメッキ、または箔体とメッキ層との積層構造で形成する請求項1ないし8のいずれかに記載の接続装置の製造方法。   9. The method of manufacturing a connection device according to claim 1, wherein the elastic contact is formed by a foil body or plating, or a laminated structure of a foil body and a plating layer.
JP2003316878A 2003-09-09 2003-09-09 Manufacturing method of connection device Expired - Fee Related JP4079857B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003316878A JP4079857B2 (en) 2003-09-09 2003-09-09 Manufacturing method of connection device
CN 200410076851 CN1595735A (en) 2003-09-09 2004-09-08 Method for manufacturing connection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003316878A JP4079857B2 (en) 2003-09-09 2003-09-09 Manufacturing method of connection device

Publications (2)

Publication Number Publication Date
JP2005085616A JP2005085616A (en) 2005-03-31
JP4079857B2 true JP4079857B2 (en) 2008-04-23

Family

ID=34416638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316878A Expired - Fee Related JP4079857B2 (en) 2003-09-09 2003-09-09 Manufacturing method of connection device

Country Status (2)

Country Link
JP (1) JP4079857B2 (en)
CN (1) CN1595735A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100559584C (en) * 2005-05-02 2009-11-11 日本先进系统株式会社 Circuit substrate with semiconductor package, semiconductor subassembly, electric circuitry packages and carrying spigots of socket function
US7393214B2 (en) * 2006-02-17 2008-07-01 Centipede Systems, Inc. High performance electrical connector
JP2008039502A (en) * 2006-08-03 2008-02-21 Alps Electric Co Ltd Contact and its manufacturing method
JP2010153236A (en) * 2008-12-25 2010-07-08 Alps Electric Co Ltd Method of manufacturing contactor equipped with elastically deforming part
CN102347581B (en) * 2011-09-16 2013-06-05 贵州航天电子科技有限公司 Heat treatment process for jack of electric connector

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794540A (en) * 1980-12-05 1982-06-12 Sumitomo Electric Ind Ltd Copper alloy for terminal and its production
JPH01162752A (en) * 1987-12-17 1989-06-27 Sky Alum Co Ltd Manufacture of conductive parts material for electronic and electrical equipment
US5297967A (en) * 1992-10-13 1994-03-29 International Business Machines Corporation Electrical interconnector with helical contacting portion and assembly using same
JP3099066B1 (en) * 1999-05-07 2000-10-16 東京工業大学長 Manufacturing method of thin film structure
JP4514855B2 (en) * 1999-08-19 2010-07-28 東京エレクトロン株式会社 Probing card manufacturing method
JP4733319B2 (en) * 2000-09-18 2011-07-27 アイメック Manufacturing method of probe tip structure
JP3440243B2 (en) * 2000-09-26 2003-08-25 株式会社アドバンストシステムズジャパン Spiral contactor
JP3744810B2 (en) * 2001-03-30 2006-02-15 株式会社神戸製鋼所 Copper alloy for terminal / connector and manufacturing method thereof
JP3814231B2 (en) * 2002-06-10 2006-08-23 株式会社アドバンストシステムズジャパン Spiral contactor and manufacturing method thereof, semiconductor inspection apparatus using the same, and electronic component

Also Published As

Publication number Publication date
CN1595735A (en) 2005-03-16
JP2005085616A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
US5525545A (en) Semiconductor chip assemblies and components with pressure contact
US5829988A (en) Socket assembly for integrated circuit chip carrier package
JPH098205A (en) Resin sealed semiconductor device
US20100025096A1 (en) Connector and electronic component provided with same
US20210305731A1 (en) Pressure features to alter the shape of a socket
KR100615875B1 (en) Connecting device and method of manufacturing the same
TW323406B (en)
WO2007138952A1 (en) Contact terminal for sockets and semiconductor device
EP2158642A1 (en) Connector for interconnecting surface-mount devices and circuit substrates
JP4079857B2 (en) Manufacturing method of connection device
JP2005026213A (en) Method of arranging socket to circuit board and socket using the method
JP3833669B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2007027093A (en) Connecting member and its manufacturing method as well as connecting member mounting structure having connecting member and its manufacturing method
JPH02132418A (en) Production of flexible wiring board having bent part
US7238031B2 (en) Contact structure and manufacturing method thereof, and electronic member to which the contact structure is attached and manufacturing method thereof
JP4383843B2 (en) Electrical contact structure and manufacturing method thereof
JP4050198B2 (en) Manufacturing method of connection device
JP3092921B1 (en) Board unit
KR100312490B1 (en) Contact Pin with Increased Contact Surface and IC Device Test Socket using Thereof
WO1991005369A1 (en) Heatsink for semiconductor devices
CA1071747A (en) Method and apparatus for assembling electronic devices
JP2006229192A (en) Contact member and its production process
JP2004087575A (en) Semiconductor, manufacturing method, and mount structure for semiconductor device
JP2011228387A (en) Semiconductor device and method for manufacturing the same
JP2000012759A (en) Lead frame member and manufacture thereof, and resin sealed semiconductor device provided therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees